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Abstract

In this paper we first derive a Coulomb Hamiltonian for electron–
electron interaction in quantum dots in the Heisenberg picture. Then we
use this Hamiltonian to enhance a Bloch model, which happens to be
nonlinear in the density matrix. The coupling with Maxwell equations in
case of interaction with an electromagnetic field is also considered from
the Cauchy problem point of view. The study is completed by numerical
results and a discussion about the advisability of neglecting intra-band
coherences, as is done in part of the literature.

Keywords: Maxwell–Bloch model, quantum dot, Coulomb interaction, Cauchy
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1 Introduction

Bloch model is a very common model to describe the time evolution of a system
of electrons in different contexts such as gases of electrons, glasses or crys-
tals. The very classical case of gases and glasses involves isotropic media. The
electrons are supposed to be localized and non interacting. Their behavior is
averaged at the mesoscopic scale. This leads to relatively simple models where
matter energy levels are quantized and labelled by integers. The case of crystals
[BBFB+04] also involves integer indexed levels, but symmetries and directions
in matter have to be taken into account.

Bloch model has also been extended to the description of quantum wells
[HK96, KR92, HK09], and quantum dots [GH02, BF10]. In these models mat-
ter is described by the state of two species of particles (electrons and holes,
or equivalently conduction and valence electrons). In quantum wells, energy
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levels are indexed by vectors, which correspond to displacements over the un-
derlying lattice. In contrast the confinement of electrons in quantum dots leads
to integer indexed levels like in gases, which often leads to consider quantum
dots as pseudo-atoms, but this is a very raw vision. In particular, among other
differences, electrons at the same mesoscopic location do interact directly via
Coulomb interaction.

[BF10] is a preliminary paper that derives basic Bloch equations for two
species of electrons (conduction and valence) only taking into account the free
electron Hamiltonian and the interaction with a laser electric field. The aim
of the present paper is to include properly Coulomb interaction in this model.
Beyond the sole derivation of the model, we want in particular to study its math-
ematical properties. In the continuation of [Bid01, BBR01], we want to show
that a certain number of properties are preserved through the time evolution,
such as Hermicity and positiveness of the density matrix.

1.1 Outline

The outline of this paper is as follows. We devote the end of the Introduction
(Section 1.2) to the description of the basic Bloch model which does not include
Coulomb interaction but only the free energies of the electrons and the action
of an electromagnetic field. In Section 2 we derive the Coulomb Hamiltonian
in terms of the conduction and valence operators. The associated Heisenberg
equation is derived in Section 3, but it ends up with an open system of equations.
The system is closed using the Wick theorem, and the final Bloch equation has
a Liouville form, but is nonlinear. This nonlinearity does not allow to use
previous literature directly and we prove anew the Hermicity, positiveness and
boundedness results in Section 4. In Section 5 we show the impact of the
Coulomb contribution in numerical results and also compare our model with a
vanishing intra-band coherence model defined in [GH02].

1.2 The basic Bloch model

Let us first recall the main results obtained in [BF10] and fix the notations.

1.2.1 Commutators and Heisenberg equation

Let A and B be two operators, we define their commutator by [A,B] = AB−BA
and their skew-commutator by {A,B} = AB+BA. For an operator A, we define
the associated observable 〈A〉 = Tr(S0A) by averaging with respect to the initial
state density S0 of the system. If the system is described by a Hamiltonian H,
the time-evolution for this observable is given by the Heisenberg equation

i~∂t〈A〉 = 〈[A,H]〉, (1)

where ~ is the reduced Planck constant. When the observable is the density
matrix, the Heisenberg equation of motion is called the Bloch equation.
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1.2.2 Operators for quantum dots

A quantum dot is defined as a collection of conduction and valence electrons.
There is of course no conduction in quantum dots since the electrons are con-
fined in every direction, but this terminology is useful to distinguish between
the valence electrons — which are in fact the absence of holes in the valence
band — and the free, but confined, electrons. For each species, energy levels
are quantized and indexed by a set of integers, Ic and Iv, for conduction and
valence electrons respectively. For i ∈ Ic, we define the creation and annihila-
tion operators c†i and ci. Likewise, for valence electrons, we define the creation

and annihilation operators v†i and vi.

Property 1.
{ci, c†j} = δi,j , {ci, cj} = {c†i , c

†
j} = 0,

{vi, v†j} = δi,j , {vi, vj} = {v†i , v
†
j} = 0,

where δi,j denotes the Kronecker symbol.

This implies in particular that cici = c†i c
†
i = 0, which means that it is

impossible to create twice or annihilate twice the same electron. This is the
Pauli exclusion rule: electrons are fermions. Of course any conduction operator
commutes with any valence operator.

1.2.3 Observables for quantum dots

The observable we are interested in is the density matrix. It includes a con-
duction density matrix, which elements are the ρc

ij = 〈c†jci〉. This matrix is

Hermitian and positive semi-definite. Its diagonal terms ρc
ii = 〈c†i ci〉 are also

called populations and give the probability to find an electron in state i. The
off-diagonal terms, ρc

ij , i 6= j are called (intra-band) coherences. Of course we

also define a valence density matrix, which elements are the ρv
ij = 〈v†jvi〉. Be-

sides we are interested in inter-band coherences defined by ρcv
ij = 〈v†jci〉. The

entries of these matrices are the variables of the Bloch equation. They are cast
in a single density matrix

ρ =

(
ρc ρcv

ρvc ρv

)
where ρvc = ρcv∗, which ensures that ρ is Hermitian and positive semi-definite.

1.2.4 Free electron Hamiltonians and interaction with a laser

The basic Bloch equation for quantum dot is derived in [BF10]. It takes into
account two types of Hamiltonians in the Heisenberg equation for the density
matrix, namely free electron Hamiltonians and interaction Hamiltonians with a
laser field. The free electron Hamiltonians read

Hc
0 =

∑
k∈Ic

εckc
†
kck, Hv

0 =
∑
k∈Iv

εvkv
†
kvk,
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for conduction and valence electrons respectively. The coefficients εck and εvk are
the free electron energies associated with each electron level. The electron levels
are described by the wave functions ψc

k and ψv
k , solutions to the free electron

Schrdinger equation subject to the boundary conditions of the quantum dot
(see [HK09]). The interaction with a laser characterized by its time-dependent
electric field E(t) is described by the Hamiltonians

HLc =
1

2

∑
(k,l)∈(Ic)2

(E(t) ·Mc
klc
†
kcl + E∗(t) ·Mc∗

klc
†
l ck),

HLv =
1

2

∑
(k,l)∈(Iv)2

(E(t) ·Mv
klv
†
kvl + E∗(t) ·Mv∗

kl v
†
l vk),

HLcv =
∑

(k,l)∈Ic×Iv
(E(t) ·Mcv

kl c
†
kvl + E∗(t) ·Mcv∗

kl v
†
l ck),

where the dipolar moment matrices are matrices with entries in C3 and may be
expressed in terms of the wave functions associated to each level:

Mc
kl =

∫
dr ψc∗

l (r) er ψc
k(r),

Mv
kl =

∫
dr ψv∗

l (r) er ψv
k(r),

Mcv
kl =

∫
dr ψv∗

l (r) er ψc
k(r),

where e is the unsigned charge of the electron. Injecting these Hamiltonians in
the Heisenberg equation, the basic Bloch equations can be cast in Liouville form

i~∂tρ = [V0(t), ρ]. (2)

In equation (2), V0(t) = V F+V E(E(t)) is a sum of a constant term V F stemming
from the free energies collected in diagonal matrices Ec

0 = diag({εci}i∈Ic) and
Ev

0 = diag({εvi }i∈Iv), and a time dependent term due to the interaction with
the electric field:

V F =

(
Ec

0 0
0 Ev

0

)
and V E(E(t)) =

(
<E(t) ·Mc E(t) ·Mcv

E∗(t) ·Mcv∗ <E(t) ·Mv

)
.

The scalar product of the electrical field and the dipolar moment matrix, is a
scalar product in C3 which yields a matrix with entries in C, with the same
dimension as ρ, as is necessary to give a meaning to the right-hand side of (2).

1.2.5 Mathematical properties of the Liouville equation

Equation (2) clearly preserves the Hermitian structure of ρ. Its exact solution
is

ρ(t) = exp

(
− i

~

∫ t

0

V0(τ) dτ

)
ρ(0) exp

(
i

~

∫ t

0

V0(τ) dτ

)
. (3)
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This expression allows to prove a certain number of properties (see [BF10]).
Let d = card(Ic) + card(Iv) be the total number of levels, given a positive
semi-definite initial data ρ(0) ∈Md(C) and a continuous electric field E(t),

• equation (2) is globally well-posed, i.e. there exists a unique solution
ρ ∈ C1(R+;Md(C)) that exists for all times t ≥ 0 and which depends
continuously on the data (parameters, initial data);

• for all time ρ(t) is a positive semi-definite matrix;

• its trace is conserved through the time evolution.

2 Second quantification Coulomb Hamiltonian

Coulomb interaction can be introduced using field operators. We denote by
ψ̂†c(r) and ψ̂†v(r) the creation field-operators of respectively a conduction elec-

tron and a valence electron at the space location r, and ψ̂c(r) and ψ̂v(r) the
corresponding annihilation field-operators. We consider that there are N rele-
vant electrons in the quantum dot, and can write the Coulomb Hamiltonians as

Hc−c =
1

2

N∑
i,j=1

∫∫
dridrj ψ̂

†
c(ri)ψ̂

†
c(rj)V

c(ri, rj)ψ̂c(rj)ψ̂c(ri), (4a)

Hv−v =
1

2

N∑
i,j=1

∫∫
dridrj ψ̂v(ri)ψ̂v(rj)V

v(ri, rj)ψ̂
†
v(rj)ψ̂

†
v(ri), (4b)

Hc−v =

N∑
i,j=1

∫∫
dridrj ψ̂

†
c(ri)ψ̂v(rj)V

c−v(ri, rj)ψ̂
†
v(rj)ψ̂c(ri), (4c)

where V c, V v and V c−v are the conduction–conduction, valence–valence and
conduction–valence Coulomb potentials. The Coulomb potentials have the form

V c(r, r′) = V v(r, r′) =
kC
|r − r′|

and V c−v(r, r′) = − kC
|r − r′|

,

where kC is Coulomb’s constant. The difference of treatment of conduction and
valence electrons stems from the fact that Coulomb interaction describes the
interaction of electrons and holes (see e.g. [HK09]) and that the presence of an
electron in the valence band is indeed the absence of the corresponding hole,
and vice-versa, which inverts the role of creation and annihilation operators.
The total Coulomb Hamiltonian is HC = Hc−c +Hv−v +Hc−v.

We want to derive Bloch-type equations including the Coulomb interaction.
Bloch equations have the advantage not to depend explicitly on the exact form
of the field-operators. To this aim we write

ψ̂c(r) =
∑
α∈Ic

ψc
α(r)cα, ψ̂†c(r) =

∑
α∈Ic

ψc∗
α (r)c†α, (5a)

5



ψ̂v(r) =
∑
α∈Iv

ψv
α(r)vα, ψ̂†v(r) =

∑
α∈Iv

ψv∗
α (r)v†α. (5b)

They are weighted by the conduction and valence electron wave functions ψc
α(r)

and ψv
α(r), which are the same as those who occurred in the expression of the

dipolar moment matrices. In the sequel, to avoid unnecessary written complex-
ity, we will often omit to specify which set the indices belong to.

Inserting decompositions (5) in Hamiltonians (4) we obtain

Hc−c =
∑
α1,α2,
α′

1,α
′
2

Rc
α1α2α′

1α
′
2
c†α1

c†α2
cα′

2
cα′

1
, (6a)

Hv−v =
∑
α1,α2,
α′

1,α
′
2

Rv
α1α2α′

1α
′
2
vα′

1
vα′

2
v†α2

v†α1
, (6b)

Hc−v = −
∑
α1,α2,
α′

1,α
′
2

Rc−v
α1α2α′

1α
′
2
c†α1

vα′
2
v†α2

cα′
1
, (6c)

where

Rc
α1α2α′

1α
′
2

=
N2

2

∫∫
drdr′ ψc∗

α1
(r)ψc∗

α2
(r′)V c(r, r′)ψc

α′
2
(r′)ψc

α′
1
(r), (7a)

Rv
α′

1α
′
2α1α2

=
N2

2

∫∫
drdr′ ψv

α′
1
(r)ψv

α′
2
(r′)V v(r, r′)ψv∗

α2
(r′)ψv∗

α1
(r), (7b)

Rc−v
α1α2α′

1α
′
2

= −N2

∫∫
drdr′ ψc∗

α1
(r)ψv

α′
2
(r′)V c−v(r, r′)ψv∗

α2
(r′)ψc

α′
1
(r). (7c)

The symmetries in the integrands of (7) induce the following properties.

Property 2. Since V (r, r′) is an even function of r− r′, variables r and r′ play
the same role and

Rc
α1α2α′

1α
′
2

= Rc
α2α1α′

2α
′
1
, Rv

α1α2α′
1α

′
2

= Rv
α2α1α′

2α
′
1
.

Since V (r, r′) is a real valued function

Rc
α1α2α′

1α
′
2

= Rc∗
α′

1α
′
2α1α2

, Rv
α1α2α′

1α
′
2

= Rv∗
α′

1α
′
2α1α2

,

Rc−v
α1α2α′

1α
′
2

=
(
Rc−v
α′

1α
′
2α1α2

)∗
.

The Pauli exclusion principle (skew-commutation, Property 1) also induces
that some terms in Hc−c and Hv−v are necessarily zero.

Property 3. If α1 = α2 or α′1 = α′2,

c†α1
c†α2

cα′
2
cα′

1
= 0, vα′

1
vα′

2
v†α2

v†α1
= 0.
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The order of the operators (which has to be read from the right to the left)
in the Coulomb Hamiltonians (4) has a meaning: in order that two particles
interact via Coulomb interaction they have to pre-exist at locations ri and rj .
Then they are annihilated while interacting and recreated at the same locations.

Definition 1. A product of operators will be said to be in the normal order,
if the annihilation operators are on the right and the creation operators on the
left.

Hc−c already follows a normal ordered form and we can keep it untouched:

Hc−c =
∑
α1,α2,
α′

1,α
′
2

Rc
α1α2α′

1α
′
2
c†α1

c†α2
cα′

2
cα′

1
. (8a)

Hamiltonians Hv−v and Hc−v given by equations (6b) and (6c) do not follow
normal ordered forms.

To expressHv−v we need to compute a normal ordered form of vα′
1
vα′

2
v†α2

v†α1
:

vα′
1
vα′

2
v†α2

v†α1
= δα1α′

1
δα2α′

2
− δα1α′

1
v†α2

vα′
2
− δα′

2α1
δα′

1α2
+ δα′

2α1
v†α2

vα′
1

+δα′
1α2

v†α1
vα′

2
− δα2α′

2
v†α1

vα′
1

+ v†α1
v†α2

vα′
2
vα′

1
.

Thanks to Property 2, Rv
α1α2α′

1α
′
2

= Rv
α2α1α′

2α
′
1
, therefore −δα1α′

1
v†α2

vα′
2

and

−δα2α′
2
v†α1

vα′
1

lead to the same contribution. The same argument can be applied

to δα′
2α1

v†α2
vα′

1
and δα′

1α2
v†α1

vα′
2
. Hence

Hv−v = 2
∑
α,α′,β

(Rv
βαα′β −Rv

βαβα′)v†αvα′ +
∑
α1,α2,
α′

1,α
′
2

Rv
α1α2α′

1α
′
2
v†α′

1
v†α′

2
vα2

vα1
. (8b)

In the definition of Hv−v we have dropped the δα1α′
1
δα2α′

2
and −δα′

2α1
δα′

1α2

terms which would lead to zero contributions in the Heisenberg equation.
In the same way c†α1

vα′
2
v†α2

cα′
1

= δα2α′
2
c†α1

cα′
1
− c†α1

v†α2
vα′

2
cα′

1
, hence

Hc−v = −
∑
α,α′,β

Rc−v
αβα′βc

†
αcα′ +

∑
α1,α2,
α′

1,α
′
2

Rc−v
α1α2α′

1α
′
2
c†α1

v†α2
vα′

2
cα′

1
. (8c)

3 Formulation of the Heisenberg equation

We now write Heisenberg equation (1) where A are operators c†jci, v
†
jvi or v†jci

and H are the Hamiltonians defined by Equation (8).

3.1 Wick theorem

For the free Hamiltonians and the laser interactions the computation of the com-
mutators led to expressions in terms of the two-operator densities, and therefore
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to a closed set of equations [BF10]. This will not be the case any more here, since
the commutators stemming from Coulomb Hamiltonians will give rise to four-
operator densities. To go further we should a priori have evolution equations
for these observables via the Heisenberg equation, computing commutators with
the already defined Coulomb Hamiltonians. This would lead inevitably to six-
operator densities, and so on. To avoid this endless procedure, we have to close
the system at some point. This is the goal of the Wick theorem [Wic50] which
amounts in our case to write the four-operator densities as sums of products of
two-operator densities following e.g. the rule〈

c†α1
c†α2

cα′
2
cα′

1

〉 (WT)
=

〈
c†α1

cα′
1

〉 〈
c†α2

cα′
2

〉
−
〈
c†α1

cα′
2

〉 〈
c†α2

cα′
1

〉
,

where the symbol
(WT)

= means ”is approximated through Wick theorem by”.

3.2 Commutators involving c†jci

In order to derive the Heisenberg equation we have to compute [c†jci, H
c−c] and

[c†jci, H
c−v] (since [c†jci, H

v−v] is clearly zero).

3.2.1 Commutator with Hc−c

According to Equation (8a)

[c†jci, H
c−c] =

∑
α1,α2,
α′

1,α
′
2

Rc
α1α2α′

1α
′
2
[c†jci, c

†
α1
c†α2

cα′
2
cα′

1
].

Remark 1. We already know many situations where [c†jci, c
†
α1
c†α2

cα′
2
cα′

1
] is nec-

essarily zero:

• if none of the indices α1, α2, α
′
1, α
′
2 is equal either to i or j,

• if α1 = α2 or α′1 = α′2 (see Property 3).

We compute separately each commutator:

[c†jci, c
†
α1
c†α2

cα′
2
cα′

1
] = δiα1

c†jc
†
α2
cα′

2
cα′

1
+ δiα2

c†jc
†
α1
cα′

1
cα′

2

−δjα′
2
c†α2

c†α1
cα′

1
ci − δjα′

1
c†α1

c†α2
cα′

2
ci.

Using Property 2, we see that

[c†jci, H
c−c] =

∑
α1,α2,
α′

1,α
′
2

Rc
α1α2α′

1α
′
2

(
2δiα1c

†
jc
†
α2
cα′

2
cα′

1
− 2δjα′

1
c†α1

c†α2
cα′

2
ci

)

= 2
∑
α,

α′
1,α

′
2

Rc
iαα′

1α
′
2
c†jc
†
αcα′

2
cα′

1
− 2

∑
α1,α2,
α′

Rc
α1α2jα′c†α1

c†α2
cα′ci.
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We now apply Wick theorem which leads to〈
[c†jci, H

c−c]
〉

(WT)
= 2

∑
α,

α′
1,α

′
2

Rc
iαα′

1α
′
2

(〈
c†jcα′

1

〉 〈
c†αcα′

2

〉
−
〈
c†jcα′

2

〉 〈
c†αcα′

1

〉)

−2
∑
α1,α2,
α′

Rc
α1α2jα′

(〈
c†α1

ci
〉 〈
c†α2

cα′
〉
−
〈
c†α1

cα′
〉 〈
c†α2

ci
〉)

= 2
∑
k,
α,α′

(Rc
iαkα′ −Rc

iαα′k)
〈
c†αcα′

〉 〈
c†jck

〉

−2
∑
k,
α,α′

(
Rc
kαjα′ −Rc

αkjα′

) 〈
c†αcα′

〉 〈
c†kci

〉
.

Defining matrix Λc(ρ) as

Λc
ik(ρ) = 2

∑
(α,α′)∈(Ic)2

(Rc
iαkα′ −Rc

iαα′k) ρc
α′α, (9)

we can cast the result as〈
[c†jci, H

c−c]
〉

(WT)
= [Λc(ρ), ρc]ij .

3.2.2 Commutator with Hc−v

The same sort of computation as in Section 3.2.1 is performed on Equation (8c)

to compute [c†jci, H
c−v].

Using the matrices ζv(ρ), γc−v(ρ), and ηc−v
ik where

ζv
ik(ρ) =

∑
(α,α′)∈(Iv)2

Rc−v
iαkα′ρ

v
α′α, (10)

γc−v
ik (ρ) = −

∑
(α,α′)∈Iv×Ic

Rc−v
iαα′kρ

cv
α′α, (11)

ηc−v
ik = −

∑
β∈Iv

Rc−v
iβkβ , (12)

we obtain that〈
[c†jci, H

c−v]
〉

(WT)
= [ζv(ρ) + ηc−v, ρc]ij +

∑
k

γc−v
ik (ρ)ρvc

kj −
∑
k

ρcv
ikγ

c−v∗
kj (ρ).

3.3 Commutators involving v†jvi

3.3.1 Commutator with Hv−v

According to Equation (8b), we have to evaluate two types of commutators to

compute [v†jvi, H
v−v]. The first commutator is clearly computed in the same
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way as [c†jci, H
c−c] replacing conduction electron operators by valence ones. For

the second part, we have to compute [v†jvi, v
†
αvα′ ]. We obtain〈

[v†jvi, H
v−v]

〉
(WT)

= [Λv(ρ) + κv, ρv]ij

where Λv(ρ) and κv are defined as

Λv
ik(ρ) = 2

∑
(α,α′)∈(Iv)2

(Rv
iαkα′ −Rv

iαα′k) ρv
α′α, (13)

κv
ik = 2

∑
β∈Iv

(Rv
βikβ −Rv

βiβk). (14)

3.3.2 Commutator with Hc−v

According to Equation (8c), the commutator [v†jvi, H
c−v] only involves the first

term of Hc−v, which we can write as

[v†jvi, H
c−v] =

∑
α1,α2,
α′

1,α
′
2

Rc−v
α1α2α′

1α
′
2
c†α1

cα′
1
[v†jvi, v

†
α2
vα′

2
].

The simplifaction of the commutators and the Wick theorem leads to〈
[v†jvi, H

c−v]
〉

(WT)
= [ζc(ρ), ρv]ij +

∑
k

γc−v∗
ik (ρ)ρcv

kj −
∑
k

ρvc
ikγ

c−v
kj (ρ),

using the previously defined γc−v(ρ) and the new matrix ζc(ρ) defined by

ζc
ik(ρ) =

∑
(α,α′)∈(Ic)2

Rc−v
αiα′kρ

c
α′α. (15)

3.4 Commutators involving v†jci

The commutators involving v†jci are all possible to write with already defined

matrices, indeed we first compute [v†jci, H
c−c] according to Equation (8a) and

recognize 〈
[v†jci, H

c−c]
〉

(WT)
=

∑
k

Λc
ik(ρ)ρcv

kj .

Then equation Equation (8b) leads to〈
[v†jci, H

v−v]
〉

(WT)
= −

∑
k

ρcv
ikΛv

kj(ρ)−
∑
k

ρcv
ikκ

v
kj ,

and Equation (8c) to〈
[v†jci, H

c−v]
〉

(WT)
=

∑
k

ζv
ik(ρ)ρcv

kj +
∑
k

γc−v
ik (ρ)ρv

kj

−
∑
k

ρc
ikγ

c−v
kj (ρ)−

∑
k

ρcv
ikζ

c
kj(ρ) +

∑
k

ηc−v
ik ρcv

kj .

10



3.5 Matrix formulation

We would like to cast the former results as〈[(
c†jci v†jci
c†jvi v†jvi

)
, HC

]〉
(WT)

= [V C(ρ), ρ],

where

V C(ρ) =

(
V c(ρ) V c−v(ρ)
V v−c(ρ) V v(ρ)

)
,

which implies〈
[c†jci, H

C]
〉

(WT)
= V c(ρ)ρc + V c−v(ρ)ρvc − ρcV c(ρ)− ρcvV v−c(ρ),〈

[v†jvi, H
C]
〉

(WT)
= V v−c(ρ)ρcv + V v(ρ)ρv − ρvcV c−v(ρ)− ρvV v(ρ),〈

[v†jci, H
C]
〉

(WT)
= V c(ρ)ρcv + V c−v(ρ)ρv − ρcV c−v(ρ)− ρcvV v(ρ).

Identifying the coefficients computed in Sections 3.2, 3.3, and 3.4, we obtain
that the result can indeed be cast as [V C(ρ), ρ] where

V c(ρ) = Λc(ρ) + ζv(ρ) + ηc−v,

V c−v(ρ) = γc−v(ρ),

V v−c(ρ) = γc−v∗(ρ) = V c−v∗(ρ),

V v(ρ) = Λv(ρ) + ζc(ρ) + κv,

and the various matrices have been defined by Equations (9) to (15).
The evolution equation for the density matrix including also the free electron

Hamiltonians, the interaction with a laser field, and Coulomb interaction can
therefore be cast in a Liouville form

i~∂tρ = [V (t, ρ(t)), ρ], (16)

where V (t, ρ(t)) = V0(t) + V C(ρ(t)) and V0(t) has been introduced in Equation
(2).

3.6 Energy shifts

Recall (see Equation (2)) the basic Bloch equation

i~∂tρ = [V0(t), ρ],

where

V0(t) =

(
Ec

0 + <E(t) ·Mc E(t) ·Mcv

E∗(t) ·Mcv∗ Ev
0 + <E(t) ·Mv

)
.

The symmetries in the definition of Mc and Mv imply that their diagonal entries
are zero. On the contrary for Ec

0 and Ev
0 there are only diagonal entries. In the
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evolution equation of ρc
ij , the ρc

ij term only involves Ec
0, and the other entries

of ρ play a role through Mc and Mcv.
We can therefore easily analyze the Coulomb contributions in terms of shifts

on the free electron energies and off-diagonal terms. Hence we compute

δεci (ρ) = 2
∑

(α,α′)∈(Ic)2

(Rc
iαiα′ −Rc

iαα′i) ρ
c
α′α +

∑
(α,α′)∈(Iv)2

Rc−v
iαiα′ρ

v
α′α −

∑
β∈Iv

Rc−v
iβiβ ,

δεvi (ρ) = 2
∑

(α,α′)∈(Iv)2

(Rv
iαiα′ −Rv

iαα′i) ρ
v
α′α +

∑
(α,α′)∈(Ic)2

Rc−v
αiα′iρ

c
α′α + 2

∑
β∈Iv

(Rv
βiiβ −Rv

βiβi).

We can define the energy shift matrices as δEc(ρ) = diag({δεci (ρ)}i∈Ic) and
δEv(ρ) = diag({δεvi (ρ)}i∈Iv). Hence V (t, ρ(t)) = E(ρ(t)) + R(t, ρ(t)), where
E(t, ρ(t)) = diag(Ec(t, ρ(t)), Ev(t, ρ(t))) and

Ec(ρ(t)) = Ec
0 + δEc(ρ(t)) and Ev(ρ(t)) = Ev

0 + δEv(ρ(t)).

3.7 Vanishing intra-band coherence assumption

The model for quantum dots given in [GH02] has clearly been derived mimicking
quantum well models as in [KR92]. In quantum wells electrons and holes can
interact only if they ”see each other” long enough, i.e. if they have (and are
indexed by) the same wave vector. This leads morally to weakly coupled two-
level systems. Therefore, in [GH02], the variables are the level populations and
the inter-band coherences. In our model this means that intra-band coherences
ρc
ij and ρv

ij for i 6= j are not considered.
We can therefore wonder what becomes of our model if we set intra-band

coherences to zero. First we notice that in the evolution equation of e.g. ρc
ij ,

there is e.g. a contribution of V c
ij(ρ

c
jj−ρc

ii). Hence, even if intra-band coherences
are initially zero, they are not always zero through the evolution with Equation
(16). Setting artificially intra-band coherences to zero therefore destroys the
Liouville structure of the system.

In our model, this hypothesis also changes the definition of Λc(ρ), ζv(ρ) and
Λv(ρ), which become

Λc
ik(ρ) = 2

∑
α∈Ic

(Rc
iαkα −Rc

iααk) ρc
αα,

ζv
ik(ρ) =

∑
α∈Iv

Rc−v
iαkαρ

v
αα,

Λv
ik(ρ) = 2

∑
α∈Iv

(Rv
iαkα −Rv

iααk) ρv
αα.

4 Mathematical analysis

4.1 Estimates on the density matrix

In the same way as in the usual Bloch case [BBR01], the Liouville structure al-
lows to state that the density matrix remains Hermitian through time evolution.
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Its trace is conserved and it remains a positive semi-definite matrix. Hence for
a given electric field E(t), the elements of the density matrix are bounded, more
precisely populations are bounded

|ρc
ii(t)|, |ρv

jj(t)| ≤ Tr(ρ(t)) = Tr(ρ(0)), for all i ∈ Ic and j ∈ Iv,

as well as coherences

|ρc
ij(t)| ≤

√
ρc
ii(t)ρ

c
jj(t) ≤

Tr(ρ(0))

2
, for all i, j ∈ Ic,

and likewise

|ρv
jk(t)|, |ρc−v

ij (t)| ≤ Tr(ρ(0))

2
, for all i ∈ Ic and j, k ∈ Iv.

4.2 Coupling with the Maxwell equations

The density matrix governed by Bloch equations in the previous section was only
depending on time. We can now consider a collection of quantum dots which
are scattered in space and interacting, not directly but through the interaction
with an electromagnetic wave that propagates through the medium. This can
be modeled by a density matrix, that now depends on time and space, which
is coupled with Maxwell equations for the laser field through the expression of
polarization. We therefore address the system

µ∂tH = − curl E,

ε∂tE = curl H− ∂tP,
P = Nb Tr(Mρ),

∂tρ = − i

~
[V (ρ), ρ],

(17)

where all the variables depend on time and space in 3 dimensions: the electric
and magnetic fields E and H, the polarization P, and the density matrix ρ. In
Equation (17), ε and µ denote the electromagnetic permittivity and permeability
of the underlying medium. They both can depend on the space variable. The
density of quantum boxes is given by Nb. The Bloch and Maxwell equations
are coupled via the polarization that involve the dipolar moment matrix M.

Such models have already been written and studied mathematically and
numerically in a few physical contexts. Here the specificity is the fact that the
Bloch equation is nonlinear in ρ. Note that even in the case when V does not
depend on ρ, the full coupled model is already nonlinear since V is affine in E.

This system can be cast in the abstract setting of [DS12]. In this paper,
they introduce a general abstract setting able to treat both Maxwell–Landau–
Lifschitz and classical Maxwell–Bloch equations. In this setting the electromag-
netic field is supposed to exist in all space R3. Matter described by the density
matrix is only occupying a subdomain Ω of R3. The variables are gathered in
one variable U = (u, v), where u = (u1, u2) = (H,E) and v = ρ. The variable
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u can be viewed as 6 real variables and variable v as d2 real variables. This
variable U is supposed to be in L2 = L2(R3;R6) × L2(Ω;Rd2). The abstract
system reads {

(∂t +B)u = (κ−1 · l)F (v̄, u), for x ∈ R3,

∂tv = F (v, u), for x ∈ Ω.
(18)

In this formulation κ(x) = (κ1(x), κ2(x)) = (µ, ε). It is uniformly positive
as needed in [DS12]. Let Hcurl be the space of functions f ∈ L2(R3;R3) with
curl f ∈ L2(R3;R3). The linear differential operator B is defined on Hcurl×Hcurl

by B(u1, u2) = (κ−1
1 curlu2,−κ−1

2 curlu1). The variable v is extended by v̄ on
the whole R3 and is zero outside Ω. We can identify l1 = 0, l2 = −Nb Tr(M·),
and F (v, u) = − i

~ [V (ρ), ρ]. The system (17) verifies the hypotheses given in
[DS12], namely

• F is affine in u: F (v, u) = F0(v) + F1(v)u,

• for j = 0, 1, Fj(0) = 0.

• for all R > 0 there exists CF (R) such that for all v ∈ BR (ball of radius
R in Rd), |Fj(v)|+ |∂vFj(v)| ≤ CF (R).

• There exists K ≥ 0 such that for all (u, v) ∈ R6×Rd2 , F (v, u) ·v ≤ K|u|2.

We have in particular used the L∞ bounds of the previous section, more precisely
we look for

v ∈ L∞((0,∞);L∞(Ω;Rd
2

)). (19)

Besides we suppose to have at time t = 0 the conditions

div(κjuj − lj v̄) = 0, for j = 1, 2, (20)

which are indeed the physical conditions div(µH) = 0 and div(εE + P) = 0
[Dum05]. The structure of Equation (18) ensures that this condition holds for
all time if it is valid at the initial time.

4.3 Cauchy problem

In this section, we state without proof the results obtained in [DS12] and that
we can apply to our context. The first result addresses the existence of global
finite energy solutions.

Theorem 1 (Theorem 3, [DS12]). For any initial data U0 = (u0, v0) ∈ L2(R3;R6)×
(L2(Ω;Rd2) ∩ L∞(Ω;Rd2)) satisfying (20), there exists U ∈ C([0,∞); L2) which
is a solution to (18)–(20), and satisfies the finite energy condition (19). More-
over, for all T > 0, there exists a constant C that only depends on T , F , l and
‖v0‖L∞ , such that for all t ∈ [0, T ], ‖U(t)‖L2 ≤ C‖U0‖L2 .
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To have a uniqueness result we need some regularity on ε and µ. Usually in
physical contexts ε and µ may be discontinuous across the boundary of Ω, but
we do not know how to tackle with this problem. We hence assume that

Ω is bounded and κi − 1 ∈ C∞Ω̄ (R3), for i = 1, 2, (21)

the space of C∞ functions on R3 with compact support included in Ω̄, which
means in particular that κi is 1 outside Ω and the transition across the boundary
is smooth. We also assume that the initial data for the electromagnetic wave is
smooth enough.

Theorem 2 (Theorem 5, [DS12]). Under the assumptions of Theorem 1 and
(21), and assuming that curlu0i ∈ L2(R3) for i = 1, 2, there exists only one
solution to (18)–(20) with initial data U0, given by Theorem 1. It satisfies
curlui ∈ C([0,∞);L2(R3)) for i = 1, 2.

This stems from the fact that l1 = 0 and F does not depend on u1 but only
u2.

5 Numerical experiments

5.1 Self-Induced Transparency

Self-Induced Transparency (SIT) is a typical two-level phenomenon: using a
light pulse which is resonant with the transition, absorption and stimulated
emission are combined to obtain exact population inversion and an unchanged
electric field. This phenomenon has been predicted theoretically and confirmed
experimentally [AE87, MH67, GS70].

The propagating field is a pulse given by

E(t, z) = E(t, z) sin(ω0(t− z/v)),

where v is the velocity of the pulse, ω0 is both the center frequency of the pulse
and the transition frequency of the medium, and E(t, z) is the pulse envelope.
It is shown that the envelope is not reshaped by the medium, only if it is a
symmetric hyperbolic secant

E(t, z) = E0 sech

(
t− z/v
τ

)
, where E0 =

2

mτ
.

In this expression τ is the pulse duration and m = M/~, where M is the dipolar
moment associated to the transition. According to the Area Theorem [MH67],
the medium undergoes k exact inversions if

A = m

∫ ∞
−∞
E(t, z)dt = kπ.

The corresponding pulse is called a kπ-pulse. It is easy to compute that

A = mτE0 [arctan(sinh t)]
∞
−∞ = mτE0π,
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and hence a kπ-pulse is obtained for the amplitude E0 = k~/Mτ . For our
test-cases, we will use a 2π-pulse, for which the medium is inverted and goes
eventually to its original state. The return to the initial state is an easy-to-
check criterion to validate numerical approaches, as has been already done in
[BF06, ZAG95].

5.2 Adaption to the quantum dot context

In this paper we want in particular to investigate the validity of the vanishing
intra-band coherence assumption. To this aim we need a minimum of three levels
and we therefore adapt the SIT experiment to our framework. We absolutely do
not claim that SIT has any practical application in the quantum dot context,
but only choose this test-case because of the easiness to interpret the results.

ωc
1

ωv
1

ω0

ωc
1

ωv
2

ω0

ωv
1

ω0

ωv
1

2ω0

(a) (b)

Figure 1: Adaption of the SIT test case to the quantum dot context. (a) Original
two-level case; (b) 2 three-level test cases.

In Figure 1(a) the original two-level test case is represented, for which there
is a single conduction level and a single valence level, separated by the energy
corresponding to the field frequency. The upper plot represents the (normalized)
time-evolution of the electric field. The time-evolution of the population of the
initially empty conduction level is given by the lower curve. We observe that
the medium undergoes two complete population inversions.

In Figure 1(b) we have two three-level test cases with a single conduction
level and two valence levels. In the first place we do not take Coulomb interac-
tion into account. In the first test case (represented by solid lines both on the
plot and on the scheme) the transition between the two valence levels is also
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resonant with the field and this destroys the SIT phenomenon. It suffices to get
both valence levels far apart enough (e.g. 2ω0 as in the second case, represented
by dashed lines) to recover SIT. We use this last configuration as basis test case
for the following numerical experiments.

5.3 Numerical features

The simulations are performed using a code based on a finite difference Yee
scheme and a relevant choice for the time discretization of the Bloch equation
(see [Bid03]). It allows to keep the good properties of the original Yee scheme:
second order and explicitness. A splitting scheme, first described in [BBR01],
allows to preserve positiveness at the discrete level. It is strongly based on
the exact solution given by Equation (3). It has been adapted to include also
Coulomb interaction, still preserving positiveness, but at the cost of a loss of
approximation order, which becomes one.

Integrating the zero intra-band coherences assumption is a priori a problem
since it destroys the Liouville structure and an exact solution is no more avail-
able. It is however possible to solve a Liouville-like equation and set artificially
intra-band coherences to zero. This adds a step at each time iteration but allows
to preserve the general structure of the numerical code.

To determine the right envelope amplitude for numerics, we use the argument
of [ZAG95]: in practice the input pulse is cut off on an interval t ∈ [−10τ, 10τ ],
therefore the numerical area is

An = mτE0 [arctan(sinh t)]
10
−10 = mτE0(0.999942π),

which slightly changes the value of E0.

5.4 Results

5.4.1 Impact of Coulomb terms

To include Coulomb interaction in the SIT test case, we have to give values
to the coefficients given by Equation (7). Their exact computation is not in
the scope of the present paper. We choose to take them of the same order
R0, taking into account the symmetries described by Property 2, but not equal
(which would lead to vanishing Λc, Λv and κv). The test is performed using the
full Coulomb terms (no vanishing intra-band coherence assumption).

For small values of R0 (see the evolution of ρc
11 described for R0 = 10−21 in

Figure 2(a), solid plot) SIT is only slightly affected. In this figure, the dashed
plot corresponds to the reference case (R0 = 0) and is the same as the dashed
plot of Figure 1(b). The effect is clearer for stronger values of R0 (e.g. R0 =
3 10−21 in Figure 2(b)). The total inversion is prevented by Coulomb interaction.
Although inversion is not complete, the return to zero of ρc

11 is observed in this
test case. We notice that the first valence level (which is not supposed to take
part in the SIT experiment) is slightly populated, which makes this test case
not really a two-level experiment.
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(a) R0 = 10−21 (b) R0 = 3 10−21

Figure 2: Impact of Coulomb terms for two interaction strengths. (a) R0 =
10−21 – comparison with the Coulomb-free case; (b) R0 = 3 10−21 – excitation
of the conduction level and of the first valence level.

5.4.2 Impact of vanishing intra-band coherences

We first test the impact of the vanishing intra-band coherence assumption on
the Coulomb-free model. We always use the same experimental setting (see
Figure 3(a)) and this assumption amounts to taking ρv

12 = 0.

conduction ρc
11

ρv
22

ρc−v
12

ρv
11

ρv
12

ρc−v
11

valence

(a) (b)

Figure 3: Impact of vanishing intra-band coherences on the Coulomb-free model.

The result is displayed in Figure 3(b). The final equilibrium state for matter
is slightly changed and ρc11, which is given by the solid curve, does not eventually
return to zero. Inversion is not total.

Now we combine both Coulomb interaction and the vanishing intra-band
coherence assumption. If R0 is low (e.g. 10−21), the result is not much affected
by this assumption and is essentially the same as that plotted on Figure 2(a).

In the case when R0 = 3 10−21, we see in Figure 4 that the final equilibrium
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Figure 4: Impact of vanishing intra-band coherences on the full model for R0 =
3 10−21.

state is not physical (ρv
11 < 0). This is due to the destruction of the Liouville

structure. We can easily explain why this is not observed when R0 is low. When
we are close to the SIT experiment we have a typical two-level phenomenon:
ρv

11 ' 0 during the whole experiment. For a two-level system, the positiveness
of the density matrix is equivalent to

• the positiveness of each diagonal term (populations),

• the estimation of coherence by populations, here: |ρc−v
12 |2 ≤ ρc

11ρ
v
22, if the

second valence level would be the only relevant one (see [BBR01]).

Setting intra-band coherences to zero within the numerical process does not
affect these properties, and the iteration used in the proof of the positiveness of
the density matrix applies.

But for a three-level system (and the case R0 = 3 10−21 is a true three-level
case) the positiveness of the matrix involves some more properties, which are
affected by setting ρv

12 to zero. Although trace is still conserved, the positive-
ness of the population is affected. We would of course have the same result
with a dedicated code where intra-band coherences would simply not be com-
puted. Besides the effect is clear enough in Figure 4 not to be attributed to
simple round-off errors (there are only 600 time-steps in this computation).
The conclusion is that even if intra-band coherences seem not to be very rele-
vant for some physical applications, it is very important to include them in the
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mathematical description and in the numerical computation to keep the natural
mathematical structure of the density matrix.

Remark 2. In absence of electromagnetic field the evolution equation for the
conduction electrons is reduced to

i~∂tρc
11 = 0.

This is only due to the fact that there is only one conduction level in our test
case, and does not depend on the intra-band coherence vanishing assumption
or on specific values of the Coulomb coefficients. Hence, when the population
of the conduction level has been set into a non-physical state (and this is due
to the intra-band coherence vanishing assumption), it remains in this state for
ever.

6 Conclusion

In this paper, Bloch-type equations have been derived considering Coulomb
effects in quantum dots. We have shown analytically and numerically that
Coulomb effects are not negligible in some quantum dot structures, and we
have given the link between mathematical properties and physical relevancy of
the Bloch model and more specifically in the treatment of intra-band coherences.
Then this model has been coupled with the description of laser propagation in
the quantum dot structures, leading to a Maxwell-Bloch system for which we
have studied the global Cauchy problem. This system has been implemented
numerically and simulations have been performed on a self-induced transparency
test-case. In particular, we have tested the impact of Coulomb parameters and
intra-band coherences. We have illustrated numerically that the modification
of the equation structure when intra-band coherences are neglected can lead to
non-physical solutions. Further work will include additional effects in the same
Bloch-type framework.
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