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(Dated: September 19, 2012)

We analyze the effects of particle shape angularity on the macroscopic shear behavior and texture
of granular packings simulated by means of the contact dynamics method. The particles are regular
polygons with an increasing number of sides ranging from 3 (triangles) to 60. The packings are
analyzed in the steady shear state in terms of their shear strength, packing fraction, connectivity,
and fabric and force anisotropies, as functions of the angularity. An interesting finding is that
the shear strength increases with angularity up to a maximum value and saturates as the particles
become more angular (below six sides). In contrast, the packing fraction declines towards a constant
value, so that the packings of more angular particles are looser but have higher shear strength. We
show that the increase of the shear strength at low angularity is due to an increase of both contact and
force anisotropies, and the saturation of the shear strength for higher angularities is a consequence
of a rapid fall-off of the contact and normal force anisotropies compensated by an increase of the
tangential force anisotropy. This transition reflects clearly the rather special geometrical properties
of these highly angular shapes, implying that the stability of the packing relies strongly on the
side-side contacts and the mobilization of friction forces.

I. INTRODUCTION

Granular materials composed of particles of complex
shape are common in nature and also in various fields
of science and engineering. Some examples are angular-
shaped particles of soils and rocks, elongated or platy
particles of pharmaceutical products and non-convex par-
ticles of metallurgical and sintered powders. These shape
characteristics strongly affect the rheology and texture of
granular materials. This has been recently evidenced by
a number of numerical and experimental studies carried
out using angular particles [1–12] and by a number of in-
vestigations that have focused on other important char-
acteristics such as elongation [13–20] or non-convexity
[21, 22]. The existing research results suggest that the
effect of shape parameters is often nonlinear and coun-
terintuitive as in the case of the unmonotonic relation
between the elongation of the particles and the packing
fraction [13, 14, 18].

Hence, in order to obtain a clear picture of the com-
plex behavior exhibited by real granular materials, it is
crucial to understand and quantify the effects of particle
shape. However, this is not an easy task, which is why
systematic studies on the subject are scarce. One of the
underlying issues is that it is difficult to control parti-
cle shape in experiments. Moreover, introducing parti-
cle shape in numerical simulations with discrete element
methods gives rise to various technical difficulties, both
geometrical and computational. One example of these
difficulties involves contact detection and force calcula-
tion between particles of arbitrary shape [7, 10, 23–26].
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The aim of this work is to explore the influence of the
degree of angularity of the particles on the mechanical be-
havior of sheared granular packings. We employ the con-
tact dynamics method to simulate large two-dimensional
packings of polydisperse regular polygonal particles. We
construct different packings, each of them made up of
particles with a given number of sides in the range vary-
ing from 3 (triangles) to 60. We also simulate a packing
of disks, which may be considered as polygons of an in-
finite number of sides. Hence, the angularity, defined as
the exterior angle of polygons, varies from 0 for disks to
2π/3 for triangles.

The packings are analyzed in the steady state in terms
of their shear strength, packing fraction, connectivity,
and fabric and force anisotropies, as functions of the an-
gularity. A pending issue that we would like to address in
this paper is whether the packing of disks has a singular
behavior compared to the packings of polygons. This is
the case if a discontinuous change (within our statistical
precision) is observed for a packing property, e.g. the
shear strength or packing fraction, between the packing
of disks and the packing of polygons of 60 sides, which
are least angular polygons in our simulations. In a simi-
lar vein, it is not obvious whether packings composed of
particles of the lowest numbers of sides, i.e. triangles and
squares, are special as compared to those of larger num-
bers of sides whose behavior is expected to be described
by the angularity parameter as deviation from circular
shape.

In the following, we introduce in Section II the numeri-
cal approach, system characteristics, and loading param-
eters. In Section III, we focus on the evolution of shear
strength and packing fraction with angularity. The mi-
crostructure is analyzed in Section IV in terms of con-
nectivity, and contact and force anisotropies. The final
section presents the concluding remarks and a summary
of the most salient results.



II. MODEL DESCRIPTION

A. Numerical method

The simulations were carried out by means of the
contact dynamics (CD) method, which is suitable for
large assemblies of undeformable particles. This method
emerged from a mathematical formulation of nonsmooth
dynamics and the subsequent algorithmic developments
by J. J. Moreau and M. Jean [27–38]. The fundamental
difference between this method and the common DEM or
molecular dynamics (MD) approach lies in the treatment
of small length and time scales involved in the dynam-
ics of granular media. In MD-type DEM, pioneered by
P. Cundall, the particles are treated as rigid bodies but
the contacts between particles are assumed to obey a
viscoelastic or plastic behavior in which the local strain
variables are defined from the relative particle positions
or displacements ([39–52]). The time-stepping schemes
used for the numerical integration of the equations of
motion imply thus a fine resolution of the small time and
length scales involved in contact interactions.

In the CD method, these small scales are neglected
and their effects absorbed into contact laws together with
a nonsmooth formulation of particle dynamics described
at the scale of particle displacements rather than small
elastic response times and displacements. The equations
of motion are integrated by an implicit time-stepping
scheme by taking into account the kinematic constraints
resulting from frictional contact interactions. The im-
plicit integration makes the method unconditionally sta-
ble. Moreover, since in this method the elastic contact
deflections are not resolved, the time step can be larger
than that in the molecular dynamics (MD) method where
the time step should be small enough to allow for smooth
variations of the overlap at the contact points to ensure
numerical stability. In CD, an iterative algorithm is used
to determine the contact forces and particle velocities
simultaneously at all potential contacts. A detailed pre-
sentation of the CD method is given in Appendix A for
point contact interactions.

The particle shape enters a CD resolution algorithm
through the explicit determination of the set of effective
contacts at the beginning of a time step. For polygonal
particles, two different types of contact can be distin-
guished: 1) side-vertex and 2) side-side; see Fig. 1. A
side-vertex contact is a point contact like that between
two disks. In this case, the side coincides with the tan-
gent common line and the local frame is defined with
respect to this line. In a detection algorithm, such as
the shadow overlap method used in our simulations, a
side-vertex contact corresponds to a single corner of a
polygon crossing a side of a partner polygon [23, 25, 56].
Obviously, ideal contacts with no interpenetration of the
particles (δn = 0) would require infinite precision. In
all numerical methods, the detection of contact between
two bodies consists actually in observing an overlap of
the portions of space they occupy, so that δn ≤ 0. These
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FIG. 1: Side-vertex contact (a) and side-side contact (b) be-
tween two polygonal particles.

overlaps are a simple matter of geometrical precision in
the framework of the CD method rather than a strain
variable as in MD. The evolution of a granular system by
a CD process is as much sensitive to such imperfections
as that of a real system to the surface irregularities of
real particles.

A side-side contact between two rigid polygons is
equivalent to two geometrical constraints and can thus
be represented by two distinct point contacts located on
the common side, which defines the common tangent line
between the two polygons. For this reason, we refer to
side-side contacts as double contacts in contrast to side-
vertex contacts to which we refer as simple contacts. In
practice, a double contact is detected when a double in-
trusion occurs between two polygons (two vertices of a
polygone crossing the same side of another polygon or at
least one vertice of each of the two polygons crossing a
side of the other polygon). The common tangent line is
defined as an intermediate line crossing the overlap zone
between the two sides involved in the double contact and
the projections of the intruding vertices onto this line are
used to define two points representing the double contact.
The algorithm is insensitive to the technical details of
this choice as long as the intrusions are small compared
to particle sizes, i.e. if the neighbor list is frequently
updated and the time step is sufficiently small. For ex-
ample, in our simulations the intrusion never exceeds 1%
of particle diameter.

The two points of a double contact determined by
the detection procedure obey Signorini’s conditions and
Coulomb’s friction law; see Appendix A. However, the
forces and displacements at the two points are coupled
as a result of the rigidity of the particles, which imposes
the equality of the sliding velocities. Let κ and κ′ be two



points belonging to a double contact between two poly-
gons, as shown in Fig. 1. The contact frame (~n,~t) is
common to the two point contacts, but the contact vec-
tors ~cκ

i and ~cκ′

j are different. If both contact points are
persistent and nonsliding, the contact normal forces fκ

n

and fκ′

n , and tangential forces fκ
t and fκ′

t may take in-
dependent values compatible with Signorini’s conditions
(fκ

n ≥ 0, fκ′

n ≥ 0) and with Coulomb’s law of friction

(|fκ
t | ≤ µfκ

n , |fκ′

t | ≤ µfκ′

n ). But if one of the two contacts
is sliding, then the other contact must be sliding, too,
with the equality of the sliding velocities uκ

t = uκ′

t . This

condition implies that fκ
t and fκ′

t are of the same sign so
that the sliding status is verified not only at each of the
two contact points (fκ

t = ±µfκ
n and fκ′

t = ±µfκ′

n ) but

also for the double contact, i.e. fκ
t +fκ′

t = ±µ(fκ′

n +fκ′

n ).
Since the equations of dynamics are based on the rigid-

body degrees of freedom, the equality of sliding velocities
at the two points representing a double contact is in prin-
ciple correctly calculated if the two points are handled as
independent contacts in the iteration process. However,
the number of iterations for convergence declines if the
equality of the sliding velocities is enforced directly in the
iteration process. To do so, Coulomb’s friction law for a
double contact is implemented as follows:
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(1)

In practice, the inequalities (1) are implemented in the
correction step when solving the local Signorini-Coulomb
problem for a double contact between two particles; see
Appendix A.

The two points attributed to a double contact and the
calculated forces are only intermediate objects. The only
physically meaningful forces acting at a double contact
are the resultant forces fn = fκ

n + fκ′

n and ft = fκ
t + fκ′

t .
It is easily shown that fn ≥ 0 and |ft| ≤ µfn if the two
contact points obey Signorini’s conidtions and Coulomb’s
friction law. Since only the force resultants and relative
displacements are material at a double contact, the choice
of the two representative points of a double contact is a
matter of technical convenience with no real impact on
the result.

Ideally, vertex-vertex contacts should never occur, but
due to finite precision we do observe ambiguous situa-
tions that may be considered as vertex-vertex contacts,
as shown in Fig. 2, and that require special treatment.
The difficulty lies in the choice of a common tangent line
and two representative points such that the subsequent
particle motions under the effect of contact laws at those
points does not lead to further mutual intrusion of the
particles. The intrusion may increase due to both nor-
mal and tangential relative displacements with respect
to the four sides involved in the vertex-vertex contact.
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FIG. 2: A vertex-vertex intersection (exagerated) resolved
into two side-vertex contacts.

This means that a vertex-vertex contact may be resolved
either into two side-vertex contacts or into two side-side
contacts and treated as described previously. An exam-
ple is shown in Fig. 2 where two side-vertex contacts are
defined to represent the intersecting vertices (exagerated
on the figure). This is a simple and robust method al-
though alternative methods for the choice of the common
line and local frame may be proposed.

B. Description of the packings and the simple
shear test

We prepared 13 different packings, each comprising
10000 regular polygons with the same number of sides
ns ∈ [3, 4, .., 10, 11, 17, 30, 40, 60]. Additionally, we build
one more packing composed of the same number of disks.
The angularity α = 2π/ns varies from 0 for disks to 2π/3
for triangles. In order to avoid long-range ordering, we
introduce size polydispersity by varying the circumra-
dius of the polygons from 0.6〈d〉 to 2.4〈d〉, where 〈d〉 is
the mean circumradius, with a uniform distribution by
volume fractions.

The particles are initially placed in a semi-periodic
box 100〈d〉 wide, using a geometrical procedure [57, 58].
Next, all packings are sheared by imposing a constant
confining stress σwall and a constant horizontal velocity
vwall on the upper wall, as schematized in Fig. 3. To
avoid strain localization at the boundaries and to guar-
antee that the shear strain is uniformly distributed in the
bulk, the particles in contact with the walls are “glued”
to them, and the gravity is set to zero. The friction co-
efficient µs between particles is set to 0.4.

Since we are interested in the quasi-static (rate-
independent) behavior, the particle inertia should be neg-
ligible compared to the confining pressure. From the
shear rate γ̇ = vwall/ywall and σwall an “inertia parame-
ter” I is defined by [59]

I = γ̇〈d〉

√

ρ

σwall
, (2)
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FIG. 3: Schematic representation of the simulated shear test;
the dashed lines represent periodic boundaries. vwall is the
horizontal velocity of the wall and σwall is the confining pres-
sure. The arrows inside the box represent the velocity field.

where ρ is the mass density. Experiments and simula-
tions show that this condition is fulfilled when I < 10−3.
In all our tests we have γ̇ = 10−6/∆t, and σwall =
10−4ρ(〈d〉∆t)2. Hence, I ∼ 10−4, which means that our
sheared samples can reasonably be considered to be in a
quasistatic state

The samples are sheared up to a large cumulative shear
strain γ = xwall/ywall = 4, where xwall is the horizontal
displacement of the upper wall and ywall is its vertical
position. Figure 4 shows the stress ratio τwall/σwall and
the normalized volume of the packing V/〈d〉2, as func-
tions of the shear strain γ, for four different values of α,
where τwall is the tangential stress at the moving wall.
We see that the packings are in the steady state up to
small fluctuations around a mean both for τwall/σwall

and V/〈d〉2. In the following sections, all average quanti-
ties represent the last 50% of cumulative shear strain so
that they truly characterize the behavior of the system
in the steady state [60]. Video samples of the simula-
tions analyzed in this paper can be found at www.cgp-
gateway.org/ref016.

III. SHEAR STRENGTH AND PACKING
FRACTION

The shear strength of a granular material is charac-
terized by the coefficient of internal friction µ∗, which
requires the stress tensor σ at any stage of deformation
calculated from the simulation data, giving access to the
contact network and forces. We start with the internal
moment tensor Mp of each particle p, defined by

Mp
ij =

∑

c∈p

f c
i rc

j , (3)

where f c
i is the i component of the force exerted on par-

ticle p at contact c, rc
j is the j component of the position

vector of the same contact, and the summation runs over
all contacts c of particle p. The average stress tensor σ

in a volume V of the granular assembly is defined by [61]

σ =
1

V

∑

p∈V

Mp =
1

V

∑

c∈V

f c
i ℓc

j , (4)
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FIG. 4: (Color online) Stress ratio τwall/σwall (a) and nor-
malized volume of the packing V/〈d〉2 (b) as functions of the
shear strain γ for four different values of α.

where ℓc is the intercenter vector joining the centers of
the two touching particles at the contact c. Remark that
the first summation runs over all particles whereas the
second summation involves all contacts in the volume V ,
with each contact appearing only once. The mean stress
in 2D is given by p = (σ1+σ2)/2 and the deviatoric stress
is q = (σ1 − σ2)/2, where σ1 and σ2 are the principal
stresses. The coefficient of internal friction in the steady
state is defined by

µ∗ =
q

p
, (5)

Figure 5 shows the evolution of µ∗ as a function of the
angularity α of the particles. The shear strength first
increases with α from µ∗

0 ≃ 0.29 and then saturates for
particles having 6 or less number of sides (α ≥ 1.25) for
which µ∗

≥1 ≃ 0.47. The data are well fit to an exponential
function:

µ∗ = µ∗
0 + (µ∗

≥1 − µ∗
0)(1 − e−α/αc), (6)

with αc ≃ 0.6. The fast increase of µ∗ with α and its
saturation is rather unexpected as it indicates that small
deviations of the shape from disk have stronger effect on
µ∗ than the larger variations of angularity for low number
of sides. This point will be discussed in more detail when
we analyze below the microstructure and force transmis-
sion.

Figure 6 shows the packing fraction ν∗ as a function
of α. We see that the packing fraction declines from
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FIG. 5: (Color online) Coefficient of internal friction µ∗ as
a function of the angularity α evaluated directly from the
numerical data (full squares) and predicted by Eq. (8) (empty
squares). The error bars represent the standard deviation in
the steady state.
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FIG. 6: Steady-state value of the packing fraction ν∗ as a
function of the angularity α. The error bars represent the
standard deviation in the steady state.

ν∗
0 ≃ 0.828 (for the disk packing) and saturates to ν∗

≥1 ≃
0.798. It is remarkable that the packing fraction follows
an opposite trend to that of the shear strength. These
results represent a new example in which a decrease in
packing fraction is accompanied by an increase in shear
strength, as it was previously observed for packings of
elongated and non-convex particles [18, 22].

In the following, we analyze the microstructural prop-
erties of our packings of polygonal particles with the aim
of identifying the origins of their shear strength.

IV. MICROMECHANICAL ANALYSIS

A. Connectivity

Figure 7 shows a snapshot of the contact network in
the steady state for three samples of polygonal particles
with ns = 10, 5 and 3, as well as for the disk packing.
We see that the contact network topology varies strongly
with angularity. For example, the floating particles are
organized in groups in the disk packings whereas they
are mostly isolated in the case of triangular particles.

On the other hand, the contact network becomes more
connected as the angularity increases. At lowest order,
the connectivity of the particles is characterized by the
proportion κ of non-floating particles and the coordina-
tion number z (average number of force-bearing contacts
per particle). Figure 8 shows κ and z as functions of α.
We see that κ and z decline (from 0.85 to 0.68 and from
3.25 to 3.15, respectively) as α increases, in accordance
with the decrease of packing fraction shown in Fig. 6.
But the trend is reversed beyond α ≃ 1 for both z and
κ. In particular, we observe that z increases up to 3.5
which is higher than that in the disk packing. This in-
crease suggests that the sharp corners of very angular
particles allow for deep contacts between neighbors that
are unreachable for less angular particles. These results
show that, for large angularities, the packings are looser
but better connected.

The connectivity of the particles may be characterized
in more detail by specifying the proportion Pc of particles
having exactly c contacts. Remark that only the force-
bearing contacts are concerned. We have P0 = P1 = 0.
Figure 9 shows Pc for c = 2, . . . , 8 as a function of α
in the steady state. For all values of α, in exception to
triangles and squares (i.e. for α = 2π/3 and α = π/2
in the figure), P3 prevails and it remains nearly constant
below α ≃ 1.25. Beyond α = 1.25, it declines rapidly
contrary to all proportions Pc which increase with α.
We also observe that P4 decreases slightly with α for
α < 1.25 whereas in the same range P2 increases almost
in the same proportion. Hence, as the angularity be-
comes higher, an increasing number of particles are equi-
librated by two opposite forces mostly acting at the side-
side contacts. Finally, it is interesting to notice that the
proportions Pc of particles with more than four contacts
remain nearly constant below α = 1.25 but they increase
only slightly in number for squares and triangles. In this
way, even a slight increase in angularity (with disk as
reference shape) has a strong effect on the connectivity
and mechanical behavior as we already remarked with
respect to the evolution of µ∗ and ν∗ in Figs. 5 and 6.

B. Anisotropy of the contact and force networks

The shear strength of granular materials is generally
attributed to the buildup of an anisotropic structure in-
duced by shearing. This anisotropy is basically related
to the distribution of contact normals n. Therefore, we
may obtain a full description of the state of anisotropy
by a partition of various mechanical quantities according
to the directions of contact normals. This amounts to re-
placing the space direction used in continuum mechanics
for the representation of the stress and strain fields by
the contact orientation.

The most basic descriptor of anisotropy is the prob-
ability distribution P (n) of the contact normals, which
is generically nonuniform. In two dimensions, the unit
vector n is described by a single angle θ, and the prob-
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FIG. 7: Snapshots of the contact network for three samples of
polygonal particles with ns = 10(b), 5(c) and 3(d), and for
the disk packing (a). The floating particles (i.e., particles with
one or no contact) are drawn in light grey and the contacts
are represented by line segments joining the centers of mass
of the particles with the contact points.

ability density P (θ) of contact orientations θ provides
the required statistical information about the contact
network. A local frame (n, t) can be attached to each
contact, where t is an orthonormal unit vector; see Fig.
10. The local geometry associated with the two contact
neighbors is characterized by the branch vector ℓ join-
ing the particle centers. It can be projected in the local
contact frame: ℓ = ℓnn + ℓtt. Note that, in contrast to
circular particles, for which ℓt = 0, in a packing of polyg-
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FIG. 8: (a) Proportion κ of non-floating particles as a function
of the angularity α. (b) Coordination number z as a function
of the angularity α. The error bars represent the standard
deviation in the steady state.
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FIG. 9: (Color online) Connectivity of particles defined as
the proportion Pc(c) of particles with exactly c contacts as a
function of α in the steady state.

onal particles this component is nonzero. In the same
way, the contact force f can be expressed in terms of its
normal and tangential components: f = fnn + ftt.

Along with P (θ), the anisotropy of the packing can
be further characterized by the angular averages of the
components of the branch vectors and contact forces as
a function of the orientation θ: 〈ℓn〉(θ), 〈ℓt〉(θ), 〈fn〉(θ)
and 〈ft〉(θ). These functions describe the general state of
anisotropy, and both experiments and simulations show
that, in a sheared granular material, they tend to take a
simple unimodal shape, which can be well approximated
by the lowest-order Fourier expansion [3, 10, 18, 20, 22,
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FIG. 10: (Color online) Local contact frame.

62–71]:



















P (θ) = 1
2π{1 + ac cos 2(θ − θc)}

〈ℓn〉(θ) = 〈ℓn〉{1 + aln cos 2(θ − θln)}
〈ℓt〉(θ) = 〈ℓn〉alt sin 2(θ − θlt)
〈fn〉(θ) = 〈fn〉{1 + afn cos 2(θ − θfn)}
〈ft〉(θ) = 〈fn〉aft sin 2(θ − θft),

(7)

where ac is the contact orientation anisotropy, aln is the
normal branch anisotropy, alt is the tangential branch
anisotropy, afn is the normal force anisotropy, and aft is
the tangential force anisotropy. The angles θc, θln, θlt,
θfn, and θft are the corresponding privileged directions.
These directions can all be different, but they coincide
with the principal stress direction θσ in a sheared gran-
ular material, as illustrated in Fig. 11.

The anisotropies ac, aln, alt, afn and aft are interest-
ing not only as descriptors of the granular microstructure
and force transmission, but more fundamentally because
they add together to build the shear strength of the mate-
rial. Indeed, from the expression (4) of the stress tensor,
the following relationship can be easily established be-
tween the anisotropy parameters and the stress ratio q/p
[3, 18]:

q

p
≃

1

2
(ac + aln + alt + afn + aft), (8)

where the cross products between the anisotropy param-
eters have been neglected. The stress ratio q/p given by
this expression from the anisotropy parameters measured
from the numerical data is shown in Fig. 5 as a function
of α together with those given by direct measurement.
We see that Eq. (8) provides a nice approximation of the
shear strength for all values of α [73].

The evolution of the five anisotropies with α is
shown in Fig. 11. The normal and tangential branch
anisotropies, aln and alt, are negligible in comparison to
the other anisotropy parameters. This is due to the ab-
sence of shape eccentricity of the particles [18, 72] and
to the low span in the particle size distribution [69]. The
other anisotropies, ac, afn, and aft, grow as α increases

(a)

(b)

FIG. 11: (Color online) Evolution of the anisotropy param-
eters ac, aln and alt (a), and afn and aft (b) as functions
of the particle shape angularity α. Error bars represent the
standard deviation in the steady state. The polar diagrams of
the corresponding angular distributions are shown for α ≃ 1
(i.e., ns = 6) together with their Fourier expansion (i.e., Eqs.
7).

from zero (for the disk packing) up to α ≃ 1.25 (for
the hexagon packing). This increase of all anisotropies
underlies the observed increase in the internal angle of
friction in this range. On the other hand, the increase of
the anisotropies reflects the increasing number of side-to-
side contacts, which capture the strong force chains and
form column-like structures, which can be stable without
sidewise support; see below.

For polygons with fewer than six sides (α ≥ 1.25), a
rapid decrease of ac and afn occurs whereas aft grows at
the same time. As it is observed in Fig. 11, this increase
of aft is large enough to compensate additively (See Eq.
(8)) the decrease of ac and afn, so that the shear strength
remains nearly constant in this range of α, as observed
in Fig. 5.

The decrease of ac for α ≥ 1.25, is related to the in-
crease of the coordination number z as shown in Fig.
8(b). Indeed, higher values of z imply higher dispersion
of contact orientations. On the other hand, the increase
of aft may be attributed to the fact that the rotational
mobility of the particles are strongly reduced as a result
of enhanced angular exclusions due to shape angularity so
that the particles tend to slide rather than rolling with a
strong increase of friction mobilization [70]. At the same
time, afn declines naturally as the friction forces take
more actively part in force transmission. This is, indeed,
what we observe in Fig. 12 showing the mean normal
force 〈fn〉 and mean tangential force 〈|ft|〉, as well as
the proportion kslide of sliding contacts (i.e., contacts in



(a)

(b)
0 0.5 1 1.5 2 2.5

α
0

0.1

0.2

K
sl

id
e

FIG. 12: (Color online) (a) Mean normal force 〈fn〉 and mean
tangential force 〈|ft|〉 normalized by p〈d〉, as functions of the
angularity α; (b) Proportion kslide of sliding contacts as a
function of α. The error bars represent the standard deviation
in the steady state.

which |ft| = µ|fn|), as functions of α. Both 〈fn〉 and
〈|ft|〉 initially increase with α, but 〈fn〉 declines beyond
α & 1 whereas 〈|ft|〉 keeps increasing. The proportion
of sliding contacts rises as the particles become increas-
ingly angular and takes values as high as 0.2, i.e. nearly
4 times above those measured in the packing composed
of disks (α = 0).

C. Role of side-to-vertex and side-to-side contacts

As it was mentioned in the previous subsection, the
distinctive features of a material composed of polygo-
nal particles are explained by the possibility of forming
side-side contacts. It is thus interesting to investigate
the relative roles of the two types of contacts, i.e. side-
vertex (sv) and side-side (ss) contacts, with respect to
the shear strength and anisotropy. Fig. 13 shows the
proportions ksv and kss of sv and ss contacts, respec-
tively, as a function of α. Irrespective of angularity, the
sv contacts prevail in the contact network. However, ksv

decreases from 1 for the disks (α = 0) down to ≃ 0.75
for α & 1.25 and remain practically constant for more
angular particles.

Fig. 14 shows a snapshot of the normal force network
disk packing as well as three snapshots of the packings
with ns = 10, 5, and 3. The force lines connect particle
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FIG. 13: (Color online) Proportions of side-side (ss) and side-
vertex (sv) contacts as functions of the angularity α. The er-
ror bars represent the standard deviation in the steady state.

centers to the contacts and their thickness is proportional
to the normal force. For ns = 10 and ns = 5, the ss con-
tacts appear often in distinctive force chains. But for
ns = 3 (triangles), despite approximately the same pro-
portion kss, the ss contact forces are much more diffuse
and intricately mixed with sv contacts. This visual im-
pression is consistent with the decrease of an observed in
Fig. 11.

The stress tensor can be partitioned as a sum of two
tensors representing the respective contributions of sv
and ss contacts by considering the expression (4) of the
stress tensor and restricting the summation to each con-
tact type:

σ = σsv + σss, (9)

where

(σsv)ij =
1

V

∑

c∈A(sv)

ℓifj ,

(σss)ij =
1

V

∑

c∈A(ss)

ℓifj , (10)

where A(sv) and A(ss) are the sets of sv and ss contacts,
respectively. Fig. 15 displays the evolution of q/p, qsv/p,
and qss/p as a function of α. It is seen that qsv/p is nearly
constant and ≃ 0.24, except for the packing of triangular
particles in which qsv/p ≃ 0.35. In contrast, qss/p first
increases with α from 0 to ≃ 0.3 for pentagons and then
declines to 0.2 for squares and 0.1 for triangles. This
shows that the variation of the shear strength is mostly
governed by the contribution of side-side contacts, even
if their proportion is low. This profound effect of faceted
grain shapes on stress transmission has been previously
shown, both experimentally and numerically [17–20].

Along the same lines, we may also evaluate the partial
contact and force anisotropies acγ , alnγ , altγ , afnγ , and
aftγ , where γ stands either for ss or for sv. Since the
privileged directions of the partial angular functions de-
scribing the γ contacts and forces are practically the same
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FIG. 14: (Color online) Snapshots of the packing of disks (a)
and the packings of polygons with ns = 10(b), 5(c), and 3(d)
in the steady state. The sv contacts are in red (dark grey)
and ss contacts are in green (light grey). The line thickness
is proportional to the normal force.

as the overall privileged direction for all contacts and
forces, the total contact and force anisotropies are given
by the sum of the corresponding partial anisotropies. The
partial contact and forces anisotropies are shown in Figs.
16 and 17 as a function of α together with the total
anisotropies. Note that Eq. (8) is also verified when
restricted to γ contacts. We see that acsv ≃ afnsv ≃ 0.2

0.0 0.5 1.0 1.5 2.0 2.5
α

0

0.1

0.2

0.3

0.4

0.5

0.6
q/p
q

sv
/p

q
ss

/p

FIG. 15: (Color online) Total shear strength (q/p) and partial
shear strengths for side-vertex (sv) and side-side (ss) contacts
as functions of the angularity α, together with the predicted
values by Eq.8 (empty symbols). The error bars represent the
standard deviation in the steady state.
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FIG. 16: (Color online) Partial contact orientation
anisotropies acss and acsv of ss and sv contacts as functions
of the angularity α. The error bars represent the standard
deviation in the steady state.

and aftsv ≃ 0.05 for all α. In other words, the variation
of the total anisotropy is mainly governed by that of the
anisotropies developed by side-side contacts. The stress
plateau discussed previously for the whole contact net-
work for higher angularity is due to the fall-off of acss

and afnss for squares and triangles compensated by the
increase of the partial tangential force anisotropy of side-
side contacts aftss. This shows the crucial role of side-
side contacts in stress transmission and mobilization of
internal friction for most angular particles.

V. CONCLUDING REMARKS

In this paper, we investigated the effect of particle
shape angularity for the quasistatic behavior of sheared
granular materials by means of contact dynamics simu-
lations. The particles are regular polygons characterized
by their angularity. The macroscopic and microstruc-
tural properties of several packings of 104 particles in
simple shear conditions were analyzed as a function of
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FIG. 17: (Color online) Partial normal force anisotropies
afnss and afnsv (a) and partial tangential force anisotropies
aftss and aftsv, (b) of ss and sv contacts as functions of the
angularity α. The error bars represent the standard deviation
in the steady state.

angularity in the steady state.

We expected the steady-state internal friction coeffi-
cient to decrease rapidly for decreasing angularity and
tend to a nearly constant value close to that of a disk
packing. Instead, our numerical simulations reveal a
nearly constant value of the internal friction coefficient
for most angular polygons (triangles, squares and pen-
tagons) and decreasing rapidly as angularity is reduced.
A similar behavior was also observed for the packing frac-
tion and several descriptors of the microstructure such
as the coordination number and anisotropy parameters.
This counterintuitive observation shows that a slight in-
crease in angularity (with disk as reference shape) has a
strong influence on the mechanical behavior. In this re-
spect, the effect of a low angularity seems to be as strong
as that of surface roughness and friction coefficient be-
tween particles.

For polygons with the highest angularity, i.e. for poly-
gons of 3, 4 and 5 sides, a different mechanism is ob-
served. In particular, the coordination number declines
as angularity increases except for highly angular particles
where it rises. In the latter case, the contact orientation
anisotropy and normal force anisotropy decline as angu-
larity increases whereas the tangential force anisotropy
increases. The compensation between these effects leads
to a nearly constant shear strength. The friction mobi-

lization appears as a key parameter for the shear strength
of angular particles. Il grows smoothly with angularity
and, mainly at side-side contacts, it is responsible for the
increasing shear strength of the material.

In this work, the friction coefficient between particles
was kept at a constant value for all angularities. It would
be highly instructive to assess the proper role of friction
by varying this parameter systematically for each angu-
larity. A similar investigation can also be performed with
irregular polygons in 2D and polyhedra in 3D, making it
possible to explore the implications of these results in the
context of practical applications

We specially thank Alfredo Taboada for fruitful dis-
cussions and Frédéric Dubois for assistance with the
LMGC90 platform used for the simulations. We acknowl-
edge financial support by the Ecos-Nord program (Grant
No. C12PU01).

APPENDIX A: CONTACT DYNAMICS METHOD

In this appendix, we briefly describe the CD method
in 2D by adapting a detailed description given in [53].
The implementation of the CD method with polygonal
particles is described in Section II.

1. Contact laws

Let us consider two particles i and j with a contact at
a point κ within a granular material. We assume that
a unique common line (plane in 3D) tangent to the two
particles at κ can be geometrically defined so that the
contact can be endowed with a local reference frame de-
fined by a unit vector ~n normal to the common line and a
unit vector ~t along the tangent line with an appropriate
choice of the orientations of the axes.

Geometrically, a contact potentially exists if the gap
δn between two particles is so small that within a small
time interval δt (time step in numerical simulations) a
collision may occur between the two particles. If the
contact is effective, i.e. for δn = 0, a repulsive (positive)
normal force fn may appear at κ with a value depending
on the particle velocities and contact forces acting on the
two partners by their neighboring particles; see Fig. 18.
But if δn is positive (a gap), the potential contact is not
effective and fn at the potential contact κ is identically
zero. These disjunctive conditions can be described by
the following inequalities:

{

δn > 0 ⇒ fn = 0
δn = 0 ⇒ fn ≥ 0.

(A1)

The important point about this relation between δn and
fn, called Signorini’s conditions, is that it can not be
reduced to a (mono-valued) function.

Signorini’s conditions imply that the normal force van-
ishes when the contact is not effective. But the normal
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FIG. 18: Geometry of a contact κ between two particles i and
j with contact vectors ~cκ

i and ~cκ
j , and contact frame (~nκ,~tκ).

force may vanish also at an effective contact. In partic-
ular, this is the case for un = δ̇n > 0, i.e. for incipient
contact opening. Otherwise, the effective contact is per-

sistent and we have un = δ̇n = 0. Hence, Signorini’s
conditions can be split as follows:







δn > 0 ⇒ fn = 0

δn = 0 ∧

{

un > 0 ⇒ fn = 0
un = 0 ⇒ fn ≥ 0

(A2)

We see that for an effective contact, i.e. for δn = 0,
Signorini’s conditions hold for the variables un and fn.

Like Signorini’s conditions, the Coulomb law of dry
friction at an effective contact point can be expressed by
a set of alternative inequalities for the friction force ft

and the sliding velocity ut:







ut > 0 ⇒ ft = −µfn

ut = 0 ⇒ −µfn ≤ ft ≤ µfn

ut < 0 ⇒ ft = µfn

(A3)

where µ is the coefficient of friction and it is assumed that
the unit tangent vector t points in the direction of the
sliding velocity so that ~ut · ~t = ut. Like Signorini’s con-
ditions, this is a degenerate law that can not be reduced
to a (mono-valued) function between ut and ft.

Signorini’s conditions (Eq. A2) and Coulomb’s friction
law (Eq. A3) are represented as two graphs in Fig. 19 for
an effective contact between two particles. We refer to
these graphs as contact laws in the sense that they char-
acterize the relation between relative displacements and
forces irrespective of the rheology (visco-elastic or plas-
tic nature) of the particles. These contact laws should
be contrasted with force laws (employed in MD simu-
lations), which describe a functional depedence between
deformations (attributed to the contact point) and forces
that is extracted from the material behavior of the par-
ticles. The force laws often employed in MD may also be
considered as a “regularization” of the contact laws, in
which the vertical branch in Signorini’s and Coulomb’s
graphs is replaced by a steep linear or nonlinear function.

un

fn

0

ut

ft

0

µfn

−µfn

(a) (b)

FIG. 19: Graphs of (a) Signorini’s conditions and (b) Coul-
mob’s friction law.

2. Augmented contact laws

The use of contact laws in the CD method is consistent
with the idea of a discrete model defined only at the scale
of particle motions and involving no small sub-particle
length or force scales inherent to the force laws. But such
a “coarse-grained” model of particle motion implies non-

smooth dynamics, i.e. possible discontinuities in particle
velocities and forces arising from collisions and variations
of the contact status (effective or not, persistent or not,
sliding or not). Such events occur frequently in granular
flows and hence the approximation of the contact force
fn during δt is a measure problem in the mathematical
sense [32, 54]. A static or regular force fs is the density
of the measure fs dt with respect to time differential dt.
In contrast, an impulse p generated by a collision has no
density with respect to dt. In other words, the forces at
the origin of the impulse are not resolved at the scale δt.
In practice, however, we can not differentiate these con-
tributions in a “coarse-grained” dynamics, and the two
contributions should be summed up to a single measure
and the contact force is defined as the average of this
measure over δt.

In a similar vein, the left-limit velocities u−
n and u−

t

at time t are not always related by a smooth variation
(acceleration multiplied by the time step δt) with the
right-limit velocities u+

n and u+
t at t + δt. Hence, we

assume that the contact laws (Eq. A2) and (Eq. A3) are
satisfied for a weighted mean of the relative left-limit and
right-limit velocities:

un =
u+

n + en u−
n

1 + en
, (A4)

ut =
u+

t + et u−
t

1 + et
. (A5)

The physical meaning of the coefficients en and et is best
illustrated by considering a binary collision between two
particles. A binary collision corresponds to an effective
contact occuring in the interval [t, t + δt] and a persis-
tent contact in the sense of the mean velocity un. In
other words, we have un = 0 and thus −u+

n /u−
n = en.

Hence, en can be identified with the normal restitution
coefficient. In the same way, for ut = 0, corresponding
to a nonsliding condition (adherence of the two particles



during their contact), implies −u+
t /u−

t = et, which is the
tangential restitution coefficient. We see that, when Sig-
norini’s and Coulomb’s graphs are used with the mean
velocities given by equation (A12), a contact is persistent
in terms of u+

n (i.e. u+
n = 0) only if en = 0.

When a collision is not binay, the generated impulses
propagate through the contact network so that a con-
tact may experience several successive impulses during
δt. Such events can be resolved for a sufficiently small
time increment δt or they may be tracked according to
an event-driven scheme. The event-tracking strategy is,
however, numerically inefficient, of limited applicability
and in contradiction with the scope of the CD method
based on coarse-grained dynamics. The use of mean ve-
locities (Eq. A12) with the contact laws, should thus be
considered as a generalization of restitution coefficients
to multiple collisions and contact networks for which the
right-limit veocities u+

n and u+
t are not simply given by

the left-limit velocities multiplied by the coefficients of
restitution as in binary collisions but by combining the
contact laws with the equations of dynamics.

3. Nonsmooth motion

The rigid-body motion of the particles is governed by
Newton’s equations under the action of imposed external

bulk or boundary forces ~Fext, and the contact reaction

forces ~fκ exerted by neighboring particles at the contact
points κ. An absolute reference frame with unit vectors
(x̂, ŷ) is assumed, and we set ẑ = x̂ × ŷ. Each parti-
cle is characterized by its mass m, moment of inertia I,

mass center coordinates ~r, mass center velocity ~U , angu-
lar coordinates θ, and angular velocity ωẑ. For a smooth
motion (twice differentiable), the equations of motion of
a particle are

m ~̇U = ~F + ~Fext

I ω̇ = M + Mext

(A6)

where ~F =
∑

κ
~fκ and M = ẑ ·

∑

κ ~cκ× ~fκ where ~cκ is the
contact vector joining the center of mass to the contact
κ and Mext represents the moment of external forces.

For a nonsmooth motion with time resolution δt involv-
ing impulses and velocity discontinuities, an integrated
form of the equations of dynamics should be used. Hence,
the equations of dynamics should be written as an equal-
ity of measures:

m d~U = d~F ′ + ~Fext dt
I dω = dM′ + Mext dt

(A7)

where d~F ′ =
∑

κ d~f ′κ and dM′ = ẑ ·
∑

κ ~cκ×d~f ′κ. These
measure differential equations can be integrated over δt

with the definitions of ~F and M as approximations of

the integral of d~F ′ and dM′. With these definitions, the

integration of equation (A7) over δt yields

m (~U+ − ~U−) = δt ~F + δt ~Fext

I (ω+ − ω−) = δt M + δt Mext
(A8)

where (~U−, ω−) and (~U+, ω+) are the left-limit and right-
limit velocities of the particle, respectively.

The equations of dynamics can be written in a com-
pact form for a set of Np particles by using matrix
representation. The particles are labelled with integers
i ∈ [1, Np]. The forces and force moments F i

x, F i
y,Mi

acting on the particles i are arranged in a single high-
dimensional column vector represented by a boldface let-
ter F belonging to R

3Np . In the same way, the external
bulk forces Fext,x, Fext,y,Mext applied on the particles
and the particle velocity components U i

x, U i
y, ωi are rep-

resented by column vectors Fext and U , respectively. The
particle masses and moments of inertia define a diagonal
3Np × 3Np matrix denoted by M . With these notations,
the equations of dynamics (A8) are cast into a single ma-
trix equation:

M(U+ − U−) = δt(F + Fext) (A9)

4. Transfer equations

Since the contact laws are expressed in contact vari-
ables (un, ut, fn and ft), we need to express the equa-
tions (A9) in the same variables. The contacts are la-
belled with integers κ ∈ [1, Nc], where Nc is the total
number of contacts. Like particle velocities, the contact
velocities uκ

n and uκ
t can be collected in a column vector

u ∈ R
2Nc . In the same way, the contact forces fκ

n and
fκ

t are represented by a vector f ∈ R
2Nc . We would like

to transform the equations of dynamics from F and U to
f and u. The formal transformation of matrix equations
(A9) is straightforward. Since the contact velocities u

are linear in particle velocities U , the transformation of
the velocities is an affine application:

u = G U (A10)

where G is a 2Nc × 3Np matrix containing basically in-
formation about the geometry of the contact network. A
similar linear application relates f to F :

F = H f (A11)

where H is a 3Np×2Nc matrix. We refer to H as contact

matrix. It contains the same information as G in a dual
or symmetric manner. It can easily be shown that H =
GT where GT is the transpose of G. This property can
be inferred from the equivalence between the power F ·U
developed by “generalized” forces F and the power f ·u
developed by the bond forces f . In general, the matrix
H is singular and, by definition, its null space has a
dimension at least equal to 2Nc − 3Np.



The matrix Hiκ can be decomposed into two matrices
Hiκ

n and Hiκ
t such that

uκ
n =

∑

i

HT,κi
n U i

uκ
t =

∑

i

HT,κi
t U i (A12)

and

F i =
∑

κ

(Hiκ
n fκ

n + Hiκ
t fκ

t ) (A13)

Using these relations, the equations (A9) can be trans-
formed into two equations for each contact κ:

uκ+
n − uκ−

n = δt
∑

i,j

HT,κi
n M−1,ij {

∑

λ

(Hjλ
n fλ

n + Hjλ
t fλ

t ) + F j
ext}

uκ+
t − uκ−

t = δt
∑

i,j

HT,κi
t M−1,ij {

∑

λ

(Hjλ
n fλ

n + Hjλ
t fλ

t ) + F j
ext}

(A14)
We now can make appear explicitly linear relations be-

tween the contact variables from equations (A14) and
definitions (A12). We set

Wκλ
k1k2

=
∑

i,j

HT,κi
k1

M−1,ijHjλ
k2

, (A15)

where k1 and k2 stand for n or t. With this notation,
equations (A14) can be rewritten as follows:

1 + en

δt
(uκ

n − uκ−
n ) = Wκκ

nnfκ
n + Wκκ

nt fκ
t

+
∑

λ( 6=κ)

{Wκλ
nnfλ

n + Wκλ
nt fλ

t }

+
∑

i,j

HT,κi
n M−1,ijF j

ext (A16)

1 + et

δt
(uκ

t − uκ−
t ) = Wκκ

tn fκ
n + Wκκ

tt fκ
t

+
∑

λ( 6=κ)

{Wκλ
tn fλ

n + Wκλ
nt fλ

t }

+
∑

i,j

HT,κi
t M−1,ijF j

ext (A17)

The coefficients Wκκ
k1k2

for each contact κ can be calcu-
lated as a function of the contact network geometry and
inertia parameters of the two partners 1κ and 2κ of the
contact κ. Let ~cκ

i be the contact vector joining the cen-
ter of mass of particle i to the contact κ. The following
expressions are easily established:

Wκκ
nn =

1

m1κ

+
1

m2κ

+
(cκ

1t)
2

I1κ

+
(cκ

2t)
2

I2κ

,

Wκκ
tt =

1

m1κ

+
1

m2κ

+
(cκ

1n)2

I1κ

+
(cκ

2n)2

I2κ

, (A18)

Wκκ
nt = Wκκ

tn =
cκ
1ncκ

1t

I1κ

+
cκ
2ncκ

2t

I2κ

,

where cκ
in = ~cκ

i ·~n
κ and cκ

it = ~cκ
i ·~t

κ are the components of
the contact vectors in the contact frame. The coefficients
Wκκ

k1k2
are inverse reduced inertia.

An alternative representation of equations (A16) and
(A17) is the following:

Wκκ
nnfκ

n + Wκκ
nt fκ

t = (1 + en)
1

δt
uκ

n + aκ
n, (A19)

Wκκ
tt fκ

t + Wκκ
tn fκ

n = (1 + et)
1

δt
uκ

t + aκ
t . (A20)

The two offsets aκ
n and aκ

t can easily be expressed from
the equations (A16) and (A17). The equations (A19) and
(A20) or equations (A16) and (A17) are called transfer

equations [55]. It is easy to show that

aκ
n = bκ

n − (1 + en)
1

δt
uκ−

n +

(

~F 2κ

ext

m2κ

−
~F 1κ

ext

m1κ

)

· ~nκ.(A21)

aκ
t = bκ

t − (1 + et)
1

δt
uκ−

t +

(

~F 2κ

ext

m2κ

−
~F 1κ

ext

m1κ

)

· ~tκ.(A22)

The effect of the approach velocity (left-limit velocity)
(uκ−

n , uκ−
t ) appears in these equations as an impulse de-

pending on the reduced mass and the restitution coeffi-

cient. The effect of contact forces ~fλ
i acting on the two

touching particles i are represented by bκ
n and bκ

t given
by

bκ
n =

1

m2κ

∑

λ( 6=κ)

~fλ
2κ

· ~nκ −
1

m1κ

∑

λ( 6=κ)

~fλ
1κ

· ~nκ,(A23)

bκ
t =

1

m2κ

∑

λ( 6=κ)

~fλ
2κ

· ~tκ −
1

m1κ

∑

λ( 6=κ)

~fλ
1κ

· ~tκ. (A24)

The transfer equations (A19) and (A20) define a system
of two linear equations between the contact variables at
each contact point. The solution, when the values of an

and at at a contact are assumed, should also verify the
contact laws (A2) and (A3). Graphically, this means that
the solution is at the intersection between the straight
line (A19) and Signorini’s graph on one hand, and be-
tween (A20) and Coulomb’s graph, on the other hand.

5. Iterative resolution

In order to solve the system of 2Nc transfer equations
(in 2D) with the corresponding contact law relations, we
proceed by an iterative method which converges to the
solution simultaneously for all contact forces and veloc-
ities. We first consider a single-contact problem which
consists of the determination of contact variables fκ

n , fκ
t ,

uκ
n and uκ

t at a single contact given the values of the off-
sets aκ

n and aκ
t at the same contact. The solution is given

by intersecting the lines representing transfer equations
with Signorini’s and Coulomb’s graphs. The intersec-
tion occurs at a unique point due to the positivity of the
coefficients Wκκ

k1k2
(positive slope). In other words, the

dynamics removes the degeneracy of the contact laws.
Notice, however, that the two intersections can not be

established separately when Wκκ
nt 6= 0. To find the lo-

cal solution, one may consider the intersection of transfer



equations with the force axis, i.e. by setting un = ut = 0.
This yields two values gκ

n and gκ
t of fκ

n and fκ
t , respec-

tively:

gκ
n =

Wκκ
tt aκ

n −Wκκ
nt aκ

t

Wκκ
nnW

κκ
tt − (Wκκ

nt )2
, (A25)

gκ
t =

Wκκ
nnaκ

n −Wκκ
tn aκ

t

Wκκ
tt Wκκ

nn − (Wκκ
tn )2

. (A26)

It can be shown that the denominator is positive. If gκ
n <

0, then the solution is fκ
n = fκ

t = 0. This corresponds
to a breaking contact. Otherwise, i.e. if gκ

n ≥ 0, we
have fκ

n = gκ
n. With this value of fκ

n , we can determine
the solution of the Coulomb problem. If gκ

t > µfκ
n , the

solution is fκ
t = µfκ

n and in the opposite case, i.e. if
gκ

t < −µfκ
n , the solution is fκ

t = −µfκ
n (sliding contact).

Otherwise, i.e. when −µfκ
n < gκ

t < µfκ
n , the solution is

fκ
t = gκ

t (rolling contact).
In a multicontact system, the terms bκ

n and bκ
t in

the offsets aκ
n and aκ

t depend on the forces and veloc-
ities at contacts λ 6= κ; see equations (A21), (A21),
(A23) and (A24). Hence, the solution for each con-
tact depends on all other contacts of the system and
it must be determined simultaneously for all contacts.
An intuitive and robust method to solve the sys-
tem is to search the solution as the limit of a se-
quence {fκ

n (k), fκ
t (k), uκ

n(k), uκ
t (k)} with κ ∈ [1, Nc].

Let us assume that the transient set of contact forces
{fκ

n (k), fκ
t (k)} at the iteration step k is given. From

this set, the offsets {aκ
n(k), aκ

t (k)} for all contacts can be
calculated through the relations (A21) and (A22). The
local problem can then be solved for each contact κ with
these values of the offsets, yielding an updated set of con-
tact forces {fκ

n (k +1), fκ
t (k +1)}. This correction step is

equivalent to the solution of the following local problem:

Wκκ
nnfκ

n (k + 1)− {aκ
n(k)−Wκκ

nt fκ
t (k + 1)}

S
←→ fκ

n (k + 1),

Wκκ
tt fκ

t (k + 1)− {aκ
t (k)−Wκκ

nt fκ
n (k + 1)}

C
←→ fκ

t (k + 1).

Remark that this force update procedure does not require
the contact velocities uκ

n(k + 1), uκ
t (k + 1)} to be calculated

as the offsets depend only on the contact forces. The set
{fκ

n (k), fκ
t (k)} evolves with k by successive corrections and

it converges to a solution satisfying the transfer equations
and contact laws at all potential contacts of the system. The
iteration can be stopped when the set {fκ

n (k), fκ
t (k)} is stable

with regard to the force update procedure within a prescribed
precision criterion εf :

| fκ(k + 1)− fκ(k) |

fκ(k + 1)
< εf ∀κ. (A27)

Finally, from the converged contact forces, the particle ve-
locities {~U i} can be computed by means of the equations of
dynamics (A8).

The iterative procedure depicted above provides a robust
method which proves efficient in the context of granular dy-
namics. The information is treated locally and no large ma-
trices are manipulated during iterations. The number Ni of
necessary iterations to converge is strongly dependent on the
precision εf but not on δt. The number of iterations is sub-
stantially reduced when the iteration is initialized with a glob-
ally correct guess of the forces. This is the case when the

forces at each time step are initialized with the forces com-
puted in the preceding step.

The uniqueness of the solution in a multicontact system
with rigid particles is not guaranteed at each step of evolu-
tion. We have 3Np equations of dynamics and 2Nc contact
relations. The unknowns of the problem are 3Np particle
velocities and 2Nc contact forces. The indeterminacy arises
from the fact that the 2Nc contact relations are inequations.
Thus, the extent of indeterminacy of the solution reflects all
possible combinations of contact forces accommodating those
contact relations. The degree of indeterminacy may be high,
but it does not imply significant force variability since the so-
lutions are strongly restrained by the contact laws. In prac-
tice, the issue is more to find a mechanically admissible solu-
tion (verifying the contact laws and equations of dynamics)
than indeterminacy. In other words, the variability of the so-
lution is often below the precision controlled by εf when the
forces are computed at each time step from the forces at the
preceding step.

6. Time-stepping scheme

In CD method, the global problem of the determination of
forces and velocities, as described above, is associated with a
time-stepping scheme. This scheme is based on the fact that
the first condition of Signorini’s relations in (A2) is the only
condition referring to space coordinates. Both the equations
of dynamics and contact laws are formulated at the velocity
level, and the first condition of Signorini is accounted for by
considering only the effective contacts where δn = 0. Hence,
the contact network is defined explicitly from particle posi-
tions and it will no more evolve during the time interval δt.
But the treatment of forces and velocities is fully implicit,
and the right-limit velocities {~U i+, ωi+} should be used to
increment particle positions.

These remarks devise the following time-stepping scheme.
Let t and t + δt be the considered time interval. The config-
uration {~ri(t)} and particle velocities {~U i(t), ωi(t)} are given
at time t. The latter play the role of left-limit velocities
{~U i−, ωi−}. The contact network {κ,~nκ,~tκ} is set up from
the configuration at time t or from an intermediate configu-
ration {~ri

m} defined by

~ri
m ≡ ~ri(t) +

δt

2
~U i(t). (A28)

When this configuration is used for contact detection, other
space-dependent quantities such as the inverse mass parame-
ters Wκκ

k1k2
and external forces ~U i

ext should consistently be
defined for the same configuration and at the same time
t + δt/2. Then, the forces and velocities are iteratively de-
termined for the contact network and the right-limit particle
velocities {~U i+, ωi+} are calculated. The latter correspond to
the velocities at the end of the time step t + δt:

~U i(t + δt) = ~U i+, (A29)

ωi(t + δt) = ωi+. (A30)

Finally, the positions are updated by integrating the updated
velocities:

~ri(t + δt) = ~ri
m +

δt

2
~U i(t + δt), (A31)

θi(t + δt) = θi
m +

δt

2
ωi(t + δt). (A32)



This scheme is unconditionally stable due to its inherent
implicit time integration. Hence, no damping parameters at
any level are needed. For this reason, the time step δt can
be large. The real limit imposed on the time step is cumula-
tive round-off errors in particle positions since the latter are
updated from the integration of the velocities. Although the
excessive overlaps have no dynamic effect in the CD method,

they falsify the geometry and thus the evolution of the sys-
tem. A sufficiently high precision or a large enough number
of iterations is required to avoid such errors. The time step
is not a precision parameter but a coarse-graining parameter
for nonsmooth dynamics. It should be reduced if the impulse
dynamics at small time scales is of interest.
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[55] F. Radjäı and E. Azéma, Eur. J. Env. Civil Engineering

13, 204 (2009).
[56] F. Dubois and M. Jean, in Analysis and Simulation of

Contact Problems, edited by P. Wriggers and U. Nack-
enhorst (Springer Berlin / Heidelberg, 2006), vol. 27 of
Lecture Notes in Applied and Computational Mechan-

ics, pp. 375–378, 10.1007/3-540-31761-9 44, URL http:

//dx.doi.org/10.1007/3-540-31761-9 44.
[57] A. Taboada, K. J. Chang, F. Radjai, and F. Bouchette,

Journal Of Geophysical Research 110, 1 (2005).
[58] C. Voivret, F. Radjai, J.-Y. Delenne, and M. S. E. Yous-

soufi, Phys Rev E 76, 021301 (2007).

[59] GDR-MiDi, Eur. Phys. J. E 14, 341 (2004).
[60] J. Mitchell and K. Soga, Fundamentals of Soil Behavior

(Wiley, New-York, NY, 2005).
[61] J. J. Moreau, in Friction, Arching, Contact Dynamics,

edited by D. E. Wolf and P. Grassberger (World Scien-
tific, Singapore, 1997), pp. 233–247.

[62] M. Oda, J. Koshini, and S. Nemat-Nasser, Geotechnique
30, 479 (1980).

[63] L. Rothenburg and R. J. Bathurst, Geotechnique 39, 601
(1989).

[64] F. Radjai, D. E. Wolf, M. Jean, and J. Moreau, Phys.
Rev. Letter 80, 61 (1998).

[65] F. Radjai, H. Troadec, and S. Roux, in Granular Materi-

als: Fundamentals and Applications, edited by S. Antony,
W. Hoyle, and Y. Ding (RS.C, Cambridge, 2004), pp.
157–184.

[66] B. Cambou, P. Dubujet, and C. Nouguier-Lehon, Me-
chanics of Materials 36, 1185 (2004).

[67] C. Nouguier-Lebon, E. Vincens, and B. Cambou, Inter-
national journal of Solids and Structures 42, 6356 (2005).

[68] N. Estrada, A. Taboada, and F. Radjai, Phys Rev E 78,
021301 (2008).

[69] C. Voivret, F. Radjai, J.-Y. Delenne, and M. S. E. Yous-
soufi, Phys. Rev. Lett. 102, 178001 (2009).
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