Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256 - Archive ouverte HAL Access content directly
Conference Papers Lecture Notes in Computer Science Year : 2010

Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256

Abstract

The zero-sum distinguishers introduced by Aumasson and Meier are investigated. First, the minimal size of a zero-sum is established. Then, we analyze the impacts of the linear and the nonlinear layers in an iterated permutation on the construction of zero-sum partitions. Finally, these techniques are applied to the Keccak-f permutation and to Hamsi-256. We exhibit several zero-sum partitions for 20 rounds (out of 24) of Keccak-f and some zero-sum partitions of size 2^{19} and 2^{10} for the finalization permutation in Hamsi-256.
Fichier principal
Vignette du fichier
boura_canteaut_sac10.pdf (198.99 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-00738200 , version 1 (03-10-2012)

Identifiers

  • HAL Id : hal-00738200 , version 1

Cite

Christina Boura, Anne Canteaut. Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256. Selected Areas in Cryptography - 17th International Workshop, SAC 2010,, Aug 2010, Waterloo, Ontario,, Canada. pp.1-17. ⟨hal-00738200⟩

Collections

INRIA INRIA2
174 View
432 Download

Share

Gmail Facebook Twitter LinkedIn More