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A BUSINESS DINNER PROBLEM

ALEJANDRA ESTANISLAO AND FRÉDÉRIC MEUNIER

Abstract. We are given suppliers and customers, and a set of tables. Every evening of the

forthcoming days, there will be a dinner. Each customer must eat with each supplier exactly once,

but two suppliers may meet at most once. The number of customers and the number of suppliers

who can sit together at a table are bounded above by fixed parameters. What is the minimum

number of evenings to be scheduled in order to reach this objective ? This question was submitted

by a firm to the Junior company of a french engineering school some years ago. Lower and upper

bounds are given in this paper, as well as proven optimal solutions with closed-form expressions for

some cases.

1. Introduction

1.1. Context. In 2009, the following problem was submitted to the “Junior company” of the Ecole
des Ponts – one of the french engineering schools – by a firm. We are given a set S = {1, . . . , s}
of suppliers, a set C = {1, . . . , c} of customers and a room with t tables. Each evening of the
forthcoming days, there will be a dinner. During a dinner, suppliers and customers sit at tables, in
such a way that there are at most σ ≥ 1 suppliers and at most γ ≥ 1 customers sitting at the same
table. Two suppliers can sit at most once together at a table. There is no similar restriction for
two customers: two customers can sit as often as they want at the same table. Each customer must
sit exactly once with each supplier. Find a schedule (for each dinner, describe for each table the
suppliers and the customers who sit at it) satisfying these constraints and minimizing the number
of dinners. Note that there is always a feasible solution since whenever a supplier and a customer
have not yet sat together at a table, we can add an additional dinner to allow the missing meeting.

An example of scheduling with t = 2, s = 5, c = 6, σ = 2 and γ = 3 is given in Table 1. The
proposed solution requires six dinners. Theorems 1 and 2 below show that the optimal solution of
Table 1 consists actually in three dinners.

We call this problem the business dinner problem. To our knowledge, even if there is some
analogy with well-known problems like the Kirkman Schoolgirl problem (see Abel and Furino [1])
or the Social Golfer problem (see Colbourne and Dinitz [3]), this problem, although natural, has
not yet been studied.

1.2. Main results. Note first that if c ≤ γ, the optimal solution is easy, see Section 3.1.
As it will become clear in the sequel, describing an optimal solution in the general case is a very

difficult task since it contains as special cases open questions of the theory of combinatorial designs.
However, we are able to provide the following non-trivial lower bounds and feasible solutions in the
general case.

Theorem 1. Consider the business dinner problem with t tables, s suppliers, c customers, at most

σ suppliers and at most γ customers simultaneously at a table. The following expressions are lower

bounds for the business dinner problem when γ < c.

Key words and phrases. Howell designs and linear programming and meeting scheduling.
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dinner 1: table 1:
suppliers: 1,2
customers: 1,2,3

table 2:
suppliers: 3,4
customers: 4,5

dinner 2: table 1:
suppliers: 3
customers: 2

table 2:
suppliers: 5
customers: 5

dinner 3: table 1:
suppliers: 2
customers: 4,5

table 2:
suppliers: 4
customers: 2,6

dinner 4: table 1:
suppliers: 3
customers: 1,3

table 2:
suppliers: 5
customers: 2,6

dinner 5: table 1:
suppliers: 1,5
customers: 4

table 2:
suppliers: 2,3
customers: 6

dinner 6: table 1:
suppliers: 4,5
customers: 1,3

table 2:
suppliers: 1
customers: 5,6

Table 1. A feasible schedule in six dinners for an instance with t = 2 tables, s = 5
suppliers, c = 6 customers, at most σ = 2 suppliers per table and at most γ = 3
customers per table
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lb5 can be made more explicit by a simple function study. The maximum of the expression over
j is obtained for j = j∗ or j = j∗ + 1 with
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If j∗ ∈ [2, σ], lb5 is obtained for j = j∗. If j∗ < 2, lb5 is obtained for j = 2. If j∗ > σ, lb5 is obtained
for j = σ.

None of these lower bounds is striclty better than the others. The following table gives explicit
values for parameters of the problem for which each of the lower bounds strictly dominates the
other (indicated with a star ∗).

(t, s, c, σ, γ) lb1 lb2 lb3 lb4 lb5
(5, 8, 8, 1, 2) 8∗ 4 7 3 0
(6, 8, 8, 2, 1) 4 8∗ 6 4 6
(1, 8, 8, 1, 1) 8 8 64∗ 23 0
(1, 11, 8, 6, 4) 2 2 4 7∗ 4
(1, 8, 11, 2, 1) 4 11 44 32 60∗

Theorem 2. Consider the business dinner problem with t tables, s suppliers, c customers, at most

σ suppliers and at most γ customers simultaneously at a table. The following expression is an upper

bound for the business dinner problem,
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If ⌈s/σ⌉ ≤ ⌈c/γ⌉, the following expression is also an upper bound
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⌉

))

.

Moreover, there are explicit solutions matching these upper bounds.

None of the ub1 and ub2 is strictly better than the other. If one takes t = 3, s = 6, c = 3, σ = 2
and γ = 1, then ub1 takes the value 3 and ub2 takes the value 11. If one takes t = 3, s = 6, c = 9,
σ = 2 and γ = 1 (only the number of customers changes), then ub1 takes the value 18 and ub2
takes the value 17.

ub2 is also applicable when ⌈s/σ⌉ > ⌈c/γ⌉ by making groups of at most σ⌈c/γ⌉ suppliers each,
see Section 4 for details.

1.3. Plan. Section 2 is devoted to the proof of Theorem 1. Optimal solutions for special cases –
whose optimality is proven with the help of Theorem 1 – are described in Section 3. These optimal
solutions can be used to build feasible solutions for other values of the parameters via slight changes
(Section 4). These feasible solutions provide upper bounds for the business dinner problem and
prove Theorem 2. In the last section (Section 5), some open questions are stated.

2. Lower bounds

The purpose of this section is to prove Theorem 1. It will be done by proving three propositions
(Propositions 1, 2, and 4), each of them providing some of the lower bounds.

2.1. Straightforward lower bounds. Take a customer. During a dinner, he sits at a table with
at most σ suppliers. To meet all suppliers, he needs at least ⌈s/σ⌉ dinners.

Take a supplier. During a dinner, he sits at a table with at most γ customers. To meet all
customers, he needs at least ⌈c/γ⌉ dinners.

This short discussion implies

Proposition 1. ⌈s/σ⌉ and ⌈c/γ⌉ are lower bounds for the business dinner problem.

It settles the case of lb1 and lb2.

2.2. A counting argument.

Proposition 2. If c > γ, the quantity

⌈

√
s

tγ

(

(c− γ)max
(
√

γ
c−γ , 1

)

+ γ

max
(
√

γ

c−γ
,1
)

)⌉

is a lower

bound for the business dinner problem.

Proof. Denote yk the number of dinners for which customer k = 1, . . . , c is present. Let z be the
maximum number of suppliers sitting simultaneously at a table among all dinners and let x be the
number of customers present at that table.

On the one hand, each customer is present for at least s/z dinners. Therefore
∑c

k=1 yk ≥ cs/z.
On the other hand, at least c−x customers are present for z dinners, in order to be able to meet each
of the z suppliers having sat once together. Therefore

∑c
k=1 yk ≥ (c−x)z+xs/z. Therefore, we have

a lower bound for
∑c

k=1 yk being minz∈R+
ℓ(z) with ℓ(z) := max(cs/z,min1≤x≤γ(c− x)z + xs/z).

If z ≤ √
s, then cs/z ≥ min1≤x≤γ(c − x)z + xs/z and ℓ(z) = cs/z. If z ≥ √

s, then cs/z ≤
min1≤x≤γ(c − x)z + xs/z. In this latter case, (c − x)z + sx/z is minimum for x = γ and ℓ(z) =

(c− γ)z + γs/z. The map g : u 7→ (c− γ)u+ γs/u attains its minimum for u =
√

sγ
c−γ . Therefore,
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according to the respective positions of
√
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Now, the conclusion follows from the fact that there are at most tγ customers present at each
dinner. � �

It settles the case of lb4.

Remark. The lower bound lb4 can be improved by taking into account the inequality z ≤ σ in the
proof above. For sake of simplicity, we have not computed lb4 with this additional constraint.

2.3. Lower bounds through linear programming and duality. Another way to get lower
bounds consists in introducing variables xi,j ∈ Z+ which count for a given schedule the number of
times supplier i sits at a table of exactly j suppliers (him included). We have the following relation
∑σ

j=1 γxi,j ≥ c, which comes from the fact that each customer sits with supplier i once. Another

relation is
∑σ

j=1(j − 1)xi,j ≤ s − 1, since two suppliers may sit at a common table at most once.
∑

i∈S
∑σ

j=1
1
jxi,j is the number of tables needed, counted with multiplicity (each table is counted

as many times it is used over the whole schedule). A lower bound is therefore given by the following
linear program:
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xi,j ∈ R+ i ∈ S, j ∈ {1, . . . , σ}.

Proposition 3. The linear program (1) has an optimal value equal to
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.

Proof. Program (1) is separable in i. Its study reduces therefore to

(2)

min

σ
∑
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1

j
xj

s.t.

σ
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xj ∈ R+ j ∈ {1, . . . , σ}.
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The dual of program (2) is

(3)
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Remark that the map g : j 7→ µj + 1
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Comparing the value obtained for j = σ − 1 and j = σ leads to the maximum on this
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Case µ ∈ [ 1
(k+1)k ,

1
k(k−1) ]:: For such a µ, according to the remark on g, the j realizing the

minimum is in {k − 1, k, k + 1}. A straightforward computation shows that the minimum
is actually reached on k.

• If ⌈c/γ⌉(k − 1) ≤ s − 1, then the maximum is reached for µ = 1
(k+1)k and we get a

maximum equal to
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c
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• If ⌈c/γ⌉(k − 1) ≥ s − 1, then the maximum is reached for µ = 1
k(k−1) and we get a

maximum equal to
2

k

⌈

c

γ

⌉

− s− 1
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.

Case µ ∈ [1/2,+∞):: Interverting min and max in Equation (4) increases the expression.
Letting j = 1 once we have interverted leads therefore to an upper bound, which is equal
to ⌈c/γ⌉ − (s − 1)/2. This quantity is also a lower bound because it is what we get when
we evaluate Equation (4) for µ = 1/2.
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Therefore, by strong duality, the optimal value of (3) is
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To get the optimal j as stated just after Theorem 1, we compute the values x ≥ 1 for which

x 7→ 2
x
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c
γ
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− s−1
x(x−1) is an increasing map. A simple calculation leads to

x ∈



1;
1

1−
√

s−1
s−1+2⌈c/γ⌉


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The integer j∗ maximizing the expression (5) is therefore one of the two integers around the right
bound of this interval. Proposition 3 and the preceding discussion lead to the following proposition.

Proposition 4.
⌈

s

t
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(
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, max
j∈{2,...,σ}

(

2

j

⌈

c
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− s− 1
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))⌉

is a lower bound for the business dinner problem.

It gives lb3 and lb5.

3. Special cases with optimal solutions

3.1. Case c ≤ γ. In this case, the optimal solution is ⌈s/σ⌉. Indeed, all customers sit together
at a table, and each evening, they have a dinner with exactly σ suppliers, except maybe the last
evening, when they have a dinner with s−σ⌊s/σ⌋ suppliers. It gives ⌈s/σ⌉ dinners. Since it is also
a lower bound (Proposition 1), it is an optimal solution.

3.2. Case σ = 1. We have the following proposition.

Proposition 5. If σ = 1, then the optimal number of dinners is

max

(

s,

⌈

c

γ

⌉

,

⌈

s

t

⌈

c

γ

⌉⌉)

.

Proof. Assume γ = 1. Consider the complete bipartite graph Ks,c with on one side the suppliers
and on the other side the customers. If the dinners are the colors, we want to find a proper edge-
coloring of Ks,c with each color being present at most t times. According to a theorem by De Werra
[4], the minimal number of colors in a proper edge-coloring of a bipartite graph G = (V,E) with
each color being present at most t times is max(⌈|E|/t⌉,∆(G)), where ∆(G) is the maximal degree
of G. Therefore, the minimal number of colors in Ks,c is max(⌈sc/t⌉, s, c).

The case γ > 1 is obtained as follows: split the customers in ⌈c/γ⌉ groups, each being of size ≤ γ;
according to the preceding construction, we get a feasible solution with max(s, ⌈c/γ⌉, ⌈s/t⌈c/γ⌉⌉)
dinners. This solution is optimal according to the lower bounds lb1, lb2 and lb3 of Theorem 1. �

�

3.3. Case σ = 2, s > c/γ and t ≥ min(c/γ, s/2).

Proposition 6. If σ = 2, s > c/γ, t ≥ min(c/γ, s/2) and (⌈c/γ⌉, s) 6= (2, 4), the optimal number

of dinners is

max

(⌈

c

γ

⌉

,
⌈s

2

⌉

)

.
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This case coincides more or less with the concept of Howell designs. They are a generalization of
orthogonal latin squares. A square array of size m×m is a Howell design of type H(m, 2n), with
n ≥ 1, provided that

(1) every cell is either empty or contains an unordered pair of elements (symbols) chosen from
a set of size 2n,

(2) every symbol occurs exactly once in each row and each column,
(3) every unordered pair of symbols occurs at most once in the array.

A Howell design provides then a feasible schedule for ⌈c/γ⌉ = m, s = 2n, σ = 2 and t ≥ n: the
rows of the array are the dinners, the columns are the customer groups (of γ or less customers)
and in each cell of the array, we find suppliers present for this dinner with this customer group at
a table.

We have the following theorem obtained after a series of papers from the early sixties until the
eighties. Two papers, respectively by Stinson [5], and Anderson et al. [2], conclude this series with
a complete characterization of the values for which Howell designs exist.

Theorem 3. A Howell design H(m, 2n) exists if and only if the following two conditions are

satisfied:

(1) n ≤ m ≤ 2n− 1
(2) (m, 2n) /∈ {(2, 4), (3, 4), (5, 6), (5, 8)}

With the help of this theorem, we are able to prove Proposition 6.

of Proposition 6. Suppose first that (⌈c/γ⌉, s) /∈ {(3, 4), (5, 6), (5, 8)}. Because of the assumption
of the theorem, we have also (⌈c/γ⌉, s) 6= (2, 4). Therefore, we can apply Theorem 3.

Case ⌈c/γ⌉ ≥ s/2: If s is even, let 2n = s. With the interpretation of the Howell design
H(⌈c/γ⌉, 2n) in terms of schedule, we are able to find a solution in ⌈c/γ⌉ dinners, which is
obviously optimal as it is also the lower bound lb2.

If s is odd, let 2n− 1 = s, add a fictitious supplier and we get again an optimal solution
in ⌈c/γ⌉ evenings with the same construction.

Case s/2 > ⌈c/γ⌉: As in the case above, we define n such that s = 2n or s = 2n−1 according
to the parity of s. With H(n, 2n) from which we keep only the ⌈c/γ⌉ first columns, we get
a feasible schedule in n dinners. As n = ⌈s/σ⌉, which is the lower bound lb1, we get the
optimality of this solution.

1,2 3,4
3 1 2,4
4 2 1,3

Table 2. An optimal schedule for t = 3 tables, s = 4 suppliers, ⌈c/γ⌉ = 3 groups
of customers (the columns), at most σ = 2 suppliers per table, in 3 dinners (the
rows)

For the three remaining cases (⌈c/γ⌉, s) ∈ {(3, 4), (5, 6), (5, 8)}, we use the explicit solutions1 of
Tables 2–4. The optimality is proven with the help of lower bound lb2. � �

For the case (⌈c/γ⌉, s) = (2, 4), we have a solution in three dinners, see in Table 5, and it is easy
to see that there is no solution in two dinners.

1computed with the help of the constraint programming toolbox of the IBM ILOG CPLEX Optimization Studio.
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6 2,3 4,5 1
6 3,4 1 2 5
3,5 1,2 6 4
2,4 5 1 3,6
1 5 4,6 3 2

Table 3. An optimal schedule for t = 5 tables, s = 6 suppliers, ⌈c/γ⌉ = 5 groups
of customers (the columns), at most σ = 2 suppliers per table, in 5 dinners (the
rows)

4 6 1,5 7,8 2,3
2,6 5,7 3 1 4,8
7 1,3 2,8 4,5 6
1,8 2,4 7 3 5
3,5 8 4,6 2 1,7

Table 4. An optimal schedule for t = 5 tables, s = 8 suppliers, ⌈c/γ⌉ = 5 groups
of customers (the columns), at most σ = 2 suppliers per table, in 5 dinners (the
rows)

1,2 3,4
3 1
4 2

Table 5. An optimal schedule for t = 2 tables, s = 4 suppliers, ⌈c/γ⌉ = 2 groups
of customers (the columns), at most σ = 2 suppliers per table, in 3 dinners (the
rows)

Remark. It becomes clear that a general exact solution for the present problem is out of reach:
such a solution would describe under which conditions objects generalizing Howell designs with
more than 2 numbers in each cell would exist – a difficult topic which is still under investigation.

3.4. Case t = ⌈s/2⌉, σ = 2 and ⌈c/γ⌉ ≥ 3
2s.

Proposition 7. If t = ⌈s/2⌉, σ = 2 and ⌈c/γ⌉ ≥ 3
2s, then the optimal number of dinners is

2

⌈

c

γ

⌉

− s+ 1.

Proof. We first write the proof for the case s = 2t.
We prove that there is a feasible solution matching this number of dinners.
Let c′ = ⌈c/γ⌉. We split the whole set of customers into c′ groups, each of them with at most γ

customers. Consider an optimal schedule with s suppliers and s−1 groups of customers and derive
from it a feasible schedule in s − 1 dinners (Proposition 6). At the end of these s − 1 dinners, we
have s − 1 groups among the c′ groups that have met all suppliers. For the remaining c′ − s + 1
groups, we use a feasible solution in ⌈ st (c′ − s+ 1)⌉ = 2c′ − 2s+ 2 dinners, given by Proposition 5.
The suppliers being alone in such a solution, we get a feasible solution for the whole collection of
c′ groups in 2c′ − s+ 1 dinners.

This number of dinners is optimal according to the lower bound lb5 of Theorem 1 with j = 2.
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Let us deal with the case s = 2t − 1. Adding a fictitious supplier, we have s′ = s + 1 suppliers
and we get similarly as above a solution in s′− 1+ ⌈ st (c′− s′+1)⌉ dinners. Note that the c′− s′+1

groups of customers have s suppliers to meet and we get a s
t term and not a s′

t one. Replacing s′

and s by their expressions in t, we get a solution in ⌈ c′st + 3− 1
t − 2t⌉ dinners.

The lower bound lb5 of Theorem 1 with j = 2 is in this case ⌈ c′st − 4t2−6t+2
2t ⌉ = ⌈ c′st +3− 1

t − 2t⌉
and proves the optimality of this solution. � �

3.5. Case t = γ = 1, c ≤ p ≤ σ, s = p2 with p prime.

Proposition 8. If t = γ = 1, c ≤ p ≤ σ, s = p2 with p prime, the optimal number of dinners is

pc.

Proof. We define the following p× p matrices M (1), . . . ,M (c) where

M
(k)
i,j = j + p(kj − j − k + i) mod p2 for i, j ∈ {1, . . . , p} and for k ∈ {1, . . . , c}.

For a k ∈ {1, . . . , c}, let i, j, i′, j′ be in {1, . . . , p}. If we have M
(k)
i,j = M

(k)
i′,j′ mod p2, then we get

first that j = j′ (by counting modulo p), then that i = i′. It means that the numbers appearing

in a M (k) are all distinct modulo p2, and hence that all the numbers from 1 to 1 + p2 modulo p2

appear in such a matrix since there are p2 entries.
We build now a feasible schedule in pc dinners as follows. For each k, the matrix M (k) encodes p

dinners with customer k at the unique table: each row provides the suppliers present at a dinner.
According to the remark above, each customer meets all suppliers. It remains to check that two
suppliers eat at most once together. Assume that it is not the case. Because all numbers in a M (k)

are distinct, we know that two suppliers eat at most once together, when one considers the dinners
with a given customer. Therefore, if two suppliers eat at least twice together we have simultaneously

M
(k)
i,j1

= M
(k′)
i′,j′

1

and M
(k)
i,j2

= M
(k′)
i′,j′

2

(counted modulo p2) for some i, i′, j1, j′1, j2, j
′
2 ∈ {1, . . . , p} with

j1 6= j2 and j′1 6= j′2, and distinct k and k′ in {1, . . . , c}. We get first that j1 = j′1 and that
j2 = j′2 (by counting modulo p). Then we get that p2 divides p(i − i′ + kj1 − k′j1 + k′ − k) and
p(i − i′ + kj2 − k′j2 + k′ − k), which means that p divides (k − k′)(j1 − j2). Since p is prime,
|k − k′| < p and |j1 − j2| < p, we get a contradiction.

The optimality of the solution is clear since it matches lb4 of Theorem 1. � �

4. Feasible solutions

The main purpose of this section is to prove Theorem 2.

4.1. Domination results. Let us denote r(t, s, c, σ, γ) the optimal solution of the problem. Ob-
viously, it is an non-decreasing map in s and in c. It is also a non-increasing map in t, in σ and in
γ, but concerning these quantitites, we can say a little bit more.

(6) r(t1, s, c, σ, γ) ≤
⌈

t2
t1

⌉

r(t2, s, c, σ, γ) for any t1 and t2.

Indeed, if t1 ≥ t2, then any solution with t2 tables is also a solution with t1 tables (r is a

non-increasing map). And if t2 ≥ t1, we can split the set of tables into
⌈

t2
t1

⌉

groups of t1 tables,

and use any solution of the problem with t2 tables to build a solution with t1 tables, each group
corresponding to a distinct dinner.

With the same kind of reasoning, we get
9



(7) r(t, s, c, σ1, γ) ≤
⌈

σ2
σ1

⌉

r(t, s, c, σ2, γ) for any σ1 and σ2.

Making groups of at most γ1 customers leads to

(8) r(t, s, c, σ, γ2) ≤ r(t, s, ⌈c/γ1⌉, σ, ⌈γ2/γ1⌉) if γ1 ≤ γ2.

Finally, we have also the following relation.

(9) r(t, s, c, σ, γ) ≤ r(t, s1, c, σ, γ) + r(t, s2, c, σ, γ) for any s1 and s2 s.t. s1 + s2 = s.

4.2. Explicit solutions.

of Theorem 2. We get ub1 as follows.

Let t1 = t, t2 = min
(⌈

c
γ

⌉

, s
)

, σ1 = σ and σ2 = 2. We have r(t2, s, c, σ2, γ) ≤ max
(⌈

c
γ

⌉

,
⌈

s
2

⌉

)

.

Indeed, if s > c/γ, we use Proposition 6; and if s ≤ c/γ, we use Proposition 5 combined with the
inequality r(t2, s, c, 2, γ) ≤ r(t2, s, c, 1, γ), which follows from Equation (7). Equations (6) and (7)
are then used to conclude.

To get ub2, we first define a new business dinner problem with t′ = ⌈s/σ⌉ tables, s′ = t′σ
suppliers, ⌈c/γ⌉ customers, at most σ suppliers per table and at most 1 customer per table. For
this problem, a feasible solution consists in taking t′ customers, and in putting each of them at a
separate table. The first evening, each of these t′ customers eats with σ distinct suppliers. The
s′−σ following evenings, each of these t′ customers eats with one of the s′−σ suppliers he has not
yet eaten with. It is easy to schedule these dinners. For the ⌈c/γ⌉ − t′ remaining customers, we
build a solution with exactly one supplier per table in σmax(⌈c/γ⌉ − t′, t′) dinners (the schedule
follows from Proposition 5). We get therefore a feasible solution in 1+ s′−σ+σmax(⌈c/γ⌉− t′, t′)
dinners:

r(t′, s′, ⌈c/γ⌉, σ, 1) ≤ 1− σ + σmax(⌈c/γ⌉, 2t′).
Combining this solution with the monotony of r in s, Equation (6) and Equation (8) (for γ2 =

γ1 = γ), we get ub2. � �

Actually, if s > c/γ, the upper bound ub1 can be improved with the same proof (Proposition 6
can be used in a more tight way) by

⌈

2

σ

⌉⌈

1

t
min

(⌈

c

γ

⌉

,
⌈s

2

⌉

)⌉

max

(⌈

c

γ

⌉

,
⌈s

2

⌉

)

.

The upper bound ub2 leads to feasible solutions even if s/σ > c/γ. Indeed, we can make the
Euclidean division of ⌈s/σ⌉ by ⌈c/γ⌉. Let us write

⌈s/σ⌉ = q⌈c/γ⌉+ ρ with 0 ≤ ρ < ⌈c/γ⌉.
Making q groups of at most σ⌈c/γ⌉ suppliers each and one group of at most σρ suppliers, and with
the help of Equation (9), we get a solution in at most

(10) q

⌈

1

t

⌈

c

γ

⌉⌉(

1− σ + 2σ

⌈

c

γ

⌉)

+
⌈ρ

t

⌉

(

1− σ + 2σmax

(⌈

c

γ

⌉

, 2ρ

))

dinners.
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5. Some open questions

5.1. Improving the bounds. For many instances, the ratio (best upper bound) / (best lower
bound) is low. It is however possible to make this ratio arbitrarily high as follows. Set s := x and
σ :=

√
x and let x → +∞. The parameters c, γ and t are considered as constant. The notation

g = O(f) means that g/f is asymptotically bounded above by a constant, whereas the notation
g = Ω(f) means that g/f is asymptotically bounded below by a constant.

Then lb2 is constant. The lower bound lb5 goes to something negative: it can be checked that
j∗ = Ω(x) and therefore the maximum is reached on σ when x is sufficiently high. The three others
lower bounds are O(

√
x).

We have ub1 =
⌈

1
t

⌈

c
γ

⌉⌉

⌈

x
2

⌉

when x is sufficiently high. For the other upper bound, using

Equation (10), we get ub2 ∼
2
⌈

c

γ

⌉

−1
⌈

c

γ

⌉

⌈

1
t

⌈

c
γ

⌉⌉

x.

The ratio is therefore a Ω(
√
x).

A question is whether it is possible to improve the lower and upper bounds in order to get a
ratio bounded above by a constant.

5.2. Making groups. The most intriguing open question is the following, as a positive answer
seems intuitively correct,

Is there always an optimal solution in which the customers are split into groups, the

members of each group staying together for all dinners ?

Indeed, this property is satisfied in all optimal or good solutions proposed in the present paper.
An alternative formulation is whether Equation (8) is actually an equality when γ1 = γ2.

5.3. One table and at most one customer per table. An open question which may be tractable
is the case with only one table and at most one customer at each table. A partial answer is given
Section 3.5 and we were not able to deal with the general case.
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