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Hyperconnections and Hierarchical
Representations for Grayscale and Multiband

Image Processing
Benjamin Perret∗, Sébastien Lefèvre, Christophe Collet, and Éric Slezak

Abstract—Connections in image processing are an important notion that describes how pixels can be grouped together according
to their spatial relationships and/or their gray level values. In recent years, several works were devoted to the development of new
theories of connections among which hyper-connection (h-connection) is a very promising notion. This paper addresses two major
issues of this theory. First, we propose a new axiomatic which ensures that every h-connection generates decompositions that are
consistent for image processing and more precisely for the design of h-connected filters. Second, we develop a general framework
to represent the decomposition of an image into h-connections as a tree which corresponds to the generalization of the connected
component tree. Such trees are indeed an efficient and intuitive way to design attribute filters or to perform detection tasks based on
qualitative or quantitative attributes. These theoretical developments are applied to a particular fuzzy h-connection and we test this new
framework on several classical applications in image processing: segmentation, connected filtering, and document image binarization.
The experiments confirm the suitability of the proposed approach: it is robust to noise and it provides an efficient framework to design
selective filters.

Index Terms—Edics: SMR-STM, Hyperconnection, hierarchical representation, connected operator, connected filter, document image
binarization, mathematical morphology, connection, Max-Tree, image filtering, image segmentation.

F

1 INTRODUCTION

IN DIGITAL IMAGE PROCESSING, the notion of connec-
tion describes how pixels are grouped together to

form objects called connected components. At the very
beginning, there were two distinct ways to perform such
grouping: the topological connection (where a set is
connected if it cannot be partitioned into two disjoint
open sets) and the path-connectivity (where the pixels of
the image are considered as nodes of a graph and a set
is connected if a path of edges exists between all nodes).
The notion of set connections was introduced in the late
1980s by Serra [1] as a theory to unify these previous
approaches into a common algebraic framework. In this
theory, a connection is composed of all connected sets
and the connected components of an image are then
the greatest connected sets included in this image. Thus
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different connections will lead to different divisions of
the image into connected components. The notion of
connection has had a great impact on mathematical
morphology and was followed by the introduction of
connected operators in binary images [2] and grayscale
images [3], [4], [5]. These operators have the property to
either preserve or delete the connected components of an
image, and therefore do not modify object boundaries.

The connected operators, which are based on set con-
nections, have been very successful in image filtering [4],
[6], [7] or segmentation [8], [9], [10], [11], [12]. All these
approaches rely on the original connection theory which
is set oriented and the extension to grayscale images
is realized through thresholding (i.e. flat-zone filtering).
The threshold decomposition has the advantage of being
conveniently represented by a tree structure [5] (known
as component tree [13], Max-Tree [5], dendrone [14], or
confinement tree [15]) leading naturally to the notion of
hierarchical representation.

Nevertheless, the flat-zone approach can be affected
by various problems:

• sensitivity to noise: a flat zone representing an object
is easily broken by noise;

• linkage: different objects are grouped by artifacts or
small features into the same flat zone;

• set connections and gray levels: underlying set con-
nections can only take spatial relationships into
account, thus do not consider gray levels which can
cause an object with gray-level gradients or textures
to be spread into several flat zones;

• overlapping: underlying set connections cannot
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handle overlapping.

Recent developments have been made in the connection
theories, including sometimes subsequent modifications
of the component tree, to try to solve these issues.
Section 1.1 describes those developments and section 1.2
is dedicated to the contributions of the paper.

1.1 Related Work

In [16], the author proposed relaxing the set connection
theory to allow for the creation of partial set connec-
tions and partial partitions. Partial connections are of
great interest when dealing with segmentation methods
that may leave part of the image unsegmented (e.g.
boundaries in a watershed), but do not solve the other
problems mentioned.

Another extension of set connections are second gener-
ation connections (see [17] and references therein) which
are defined by the application of an operator over a
primary connection. Second generation connections are
themselves set connections which can be divided be-
tween contraction-based connectivities (where connected
components of the primary connection may become
disconnected in the second generation connection) and
clustering-based connectivities (where disconnected com-
ponents of the primary connection may become con-
nected in the second generation connection). The authors
of [18] developed a method to perform attribute filtering
over the Max-Tree using a special second generation con-
nection called mask based second generation connectivity.
Second generation connectivity may solve the problem
of broken flat zones (with clustering based connections)
and the problem of linkage (with contraction-based con-
nectivities). Nevertheless, second generation connectivi-
ties are not able to deal with overlapping.

On the other hand, nearly ten years after his first
proposal, Serra published [19] a new definition of con-
nections based on the theory of complete lattices which
enables the consideration of both spatial relations and
gray level values. This new definition was immediately
followed (at the end of the same article) by the proposi-
tion of a relaxed definition called h-connection, but this
idea was not further developed in the article. The latter
permits one to define a large variety of connections over
arbitrary lattices (including grayscale and multiband
images) and is able to deal with overlapping. It has been
the basis of several recent works. In [20], the authors
presented a specific type of h-connection and proposed
the notion of segmentation by similarity zones (further
developed in [21]). The work in [22] defined a new h-
connection based on the theory of fuzzy connectivity
measures and developed the notion of fuzzy attribute
filtering. In [23] and [24], the authors proposed to modify
the reconstruction step of the traditional attribute filter
with the Max-Tree by using a specific h-connection called
the k-flat zones. Finally, in [25] and [26] the author started
to explore the theoretical properties of h-connections and
their links with the other definition of connections. All

of this progress and success linked to the h-connection
theory has led us to believe that it is a very promising
theory which deserves further investigation.

1.2 Contributions

We address two major issues of h-connections:

1) we develop a new class of h-connections that
strengthens the current theory and allows more
general and interesting properties to be derived
from it;

2) we propose a generic framework to generate hi-
erarchical representations from h-connections in
order to provide an efficient and intuitive way to
design hyper-connected attribute filters.

The axiomatic of the current theory is problem-
atic. It is based on three fundamental axioms which
informally state that 1) the least element is hyper-
connected (h-connected) 2) the points are h-connected
and 3) the supremum of overlapping hyper-components
(h-components) is connected. While axioms 1 and 2,
which establish that minimal elements are h-connected,
are easily admitted, the third axiom is more difficult to
justify. It introduces the novel notion of overlapping as
a decreasing predicate on the h-components which is in-
tuitively satisfactory, but in practice, does not allow any
new property to be derived from the theory. But its most
important weakness is the lack of consistency of derived
h-connected operators: the theory does not ensure that
the deletion of an h-component of an image will effec-
tively change the image (Proposition 1). The corollary
of this observation is that deleted h-components of an
image may reappear in the result.

We propose a new property that formalizes the fol-
lowing idea: the decomposition of an image in h-
components must be necessary and sufficient to describe
the image. We think that this property is fundamental for
image processing as it implies that the decomposition
into h-components completely describes the whole im-
age (sufficient) and that none of its components is useless
(necessary). These requirements enforce the consistency
of the h-connected filters as they ensure that: 1) every
deletion of image components will effectively modify the
filtered image 2) a deleted component can not re-appear
in the filtered image.

From a more formal point of view, the sufficiency
and necessity conditions can be formulated like this:
the supremum of the h-components of an image must
be equal to the whole image (sufficient) and the supre-
mum of a family strictly included in the family of h-
components must be strictly included in the image (nec-
essary). In the current theory, the sufficiency is provided
by axioms 1 and 2. To ensure the necessity, we propose
three equivalent properties formulating this requirement
from different points of views.

Next, based on these new properties, the notion of
hierarchical representation is explored. The traditional
component tree representation is based on a partial
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ordering of the flat zones of an image, but in the h-
connection theory, h-components are by definition not
comparable. Nevertheless, the connected openings of the
h-connection theory introduce the interesting notion of
z-zones. The z-zones are particular regions where all
points generate the same set of connected components
and the entire image can be divided into such zones.
We show that the z-zones can be partially ordered and
give a sufficient condition to ensure that their Hasse
diagram with respect to this new ordering is a tree. This
tree is thus a possible generalization of the component
tree to non flat-zones based on h-connections. This h-
component tree can then be used in the same manner as
the traditional component tree, following the traditional
processing steps: tree construction, tree pruning, and
finally reconstruction of the result [27].

As the h-component is just a representation of the
decomposition of the image according to a particular
h-connection, its properties are thus inherited from the
chosen h-connection and they cannot be specified until
such an h-connection has been chosen.

These theoretical developments are illustrated by their
application on a fuzzy h-connection recently proposed
in [22]. Our new approach allows us to represent the
different fuzzy h-connected components of an image in
a single tree structure. This provides a convenient repre-
sentation to design fuzzy h-connected operators and to
reuse all existing algorithms imagined for the connected
component tree in this new context. A simple and effi-
cient algorithm is given to transform the component tree
into the h-component tree of this h-connection. We first
show how the component tree is simplified by the use
of the h-connection. Then, we evaluate the performances
of filtering operations on grayscale images compared to
other connected filters. Next, we show that the method
can be easily extended to multiband images. This ex-
tension is demonstrated on multispectral astronomical
images of galaxies. Finally, we propose a novel document
image binarization method based on the h-component
tree and we evaluate it on the DIBCO (Document Image
Binarization Contest [28]) 2009 benchmarking dataset.

1.3 Organization

In section 2, we go over some preliminary definitions
about the lattice theory, the theory of set connections,
and h-connections. Next, in section 3, we present the pro-
posed evolution of the h-connection axiomatic. We give
the different formulations of the proposed axioms and
establish some new results. The theory of h-component
trees is presented in section 4. It includes a definition of
the order relation between z-zones and the definition of
the corresponding tree. Section 5 is dedicated to the ap-
plications. The fuzzy h-connection is first defined and a
suitable algorithm is given to compute the h-component
tree. Then, the experimental results are presented, we
demonstrate the properties of the h-component tree on
grayscale images, we show that it can handle multiband

images, and we propose a new method for document
image binarization. Finally, section 6 concludes the paper
and suggests future research directions.

2 SET CONNECTION, LATTICE, AND HYPER-
CONNECTION

In the sequel, sets and families are written in capital
letters while elements of a set are written in lower-case
letters. The logical conjunction (respectively disjunction)
is noted ∧ (respectively ∨). Proofs of the different propo-
sitions are given in the appendix.

2.1 The Lattice Theory

This section gives the necessary definitions on the lattice
theory for this article, the reader may refer to [29], [30]
for more information.

A lattice (L,≤L,
∨

L,
∧

L) is composed of a non-empty
set L with a partial order ≤L (a reflexive, transitive and
antisymmetric binary relation) and two internal opera-
tors: a supremum

∨

L and an infimum
∧

L. In the sequel,
when no confusion is possible, we drop the subscript L

of the order, the supremum, and the infimum. If ≤ is
a total order then L is called a chain. A lattice is said
bounded if it has a least ⊥ and a greatest element ⊤ (i.e.
∀a ∈ L,⊥ ≤ a ≤ ⊤). If every non empty family A ⊆ L
has a supremum

∨

A and an infimum
∧

A in L, the
lattice L is said to be a complete lattice. In the following,
we consider only complete lattices.

A set S ⊆ L such that ⊥ /∈ S is called a sup-generating
family of L if every element of L can be written as the
supremum of elements of S (∀a ∈ L, ∃B ⊆ S, a =

∨

B).
The elements of S are called sup-generators.

Important examples of lattices are:

• the extended real line R = R
⋃

{−∞,+∞}, which
is a complete chain under the usual order, infimum,
and supremum. It is sup-generated by R.

• the set of all subsets of a set E (noted P (E)),
which is a complete lattice with the partial order
defined by the inclusion relation, and the infimum
and supremum given by the set intersection and
union. It is sup-generated by the singletons of E.

• the functions from a set E into a lattice L (noted LE),
which is a lattice under the pointwise order ∀f, g ∈
LE , f ≤ g ⇔ ∀x ∈ E, f(x) ≤L g(x). The infimum
and supremum are similarly defined by a pointwise
application of the infimum

∧

L and supremum
∨

L

of the underlying lattice. LE is sup-generated by the
pulses: the functions δtx, ∀x ∈ E, ∀t ∈ L, t 6= ⊥
defined by ∀y ∈ E, δtx(y) = t if x = y, ⊥ otherwise.
The properties of LE depend of the properties of
the underlying lattice L. This lattice can be used to
represent the images.

2.2 Set Connection

Given a set E, a connection on E is a family C ⊆ P (E)
composed of the connected elements of E. Formally we
say that C is a connection if [1]:
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1) {∅} ∈ C: the empty set is connected;
2) ∀x ∈ E, {x} ∈ C: the singletons (or points) are

connected;
3) ∀A ⊆ C,

⋂

A 6= ∅ ⇒
⋃

A ∈ C, the union of
intersecting connected elements is connected.

2.3 Hyperconnection

Being given a finite lattice L with a sup-generating
family S , a h-connection C+ on L is a subset of L
verifying the following conditions [19]:

1) ⊥ ∈ C+: the least element is h-connected;
2) ∀s ∈ S , s ∈ C+: the points (i.e. the sup-generators)

are h-connected;
3) ∀A ⊆ C+, ⊲⊳ A ⇒

∨

A ∈ C+, the supremum of
overlapping h-connected elements is h-connected.

where ⊲⊳ is a predicate on P (L) called the overlap
criterion. This predicate must be decreasing: ∀A ⊆ P (L),
6⊲⊳ A ⇒ ∀b ∈ L, 6⊲⊳ {b}

⋃

A meaning that a family of
non overlapping elements cannot become overlapping
by the addition of new elements. Note that the set
connection is simply an h-connection on P (E) with
∀A ⊆ C, ⊲⊳ A ⇔

⋂

A 6= ∅.
A simple example of h-connection is made of functions

with a unique maximum [19], [20]. This h-connection
is defined on the lattice of functions LE and it is
based on a primary set connection Co on E. Then,
one says that a function has a unique maximum if it
is connected at all levels with respect to the primary
set connections. More formally, we define the set of

connected functions by: F =
{

f ∈ LE | ∀t ∈ L, f
¬t ∈ Co

}

,

with f
¬t = {p ∈ E | t ≤ f(p)} the thresholding of f at

level t. The overlap criterion can be defined as: ∀ {fi} ⊆
LE , ⊲⊳ {fi} ⇔ ∀t ∈ L, Ut = ∅ or

⋂

Ut 6= ∅ with

Ut =
{

fi
¬t | fi

¬t 6= ∅
}

.

2.3.1 Hyperconnected operators and openings

H-connected operators [25] are applications from L into
P (L) which extract the h-components marked by a sup-
generator. Formally, being given a sup-generator s ∈ S ,
we define the h-connected operator by:

∀a ∈ L, γ∗
s (a) =

{

h ∈ C+ | s ≤ h ≤ a, ∀g ∈ C+, h ≤ g ≤ a ⇒ g = h
}

(1)

Thus, the h-components are maximal h-connected ele-
ments and the h-components of a ∈ L are given by:

γ∗ (a) =
⋃

s∈S

γ∗
s (a) (2)

The h-connected opening marked by s is the supremum
of the h-components of a above s:

∀a ∈ L, γs (a) =
∨

γ∗
s (a) (3)

Contrary to connectivity openings in set connection,
the result of a h-connected opening is not necessarily
connected. Indeed, one can see that γs (a) ∈ C+ if and

only if #γ∗
s (a) = 1 (where #γ∗

s (a) is the number of h-
components in γ∗

s (a)).
Moreover, the two following properties hold [20]:

1) a =
∨

γ∗ (a): an element is the supremum of its
h-components;

2) ∀b, c ∈ γ∗ (a), b 6= c ⇒ b 6⊲⊳ c: two h-components do
not overlap.

2.3.2 Z-operators

In [20], the authors propose the interesting notion of z-
operators. Let a ∈ L, the equivalence relation

a
∼ on S is

defined by:

∀b, c ∈ S, b
a
∼ c ⇔ γb (a) = γc (a) (4)

Then, the z-operator is defined as the supremum of an
equivalence class of

a
∼:

∀s ∈ S, ζs (a) =
∨

{

b ∈ S | b
a
∼ s

}

(5)

Finally, the set of all z-zones of a is noted:

ζ (a) = {ζs (a) | ∀s ∈ S} (6)

The authors of [20] have chosen to base the z-operators
on the h-connected openings, but we can also define
them in terms of h-connected operators leading to a
slightly different definition. Let

a
∼∗ be the equivalence

relation defined by:

∀b, c ∈ S, b
a
∼∗c ⇔ γ∗

b (a) = γ∗
c (a) (7)

Then, the alternative z-operator∗ is defined as the supre-
mum of an equivalence class of

a
∼∗:

∀s ∈ S, ζ∗s (a) =
∨

{

b ∈ S | b
a
∼∗s

}

(8)

Generally, as h-components can be overlapping, ζs (a) 6=
ζ∗s (a). For example, consider the set E = {a, b, c} and
the h-connection {∅, {a} , {b} , {c} , {ab} , {bc} , {ac}} on
P (E) with the overlap criterion defined as false (two
elements are never overlapping, this is a valid criterion
since it is trivially decreasing). Then, the h-components
of E are {{ab} , {bc} , {ac}}. Thus, we have γa (E) =
γb (E) = γc (E) = E and ζa (E) = ζb (E) = ζc (E) = E.
But γ∗

a (E) = {{ab} , {ac}}, γ∗
b (E) = {{ab} , {bc}} and

γ∗
c (E) = {{ac} , {bc}} thus ζ∗a (E) = {a} 6= ζa (E).

In section 3, we show that under certain conditions,
we have ∀a ∈ L, ∀s ∈ S, ζs (a) = ζ∗s (a). Figure 1
shows an example of function decomposition with the
z-operators and the h-connection of function having a
unique maximum.

2.3.3 H-reconstruction

Being given a marker m ∈ L we can define the hyper-
reconstruction (h-reconstruction) of a ∈ L marked by m
by [20]:

⌈a⌉m =
∨

s∈S,s≤m

γs (a) (9)
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f=

f

f

f

f

Figure 1. Example of decomposition of function f with the h-connection of functions with a unique maximum: left)
function f , five pulses δ1, . . . , δ5 representatives of the five equivalence classes of the relation

f
∼. The different gray

levels represent the results of the z-operators: ζδi (f). The sup-generator δ1 (and its equivalence class) are associated
to the whole set of h-components of f and thus γδ1 (f) = f , right) the h-openings of δ2, . . . , δ5.

We propose another definition of the h-reconstruction
based on the alternative z-operators:

⌈a⌉ζm =
∨

s∈S,s≤m

ζs (a) (10)

The latter is more flexible, the two approaches are com-
pared in Figure 2.

2.3.4 New properties

We establish here two new properties that will help us
in following proofs. Let a ∈ L:

Proposition 1: ∀ {hi} ⊆ γ∗ (a), {hi} ⊆ γ∗ (
∨

{hi})
Being given a family of h-components, the h-components
of its supremum is a superset of the given family. Those
two families are generally not equal, take for example the
h-connection given in section 2.3.2; the h-components of
the element {abc} are {{ab} , {bc} , {ac}}. Now, consider
the subfamily {{ab} , {bc}}, the supremum of this family
is equal to {abc} and the h-components of this supre-
mum is a strict superset of the family. This property is
important for the theory as it shows that the deletion
of an h-component of an image may leave the image
unchanged. The corollary of this observation is that
deleted h-components of an image may reappear in the
result.

Proposition 2: ∀s ∈ S , ∀h′ ∈ γ∗ (a), if s ≤ h′ and
γs (a) = h ∈ C+ then h = h′.
If the h-opening of a marked by the sup-generator s is
a h-component then there is no other h-component of a
above s.

After this presentation of the current h-connection
theory, in the next section, we propose a new axiomatic
of h-connections. Indeed, the weaknesses of the current
axiomatic are discussed, and a novel solution is then
proposed. In the following, we assume the existence
of a complete lattice L with the sup-generating family

S and the h-connection C+. Moreover, we assume that
the number of h-components of each element of L is
finite. One can note that this condition is satisfied when
working on discrete images of a finite domain.

3 TOWARD A NEW AXIOMATIC

Despite the successful developments of h-connections in
recent works [20], [22], [23], [24], [25], [26], the theory of
h-connections is still not satisfactory. All of the successes
obtained have been based on specific h-connections,
whereas only a few general properties have been estab-
lished. This lack of theoretical results comes from the
very broad definition of h-connections. The third axiom
(the overlap criterion) is especially problematic. On one
hand, this axiom is satisfactory because it formalizes the
intuitive union based approach. On the other hand, the
definition of the overlap criterion is so wide that, in
practice, this third axiom does not bring any meaningful
property to the h-connection (for example, consider the
overlap criterion which is always false, and the third
axiom is never applicable). Instead of a constantly false
overlap criterion, one can also define the following less
trivial valid overlap criterion: ∀C+ ∈ L, ∀A ⊆ C+, ⊲⊳
A ⇔ (∀B ⊆ A,

∨

B ∈ C+).
To harden the definition of h-connections, we pro-

pose the fundamental property that an h-connection
must provide for each element a decomposition in h-
components that is necessary and sufficient. With the
current theory it is clear that the decomposition in h-
components is sufficient in the sense that an element
is equal to the supremum of its h-components. But in
general this decomposition is not necessary in the sense
that only a subset of the h-components of an element
can be necessary to retrieve the element by supremum.

More formally, one can define the following properties
∀a ∈ L:
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f

m

f

m

f

m

Figure 2. The h-reconstruction operator with the h-connection of functions with a unique maximum. From left to right:
function f and marker m, h-reconstruction ⌈f⌉m and alternative h-reconstruction ⌈f⌉ζm.

P-1 – ∀h′ ∈ γ∗ (a) ,
∨

{h ∈ γ∗ (a) |h 6= h′} <
∨

γ∗ (a):
all h-components of an element are necessary to
describe the element.

P-2 – ∀ {hi} ⊆ γ∗ (a) , ∀h ∈ γ∗ (a) , h ≤
∨

{hi} ⇒
h ∈ {hi}: an h-component cannot be covered
by other h-components.

P-3 – ∀h ∈ γ∗ (a) , ∃s ∈ S, γ∗
s (a) = h: each h-

component of an element can be individually
retrieved through an h-opening.

Then, the following proposition holds:

Proposition 3: Properties P-1, P-2, and P-3 are equiva-
lent. In the following, we will say that a connection is
accessible if the previous properties hold.

P-1 and P-2 are two direct formulations of the "ne-
cessity" condition, the first one from a global point of
view, the second from a local point of view. P-3 shows
that this condition naturally comes to the notion of
special groups of sup-generators that give access to a
unique h-component through an h-opening. From the
image processing point of view, this means that every
h-component of an image can be selected individually
with a simple opening. Accessible h-connections also
have harder properties:

Proposition 4: If C+ is accessible, being given a family
of h-components, the h-components of its supremum is
the same family: ∀ {hi} ⊆ γ∗ (a), {hi} = γ∗ (

∨

{hi})

Compared to proposition 1, this version is harder and
it ensures that by selecting a family of h-components
(corresponding to a given criterion), its reconstruction
by the supremum operator will not introduce new h-
components. From the image processing point of view,
this ensures that, when performing an h-connected fil-
tering, a deleted h-component cannot re-appear after the
reconstruction of the selected h-components. Another
interesting property of accessible h-connections concerns
z-operators:

Proposition 5: If C+ is accessible, the equivalence rela-

tions
a
∼ and

a
∼∗ are equivalent: ∀s1, s2 ∈ S,

(

s1
a
∼ s2

)

⇔
(

s1
a
∼∗s2

)

.

This property removes the necessity of operating a
choice between the two distinct approaches when deal-
ing with z-operators. Thus it simplifies the process of
creating image filters based on z-zones.

4 HYPERCOMPONENT TREE

In this section, we show how decompositions using
accessible (according to proposition 3) h-connections can
lead to a hierarchical representation in the lattice of
functions (images). By definition, the h-components of an
image are not ordered and thus the usual component tree
representation is not suitable. In [20], [31], the authors
propose a definition of a grayscale component tree for
a particular h-connection. Here, we propose a more
general definition based on z-zones (note that as C+

is accessible, then all z-zone definitions are equivalent).
The global strategy is then to furnish the z-zones with
a partial order relation noted � and to prove that the
Hasse diagram of the z-zones of an element is a tree.

As the tree is a representation of the decomposition
of the image into its h-components, its properties will
depend of the chosen h-connection.

4.1 Partial Order of the Z-Zones

Let I = LE be the lattice of images with L a lattice, E
a domain. The support of a function f ∈ I is the set of
points where the function is different from ⊥: supp (f) =
{p ∈ E | f(p) 6= ⊥}. We first define a binary relation � on
I:

∀x, y ∈ I, x � y ⇔
(

supp (x) ⊆ supp (y)
)

∧
(

y/supp(x) ≤ x
)

(11)

where y/supp(x) is the function y restricted on supp (x):

∀p ∈ E, y/supp(x)(p) =

{

y(p) if p ∈ supp (x)

⊥ otherwise
(12)

Proposition 6: � is a partial order on I.
With this special order, a function x is lower than another
function y if the support of x is included in the support
of y and if the value of x is larger than that of y on the
support of x (see Figure 3). Moreover, the pair (I,�) is
a lattice with the infimum ∧� and supremum ∨�, for all
x, y ∈ I defined as:

∀p ∈ E, (x ∧� y)(p)

=

{

x(p) ∨L y(p) if p ∈ supp (x) ∩ supp (y)

⊥ otherwise
(13)
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∀p ∈ E, (x ∨� y)(p)

=



















x(p) ∧L y(p) if p ∈ supp (x) ∩ supp (y)

x(p) if p ∈ supp (x) and p /∈ supp (y)

y(p) if p ∈ supp (y) and p /∈ supp (x)

⊥ otherwise

(14)

Figure 3 demonstrates the basic properties of � and its
associated infimum and supremum operators.

a

b

d
c c d

c d

Figure 3. Left image: two functions a and b such that
a � b. Middle image: two functions c and d that are not
comparable according to �. Right image: the infimum
c ∧� d (blue) and supremum c ∨� d (red) of the functions
c and d of the middle image.

4.2 Tree Representation Definition

Then, a graph based representation of an image a ∈ I is
obtained using the Hasse diagram (Ga, Va) of the z-zones
defined by the order �. The graph (Ga, Va) is defined by:

Ga = ζ (a) ∪ {⊥} (15)

Va =
{

(x, y) ∈ G2
a |x 6= y, x � y,

(∀z ∈ Ga, x � z ≺ y ⇒ x = z)} (16)

where ≺ means strictly lower than: z ≺ y ⇔ (z � y) ∧
(z 6= y). Property P-3 guarantees that a mapping ex-
ists between groups of sup-generators (z-zones) and h-
components, thus each h-component has a dedicated
node in the graph. We will now give a sufficient (but not
necessary) condition to ensure that the Hasse diagram
is an acyclic graph so that it can be considered as a tree
rooted by ⊥. The least element ⊥ is added to ensure
the tree structure (otherwise it might be a forest), in
consequence we will omit it when it is not necessary.

Proposition 7: If the elements of Ga are either disjoint
or comparable (i.e. ∀x, y ∈ Ga, x ∧� y 6= ⊥ ⇒ (x � y) ∨
(y � x)), then the graph (Ga, Va) is acyclic.
Thus, the only requirement to ensure that the z-zones of
an image in LE can be represented as a tree structure
with respect to the partial order � is that C+ fulfills
the condition of proposition 7. Figure 4 shows an ex-
ample of an h-component tree with the h-connection of
functions with a unique maximum. With this particular
h-connection the result is equivalent to the grayscale
component tree proposed in [20], [31].

The h-component tree can then be used in the same
framework as the traditional Max-Tree [27]: equip each
node of the tree with appropriate attributes, perform tree
pruning based on the node attributes, and if necessary,

Figure 4. The h-component tree obtained with the h-
connection of functions with a unique maximum (⊥ is not
represented as it is not needed to root the graph).

reconstruct an image from the reduced tree using the

reconstruction operator ⌈a⌉ζm.
In the next section, we demonstrate the capabilities

of the h-component tree with a more complex and
interesting h-connection.

5 APPLICATION

We propose applying the theoretical approach described
above to a fuzzy h-connection recently proposed in [22].
In this article, the authors have proposed an extension
of the fuzzy connectivity measure [32] and have shown
that it can be expressed in the theory of h-connections.

In this section, we apply our method to this fuzzy
h-connection and demonstrate its capabilities on simple
filtering operations. We also extend the definition of the
h-connection to handle multiband images.

5.1 Fuzzy H-Connection

We now consider the lattice I of functions from a discrete
domain E to the interval [0, 1] (which is a complete
chain). We assume that E is equipped with a primary
set connection C. We define the connectivity measure
cf of the image f , for all x, y ∈ E (definition adapted
from [22]):

cf (x, y) = max
M∈Px,y

min
p∈M

f(p) (17)

with Px,y = {M ∈ C |x ∈ M,y ∈ M} the set of all con-
nected sets containing x and y. This can be equivalently
defined in terms of graph connectivity by the set of all
paths from x to y. If Px,y is empty, we set cf (x, y) = 0
meaning that x and y are not connected. The fuzzy h-
connection C+

f,τ of level τ ∈ [0, 1] is then defined by
(definition adapted from [22]):

C+
f,τ = {f ∈ I |

∀x, y ∈ E, 1−min(f(x), f(y)) + cf (x, y) ≥ τ} (18)

As stated in section 3, the overlap criterion is not
given. The discriminant points of the function used to
determine the connectivity measure are indeed regional
maxima (M ∈ E is said to be a regional maxima of f

if it exists a level t ∈ [0, 1] such that M ⊆ f
¬t, M ∈ C

and ∀p ∈ M , f(p) = t). This property is illustrated in
Figure 5.
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1.0

0.6

0.2

Figure 5. This function has two regional maxima at levels
1.0 and 0.6. The connectivity measure cf between the
maxima is equal to 0.2. Thus, this function belongs to C+

f,τ

for all τ ≤ 0.6.

The set C+
f,τ is a h-connection as it contains the least

element and the pulses. It is clearly accessible trough the
principal mode of each h-component (P-3) and [0, 1] is a
chain. Moreover, proposition 17 of [22] establishes that
fuzzy h-components of an image are isomorphic to sub-
trees of the Max-Tree [5], [13] and the authors provide a
method to easily extract each fuzzy h-component indi-
vidually from the Max-Tree representation. In addition,
their method shows that C+

f,τ fulfills proposition 7 and

thus, C+
f,τ can be used to build a h-component tree.

One can notice that if the primary set connection C
is invariant to translations, rotations, and homothetic
transformations (like the four- or eight-connected neigh-
borhood), then the fuzzy h-connection built over this
set connection is also invariant to these transformations,
as is the fuzzy h-component tree. Nevertheless, the
fuzzy h-connection is only invariant to gray level value
translations of the image apart for the special case of
τ = 0: it is then invariant to any increasing gray level
transformation.

Then, the method to compute an h-component can
be adapted to build the complete h-component tree.
The proposed procedure is composed of both algo-
rithms 1 and 2. The pseudocode assumes that each
node is equipped with two attributes, the level and the
peak level (highest level in its branch), and a function
child(n) that returns the n-th child. The first algorithm
increases the level of each node and deletes useless
branches (branches which do not have sufficient contrast
to generate an h-component). The procedure delete node,
deletes the given node and gives all its children to its
father, while the procedure delete branch deletes the given
node and all its children. At the end of the algorithm,
all attributes can be correctly computed according to
the C+

f,τ h-connection. The second algorithm aims at
restoring the good point list to all nodes according to
their new levels. It uses a stack structure (with traditional
push and pop operators) to explore the branch up to the
needed level. While the Max-Tree computation over an
image of 1 million pixels in double precision takes 14
seconds with Najman and Couprie’s algorithm [13] for
481384 nodes, the transformation into the h-component
tree takes 5 seconds for 3113 nodes in the result (code

Algorithm 1: Procedure to transform a max-tree into
the h-component tree of C+

f,τ .

input : The original image im, the max-tree of im,
and the parameter τ of the fuzzy
h-connection

output: The h-component tree of C+
f,τ

for all nodes n from root to leaves do
/* Simplify tree */

while n has exactly one child do
node c = n.child(1);
n.level = c.level;
delete node c;

if (n is not the root AND
n.parent.level ≥ n.peakLevel) then

/* Local maximum is too small */

delete branch of node n;
else

n.level = min(n.level + 1− τ, n.peakLevel);

/* Update point lists */

for all nodes n from root to leaves do
while n has exactly one child do

node c = n.child(1);
n.level = c.level;
delete node c;

correctPointList(im,n);

Algorithm 2: Procedure correctPointList, correct the
list of points associated to a node.

input : The image im, a node n
output: void
Stack s;
for all children c of n do

s.push(c);

while s is not empty do
node c = s.pop();
for all points p of node c do

if im(p) ≥ n.level then
give point p to node n;

if n.level ≤ c.level then
for all children cc of node c do

s.push(cc);

written in Java and executed on a 2.66 GHz processor).

Moreover, according to these algorithms, it is clear that
any pruning of the h-component tree of the fuzzy h-
connection performed according to an increasing crite-
rion [27] followed by an h-reconstruction will produce
an idempotent, increasing, and anti-extensive morpho-
logical operator: i.e. a morphological opening.
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Figure 6. The h-component tree for different values of τ . For each value of τ , the first row shows a 1D representation
of the signal with the associated z-zones. The second row represents the h-component tree with the level of each
node. The left case is equivalent to the Max-Tree where all nodes having a unique child have been removed.

5.2 Grayscale Images

We have first tested the gain of our approach in terms
of tree complexity. Figure 6 shows the evolution of the
h-component tree in function of τ . When τ = 1, the
tree is simply the Max-Tree where all nodes having a
unique child have been deleted; one can note that in real
images, this generally does not modify the tree a lot, as
even a small noise generates a lot of leaves in the Max-
Tree. It is also equivalent to the h-component tree of the
h-connection of functions having a unique maximum.
When τ starts increasing in the second image, the level
of the nodes raises. In the third image, τ is large enough
to absorb two of the four local maxima in a unique node.

Figure 7. (From left to right, top to bottom): input image
and segmentation results with different values of τ : 1.0,
0.9, and 0.8.

Figure 7 illustrates the effect of τ on a simple image.
The first figure is the grayscale image. The primary set
connection C used in this example is the four neighbor-
hood. To produce the other three images, each node of
the h-component tree has been labeled with a random

Figure 8. Number of nodes and h-components in function
of τ compared to the number of nodes and leaves in the
Max-Tree (image in Figure 7). Y-axis is in log scale.

color. Then, the pixel values are given by the label of
the highest node they belong to. When τ = 1.0, there
are 4019 nodes in the tree for 3290 h-components. The
number of nodes drops to 127 (respectively 97) and the
number of h-components to 85 (respectively 66) when
τ equals 0.9 (respectively 0.8). We can observe that for
τ = 0.8, all blobs are uniquely identified by an h-
component (a leaf in the h-component tree). They are
bigger than they appear in the original image as the
z-zones extend as much as possible according to the
connection measure.

The number of nodes and h-components in the h-
component tree in function to τ compared to the number
of nodes and leaves in the Max-Tree is detailed in
Figure 8. We can see that the number of nodes decreases
quickly when τ increases; it then reaches a large stable
period to finally fall to one. This large stable period can
be associated to the optimal value of τ and suggests
that this parameter can be roughly defined and that it is
robust over a large interval.

In Figure 9, we propose a comparison with other
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Figure 9. Connected filtering of the traditional camera image. The first row shows the results of the filters and the
second row shows the difference with the original image (contrast increased). From left to right: area filter (1000
pixels) based on the h-component tree with the fuzzy h-connection C+

f,0.8, area filter (1000 pixels) using the k-
zone reconstruction method [23], [24] (k=0.2), area filter (1000 pixels) using traditional Max-Tree [5] and dynamic
opening proposed in [33]. The results show that both the h-component tree and the k-zone approach lead to a better
preservation of textures. The proposed approach concentrates only on distinct zones with sufficient contrast, while
internal details of objects, textures, and softly connected objects are preserved.

connected filters on the traditional camera image. The
test implies three area connected filters which consists
in deleting all nodes having an area outside a given
range: with the proposed fuzzy h-component tree, with
the k-zone method [23], [24], with the traditional Max-
Tree [5], and finally the dynamic opening [27], [33]. The
results show that the h-component tree and the k-zone
approach lead to a better preservation of textures. Only
clearly separated zones are removed by these filters,
softly connected areas like the buildings in the back-
ground are considered as connected objects as well as
the texture of the grass. The edges of the cameraman
are also not affected by these filters. On the other hand,
the space between the tripod is falsely considered by
all area filters as disconnected to the background and is
removed. This is due to the high contrast between the
legs of the tripod and the background that cannot be
absorbed neither by the τ parameter nor the k-zones.
This difficulty could be overpassed using a primary
set connection C of second generation [18] instead of a
simple four-connected neighborhood.

5.3 Multiband Images

In this section, we present how the fuzzy h-connection
can be adapted to handle multiband images. We now
consider functions from the domain E into [0, 1]n with
n ≥ 1 the number of bands. The parameter τ becomes
a vector in [0, 1]n and we must furnish the value space
with a total vectorial order. Theoretically, any total vec-
torial order [34] can be used to furnish [0, 1]n with a lat-
tice structure. However, proposed algorithm 1 relies on
additive operations and thus requires that the vectorial

ordering is translation invariant: ∀x, y, z ∈ [0, 1]n, x ≤
y ⇔ x+ z ≤ y + z.

Figure 10 shows an example of multiband connected
filtering on astronomical data. The original image is a
five band image of the galaxy PGC35538 taken from the
Sloan Digitalized Sky Survey (http://www.sdss.org/).
This example shows the ability of the h-component tree
and the fuzzy h-connection to selectively remove small
regions while fully preserving the rest of the image.

The image values were first mapped to [0, 1]5 using
a sigmoid transform. This transform has the advantage
of reducing the importance of the background noise
and very bright features, while features of medium
brightness are emphasized. The parameter τ can be
automatically set proportional to the standard deviation
of noise (note that the standard deviation of noise is
easily obtained in astronomical images by measuring
it on the background). The chosen vectorial order is a
lexicographic order which is the simplest ordering that
fulfills the translation invariance property. Finally, the
bands where ordered by decreasing values of signal to
noise ratio. Using τ equal to three times the standard
deviation of noise, the number of nodes and leaves in
the h-component tree compared to the number in the
Max-Tree reduces from 65085 nodes to 496 nodes and
from 6430 leaves to 249 leaves.

The test consists in performing an area filter (area
greater than 30 pixels) using the proposed h-component
tree compared to a traditional vectorial area filter with
a Max-Tree [35]. The tests using the Max-Tree were
performed twice, the first time using the same area limit
as with the h-component tree (30 pixels) and a second
time using a smaller area limit (10 pixels) as nodes in the
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Figure 10. Removal of small features from galaxy image with area filtering. The left image is an observation of galaxy
PGC35538 in five bands from near ultra violet to near infrared (only three band are used in the color composition).
Then, the first row shows the result of the area filter using from left to right: the h-component tree (area greater than 30
pixels), the Max-Tree (area greater than 30 pixels) , the Max-Tree (area greater than 10 pixels). The second row shows
the difference between the first row and the original image. All images are displayed with an enhanced contrast. The
results show that the proposed approach is suitable for multiband image processing. It provides a better preservation
of the galaxy morphological features (shape of the arms, the very bright central zone is not cut) and the background
is not affected.

h-component tree tend to be larger than in the Max-Tree.
The experiment shows that our approach is very ac-

curate accurate in extracting small features which have
sufficient contrast from a larger object. The background
is hardly affected, and more importantly, the morphol-
ogy of the galaxy is not affected (the very bright central
zone is not cut and morphological details in the arms
are preserved). On the contrary, the Max-Tree modifies
the background and the fine structures of the galaxy.

5.4 Document Image Binarization

The last experiment concentrates on the issue of doc-
ument image binarization. Binarization is an important
step in document analysis and it requires robust methods
able to manage degraded document images of different
natures (handwritten, printed) with various scales and
varying contrasts. We propose a novel method which is
based on background removal using the h-component
tree. The method processes the image in three steps:

1) the image values are mapped to [0, 1] with a linear
transform and the background is extracted using
the h-component tree;

2) an adaptive threshold is applied;
3) a post-processing is applied to remove small holes

and artifacts.

The background identification is based on the evolution
of the area of the h-component tree nodes compared to
their gray level. The main idea is that, in the foreground,
the evolution of the curve level-area respects two criteria:
a global one on the slope of the curve and a local one
on its derivative. Formally, being given a leaf L, we look

for the largest set of nodes {N0, . . . , Nm} of respective
level Ti and area Ai, such that L = N0, ∀i = 1, . . . ,m, Ni

is the father of Ni−1 and:

∀i = 1, . . . ,m : Ai < c3 ∨
Ai −A0

Ti − T0
< c1 (19)

∀i = 1, . . . ,m : Ai < c3 ∨
Ai −Ai−1

Ti − Ti−1
< c2 (20)

with three thresholds, c1, c2 and c3. c1 constrains the
global slope and c2 constrains its derivative. c3 allows
one to neglect small nodes for which the noise on
the level-area curve may be too strong. Finally, Nm is
considered as the first node above the background level
in the branch of L. The last constraint is an absolute
contrast criterion: if the difference between the level of
L and the level Nm is smaller than c4, the whole branch
is discarded. Otherwise, the local background is obtained
by the reconstruction of the tree where the branch of Nm

has been removed. The global background is defined as
the infimum of all local backgrounds.

Thresholds c1 and c2 can handle large variations in
scale assuming that the contrast of the foreground is
sufficient. c3 and c4 are absolute values referring to
notions of relevant contrast and size. In the following, we
use the values: c1 = −8×104, c2 = −2×106, c3 = 2×103,
c4 = 0.1 and the parameter τ of the fuzzy connection is
set to 10/255.

Figure 11 shows three results of background filtering
on handwritten and printed document images extracted
from the DIBCO 2009 dataset [28]. The first handwritten
document image suffers from a severe defect due to
coffee stains. The second handwritten document image
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is affected by large variations in its background level
and in text contrast. Finally, the last computer printed
document image is characterized by large variations
in scale. We can observe that in the three cases the
background is very well flattened.

The binarization step relies on an adaptive thresh-
olding strategy inspired by the method 26 (S. Lu and
C.L. Tan from the Institute for Infocomm Research, Sin-
gapore) of the DIBCO 2009 contest [28]. First the contrast
is improved with an histogram cut (saturation of the 2%
brightest pixels), and the edges of the image are detected
using a simple Sobel operator together with an Otsu
thresholding. Then, the local threshold value relies on
the values of edge pixels in a window of 32× 32 pixels:
if there is less than 10 edge pixels in the window, their
mean value is used, otherwise the threshold is set to
the first quartile of the edge values. Finally, the result
is enhanced using a binary closing by reconstruction
and a binary opening by reconstruction with a circular
structuring element with a 5-pixel diameter. Figure 12
shows the result of the binarization process on two
images of the DIBCO benchmarking dataset [28].

Finally, we measured the performances of the method
over the whole DIBCO benchmarking dataset. The data-
set is composed of 5 handwritten images and 5 printed
images especially designed to include all major diffi-
culties of document binarization. The ground-truth of
the dataset is composed of manual segmentations of
the images given by the authors of the dataset. We
transformed color images into grayscale images by com-
puting the mean of the RGB channels. The performances
are evaluated in terms of F-Measure and Peak Signal
To Noise Ratio (PSNR) which are the two highlighted
measures (among four) involved in the DIBCO 2009
contest:

F-Measure =
2× Precision × Recall

Precision + Recall
(21)

Precision =
TP

TP + FN
, Recall =

TP

TP + FP
(22)

PSNR = 10 log10

(

TN + TP + FN + FP

FN + FP

)

(23)

with TP, TN, FP, and FN being respectively the number
of true positives, true negatives, false positives, and false
negatives. The PSNR formula assumes that the difference
between black and white is equal to 1. Both measures
have to be maximized. The results are summarized in
Table 1. The proposed approach gives the best result with
τ = 10/255: it is first placed according to the F-Measure
and second placed according to the PSNR (there were
43 participants at the contest). Moreover, one can note
that the the binarization step could be greatly improved
using a more accurate and robust edge detector but
our aim here was to show how document analysis can
benefit from h-component tree image representation.

The method has also been submitted to the Handwrit-
ten Document Image Binarization Competition 2010 [36]

which took place at the 12th International Conference on
Frontiers in Handwriting Recognition and it placed 4th
among 16 participants [36]. The method was applied us-
ing the best set of parameters found for the DIBCO 2009
dataset, which shows the robustness of the parameters.

Method F-Measure PSNR

Winner of the contest: S. Lu and C.L. Tan
from the Institute for Infocomm Research,
Singapore

91.24 18.66

Second-place winner of the contest: J. Fab-
rizio and B. Marcotegui from UPMC and
CMM, France

90.06 18.23

Third-place winner of the contest: D. Rivest-
Hénault, R.F. Moghaddam and M. Cheriet
from University of Quebec, Canada

89.34 17.79

Proposed approach (τ = 0) 91.25 18.23
Proposed approach (τ = 10/255) 91.26 18.30
Proposed approach (τ = 20/255) 87.85 17.11

Table 1
Results on the DIBCO benchmarking dataset. Our
method (τ = 10/255) is placed first according to the

F-Measure and second according to the PSNR.

6 CONCLUSION AND PERSPECTIVES

We have proposed an evolution of the notion of h-
connection motivated by the desirable property that the
decomposition of an element in connected components
should provide a model that is necessary and sufficient
to describe this element. Due to this evolution, we
have set out several new important properties for image
processing which insure the consistency of h-connected
filters. In this formulation, the h-connection no longer
needs to be furnished with an overlap criterion. Never-
theless, even if the overlap criterion is not a key point of
the h-connection theory, it may remain a valuable notion
to formalize the notion of intersection of h-elements.

We have also designed a general method to obtain
a hierarchical representation of the decomposition in h-
components which has proven to be efficient and intu-
itive for the creation of attribute filters or for detection
tasks. This representation is based on the notion of z-
zones defined by an equivalence relation on the sup-
generating family of the lattice, all points of the z-zone
being assigned to the same group of h-components.

These theoretical developments were illustrated using
a fuzzy h-connection recently proposed in [22]. We pro-
posed an algorithm to transform a Max-Tree into an h-
component tree based on this fuzzy h-connection. Then,
we demonstrated the behavior of this tree in terms of
complexity and filtering capacity. We showed that the
method was easily applicable to multiband images with
an example in multiband astronomical imaging. Finally,
we compared a novel h-component tree based bina-
rization method with the DIBCO 2009 benchmarking
dataset [28]: the very good results assert the interest of
this tool for various image processing issues.
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Figure 11. Background removal based on h-component tree processing: original document images (top) and
corresponding results of the proposed background removal method (bottom).

Figure 12. Document image binarization using the proposed approach. Each line presents the processing of one
document image from the DIBCO 2009 dataset [28]. From left to right: original image, image after background removal,
and binarization result.

The notion of grayscale hierarchical representation
is an emerging notion with several recent develop-
ments [22], [23], [24], [37], [38], and we believe that the
h-connection theory is a valuable framework for it. Our
work provides a solution to combine the theory of h-
connections with a hierarchical representation.

There are a lot of perspectives to this work. From a
theoretical point of view, our work on the h-connection
axiomatic may be considered as the beginning of the
exploration of the zoology of h-connections. It seems
clear that that large groups of h-connections must exist
which share similar properties of their invariances, the
behavior of their z-zones (do they fulfill the requirements
of proposition 7 ?). Identifying these groups will cer-
tainly benefit most of the work based on h-connections.

From a more practical point of view, there is actually
no general algorithm to build the h-component tree. It
would be interesting to determine if the h-component
tree of a group of h-connections could be built using a
general algorithm algorithm as is possible to do for the
mask based second generation connections.

APPENDIX

PROOFS

Proposition 1: Let a in L, {hi} ⊆ γ∗ (a) and b =
∨

{hi}, for all i , we have hi ≤ b and b ≤ a. Suppose
that there exists some h ∈ C+ such that hi ≤ h ≤ b ≤ a.
But by definition of γ∗ (a) and as hi belongs to γ∗ (a),
we have hi = h showing that hi ∈ γ∗ (b). Thus we have
{hi} ⊆ γ∗ (

∨

{hi}).

Proposition 2: Let s in S , h ∈ C+ such that γs (a) = h
and h′ ∈ γ∗ (a) such that s ≤ h′. We have h′ ≤
∨

{g ∈ γ∗ (a) | s ≤ g} = h, so s ≤ h′ ≤ h ≤ a and by
definition of h-components h = h′.

Proposition 3: We first show that P-2⇒P-1. Let
{hi} ⊆ γ∗ (a), and assume that ∃h′ ∈ {hi} such
that

∨

{h ∈ γ∗ (a) |h 6= h′} =
∨

γ∗ (a). Then, let F =
∨

{h ∈ γ∗ (a) |h 6= h′}, one have h′ ≤
∨

γ∗ (a) =
∨

F
but that contradicts P-2 since h′ /∈ F .

Then, we show that P-1⇒P-2: let {hi} ⊂ γ∗ (a) and
assume that there exists h ∈ γ∗ (a) such that h /∈ {hi} and
h ≤

∨

{hi}. Let b =
∨

{hi} =
∨

({hi} ∪ {h}), we have by
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proposition 1 that h ∈ γ∗ (b) and that {hi} ⊆ γ∗ (b). And
then we have

∨

{h′ ∈ γ∗ (b) |h′ 6= h} =
∨

{hi} = b which
contradicts P-1.

Now P-3⇒P-2: let {hi} ⊆ γ∗ (a) and h ∈ γ∗ (a).
Assume that h ≤

∨

{hi} then, by P-3, there exists s ∈ S
such that γs (a) = h and s ≤ h ≤

∨

{hi}. By assumption,
the family γ∗ (a) is finite, so there exists j such that
s ≤ hj and from proposition 2 we can say that h = hj

and thus h belongs to {hi}.
And finally, P-1⇒P-3: let h ∈ γ∗ (a), P-1 implies that

∨

B < a with B = {h′ ∈ γ∗ (a) |h′ 6= h}. Now, consider
the smallest family {si} ⊆ S such that

∨

(B ∪ {si}) = a.
Let s be an element of {si}, we have for all h′ ∈ B, s � h′

and s ≤ h thus γs (a) = h.
Proposition 4: We already have the first inclusion

{hi} ⊆ γ∗ (
∨

{hi}) by proposition 1. The second in-
clusion γ∗ (

∨

{hi}) ⊆ {hi} is directly given by P-2: let
h ∈ γ∗ (

∨

{hi}) as we have h ≤
∨

{hi}, P-2 says that h
belongs to {hi}. Finally, the double inclusion proves that
{hi} = γ∗ (

∨

{hi}).
Proposition 5: First, we show that ∀s1, s2 ∈ S ,

s1
a
∼∗s2 ⇒ s1

a
∼ s2, this part does not need the acces-

sibility property. We have:

s1
a
∼∗s2 ⇔ γ∗

s1 (a) = γ∗
s2 (a)

⇒
∨

γ∗
s1 (a) =

∨

γ∗
s2 (a)

⇔ γs1 (a) = γs2 (a)

⇔ s1
a
∼ s2

The reverse implication is given by: assume that we have
s1

a
∼ s2, which is equivalent to γs1 (a) = γs2 (a). Let h ∈

γ∗
s1 (a), we have h ≤ γs1 (a) =

∨

γ∗
s1 (a) =

∨

γ∗
s2 (a). Then,

P-2 implies that h ∈ γ∗
s2 (a) and thus γ∗

s1 (a) ⊆ γ∗
s2 (a). The

same argument is used to prove that γ∗
s2 (a) ⊆ γ∗

s1 (a)
showing that γ∗

s2 (a) = γ∗
s1 (a) which is equivalent to

s1
a
∼∗s2.

Proposition 6: We have to show that � is a reflexive,
anti-symmetric, and transitive relation on I.

Reflexivity is trivial as ∀x ∈ I, supp (x) ⊆ supp (x) and
x/supp(x) = x and thus x � x.

We now show that the relation is anti-symmetric. Let
x, y be two elements of I such that x � y and y � x. We
have supp (x) ⊆ supp (y) and supp (y) ⊆ supp (x) and
thus supp (y) = supp (x). Then as the two functions have
the same support: x/supp(y) = x and y/supp(x) = y. So
x ≤ y and y ≤ x implies x = y as ≤ is anti-symmetric.

We now prove transitivity. Let x, y and z be three
elements of I such that x � y and y � z. As supp (x) ⊆
supp (y) and supp (y) ⊆ supp (z), we have supp (x) ⊆
supp (z). And since z/supp(y) ≤ y and supp (x) ⊆ supp (y)
then z/supp(x) ≤ y/supp(x), finally z/supp(z) ≤ x and so
x � z.

Proposition 7: We show that for all x 6= ⊥ in G there
exists at most one y in G such that (x, y) is in V (if x = ⊥,
x is the least element and there cannot exist y ∈ G such
that (x, y) is in V ). Assume that there exists y and y′ in
G, y 6= y′ such that (x, y) ∈ V and (x, y′) ∈ V . We have

x � y and x � y′, so supp (x) ⊆ supp (y) and supp (x) ⊆
supp (y′), thus supp (y) ∩ supp (y′) ⊇ supp (x) 6= ∅ and
thus y ∧� y′ 6= ⊥. By hypothesis, as y and y′ are not
disjoint they are comparable: y � y′ or y′ � y. First case,
assume that y � y′, then (x, y′) cannot be in V as we have
x � y � y′. The second case is similar which contradicts
the assumption. As each node of G can have at most
one antecedent the graph is acyclic (other cycles are not
possible due to the ordering relation).
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