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Recursively Arbitrarily Vertex-Decomposable Graphs *

A graph G = (V, E) is arbitrarily vertex decomposable if for any sequence τ of positive integers adding up to |V |, there is a sequence of vertex-disjoints subsets of V whose orders are given by τ , and which induce connected graphs. The main aim of this paper is to study the recursive version of this problem. We present a solution for trees, suns, and partially for a class of 2-connected graphs called balloons.

Introduction

We deal with finite, simple and undirected graphs. Let G = (V, E) be a graph of order n. A sequence τ = (n 1 , ..., n k ) of positive integers is called admissible for G if it sums up to n. If τ = (n 1 , ..., n k ) is an admissible sequence for G and there exists a partition (V 1 , ..., V k ) of the vertex set V such that V i induces a connected subgraph of order n i for each i ∈ [1, k], then τ is called realizable in G, and the sequence (V 1 , ..., V k ) is said to be a realization of τ in G. A graph G is arbitrarily vertex decomposable (AVD, for short) if for each admissible sequence τ for G there exists a realization of τ in G. Clearly, every AVD graph has to be connected.

The notion of AVD graphs was first introduced by Barth et al. in [START_REF] Barth | Network sharing: a polynomial algorithm for tripodes[END_REF] motivated by the following problem in computer science. Consider a network connecting different computing resources; such a network is modeled by a graph. Suppose there are k different users, where the i-th one needs n i resources in our graph. The subgraph induced by the set of resources attributed to each user should be connected and each resource should be attributed to one user. So we are seeking a realization of the sequence τ = (n 1 , . . . , n k ) in this graph. Thus, such a network should be an AVD graph.

This problem can also be considered as a natural analogy of the similar notion in which vertices are replaced by edges. Some references concerning arbitrarily edge decomposable graphs can be found in [START_REF] Horňák | Arbitrarily vertex decomposable trees are of maximum degree at most six[END_REF].

The problem of deciding whether a given graph is arbitrarily vertex decomposable has been considered in several papers. The investigation of AVD trees is motivated by the fact that a connected graph is AVD if its spanning tree is AVD. It turned out, however, that the structure of AVD trees is not obvious in general. On the other hand, it is clear that each path, and therefore each traceable graph, is AVD. So, the problems concerning AVD graphs can be considered as a generalization of hamiltonian problems. Some results in this direction were obtained by use of some characterizations of AVD graphs in the family of graphs with a large dominating cycle, called suns. This spurs on and justifies investigating AVD graphs in this family.

Terminology and preliminary results

In this paper, we deal only with simple graphs, that means graphs without loops or multiple edges. We denote by n the number of vertices, also called order of the graph and by m the number of edges. If G = (V, E) and A ⊆ V , G[A] will denote the subgraph of G induced by A. For more definitions on graphs, please refer to [START_REF] Diestel | Graph Theory[END_REF].

Arbitrarily Vertex-Decomposable Graphs

Let n, τ 1 , . . . , τ k be positive integers such that τ 1 + . . .

+ τ k = n. τ = (τ 1 , . . . , τ k ) is called a decomposition of n.
Let G = (V, E) be a graph of order n, and τ = (τ 1 , . . . , τ k ) a decomposition of n. G is τ -Vertex-Decomposable iff there exists a partition of

V : V 1 , . . . , V k such that for each i, 1 ≤ i ≤ k, • |V i | = τ i , • G[V i ] is connected. A graph G = (V, E) of order n is Arbitrarily Vertex-Decomposable (for short AVD) iff for each decomposition τ of n, G is τ -Vertex-Decomposable.

Recursively Arbitrarily Vertex-Decomposable Graphs

We present here a new definition of graph decomposition into connected components. This definition introduces the main topic of this paper. The goal is to characterize graphs for which it is possible to perform arbitrarily decomposition recursively on each subgraph.

Definition 1 A graph G = (V, E) of order n is Recursively Arbitrarily Vertex-Decomposable (for short R-AVD) iff • G = K 1 or
• G is connected and for each decomposition τ = (τ 1 , . . . , τ k ) of n, k ≥ 2, there exists a partition of

V : V 1 , . . . , V k such that for all i, 1 ≤ i ≤ k, -|V i | = τ i , -G[V i ] is R-AVD.
A stronger version of the recursive decomposition of graphs into connected components will also be studied in the last section of this paper, based on the following definition:

Definition 2 A graph G = (V, E) of order n is Strongly Recursively Arbitrarily Vertex-Decomposable (for short SR-AVD) iff • G is AVD,
• for each sequence τ of length k ≥ 2 admissible for G and for each realization

V 1 , . . . , V k of τ the graph G[V i ], i = 1, . . . , k, is SR-AVD.

Families of graphs

The following definitions presents some families of graphs and their notations, used in the further sections.

Definition 3

• Let a be a positive integer. P a denotes the path of order a, C a the cycle of order a (cf. Figures 1a and 1b) .

• A k-pode T k (t 1 , . . . , t k ) is a tree of order 1 + k i=1 t i composed by k paths of respective orders t 1 , . . . , t k , connected to a unique node, called the root of the k-pode (cf. Figure 1c).

• Let a and b be two positive integers. A caterpillar Cat (a, b) is a tree of order a + b, composed by three paths of order a, b and 2, sharing exactly one node, called the root of the caterpillar. 1d).

Cat (a, b) is isomorphic to T 3 (a -1, b -1, 1) (cf. Figure
• A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u 1 , . . . , u r whose deletion yields a cycle C n-r , and each vertex v i adjacent to u i is of degree three. If the sequence of vertices v i is situated on the cycle C n-r in such a way that there are exactly a i ≥ 0 vertices, each of degree two, between v i and v i+1 , i = 1, ..., r (the indices taken modulo r), then this sun is denoted by Sun (a 1 , . . . , a r ), and is unique up to isomorphism (cf. Figure 1e). Note that the order of Sun (a 1 , . . . , a r ) equals n = 2r + a 1 + ... + a r .

• A graph of order n even (resp. odd) has a perfect matching (resp. quasi-perfect matching) iff it contains a set of ⌊ n 2 ⌋ disjoint edges. A graph is traceable iff it contains an hamiltonian path.

Preliminary results

Remark 5 A graph G having an AVD spanning subgraph is AVD. But there are AVD-graphs without any AVD-spanning tree. Proof. The first part of Remark 5 is trivial. We now prove that the graph G of Figure 2 1 is AVD, but has no AVD spanning tree.

To prove that the graph is AVD, we show that for any value of λ ≤ n -1, we may find a connected induced subgraph

G[V λ ] of G of order λ such that the remaining graph G[V \V λ ] is traceable. The values of V λ are given in Table 1. λ V λ 1 {v 19 } 2 {a 1 , a 2 } 3 {b 1 , b 2 , b 3 } 4 {a 1 , a 2 , v 1 , v 19 } ≥ 5 {a 1 , a 2 , v 19 , v 1 , v 2 , . . . , v λ-3 } Table 1: Values of V λ 1
This counter-example has been proposed by Hervé Fournier. Another counter-example may be find in [START_REF] Ravaux | Graphes arbitrairement partitionnables : propriétés structurelles et algorithmiques[END_REF].

4

The graph G is of order n = 24 and any of its spanning trees is of the form Ge j , j ∈ {1, . . . , 19}. If Ge j is AVD, then the sequence (i, . . . , i) is realizable in Ge j , i = 2, 3, 4, 6. For i ∈ {2, 3, 4, 6} let R i be the set of all j ∈ {1, . . . , 19} such that (i, . . . , i) is realizable in Ge j . Then R 2 = {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19}, R 3 = {1, 4, 7, 10, 13, 16, 19} R 4 = {1, 5, 9, 13, 17} and

R 6 = {3, 4, , 9, 10, 15, 16, 18, 19}. Since R 2 ∩ R 3 ∩ R 4 ∩ R 6 = ∅, the graph G has no AVD spanning tree. 2 Remark 6 A graph G = (V, E) of order n is R-AVD iff for each integer 1 ≤ λ ≤ ⌊ n 2 ⌋, it exists a subset V λ of V such that • |V λ | = λ, • G[V λ ] is R-AVD, • G[V \V λ ] is R-AVD.
The notion of on-line arbitrarily vertex decomposable graph has been introduced by Horňák et al. in [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF]. This version of the problem is even more natural when applied to the problem in computer networks mentioned in Section 1.

Let G = (V, E) be a graph. Imagine now the following decomposition procedure consisting of k stages, where k is a random variable attaining (integer) values from interval [1, n]. In the i th stage, where i ∈ [1, k], a positive integer τ i arrives and we have to choose a subset V i of V of order τ i that is disjoint from all subsets of V chosen in previous stages (without a possibility of changing the choice in the future). More precisely, for every partial sequence (τ 1 , . . . τ i ) whose sum is less than n, there is a sequence (

V 1 , . . . , V i ) of disjoint subsets of V such that for 1 ≤ j ≤ i, |V j | = τ j , with the following property: for all sequences (τ ′ 1 , . . . , τ ′ k ) with k ≥ i and summing to n, such that τ ′ r = τ r for 1 ≤ r ≤ i, there is a decomposition of V into disjoint subsets V ′ 1 , . . . , V ′ k with |V ′ j | = τ ′ j and G[V ′ j ]
connected, for all j, and V ′ j = V j for 1 ≤ j ≤ i.

Definition 7 [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF] If the decomposition procedure can be accomplished for any (random) sequence of positive integers (τ 1 , . . . , τ k ) adding up to n, the graph G is said to be On-Line AVD, (for short OL-AVD).

Lemma 8 [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF] A graph connected G = (V, E) of order n is OL-AVD iff for each integer 1 ≤ λ ≤ n-1, there exists a subset V λ of V such that

• |V λ | = λ, • G[V λ ] is connected, • G[V \V λ ] is OL-AVD.
Remark 9 A straightforward consequence of Lemma 8 and Remark 6 is that every R-AVD graph is OL-AVD. The opposite is not true. For example, the caterpillar Cat [START_REF] Horňák | Arbitrarily vertex decomposable trees are of maximum degree at most six[END_REF][START_REF] Marczyk | An Ore-type condition for arbitrarily vertex decomposable graphs[END_REF] is OL-AVD [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF], but not R-AVD (cf. Section 3.1).

We denote by :

• P F (n) the set of graphs of order n with a perfect matching or a quasi-perfect matching ;

• AV D(n) the set of AVD graphs of order n ;

• OL-AV D(n) the set of OL-AVD graphs of order n ;

• R-AV D(n) the set of R-AVD graphs of order n ;

• T raceable(n) the set of traceable graphs of order(n) ;

• SR-AV D(n) the set of SR-AVD graphs of order n ;

Theorem 10 P F (n) AV D(n) OL-AV D(n) R-AV D(n) T raceable(n) SR-AV D(n) Proof. • P F (n) AV D(n)
If G is AVD, then it is (2, . . . , 2) or (2, . . . , 2, 1)-decomposable, following the parity of its order.

The caterpillar Cat (3, 3) has a perfect matching, but is not (3,3)-decomposable.

• AV D(n) OL-AV D(n)
The inclusion is trivial. The 3-pode T 3 (2, 3, 5) is AVD ( [START_REF] Barth | Network sharing: a polynomial algorithm for tripodes[END_REF]), but not OL-AVD ( [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF]).

• OL-AV D(n) R-AV D(n) cf. Remark 9. • R-AV D(n) T raceable(n)
The inclusion is trivial, using Remark 6.

The caterpillar Cat (2, 3) is R-AVD (cf. Section 3.1) and not traceable.

• T raceable(n) SR-AV D(n)
The proof of the inclusion is given in Section 4, Theorems 26 and 27. The graph from Figure 3 is traceable, but not SR-AVD. Consider the (4,1) decomposition, where the set of size 4 is

S = {v 1 , v 2 , v 3 , v 5 }. The induced subgraph G[S] is isomorphic to K 1,3
and then is not (2,2)-decomposable.

2 v 1 v 2 v 3 v 4 v 5
Figure 3: A traceable graph, which is not SR-AVD

Known results on AVD and OL-AVD graphs

Theorem 11 [START_REF] Barth | A Degree Bound on Decomposable Trees[END_REF] There is no AVD k-pode for k ≥ 5. All AVD 4-podes have a branch of length 1.

A direct consequence of Theorem 11 is that the maximum degree of an AVD tree is at most 4. Nevertheless, this problem remains difficult on the class of trees, as shown by the next theorem. 

Recursively AVD graphs

In this section, we give a complete characterization of R-AVD trees and suns and a tight upper bound of the maximum degree of R-AVD balloons.

Trees

Theorem 16 A tree T is R-AVD if and only if either T is a path or T is a caterpillar Cat (a, b) with a and b given in Table 4 or T is the 3-pode T 3 [START_REF] Barth | A Degree Bound on Decomposable Trees[END_REF][START_REF] Baudon | Recursively arbitrarily vertex-decomposable suns[END_REF][START_REF] Diestel | Graph Theory[END_REF].

Proof. Only trees which are OL-AVD may be R-AVD (cf. Remark 9). The case of paths is trivial. Thus, we have only to check whether or not caterpillars from Table 2 andT 

V λ . If Cat (a, b) is R-AVD, the two graphs G[V λ ] and G[V \V λ ]
are either a path or a smaller R-AVD caterpillar. Table 5 gives the solution when it exists. For values a and b such that Cat (a, b) is OL-AVD, but not R-AVD, Table 6 gives a value λ for which it is not possible to find a set V λ such that both G[V λ ] and G[V \V λ ] are R-AVD.

For T 3 [START_REF] Barth | A Degree Bound on Decomposable Trees[END_REF][START_REF] Baudon | Recursively arbitrarily vertex-decomposable suns[END_REF][START_REF] Diestel | Graph Theory[END_REF], values of V λ are given in Table 7, using labelling from Figure 4. 

2 x a 1 a 2 c 1 c 2 c 3 c 4 c 5 b 1 b 2 b 3 r x b 1 b b-1 a 1 a a-1 c 6 b 4

Suns

Theorem 17 A sun with one ray is always R-AVD. A sun with two rays Sun (a, b) is R-AVD if and only if a and b take values given in Table 8a. A sun with three rays Sun (a, b, c) is R-AVD if and only if a, b and c take values given in Table 8b. A sun with four rays is R-AVD if and only if it is isomorphic to Sun (0, 0, 1, 2) or to Sun (0, 0, 1, 4). A sun with five or more rays in never R-AVD.

The proof of this theorem uses arguments that are similar to those used for theorem 16. Because it is quite long, it has been given in a separate paper [START_REF] Baudon | Recursively arbitrarily vertex-decomposable suns[END_REF]. 5). The branch of width 0 means that it exists an edge between the two roots. The existence of such a branch is essential (i.e., guarantees connectedness of a part G[V i ]) only if the part G[V i ] is a tree containing both roots of the balloon. Thus, the other parts V j , j = i, are all situated on the branches. We may then move them in such a way that for one root, V i contains exactly one of its neighbours, that means the other root. And then, we may move one of the V j , j = i, on this root. Now, the edge of the branch with width zero is no more necessary and may be removed.

Balloons

Maximum degree of RAVD Balloons

Remark 18 B(b 1 , . . . , b k ) is AVD (resp. R-AVD) iff B(b 1 , . . . , b k , 0) is AVD (resp.

R-AVD). Thus, we will always consider non-zero values for b

i , 1 ≤ i ≤ k. a b λ ∈ V λ any any 1 x 2 ≡ 1 (mod 2) ≡ 1 (mod 2) a 1 ≡ 0 (mod 2) b b-1 3 ≡ 1, 2 (mod 3) ≡ 1, 2 (mod 3) a 2 ≡ 0 (mod 3) b b-1 4 ≡ 1 (mod 2) ≡ 1 (mod 2) a 3 ≡ 0 (mod 2) b b-1 6 4 a 4 2,
≥ a, such that Cat (a, b) is OL-AVD, but not R-AVD λ V λ G[V λ ] G[V \V λ ] 1 {a 2 } P 1 Cat (5, 7) 2 {a 1 , a 2 } P 2 P 11 3 {b 2 , b 3 , b 4 } P 3 Cat (3, 7) λ V λ G[V λ ] G[V \V λ ] 4 {b 1 , b 2 , b 3 , b 4 } P 4 P 9 5 {c 2 , c 3 , c 4 , c 5 , c 6 } P 5 Cat (3, 5) 6 {c 1 , c 2 , c 3 , c 4 , c 5 , c 6 } P 6 P 7 Table 7: Values of G[V λ ] and G[V \V λ ] for T 3 (2, 4 , 6) a 
(a) Values a, b (b ≥ a), such that Sun (a, b) is R-AVD a b c 0 ≡ 1, 2 (mod 3) 1 ≡ 0 (mod 2) 0 2 2,
(b) Values a, b, c (c ≥ b ≥ a), such that Sun (a, b, c) is R-AVD Table 8: Values for R-AVD Suns V i V i V i
+ . . . + b k + 2 (cf. Figure
2

Theorem 19 An R-AVD k-balloon has maximum degree at most 5. This bound is tight. 9a for B(3, 2, 2, 1, 1) and Table 9b for B(4, 2, 1, 1, 1), using vertex labelings from Figure 6. Please remark that • B(2, 2, 1, 1) contains Cat [START_REF] Barth | On the shape of decomposable trees[END_REF][START_REF] Duffus | Forbidden Subgraphs and the Hamiltonian Theme[END_REF] as a spanning tree and then is R-AVD,

The proof of

• B(4, 2, 1, 1) contains Cat [START_REF] Barth | On the shape of decomposable trees[END_REF][START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF] as a spanning tree and then is R-AVD,

• B(4, 1, 1, 1) contains Cat (2, 7) as a spanning tree and then is R-AVD,

• B(2, 1, 1, 1) contains Cat (2, 5) as a spanning tree and then is R-AVD. Thus, a k-balloon with k ≥ 7 cannot be R-AVD . 2 

Lemma 22 A 6-balloon cannot be R-AVD. λ V λ G[V λ ] G[V \V λ ] 1 {a} P 1 Cat (3,
λ V λ G[V λ ] G[V \V λ ] 1 {a} P 1 B(4, 2,
• B1 = B(1, 1, 2, 3, 4, 6) Consider λ = 5. The only possibility for G[V λ ] is Cat (2, 3), using the two branches of width 1 and those of width 2. Then the remaining graph is T 3 [START_REF] Barth | On the shape of decomposable trees[END_REF][START_REF] Baudon | Recursively arbitrarily vertex-decomposable suns[END_REF][START_REF] Diestel | Graph Theory[END_REF] which is not R-AVD. Thus, B1 is not R-AVD.

• B2 = B(1, 2, 3, 4, 5, 6) Consider λ = 7. The only possibility for G[V λ ] is Cat [START_REF] Barth | On the shape of decomposable trees[END_REF][START_REF] Baudon | Recursively arbitrarily vertex-decomposable suns[END_REF], using the branches of width 1, 2 and 3. The remaining graph is T 3 (4, 5, 6) which is not R-AVD. Thus, B2 is not R-AVD. 

≥ . . . ≥ b k ≥ 1. If B(b 1 , . . . , b k ) is AVD, then k j=i+1 b j ≤ 2b i for i = 1, . . . , k -1.
Proof. Consider the decomposition λ = (b i + 1, . . . , b i + 1, r) = (λ 1 , . . . , λ l ) of n and its B(b 1 , . . . , b k )-realization (V 1 , . . . , V l ). Note that each part G[V j ] of order b i + 1 contains at least one root of the balloon. Let s denote the sum of terms of the decomposition λ corresponding to the minimal set of parts that cover inner vertices of branches of widths b i , . . . , b k . Since i ≤ k -1, at least one summand in s is equal to b i + 1, and so at least one root is covered. On the other hand, there are two roots, hence at most two summands in s are equal to b i + 1. Besides that, the summand r can be involved in s. Proof. The proof is based on Lemma 6. The values of V λ for BP (b 1 , 2, 1, 1) are given in Table 10, and for BP (b 1 , 1, 1, 1) in Table 11. These tables use the vertex labeling from Figure 7.

Please remark that

• for BP (b 1 , 2, 1, 1), λ ≥ 6 ⇒ b 1 ≥ λ,

• for BP (b 1 , 1, 1, 1), λ ≥ 5 ⇒ b 1 ≥ λ,

• BP (b 1 , 2, 1) and BP (b 1 , 1, 1) are traceable,

• BP (b 1 , 1, 1) is traceable,

• λ odd ⇒ λ -5 even

• λ and b 1 even ⇒ b 1λ even.

4 Strongly Recursively AVD graphs

In this section, we give a characterization of SR-AVD graphs. This characterization, based on the exclusion of two induced subgraphs, leads a polynomial algorithm to check if a graph is SR-AVD or not.

λ 

V λ G[V λ ] G[V \V λ ] 1 {a} P 1 BP (b 1 , 2,

  Let b 1 , . . . , b k be positive integers. A k-balloon B(b 1 , . . . , b k ) is a graph of order 2 + k i=1 b i composed by two vertices (called roots) linked by k paths (called branches) of widths (the number of internal vertices) b 1 , . . . , b k (cf.

  Figure1f).

Figure 1 :

 1 Figure 1: Examples of Graphs

6 Figure 2 :

 62 Figure 2: An AVD graph without any AVD spanning tree

Definition 12

 12 Decision problem TP3 : INSTANCE: A tree T with maximum degree 3 and order n and τ a decomposition of n. QUESTION: Is T τ -decomposable ?Theorem 13 [2] TP3 is NP-Complete.The two next results give a complete characterization of OL-AVD trees and suns.Theorem 14[START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF] A tree T is OL-AVD if and only if either T is a path or T is a caterpillar Cat (a, b) with a and b given in

( b )

 b Values a, b, c (c ≥ b ≥ a), such that Sun (a, b, c) is OL-AVD

Figure 4 :

 4 Figure 4: 3-pode T 3 (2, 4, 6) and Cat (a, b)

Figure 5 :

 5 Figure 5: Removing the empty branch

  Theorem 19 is based on Lemma 20 to 22. Lemma 20 The two 5-balloons B(3, 2, 2, 1, 1) and B(4, 2, 1, 1, 1) are R-AVD.

Figure 6 :

 6 Figure 6: RAVD 5-balloons
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  Lemma 21 A k-balloon with k ≥ 7, cannot be R-AVD.Proof. We have proved in subsection 3.1 that an R-AVD tree is a path or a 3-pode. Consider a k-balloon B(b 1 , . . . , b k ) of order n = b 1 + . . . + b k + 2 with k ≥ 7, b 1 ≥ . . . ≥ b k , and the integer λ = b 1 + 1. The only way to obtain two R-AVD subgraphs with sizes λ and nλ is to separate the vertices into two trees. Then, at least one of these trees is a k ′ -pode with k ′ ≥ 4.

Proof.

  We suppose there exists an R-AVD 6-balloon B min = B(b 1 , . . . , b 6 ) of order n = b 1 + . . . + b 6 + 2 as small as possible.Let λ be an integer, with λ ≤ n 2 . We want to splitB min into two R-AVD subgraphs G[V λ ] and G[V \V λ ] of respective orders λ and nλ. Suppose that G[V λ ] isa path consisting of inner vertices of a branch of width b i > λ. Then the 6-balloon B(b 1 , . . . , b i-1 , b iλ, b i+1 , . . . , b 6 ) must be R-AVD. Because this 6-balloon has a smaller order than B min , it is impossible. The two remaining possibilities is to have a branch of width b i = λ or three branches of respective widths b i1 , b i2 , b i3 , with b i1 + b i2 + b i3 + 1 = λ, and T 3 (b i1 , b i2 , b i3 ) R-AVD. Now, consider the values from 1 to 6 for λ : For λ ∈ {1, 2, 3, 4, 6}, the only possibility is to have a branch of width λ. For λ = 5, the two possibilities are G[V λ ] = Cat (2, 3) or there is a branch with width 5. Then, the two candidates for B min are B1 = B(1, 1, 2, 3, 4, 6) and B2 = B(1, 2,

2 3. 3 . 2

 232 Other results Lemma 23 Let b 1 , . . . , b k be positive integers with b 1

2

 2 If s has just one summand equal to b i + 1, thenk j=i b j + 1 ≤ (b i + 1) + r ≤ 2(b i + 1) and k j=i+1 b j ≤ b i < 2b i .If, however, s has two summands equal to b i + 1, thenk j=i b j + 2 ≤ 2(b i + 1) + r < 3(b i + 1)and k j=i+1 b j ≤ 2b i . In the next lemma, we denote by BP (b 1 , b 2 , . . . , b k ) the graph formed by attaching a path of length b 1 to a (k -1)-balloon B(b 2 , . . . , b k ). BP (b 1 , b 2 , . . . , b k ) may also be view as a spanning subgraph of the k-balloon B(b 1 , b 2 , . . . , b k ) after removing an edge joining the branch of width b 1 to a root. Lemma 24 BP (b 1 , 2, 1, 1) with b 1 ≥ 0 and BP (b 1 , 1, 1, 1) with b 1 ≡ 0 (mod 2) are R-AVD.

Figure 7 :

 7 Figure 7: BP (b 1 , 2, 1, 1) and BP (b 1 , 1, 1, 1)

1 ) 2 {c 1 , c 2 } P 2 BP (b 1 , 1 c 1 , c 2 , r 2 } P 4 P b 1 P 2

 1121112412 +25{a, b, c 1 , c 2 , r 2 } Cat (2, 3)P b 1 +1 6 {a, b, c 1 , c 2 , r 1 , r 2 } B(2, 1, 1) P b 1 ≥ 7 {v b 1 , v b 1 -1 , . . . , v b 1 -λ+1 } P λ BP (b 1λ, 2, 1, 1)Table10:Values of G[V λ ] and G[V \V λ ] for BP (b 1 , 2, 1, 1) Cat (2, b 1 + 1) 3 {a, b, r 2 } P 3 P b 1 +2 b 1 = 0 {a, b, r 1 , r 2 } C 4 P 1 4 b 1 = 2 {v 2 , v 1 , r 1 , c} P 4 P 3 b 1 ≥ 4 {v b 1 , v b 1 -1 , v b 1 -2 , v b 1 -3 } P 4 BP (b 1 -4, 1, 1, 1) 5 {a, b, c, r 1 , r 2 } B(1, 1, 1) P b 1 ≥ 5 and odd {a, b, c, r 1 , r 2 , v 1 , . . . , v λ-5 } BP (λ -5, 1, 1, 1) P b 1 -λ+5 ≥ 5 and even {v b 1 , . . . , v b 1 -λ+1 } P λ BP (b 1λ, 1, 1, 1)Table 11: Values of G[V λ ] and G[V \V λ ] for BP (b 1 , 1, 1, 1), b 1 ≡ 0 (mod 2)

Table 2 or

 2 T is the 3-pode T 3[START_REF] Barth | A Degree Bound on Decomposable Trees[END_REF][START_REF] Baudon | Recursively arbitrarily vertex-decomposable suns[END_REF][START_REF] Diestel | Graph Theory[END_REF].

	a	b	a	b
	2, 4	≡ 1 (mod 2)	7	8, 9, 11, 13, 15
	3	≡ 1, 2 (mod 3)	8	11, 19
	5	6, 7, 9, 11, 14, 19	9, 10	11
	6	≡ 1, 5 (mod 6)	11	12

Table 2 :

 2 Values a, b (b ≥ a), such that Cat (a, b) is OL-AVD Theorem 15 [10]A sun with one ray is always OL-AVD.A sun with two rays Sun (a, b) is OL-AVD iff a and b take values given in Table3a.A sun with three rays Sun (a, b, c) is OL-AVD iff a, b and c take values given in Table3b.A sun with four rays is OL-AVD iff it is isomorphic to Sun (0, 0, 1, d), where d ≡ 2, 4 (mod 6).A sun with five or more rays is never OL-AVD.

	a 0 1, 3 2 4 5 6 7 8 9	b arbitrary ≡ 0 (mod 2) ≡ 3 (mod 6), 3, 9, 21 ≡ 2, 4 (mod 6), [4, 19]\{15} ≡ 2, 4 (mod 6), 6, 18 6, 7, 8, 10, 11, 12, 14, 16 8, 10, 12, 14, 16 8, 9, 10, 11,12 10, 12	a 0 1 2	b 0 1 2 3 4 5 6, 7 8 2 3	c ≡ 1, 2 (mod 3) ≡ 0 (mod 2) ≡ 2, 4 (mod 6), 3, 6, 7, 11, 18, 19 ≡ 2, 4 (mod 6) 4, 5, 6, 8, 10, 11, 12, 14, 16 6, 8, 16 8, 10 8, 9 ≡ 2, 4 (mod 6), 6, 18 4, 8, 16
	is OL-AVD			

(a) Values a, b (b ≥ a), such that Sun (a, b)

Table 3 :

 3 Values for OL-AVD Suns

Table 4 :

 4 Values a, b (b ≥ a), such that Cat (a, b) is R-AVD the graph, we have to find a subset of vertices V λ of size λ such that both G[V λ] and G[V \V λ ] are R-AVD. Labellings are those from Figure 4. For Cat (a, b) and λ = 1, V λ = {x}. The remaining graph is a path.

	3 (2, 4, 6) are

For Cat (a, b) and 2 ≤ λ ≤ a+b 2 , we have only two possibilities: either a a-1 or b b-1 belongs to

Table 5 :

 5 Leaf of Cat (a, b) in V λ following values of a, b and λ

					a b	λ	∈ V λ
					5 14	2, 4, 6, 9	a 4
							3, 5, 7, 8	b 13
						19 2, 3, 4, 6, 7, 9, 11, 12	a 4
							5, 8, 10	b 18
					6 7	2, 3, 4, 5	a 5
							6	b 6
						8	6	a 6
							2, 3, 4, 5, 7	b 7
	5	7 9 11	3, 5 2, 3, 4 5, 6 4 2, 3, 5, 6, 7 3, 4, 6 2, 5, 7, 8	b 5 a 4 b 6 a 4 b 8 a 4 b 10	9 7 11 13 15	2, 5, 6 3, 4, 7, 8 2, 3, 4, 5, 6, 8 7, 9 3, 5, 6, 8 2, 4, 7, 9, 10 3, 5, 6, 8 2, 4, 7, 9 10	a 6 b 8 a 6 b 10 a 6 b 7 a 6 b 14
			a 6 ≡ 1 (mod 6) and = 7 9 b λ ≡ 5 (mod 6) 8 8 11 2 19 8	a 9 11 3 b λ 10 11 4 11 12 2

Table 6 :

 6 Values a and b with b

Table 9 :

 9 Values of G[V λ ] and G[V \V λ ] for B(3, 2, 2, 1, 1) and B(4, 2, 1, 1, 1)
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Definition 25 A claw is a star isomorphic to K 1,3 . A net is a graph obtained from a triangle by attaching to each vertex a new dangling edge (cf. Figure 8). A graph is said claw-and net-free if it has no induced subgraph isomorphic to either a claw or a net. We use the following theorem on connected claw-and net-free graphs :

Theorem 26 [START_REF] Duffus | Forbidden Subgraphs and the Hamiltonian Theme[END_REF] Any connected claw-and net-free graph is traceable.

Now, we may give a characterization of the SR-AVD graphs :

Theorem 27 A connected graph G is SR-AVD if and only if it is claw-and net-free.

Proof. First of all, we may remark that both claw and net are not SR-AVD (and even not AVD). The sequence (2, 2) is not realizable in the claw and the sequence (3, 3) is not realizable in the net. Thus, if a graph is SR-AVD, it cannot contains a claw or a net as induced subgraph.

The proof of the sufficient condition is based on induction. Let P (n) be the following proposition: "Every connected claw-and net-free graph of order n is SR-AVD". P (1) is trivially true.

Suppose that P (i) is true for any 1 ≤ i ≤ n -1 and let G be a connected claw-and net-free graph of order n. Thus G is traceable (and hence AVD) for any decomposition λ = (λ 1 , . . . , λ k ) of length k ≥ 2 admissible for G we can find (using a hamiltonian path in G) a partition (V 1 , . . . , V k ) of the vertex set of G in which G[V i ] is connected and of order λ i for i = 1, . . . , k. Since clearly each G[V i ] is claw-free, net-free and of order smaller than n, by the induction hypothesis it is SR-AVD. Thus, P (n) is true for any n ≥ 1.

2