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Abstract

Sensitivity analysis of a numerical model, for instance simulating physical phenomena, is useful to
quantify the influence of the inputs on the model responses. This paper proposes a new sensitivity index,
based upon the modification of the probability density function (pdf) of the random inputs, when the
quantity of interest is a failure probability (probability that a model output exceeds a given threshold).
An input is considered influential if the input pdf modification leads to a broad change in the failure
probability. These sensitivity indices can be computed using the sole set of simulations that has already
been used to estimate the failure probability, thus limiting the number of calls to the numerical model.
In the case of a Monte Carlo sample, asymptotical properties of the indices are derived. Based on
Kullback-Leibler divergence, several types of input perturbations are introduced. The relevance of this
new sensitivity analysis method is analysed through three case studies.

1 Introduction

In the context of structural reliability, computer codes are used in order to assess the safety of industrial
systems relying on complex physical phenomena. For instance, an electric operator would like to predict the
height of a potential river flood in order to determine the height of a dyke preventing any disaster. In this
example, the computer code (simulating the hydraulic model) has some uncertain input variables (flow rate,
river length, water height, etc.), that are modelled by random variables. In this paper, the computer code
is a ”black-box” deterministic numerical model and one of its output is considered. Due to the randomness
of the model inputs, this output is a random variable more or less sensitive to the uncertainty of the input
variables.

Sensitivity analysis (SA) is a tool used to explore, understand and (partially) validate computer codes.
It aims at explaining the outputs regarding the input uncertainties ([13]). The definition of SA differs from
fields and authors. We use the “global SA” definition given by Saltelli et al. [14] wherein the whole variation
range of the inputs is considered. The application of such an approach can be model simplification (by
removing irrelevant modelling elements), input variables ranking or research prioritization. There is a wide
range of SA techniques, regarding what type of problem the experimenter faces with ([8]). For instance,
screening methods are to be applied when there is a large number of inputs, and few models assumptions.
For a quantitative point of view, the most popular techniques are variance-based methods, based upon the
functional Hoeffding variance decomposition [1] and the so-called Sobol’ indices ([14]).

It should be noted that most SA methods focus on real-valued continuous numerical output variables.
When the output is a binary value (e.g. when the numerical model returns “faulty system” or “safe system”),
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SA techniques are underdeveloped. Some basic techniques can be quoted, such as Monte-Carlo filtering ([14])
which consists in measuring differences between a “safe” sample and a “faulty” sample via standard statistical
tests. In a different scientific field, the reliability index resulting from the First or Second Order Reliability
Methods (FORM/SORM, [9]) can also be used to classify the impact of the inputs on the failure probability.
More recent works give methods combining always the two objectives: estimating a failure probability and
assessing the influence of the input uncertainty on the failure probability ([11, 12]).

In this paper, a real-valued numerical model denoted by G : R
d → R is considered. This model may

further be called the “failure function”. In practice, each run of G can be CPU time consuming. We are
interested in the event G(X) < 0 (system failure) and in the complementary event G(X) ≥ 0 (system safe
mode). X = (X1, ..., Xd)

T is a d-dimensional continuous random variable whose joint probability density
function (pdf) is denoted f . For i = 1, · · · , d, let fi denotes the distribution of Xi (the marginal pdf). We
make the assumption that all components of X are independent. The quantity of interest is the system failure
probability:

P =

∫ 1{G(x)<0}f(x)dx.

The aim of this work is the quantification of the influence of each variable Xi on this probability, by using
the same set of calculations that have been used for the estimation of the failure probability.

In most cited works, sensitivity indices for failure probabilities were defined in strong correspondence with
a given method of estimation (e.g. [9, 12]), and their interpretation is consequently limited, as stressed in
[10]. To answer to genericity concerns expressed by these authors, this article first aims at defining sensivity
indices that have more intrinsic relevance (Section 2). Nonetheless, they have to be estimated in practice in
function of the method. For simplicity reasons, a classical Monte Carlo framework is considered to estimate P
and the indices. It is also useful to derive the theoretical properties of the estimators of the indices. Pursuing
the same idea of offering extended tools of sensitivity analysis, Section 3 focuses on generic strategies of input
perturbation based upon maximum entropy rules. The behaviour of the indices is examined in Section 4
through numerical simulations in various complexity settings, involving toy examples and a realistic case-
study. Comparisons with two reference methods (FORM indices and Sobol’ indices) highlight the relevance
of the new indices in most situations. The main advantages and remaining issues are finally discussed in the
last section of the article. That introduces avenues for future research.

2 Definition, estimation and properties of a sensitivity index

Given a unidimensional input variable Xi with pdf fi and some perturbation parameter δ lying in a given
subset of R, let call Xiδ ∼ fiδ the corresponding perturbed random input. Accordingly, the failure probability
becomes

Piδ =

∫ 1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx (1)

where xi is the i
mboxth component of the vector x. Independently of the mechanism chosen for the perturba-

tion (see next Section for proposals), a good sensitivity index Siδ should have intuitive features that make it
appealing to reliability engineers and decision-makers. We believe that the following proposal can fulfil these
requirements:

Siδ =

[
Piδ

P
− 1

]
1{Piδ≥P} +

[
1− P

Piδ

]
1{Piδ<P} =

Piδ − P

P · 1{Piδ≥P} + Piδ · 1{Piδ<P}
.

Firstly, Siδ = 0 if Piδ = P , as expected if Xi is a non-influential variable or if δ expresses a negligible pertur-
bation. Secondly, the sign of Siδ indicates how the perturbation impacts the failure probability qualitatively.
It highlights the situations when Piδ > P amounts to determining if the remaining (epistemic) uncertainty
on the modelling Xi ∼ fi can increase the failure risk and therefore should be more accurately analysed.
Conversely, P can be interpreted as a conservative assessment of the failure probability, robust to pertur-
bations on Xi, if Piδ < P . In such a case, deeper modelling studies on Xi appear less essential. Thirdly,
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given its sign the absolute value of Siδ has simple interpretation and provides a level of the conservatism or
non-conservatism induced by the perturbation: a value of α > 0 for the index means that Piδ = (1+α)P . If
Siδ = −α < 0 then Piδ = (1/(1 + |α|))P .

The postulated ability of Siδ to enlighten the sensitivity of P to input perturbations must be tested
in concrete cases, when an estimator P̂N of P can be computed using an already available design of N
numerical experiments. In this paper, N is assumed to be large enough such that statistical estimation
stands within the framework of asymptotic theory. Besides, we assume for simplicity a standard Monte Carlo
design of experiments, according to which P̂N =

∑N
n=1 1{G(xn)<0}/N where the x1, · · · ,xN are independent

realisations of X . The strong Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) ensure
that for almost all realisations P̂N −−−−→

N→∞
P and

√
N/[P (1− P )](P̂N − P )

L−−−−→
N→∞

N (0, 1).

An interest of the Monte Carlo framework is that Piδ can be consistently estimated without new calls to G,
through a “reverse” importance sampling mechanism:

P̂iδN =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )
.

This property holds in the more general case when P is originally estimated by importance sampling rather
than simple Monte Carlo, which is more appealing in contexts when G is time-consuming [3, 7]. This
generalization is discussed further in the text (Section 5).

Lemma 2.1 Assume the usual conditions

(i) Supp(fiδ) ⊆ Supp(fi),

(ii)

∫

Supp(fi)

f2
iδ(x)

fi(x)
dx <∞,

then P̂iδN −−−−→
N→∞

Piδ and
√
Nσ−1

iδN

(
P̂iδN − Piδ

)
L−−−−→

N→∞
N (0, 1). The exact expression of σ−1

iδN is given in

Appendix A, equation 10. It can be consistently estimated by

σ̂2
iδN =

1

N

N∑

n=1

1{G(xn)<0}

(
fiδ(x

n
i )

fi(xni )

)2

− P̂ 2
iδN .

The proof of this Lemma is given in Appendix A.1

The asymptotic properties of any estimator of Siδ will depend on the correlation between P̂N and P̂iδN . The
next proposition summarizes the features of the joint asymptotic distribution of both estimators.

Proposition 2.1 Under assumptions (i) and (ii) of Lemma 2.1,

√
N

[(
P̂N

P̂iδN

)
−
(

P
Piδ

)]
L−−−−→

N→∞
N2 (0,Σiδ)

where Σiδ is given in Appendix A, equation 11 and can be consistently estimated by

Σ̂iδ =

(
P̂N (1− P̂N ) P̂iδN (1 − P̂N )

P̂iδN (1 − P̂N ) σ̂2
iδN

)
.

The proof of this Proposition is given in Appendix A.2
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Given (P̂N , P̂iδN ), the plugging estimator for Siδ is

ŜiδN =

[
P̂iδN

P̂N

− 1

]
1{P̂iδN≥P̂N} +

[
1− P̂N

P̂iδN

]
1{P̂iδN<P̂N}. (2)

In corollary of Proposition 2.1, applying the continuous-mapping theorem to the continuous function s(x, y) =[
y
x − 1

]
1y≥x +

[
1− x

y

]
1y<x, ŜiδN converges a.s. to Siδ.

Proposition 2.2 Assume that assumptions (i) and (ii) of Lemma 2.1 hold and further that P 6= Piδ. We
have √

N
[
ŜiδN − Siδ

]
L−−−−→

N→∞
N
(
0, dTΣd

)
(3)

with d = (
∂s

∂x
(P, Piδ),

∂s

∂y
(P, Piδ))

T for x 6= y, and

∂s

∂x
(x, y) = −y1{y≥x}/x

2 − 1{y<x} 1
y
,

∂s

∂y
(x, y) =

1

x
1{y≥x} + x1{y<x}/y

2.

The following CLT results from Theorem 3.1 in [16]. Notice that it is also the case when P = Piδ. Indeed,
one has for x∗ 6= 0 :

lim
y ≥ x(

x
y

)
→
(
x∗

y∗

)
∇s(x, y) = lim

y < x(
x
y

)
→
(
x∗

y∗

)
∇s(x, y) =

(
− 1

x∗
,
1

x∗

)T

.

3 Methodologies of input perturbation

Our sensitivity analysis method requires to define a perturbation for each input. In general, and especially
in preliminary reliability studies, there is no prior rule allowing to elicit a specialized perturbation for each
input variable. When conducting such an analysis, it is advisable to propose one or several fair methodologies
for perturbing the inputs.

More precisely, we suggest to define a perturbed input density fiδ as the closest distribution to the original
fi in the entropy sense and under some constraints of perturbation. Information-theoretical arguments ([5])
led us to choose the Kullback-Leibler (KL) divergence between fiδ and fi as a measure of the discrepancy to
minimize under those constraints. Recall that between two pdf p and q we have

KL(p, q) =

∫ +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (4)

Let i = 1, · · · , d, the constraints are linear as functional of the modified density fmod:

∫
gk(xi)fmod(xi)dxi = δk,i (k = 1 · · ·K) . (5)

Here, for k = 1, · · · ,K, gk are given functions and δk,i are given real. These quantities will lead to a
perturbation of the original density. The modified density fiδ considered in our work is:

fiδ = argmin
fmod|(5) holds

KL(fmod, fi) (6)

and the result takes an explicit form ([6]) given in the following proposition.

4



Proposition 3.1 Let us define, for λ = (λ1, · · · , λK)
T ∈ R

K ,

ψi(λ) = log

∫
fi(x) exp

[
K∑

k=1

λkgk(x)

]
dx , (7)

where the last integral can be finite or infinite (in this last case ψi(λ) = +∞). Further, set dom ψi = {λ ∈
R
K |ψi(λ) < +∞}. Assume that there exists at least one pdf fm satisfying (5) and that dom ψi is an open

set. Then, there exists a unique λ
∗ such that the solution of the minimisation problem (6) is

fiδ(xi) = fi(xi) exp

[
K∑

k=1

λ∗kgk(xi)− ψi(λ
∗)

]
.

The theoretical technique to compute λ is provided in appendix B. Hereby are presented two kinds of
perturbations used further on.

Mean twisting The first moment is often used to parametrize a distribution. Thus the first perturbation
presented here is a mean shift, that is expressed with a single constraint:

∫
xifmod(xi)dxi = δi . (8)

In term of SA, this perturbation should be used when the user wants to understand the sensitivity of the
inputs to a mean shift - that is to say “what if the mean of input Xi were δi instead of E [Xi]”.

Proposition 3.2 Considering the constraint (8), under the assumptions of Proposition 3.1 the expression
of the optimal perturbed density is

fiδi(xi) = exp(λ∗xi − ψi(λ
∗))fi(xi)

where λ∗ is such that equation (8) holds.

It can also be noted that equation (7) becomes

ψi(λ) = log

∫
fi(xi) exp(λxi)dxi = log (MXi

(λ))

where MXi
(u) is the moment generating function (mgf) of the i−th input. With this notation, λ∗ is such

that ∫
xi exp (λ

∗xi − log (MXi
(λ∗))) fi(xi)dxi = δi ,

which leads to ∫
xi exp (λ

∗xi) fi(xi)dx = δiMXi
(λ∗) .

This equation can be simplified to:
M ′

Xi
(λ∗)

MXi
(λ∗)

= δi .

This equation may be easy to solve when one has the expression of the mgf of the input Xi and of its
derivative.

Variance twisting In some cases, the mean of an input may not be the main source of uncertainty, but
rather the second moment. This case may be treated considering a couple of constraints. The perturbation
presented is a variance shift, therefore the set of constraints is:

{∫
xifmod(xi)dxi = E [Xi] ,∫
x2i fmod(xi)dxi = Vper,i + E [Xi]

2
.

(9)

The perturbed distribution has the same expectation E [Xi] as the original one and a perturbed variance
Vper,i = VarXi ± δi.
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Proposition 3.3 Under the assumptions of Proposition 3.1, for the constraint (9), the expression of the
optimal perturbed density is:

fiδi(xi) = exp(λ∗1x+ λ∗2x
2 − ψi(λ

∗))fi(xi)

where λ∗1 and λ∗2 are so that equation (9) holds.

Proposition 3.4 Let consider that the original random variable Xi is distributed according to a Natural
Exponential Family (NEF). Recalls that a NEF’s pdf is of the form:

fi,θ(xi) = b(xi) exp [xiθ − η(θ)]

where θ is a parameter from a parametric space Θ, b(.) is a function that depends only of xi and

η(θ) = log

∫
b(x) exp [xiθ] dxi

is the cumulant distribution function. Considering the assumptions of Proposition 3.1, then it is straightfor-
ward by theorem 3.1 in [6] that optimal pdfs proposed respectively in Proposition 3.2 and Proposition 3.3 are
also distributed according to a NEF. The details of computation are given for a mean shift and a variance
shift in Appendix D.

4 Numerical experiments

In this Section, the methodology is tested on two academic cases and a more realistic industrial code. The
new indices are compared to the results of two reference methods, FORM indices (or Importance Factors, IF)
and Sobol’ indices (SI). Both are computed using the methodologies given in [9] and [15], respectively. To
assess the reproducibility of the estimation of the SI, a sample of 105 points is used, and 50 replications are
made. Thus all the estimations of the SI are the mean of the obtained values and the coefficient of variation
(CV) of the index is provided. One should notice that the SI are applied on the indicator of the failure
function 1{G(x)<0}. Following the definition of IF and SI, those indices lies in [0, 1].

4.1 Hyperplane failure surface

For the first example, X is set to be a 4−dimensional vector, with d = 4 independent marginal distributions
normally distributed with parameters 0 and 1. Therefore fXi

∼ N (0, 1) for i = 1, .., 4. The failure function
is defined as:

G(X) = k −
4∑

i=1

aiXi

where k and a = (a1, a2, a3, a4) are the parameters of the model. For this numerical example, parameters are
set with values k = 16 and a = (1,−6, 4, 0). An explicit expression for P can be given since G(X) behaves

like a Gaussian distribution with mean k and standard deviation

√√√√
4∑

i=1

a2i . Therefore:

P = φ


−k/

√√√√
4∑

i=1

a2i


 = φ

(−16√
53

)
≃ 0.014

where φ(.) is the standard normal cumulative distribution function.
It is expected that the influence of Xi on P uniquely depends on |ai|. The greater the absolute value

of the coefficient is, the bigger the expected influence is. The aim of choosing one non-influential (dummy)
variable X4 (because a4 = 0) is to assess if the SA methods can identify this variable as non-influential on
the failure probability.
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4.1.1 FORM

In this ideal hyperplane failure surface case, FORM performs well as expected [9] by providing an approx-
imated value P̂FORM = 0.01398. The importance factors, given in Table 1, provide an accurate variable
ranking for the failure function, given the ai factors.

Variable X1 X2 X3 X4

Importance factor 0.018 0.679 0.302 0

Table 1: Importance factors for hyperplane function

4.1.2 Sobol’ indices

The first-order and total indices are displayed in Table 2. The interpretation of the results is that X2 and X3

concentrate most of the variance of the indicator function. At first order, 25% of its variance is explained by
X2 without any interaction. It should be noted that the total index for X4 is null, assessing that this variable
does not impact the failure probability. The CV of the total indices estimators are small, meaning that this
method is reproducible and that 105 points are enough to estimate in an efficient way the indices STi. On
the other hand, some CV values for low mean first order indices are quite high. The conclusion of this result
is that the method correctly estimates high indices but estimates poorly the indices close to 0. On the other
hand, the relevant information is that the index is close to 0. Thus this situation may not be a problem.

Sobol’ Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Mean 0.0017 0.2575 0.0544 9.45.10−5 0.1984 0.9397 0.7256 0

C.o.v. 1.5854 0.04826 0.1336 27.4 0.012 0.0069 0.013 0

Table 2: Sobol’ indices for hyperplane function

4.1.3 Density modification based reliability indices

The method presented throughout this article is applied on the hyperplane function. As explained in Section
3, several ways to perturb the input distributions exist. For this case, we choose to apply first a mean
twisting, then a variance twisting with fixed mean. A simple calculus gives that the perturbed pdf are
Gaussian, respectively with the constraint mean and variance 1 for the mean twisting perturbation (see
Table ??), and with mean 0 and the constraint variance for the variance twisting perturbation. Thus, the
MC estimation gives P̂ = 0.01446. For the mean twisting (see (8)), the variation range chosen for δ is from
−1 to 1 with 40 points, reminding that δ = 0 cannot be considered as a perturbation. For the variance
twisting (see (9)), the variation range chosen for Vper is from 1/20 to 3 with 28 points, where Vper = 1 is not
a perturbation. The estimated indices are plotted respectively in Figure 1 for mean twisting and in Figure 2
for variance twisting. 95% confidence intervals are plotted around the indices.

Mean perturbation indices The indices Ŝiδ behave in a monotonic way given the importance of the
perturbation. The slope at the origin is directly related to the value of ai. For influential variables (X2 and
X3), the increasing or the decreasing is faster than linear, whereas the curve seems linear for the slightly
influential variable (X1). Modifying the mean of amplitude δ positive slightly rises the failure probability
for X1, highly decreases it for X2 and increases it for X3 (Figure 1). The effects are reversed with similar
amplitude for negative δ. It can be seen that X4 has no impact on the failure probability for any perturbation.
Those results are consistent with the expression of the failure function. One can see that the confidence
intervals (CI) associated to X2 and X3 are fairly well separated, except for the small absolute value of δ. On
the other hand, the CI associated to X1 and X4 are not separated until absolute value of δ higher than 0.6.
The conclusion of the observation of the CI is that one cannot differentiate the impact of variable X1 and
X4 unless a broad change of the mean occurs.
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Figure 1: Estimated indices Ŝiδ for hyperplane function with a mean twisting

Variance perturbation indices Increasing the variance of input X2 and X3 increases the failure proba-
bility, whereas it is the opposite when decreasing the variance (Figure 2). Modifying the variance of X1 and
X4 have no effect on the failure probability. The increasing of the indices is linear for X2 and X3, and the
decreasing of the indices is faster than linear, especially for X2. Considering the CI, one can see that they
are well separated for variable X2 and X3, assessing the relative importance of these variables. On the other
hand, as the CI associated to X1 and X4 are not separated and contain 0.

4.2 Thresholded Ishigami function

The Ishigami function is a common test case in SA since it has a complex expression, with interactions
between the variables. A modified version of the Ishigami function will be considered in this paper. One has:

G(X) = sin (X1) + 7 sin (X2)
2 + 0.1X4

3 sin (X1) + 7

where X is a 3−dimensional vector of independent marginals uniformly distributed on [−π, π] . In Figure 3,
the failure points (where G(x) < 0) are plotted in a 3-d scatterplot.

There are 614 failure points on a MC sample of 105 points therefore the failure probability here is roughly
P̂ = 6.14.10−3. The complex repartition of the failure points can be noticed. Those points lay in a zone
defined by the negative values of X1, the extremal and mean values of X2 (around −π, 0 and π), and the
extremal values of X3 (around −π and π).

4.2.1 FORM

The algorithm FORM converges to an incoherent design point (6.03, 0.1, 0) in 50 function calls, giving an
approximate probability of P̂FORM = 0.54. The importance factors are displayed in Table 3. The bad
performance of FORM is expected given that the failure domain consists in six separate domains and that
the function is highly oscillant, leading to optimization difficulties. The design point is aberrant, thus the
FORM results of SA are incorrect.

4.2.2 Sobol’ indices

The first-order and total indices are displayed in Table 4. The small values of first order indices show that
no variable has impact on the variance of the indicator of failure on its own. The three total indices have
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Figure 2: Estimated indices Ŝi,Vper for hyperplane function with a variance twisting

Variable X1 X2 X3

Importance factor 1e−17 1 0

Table 3: Importance factors for Ishigami function

relatively high and similar values. This states that all the variables highly interact with each other to cause
system failure. The SI method is thus non-discriminant in this case. The low CV shows that the method is
reproducible.

Sobol’ Index S1 S2 S3 ST1 ST2 ST3

Mean 0.0234 0.0099 0.0667 0.8158 0.6758 0.9299

C.o.v. 0.0072 0.0051 0.0095 0.0156 0.0216 0.0094

Table 4: Sobol’ indices for Ishigami function

4.2.3 Density modification based reliability indices

The method presented throughout this article is applied on the thresholded Ishigami function. As for the
hyperplane test case, a mean twisting and a variance twisting are applied. The modified distribution when
a mean shift is applied on a uniform distribution is given in Table ??. The modified pdf when shifting
the variance and keeping the same expectation is proportional to a truncated Gaussian when decreasing
the variance. When increasing the variance, the perturbed distribution is a symmetrical distribution with 2
modes close to the endpoints of the support. As previously, the same MC sample of size 105 (also used to
produce Figure 3) is used to estimate the indices with both perturbations. For the mean twisting (see (8)),
the variation range chosen for δ is −3 to 3 with 60 points - numerical consideration forbidding to choose a
shifted mean closer to the endpoints. For variance twisting, the variation range chosen for Vper is 1 to 5 with
40 points. Let us recall that the original variance is Var[Xi] = π2/3 ≃ 3.29. The estimated indices are plotted
respectively in Figure 4 for mean twisting and in Figure 5 for variance twisting.
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Figure 3: Ishigami failure points from a MC sample
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Figure 4: Estimated indices Ŝiδ for the thresholded Ishigami function with a mean twisting

Mean perturbation indices A perturbation of the mean for X2 and X3 will increase the failure proba-

bility, though the impact for the same mean perturbation is stronger for X3 (Ŝ3,−3 and Ŝ3,3 approximately
equal respectively 9.5 and 10, Figure 4). On the other hand, the indices concerning X1 show that a mean
shift between −1 and −2 increases the failure probability, whereas an augmentation of the mean or a large
diminution strongly diminishes the failure probability (Ŝ1,3 approximatively equals −7.1011). Therefore, Fig-
ure 4 leads to two conclusions. First, the failure probability can be strongly reduced when shifting the mean
of the first X1 (this is also provided by Figure 3 wherein all failure points have a negative value of X1).
Second, any change in the mean for X2 or X3 will lead to an increase of the failure probability. The CI are
well separated, except in the −1 to 1 zone. One can notice that the CI associated to X2 contains 0 between
values of δ from −1.5 to 1.5, thus the associated indices might be null in these case. This has to be taken
into account when assessing the relative importance of X2.

Variance perturbation indices Figure 5 (upper) shows that a change in the variance has little effect
on X2 and X1, though the change is of opposite effect on the failure probability. However, considering

that the indices Ŝ2,Vper,i and Ŝ1,Vper,i lie between −0.4 and 0.4, one can conclude that the variance of theses
variables are not of great influence on the failure probability. On the other hand, Figure 5 (lower) shows
that any reduction of Var [X3] strongly decreases the failure probability, and that an increase of the variance
slightly increases the failure probability. This is relevant with the expression of the failure surface, as X3 is
fourth powered and multiplied by the sinus of X1. A variance decrease as formulated gives a distribution
concentrated around 0. Decreasing Var [X3] shrinks the concerned term in G(X). Therefore it reduces the
failure probability. The CI associated to X3 are broadly separated from the others. On the other hand, the
CI associated to X1 and X2 overlap when the fixed variance goes from 1.5. to 4. It is thus not possible to
conclude with certainty on the difference of impact of those variables.

4.3 Industrial case : flood case

The goal of this test case is to assess the risk of a flood over a dyke for the safety of industrial installations.
This comes down to model the height of a flood. Given the uncertainty upon numerous physical parameters,
the uncertainty approach is used and unknown parameters are modelled by random variables. From a
simplification of the Saint-Venant equation, a flood risk model is obtained. The quantity of interest is the
difference between the height of the dyke and the height of water. If this quantity is negative, the installation

11



Figure 5: Estimated indices Ŝi,Vper for the thresholded Ishigami function with a variance twisting. The upper

figure is a zoom where the Ŝi,Vper axis lies into [−0.5, 0.5]. The lower figure shows almost the whole range

variation for Ŝi,Vper .
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is flooded; this is the failure event that is considered. Several quantities will be denoted as follows: Q the
flow rate, L the watercourse section length studied, B the watercourse width, Ks the watercourse bed friction
coefficient (also called Strickler coefficient), Zm and Zv respectively the upstream and downstream bottom
watercourse height above sea level and Hd the dyke height measured from the bottom of the watercourse
bed. The water height model is expressed as:

H =


 Q

KsB
√

Zm−Zv

L




3
5

.

Therefore the following quantity is considered:

G = Hd − (Zv +H).

Among the model inputs, the choice is made that the following variables are known precisely: L = 5000
(m), B = 300 (m), Hd = 58 (m), and the following are considered to be random. Q (m3.s−1) follows a
positively truncated Gumbel distribution of parameters a = 1013 and b = 558 with a minimum value of 0.
Ks (m1/3s−1) follows a truncated Gaussian distribution of parameters µ = 30 and σ = 7.5, with a minimum
value of 1. Zv (m) follows a triangular distribution with minimum 49, mode 50 and maximum 51. Zm (m)
follows a triangular distribution with minimum 54, mode 55 and maximum 56.

4.3.1 FORM

The algorithm FORM converges to a design point (1.72,−2.70, 0.55,−0.18) in 52 function calls, giving an
approximate probability of P̂FORM = 5.8.10−4. The importance factors are displayed in Table 5.

Variable Q Ks Zv Zm

Importance factor 0.246 0.725 0.026 0.003

Table 5: Importance factors for flood case

FORM assesses that Ks is of extremely high influence, followed by Q that is of medium influence. Zv has
a very weak influence and Zm is negligible. It can be noticed that the estimated failure probability is twice
as small as the one estimated with crude MC, but remains in the same order of magnitude.

4.3.2 Sobol’ indices

The first-order and total indices are displayed in Table 6. It can be seen that the estimates of some indices
are negative despite the fact that Sobol indices are theoretically positive. The estimation can indeed produce
negative results for values close to 0.

Sobol Index SQ SKs SZv SZm STQ STKs STZv STZm

Mean 0.0169 0.2402 −7.10−5 −5.10−4 0.7447 0.9782 0.2684 0.1062

C.o.v. 0.0122 0.0577 0.0029 0.0023 0.0553 0.0137 0.0516 0.0389

Table 6: Sobol’ indices for flood case

Considering the first order indices, Zv and Zm are of null influence on their own. Q is considered to
have a minimal influence (1% of the variance of the indicator function) by itself, and Ks explains 24% of the
variance on its own. When considering the total indices, it can be noticed that both Zv and Zm have a weak
impact on the failure probability. On the other hand, Q has a major influence on the failure probability.
Ks total index is close to one, therefore Ks explains (with or without any interaction with other variables)
almost all the variance of the failure function.
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Figure 6: Estimated indices Ŝiδ for flood case with a mean twisting

4.3.3 Density modification based reliability indices

The method presented throughout this article is applied on the flood case. Only the mean twisting will be
applied here. The modified pdf are given in Table in Table ??. One can notice that the different inputs follow
various distributions (unlike the other examples), thus the question of ”equivalent” perturbation arises.It will
be discussed further in Section 5. Here the choice has been made to shift the mean relatively to the standard
deviation, hence including the spread of the various inputs in their respective perturbation. So for any input,
the original distribution is twisted so that the perturbed distribution’s mean is the original’s one plus δ times
its standard deviation, δ going from −1 to 1 with 40 points. The 105 MC sample gives an estimation of the
failure probability P̂ = 8.6.10−4.

Figure 6 assesses that an increasing of the mean of the inputs increases the failure probability slightly for
Zv, strongly for Q, and diminishes it slightly for Zm and strongly for Ks. This goes the opposite way when
decreasing the mean. In terms of absolute modification, Ks and Q are of same magnitude, even if Ks has a
slightly stronger impact. On the other hand, the effects of mean perturbation on Zm and Zv are negligible.
The CI associated to Q and Ks are well separated from the others, except in a δ = −.3 to .3 zone. The CI
associated to Zv and Zm overlap, thus even though the indices seem to have different value, it is not possible
to conclude with certainty about the influence of those variables.

5 Discussion

5.1 Conclusion on the method

The method presented in this paper gives interesting complementary information in addition of traditional
SA methods applied to a reliability problem. Additionally, it has two advantages:

• The ability for the user to set the most adapted constraints considering his/her problem,
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• The MC framework allowing to use previously done function calls, thus limiting the CPU cost of the
SA, and allowing the user to test several perturbations.

5.2 Equivalent perturbation

The question of ”equivalent” perturbation arises from cases where all inputs are not identically distributed.
Indeed, problems may emerge when some inputs are defined on infinite intervals and when other inputs
are defined on finite intervals (such as uniform distributions). Consider a two-dimensional model with one
Gaussian distribution and one uniform distribution as inputs. Thus, a mean shift will be a translation for the
first input, whereas it will lead to a Dirac distribution in one endpoint for the other input. Hence, a mean
shift cannot be considered as an ”equivalent” perturbation. One could think of a ”relative mean shift”, which
seems a fairly good idea. But let one consider a model with two Gaussian inputs of equal variance 1 and of
mean respectively 1 and 10000. Then, a relative mean shift of 10% will result in Gaussian distributions with
mean respectively 1.1 and 11000, and still variance 1. This counter-example shows that relative mean shift
might not be an adequate perturbation in terms of ”equivalence”.

5.3 Further work

Two main avenues are of interest:

• To adapt the estimator of the indices Siδ, in term of variance reduction and of number of function calls.
Further work will be made with importance sampling methods, and possibly subset methods. The use
of sequential methods [4] may also be tested,

• To find a way to perturb ”equivalently” several distributions of different natures. A perturbation that
is not based upon a moment constraint but rather of an entropy constraint might be proposed. The
differential entropy of a distribution can be seen as a quantification of uncertainty [2]. Thus an example
of (non-linear) constraint on the entropy can be:

−
∫
fXiδ

(x) log fXiδ
(x)dx = −δ

∫
fXi

(x) log fXi
(x)dx.

Yet further computations have to be made to obtain a tractable solution of the KL minimization
problem under the above constraint.
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Appendices

A Proofs

A.1 Proof of Lemma 2.1

Under assumption (i), we have

∫

Supp(fiδ)

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x) dx ≤

∫

Supp(fiδ)

fiδ(xi) dxi = 1.

So that, the strong LLN may be applied to P̂iδN . Defining

σ2
iδ = Var

[1{G(X)<0}
fiδ(Xi)

fi(Xi)

]
, (10)

one has

σ2
iδ =

∫

Supp(fi)

1{G(x)<0}
f2
iδ(xi)

fi(xi)

d∏

j 6=i

fj(xj) dx− P 2
iδ < ∞ under Condition (ii).

Therefore the CLT applies:

√
Nσ−1

iδ

(
P̂iδN − Piδ

)
L−→ N (0, 1) .

Under assumption (ii), the strong LLN applies to σ̂2
iδN . So that, the final result is straightforward using

Slutsky’s lemma.
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A.2 Proof of Proposition 2.1

First, note that

E

[
P̂ P̂iδ

]
− PPiδ = E

[
1

N2

(
N∑

n=1

1{G(xn)<0}

) (
N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )

)]
− PPiδ

=
1

N2
E




N∑

n=1

[1{G(xn)<0}
]2 fiδ(xni )

fi(xni )
+

N∑

n=1

N∑

j 6=i

1{G(xn)<0}1{G(xj)<0}
fiδ(x

j
i )

fi(x
j
i )




−PPiδ

=
1

N2
[NPiδ +N (N − 1)PPiδ]− PPiδ

=
1

N
(Piδ − PPiδ) .

Assuming the conditions under which Lemma 1 is true, the bivariate CLT follows with

Σiδ =

(
P (1− P ) Piδ(1− P )
Piδ(1 − P ) σ2

iδ

)
.

Each term of this matrix can be consistently estimated, using the results in Lemma 1 and Slutsky’s lemma.

B Computation of Lagrange multipliers

Let H be the Lagrange function:

H(λ) = ψi(λ)−
K∑

k=1

λkδk.

Thus, using the results of [6], we have
λ
∗ = argminH(λ).

The expression of the gradient of H with respect to the jth variable is

∇jH(λ) =

∫
gj(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)
− δj .

In the same way, the expression of the second derivative of H with respect to the hth and the jth variables
is

DhjH(λ) =

∫
gh(x)gj(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)

−
∫
gj(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)

∫
gh(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)
.

This method has been used in this paper for computing the optimal vector λ∗ when a variance twisting was
applied. The integral were evaluated with Simpson’s rule.

C Numerical trick to work with truncated distribution

In the case where a mean twisting is considered on a left truncated distribution, here is presented a tip that
can help to compute λ

∗.
The studied trucated variable YT has distribution fY T . Let us denote Y ∼ fY the corresponding non-

truncated distribution. The trucation occurs for some real value a. This truncation may happen for some
physical modelling reason. One has:

fY T (y) =
1

1− F (a)
1[a,+∞[(y)fY (y).
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The formal definition of MY T (λ) the mfg of YT for some λ is:

MY T (λ) =
1

1− FY (a)

∫ +∞

a

fY (y) exp [λy] dy.

Let us recall that we are looking for λ∗such as:

δ =
M ′

Y T (λ
∗)

MY T (λ
∗)

=

∫ +∞
a yfY (y) exp [λy] dy∫ +∞
a fY (y) exp [λy] dy

. (11)

When the expression does not take a practical form, one can use numerical integration to estimate
the integral term. Unfortunately, for some heavy tailed distribution (for instance Gumbel distribution), this
numerical integration might be complex or not possible. This is due to the multiplication by an exponential of
y. The following tip helps to aviod such problems. DenotingMY (λ) the mfg of the non-trucated distribution
for some , one can remark that:

MY (λ) =

∫ +∞

−∞
fY (y) exp [λy] dy =

∫ a

−∞
fY (y) exp [λy] dy +

∫ +∞

a

fY (y) exp [λy] dy

Thus another expression for MY T (λ) is:

MY T (λ) =
1

1− FY (a)

[
MY (λ)−

∫ a

−∞
fY (y) exp [λy] dy

]
.

The integral term is much smaller in the left heavy tailed distribution case. Therefore the numerical integra-
tion (for instance using Simpson’s method) is much more precise or became possible.

The same goes for M ′
Y T (λ) which has alternative expression:

M ′
Y T (λ) =

1

1− FY (a)

[
M ′

Y (λ)−
∫ a

−∞
yfY (y) exp [λy] dy

]
.

Finally, another form of 11 is:

δ =
M ′

Y (λ)−
∫ a

−∞ yfY (y) exp [λy] dy

MY (λ)−
∫ a

−∞ fY (y) exp [λy] dy
. (12)

This alternative expression may lead to more precise estimations of λ∗ when MY (λ) and M ′
Y (λ) are

known (which is the case for most usual distribution) since the integral term are much smaller than in the
first expression . A reference to this Appendix is made in the summary table ??.

D Proofs of the NEF properties

In this Appendix, the details of the calculus for the Proposition 3.4 are detailed. The definition of NEF was
given in the concerned Proposition.

NEF specificities : If the original density fi(x) is a NEF, then under a set of K linear constraints on
f(x), one has :

f(x) = b(x) exp [xθ − η(θ)] ,

thus :

fδ(x) = f(x) exp

[
K∑

k=1

λkgk(x)− ψ(λ)

]

The regularization constant from (7) can be written as:

ψ(λ) = log

∫
b(x) exp

[
xθ +

K∑

k=1

λkgk(x) − η(θ)

]
dx (13)

If the integral on 13 is finite, fδ exists and is a density.
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Mean twisting With a single constraint formulated as in (8), (13) becames :

ψ(λ) = log

∫
b(x) exp [xθ + λx − η(θ)] dx

= log

∫
b(x) exp [x (θ + λ) − η(θ) + η(θ + λ) − η(θ + λ)] dx

if η(θ + λ) is well defined.

ψ(λ) = (η(θ + λ)− η(θ)) + log

[∫
b(x) exp [x (θ + λ)− η(θ + λ)]

]
dx

= η(θ + λ)− φ(θ)

since
b(x) exp [x (θ + λ)− η(θ + λ)] = fθ+λ(x)

with notation from (3.4), is a density of integral 1. Thus

fδ(x) = b(x) exp [xθ − φ(θ)] exp [λx− η(θ + λ) + η(θ)]

= b(x) exp [x [θ + λ]− η(θ + λ)] = fθ+λ(x)

Thus the mean twisting of a NEF of CDF η(.) results in another NEF with mean η′(θ + λ) = δ (constraint)
and variance η′′(θ + λ).

Variance twisting With a single constraint formulated as in (9), (13) thus the new distribution has density
:

fδ(x) = b(x) exp
[
xθ + xλ1 + x2λ2 − ψ(λ)− η(θ)

]

Since λ is known or computed, and θ is also known, one has the variable change z =
√
λ2x assuming λ2 is

strict. positive (the variable change is z =
√
−λ2x if λ2 is strict. neg.). Thus,

fδ(x) = b(
z√
λ2

) exp
[
z2
]
exp

[
z√
λ2

(θ + λ1)− ψ(λ)− η(θ)

]

= exp

[
η

(
(θ + λ1)√

λ2

)
− η(θ)− ψ(λ)

]
c(z) exp

[
z
(θ + λ1)√

λ2
− η

(
(θ + λ1)√

λ2

)]

with
c(z) = b(

z√
λ2

) exp
[
z2
]
.

By (7),

ψ(λ) = log

∫
b(x) exp

[
xθ + xλ1 + x2λ2 − η(θ)

]
dx

= log

∫
b(

z√
λ2

) exp
[
z2
]
exp

[
(θ + λ1)√

λ2
z − η(θ) + η

(
(θ + λ1)√

λ2

)
− η

(
(θ + λ1)√

λ2

)]
dx

=

(
η

(
(θ + λ1)√

λ2

)
− η(θ)

)
+ log

∫
c(z) exp

[
(θ + λ1)√

λ2
z − η

(
(θ + λ1)√

λ2

)]
dx

= η

(
(θ + λ1)√

λ2

)
− η(θ)

By (14) and (14), one has :

fδ(x) = c(z) exp

[
z
(θ + λ1)√

λ2
− η

(
(θ + λ1)√

λ2

)]

thus the variance twisting of a NEF results in another NEF parametrized by (θ+λ1)√
λ2

.

E Summary Table with modified distributions for mean shift
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Original distribution Modified distribution Modified pdf fiδ Link between λ∗ and δ

NEF(θ) NEF (θ + λ∗) fiδ(xi) = b(xi) exp [xi [θ + λ∗]− η(θ + λ∗)] η′(θ + λ∗) = δ

Special case of NEF: N (µ, σ) N (δ, σ) fiδ(xi) =
1

σ
√

2π
exp

[

− 1
2

(

xi−δ
σ

)2
]

λ∗ = δ−µ

σ2

Uniform distribution: U[a,b] ∝ truncated exponential fiδ(xi) =
λ∗

eλ
∗b−eλ

∗a
1[a,b](xi)e

λxi δ = 1
(b−a)

eλ
∗b(λ∗b−1)+eλ

∗a(1−λ∗a)
λ∗(eλ∗b−eλ

∗a)

Left Tr Gaussian NT (µ, σ, a) NT (µ + σ2λ∗, σ, a) fiδ(xi) =
1[a,+∞[(xi)

1−F (a)
1

σ
√
2π

exp

[

− 1
2

(

xi−µ−σ2λ∗

σ

)2
]

δ = µ+ σ2λ∗ − σ
φ

(

a−(µ+σ2λ∗)
σ

)

1−Φ

(

a−(µ+σ2λ∗)
σ

)

Triangle T (a, b, c) – fiδ(xi) = exp(xiλ∗ − ψ(λ∗))f(xi) δ =
(a− 1

λ∗ )eλ
∗a(b−c)+(b− 1

λ∗ )eλ
∗b(c−a)+(c− 1

λ∗ )eλ
∗c(a−b)

eλ
∗a(b−c)+eλ

∗b(c−a)+eλ
∗c(a−b)

Left Tr Gumbel GT (µ, β, a) – fiδ(xi) = exp(xiλ
∗ − ψ(λ∗))f(xi)

δ =
M′

Y (λ∗)−
∫ a
−∞

yfY (y) exp[λ∗y]dy
MY (λ∗)−

∫

a
−∞

fY (y) exp[λ∗y]dy
with :

MY (λ∗) = Γ (1− β) exp [λ∗µ]

M ′
Y (λ∗) = Γ (1− β) exp [λ∗µ]

[

µ− β̥(0)(1 − λ∗)
]

Table 7: Modified distributions for mean twisting. Note that Φ(.)is the cdf of the standard normal distribution, and φ(.)is its pdf.

2
0


