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Abstract

We present a new Approximate Riemann Solver (ARS) for the gas
dynamics equations in Lagrangian coordinates and with general non lin-
ear pressure laws. The design of this new ARS relies on a generalized
Suliciu pressure relaxation approach. It gives by construction the exact
solutions for isolated entropic shocks and we prove that it is Lipschitz-
continuous and satisfies an entropy inequality. Finally, the ARS is used
to develop either a classical entropy conservative Godunov-type method,
or a Glimm-type (random sampling based Godunov-type) method able to
generate infinitely sharp discrete shock profiles. Numerical experiments
are proposed to prove the validity of these approaches.

1 Introduction

In this paper we consider the following non linear system of barotropic gas
dynamics equations in Lagrangian coordinates :

{

∂tτ − ∂xu = 0,
∂tu + ∂xp(τ) = 0,

(x, t) ∈ R × R
+∗, (1)

where τ > 0 represents the inverse of a density, u is the velocity and p = p(τ) > 0
is the pressure of the fluid. We assume that p′(τ) is negative for all τ > 0 so
that the system is known to be strictly hyperbolic with characteristic speeds
λ(−1) = λ(−1)(τ) and λ(1) = λ(1)(τ) given by

λ(−1)(τ) = −
√

−p′(τ), λ(1)(τ) =
√

−p′(τ) (2)

over the phase space Ω given by

Ω = {v = (τ, u)t ∈ R
2, τ > 0, u ∈ R}.
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We introduce the following short form for (1) supplemented with a given initial
condition v0 at time t = 0 :

{

∂tv + ∂xg(v) = 0,
v(x, 0) = v0(x),

(x, t) ∈ R × R
+∗, v(x, t) ∈ Ω. (3)

It is now very well-known that (3) generally does not admit smooth solutions
for large times so that weak solutions in the sense of distributions have to
be considered. Due to the presence of discontinuities, these are generally not
uniquely determined by v0 and the validity of an entropy criterion is added for
the admissibility of discontinuities. More precisely, (3) is supplemented with
the following entropy inequality to be satisfied in the sense of distributions :

∂tU(v) + ∂xF(v) ≤ 0, (4)

where (U ,F) is the entropy-entropy flux pair given by

U(v) =
u2

2
+ e(τ), F(v) = pu, (5)

with

e(τ) = −
∫ τ

p(y)dy.

Note that U(v) is strictly convex by assumption on the derivative of p(τ).
Throughout this paper, we also assume that the pressure p is a twice con-
tinuously differentiable and strictly convex function, that is p′′(τ) > 0 for all
τ > 0, so that the characteristic fields associated with λ(−1) and λ(1) are gen-
uinely nonlinear (GNL) (see for instance [14]). From a theoretical point of view,
existence and uniqueness of an entropy solution is then proved for the Cauchy
problem (3)-(4). We refer for instance the reader to [3] for a review. In partic-
ular, if we consider a Riemann problem connecting two states vL and vR in Ω
and associated with the following initial data

v0(x) =

{

vL for x < 0,
vR for x > 0,

(6)

the solutions (x, t) → v(x/t;vL,vR) have the self-similar structure shown in
Figure 1 where the dotted lines stand for the so-called simple waves associated
with λ(−1) and λ(1). In other words, the initial state vL (respectively vR) is
connected to the right (resp. left) to an intermediate state v∗ by either an
entropy shock wave or a smooth rarefaction wave.

From a numerical point of view, the celebrated Godunov method is an ex-
ample of conservative and entropy satisfying numerical strategy that provides
good approximations of the entropy solution to (3)-(4). Recall indeed that the
Lax-Wendroff theorem (see [14] for details) ensures a convergence to the unique
entropy solution provided that the method does converge. For the sake of com-
pleteness and to fix the notations, we will review the procedure in details in
Section 2 below, but let us briefly recall that the method is made of two steps
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Figure 1: Typical wave structure of a Riemann solution of (3)-(4).

to make evolve piecewise constant approximate solutions from a time t1 to a
next time t2 : a first step in which the solution at time t1 evolves from time
t1 to time t2 according to the PDE model under consideration, namely (3)-(4),
and a second step of projection onto piecewise constant functions. In the first
step and provided that t1 and t2 are sufficiently close, the solution to (3)-(4)
is made of the juxtaposition of Riemann problem solutions set at each point of
discontinuity of the solution at time t1. In the classical Godunov method the
solutions of these Riemann problems (the self-similar structure of which being
given on Figure 1) are exactly calculated, which may be expensive for general
non linear pressure laws p = p(τ).

In order to design cheaper Godunov-type methods, Approximate Riemann
Solvers are often introduced and used in the first step of the method. The
exact simple waves are then approximated in such a way that the underlying
approximate Riemann solutions are easily calculable and consistent with the
exact solution in the integral sense of Harten-Lax-Van Leer [13]. Among the
well-known ARS, and without any attempt to be exhaustive, are the Harten-
Lax-Van Leer’s ARS [13], the Roe’s ARS [18] and the ARS based on a Sulicu-
like pressure relaxation procedure as the ones proposed in [19] (see also [15],
[10], [12], [4], [1], [2], [7]...). Two will be briefly reviewed in the next sections.
Note right now that they generally give rise to accurate and entropy numerical
solutions but they are not able to provide exact Riemann solutions, even in the
simple case of an isolated shock wave (the Roe’s ARS does it but is not naturally
entropic without correction). More precisely, if the Riemann solution v(x, t) to
(3)-(4) and initial data (6) simply consists of an isolated shock wave between
vL and vR propagating with velocity s, that is

v(x, t) =

{

vL for x < st,
vR for x > st,

then the Riemann solution (x, t) → ṽ(x/t;vL,vR) given by the ARS under
consideration is actually an approximation in the sense that v(.;vL,vR) and
ṽ(.;vL,vR) do not coincide. In this paper, our objective is to propose a new
class of ARS that is able to exactly calculate such simple solutions. Our strat-
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egy is based on a suitable generalization of the Sulicu-like pressure relaxation
approache and is shown to be entropy satisfying. We refer the reader to [2] for
similar results at the semi-discrete level and using different strategies.

The outline of the paper is as follows. We first briefly review the cele-
brated Godunov method and two approximate Godunov-type methods. Section
3 presents a new Approximate Riemann Solver based on a generalized Suli-
ciu pressure relaxation approach. At last, Section 4 gives the main properties
satisfied by this new ARS and Section 5 is devoted to numerical experiments.

2 Exact and approximate Godunov-type meth-

ods

For the sake of completeness and in order to fix the notations, we briefly review
in this section the exact or approximate Godunov-type methods in details. We
consider here a given set of l × l hyperbolic equations, l > 1, that we write in
the following condensed form

∂tu + ∂xf(u) = 0, (7)

supplemented with the validity of an entropy inequality

∂tη(u) + ∂xq(u) ≤ 0, (8)

where (η, q) is a strictly convex entropy-entropy flux pair. The eigenvalues are
noted (λ(k)(u))k. Let us supplement (7)–(8) with an initial data u0.

Let us introduce a space step ∆x and a time step ∆t, bothassumed to be
constant for simplicity. We set ν = ∆t/∆x. Then, we define the mesh interfaces
xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t for n ∈ N, and
we seek at each time tn an approximation un

j of the solution of (7)-(8) on the
interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a piecewise constant approximate
solution x → uν(x, tn) of the solution u is given by

uν(x, tn) = un
j for all x ∈ Cj = [xj−1/2, xj+1/2), j ∈ Z, n ∈ N.

When n = 0, we set xj = (xj−1/2 + xj+1/2)/2 and

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, for all j ∈ Z.

Assuming as given a sequence (un
j )j∈Z at time tn, it is now a question of propos-

ing a way of advancing it to the next time level tn+1.

2.1 Exact Godunov method

We first use the celebrated Godunov scheme in its classical form. As briefly
recalled in the introduction, the Godunov scheme is composed of two steps :
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a first step in which initial data evolves in time according to the PDE model
under consideration, and a second step of projection onto piecewise constant
functions.

Step 1 : Evolution in time
In this first step, one solves the following Cauchy problem

{

∂tu + ∂xf(u) = 0, x ∈ R,
u(x, 0) = uν(x, tn),

(9)

for times t ∈ [0, ∆t]. Recall that x → uν(x, tn) is piecewise constant. Then,
under the usual CFL restriction

∆t

∆x
max
k,u

{|λ(k)(u)|} ≤ 1

2
, (10)

for all the u under consideration, the solution of (9) is known by gluing together
the solutions of the Riemann problems set at each interface. More precisely

u(x, t) = u(
x − xj+1/2

t
;un

j ,un
j+1) for all (x, t) ∈ [xj , xj+1] × [0, ∆t], (11)

where (x, t) → u(x/t;uL,uR) denotes the self-similar solution to the Riemann
problem







∂tu + ∂xf(u) = 0, x ∈ R, t ∈ R
+,∗

u(x, 0) =

{

uL if x < 0,
uR if x > 0,

(12)

whatever uL and uR are in the phase space.
Step 2 : Projection (tn → tn+1)

Aim of this second step is to get a piecewise constant approximate solution on
each cell Cj at time tn+1. This may be simply done by averaging the solution
x → u(x, ∆t) given by (11), as expressed by the following update formula :

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x, ∆t)dt, j ∈ Z. (13)

Actually, it is well-known that one can provide an even simpler formula for un+1
j

from Green’s theorem and using (9) and (13). More precisely we also have

un+1
j = un

j − ∆t

∆x
(fn

j+1/2 − fn
j−1/2) for all j ∈ Z, (14)

where the numerical fluxes are given by

fn
j+1/2 = f(u(0±;un

j ,un
j+1)) for all j ∈ Z,

and classical notations have been used for the traces at 0− and 0+ of the Rie-
mann solutions under consideration. Note in passing that we necessarily have
for all j ∈ Z :

f(u(0−;un
j ,un

j+1)) = f(u(0+;un
j ,un

j+1)). (15)

That is indeed obvious if u(0−;un
j ,un

j+1) = u(0+;un
j ,un

j+1) while in the opposite
case, the associated discontinuity is necessarily stationary and (15) follows from
Rankine-Hugoniot conditions. In other words, the method is conservative at the
corresponding interface j + 1/2. We refer again to [14] for more details.
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2.2 Approximate Godunov-type methods

The design principle of Godunov-type method is to replace the exact solution
to the Riemann problems set at each interface by an approximate solution. We
briefly recall in this section the notion of consistency in the integral sense of
such a self-similar approximate Riemann solution using the same notations as
above. We also derive the corresponding approximate Godunov-type schemes
for approximating the solutions to (7) and refer for instance to [14] for the
details.

Solving the Riemann problem amounts to find the solution to (12). Let us
consider a simple approximate Riemann solver (x, t) → ũ(x/t;uL,uR) made of
l +1 constant states uk separated by discontinuities propagating with velocities
λk = λk(uL,uR), namely

ũ
(x

t
;uL,uR

)

=































u0 = uL, x
t < λ1,

...
uk, λk < x

t < λk+1,
...
ul = uR, x

t > λl.

(16)

If ∆x > 0 and ∆t > 0 are respectively the constant space and time steps that
verify the CFL condition

max
1≤k≤l

|λk(uL,uR)| ∆t

∆x
≤ 1

2
, (17)

the approximate Riemann solver is said to be consistent with the integral form
of (7) over the interval [−∆x

2 , ∆x
2 ] if the integral of (16) equals the integral of

the exact solution which equivalently writes

f(uR) − f(uL) =
l

∑

k=1

λk(uL,uR)(uk − uk−1). (18)

Then, the approximate Godunov scheme reads














un+1
j = un

j − ∆t

∆x
(fn

j+ 1
2

− fn
j− 1

2

),

fn
j+ 1

2

= f(un
j ,un

j+1),

(19)

with

f(uL,uR) =
1

2

{

f(uL) + f(uR) −
l

∑

k=1

|λk(uL,uR)|(uk − uk−1)

}

.

As far as the consistency with the entropy inequality (8) is concerned, the simple
approximate Riemann solver is said to be consistent with the integral form of
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(8) if and only if under the CFL condition (17) we have

q(uR) − q(uL) ≤
l

∑

k=1

λk(uL,uR)
(

η(uk) − η(uk−1)
)

. (20)

Then, the numerical scheme defined by (19) satisfies the following discrete en-
tropy inequality















η(un+1
j ) ≤ η(un

j ) − ∆t

∆x
(qn

j+ 1
2

− qn
j− 1

2

),

qn
j+ 1

2

= q(un
j ,un

j+1),

(21)

with

q(uL,uR) =
1

2

{

q(uL) + q(uR) −
l

∑

k=1

|λk(uL,uR)|
(

η(uk) − η(uk−1)
)

}

. (22)

The CFL condition associated with this explicit in time Godunov-type scheme
naturally reads

max
1≤k≤l

| λk(un
j ,un

j+1) |
∆t

∆x
≤ 1

2
,

for all j. Again, we refer to [14] for more details.

2.3 Examples of Approximate Riemann Solvers

We briefly review in this section two celebrated approximate Riemann solvers,
namely the Harten, Lax van Leer (HLL) [13] and the Suliciu relaxation [19]
Riemann solvers. They are both known to generally give rise to accurate and
entropy numerical solutions but as already said in the introduction, they are not
able to provide exact Riemann solutions in the simple situation of an isolated
shock wave. An extension of the Suliciu relaxation Riemann solver will be
proposed in the next sections to overcome this shortcoming.

2.3.1 HLL Approximate Riemann Solver

The approximate Riemann solver proposed by Harten, Lax and van Leer in [13]
corresponds to the choice l = 1 :

ũ
(x

t
;uL,uR

)

=







uL, x
t < λ1,

u∗, λ1 < x
t < λ2,

uR, x
t > λ2,

(23)

where the consistency relation (18) easily yields

u∗ =
λ2 uR − λ1 uL

λ2 − λ1
− f(uR) − f(uL)

λ2 − λ1
.
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The typical structure is then as represented on Figure 2 below. This simple
approximate Riemann solver is shown to be consistent with the integral form of
(8) under the CFL condition (17) provided that λ1 and λ2 satisfy the so-called
sub-characteristic condition

λ1 < λ(k)(τ) < λ2, for all k = −1, 1, for all τ,

where λ(k)(τ), k = −1, 1 are given by (2) and for all the values of τ involved in
the exact Riemann solution. In other words, the information has to propagate
faster in the approximate solution than in the exact one.

x

tλ1 λ2

uL

u∗ u∗

uR

Figure 2: Typical wave structure of a HLL approximate Riemann solution to
(12).

2.3.2 Suliciu Relaxation ARS

Approximate Riemann solvers based on the so-called relaxation approach are
nothing but exact Riemann solvers but for a suitable extended system. By
suitable, we mean in particular that the enlarged hyperbolic model will have
the property of being non linear with only linearly degenerate fields, so that the
Riemann solutions are uniquely made of discontinuities and can be explicitly
calculated. Motivated by the work of Chen, Levermore and Liu [10] and Jin
and Xin [15], we follow here a similar approach to the work of Suliciu [19] (see
also [12], [4], [7], [1], [2]...). We focus here on the particular system (1)-(4) under
consideration in this paper. It consists in replacing the non linear pressure law
p(τ) in the original model by a new independent variable evolving according
to its own equation. More precisely, we propose to consider the following non
linear first order system with singular perturbation :











∂tτ − ∂xu = 0,
∂tu + ∂xπ = 0,

∂tT =
1

ǫ
(τ − T ),

(24)

with the following closure equation

π = π(T ) = p(T ) + a2(T − τ). (25)
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From this definition, we clearly recover the original system (1) in the asymptotic
regime ǫ → 0 since we get T = τ . At least formally and for small positive values
of ǫ, the solutions of the relaxation system (24) are thus expected to be very
close to the solutions of the equilibrium system (1). We refer for instance the
reader to [7] for a rigorous statement of this convergence result under the well-
known assumption that information propagates faster in (24) than in (1) (see
Chen, Levermore and Liu [10]). As will be seen hereafter, this sub-characteristic
condition writes here

a2 > max
τ

−p′(τ), (26)

for all the τ under consideration. For the sake of simplicity, let us introduce the
condensed notation vr = (τ, u, T )t together with the natural phase space :

Ωr = {vr = (τ, u, T )t ∈ R
3, τ > 0, T > 0}.

The next lemma, the proof of which is left to the reader, motivates the interest
of the relaxation system.

Lemma 2.1. Let be given a > 0. Then the first order system extracted from
(24) is hyperbolic over Ωr with the following distinct eigenvalues :

λ(−1,r) = −a, λ(0,r) = 0, λ(1,r) = a,

and all the characteristic fields are linearly degenerate.

As a consequence of the linear degeneracy of the characteristic fields (see [14]),
the exact Riemann solution (x, t) → vr(x/t;vr

L,vr
R) to







∂tτ − ∂xu = 0,
∂tu + ∂xπ = 0,
∂tT = 0,

with initial condition

v(x, t = 0) =

{

vr
L if x < 0,

vr
R if x > 0,

is explicitly known (see for instance [4] or [1]) for all vr
L and vr

R in Ωr. More
precisely, we have the following lemma :

Lemma 2.2. Let be given vr
L and vr

R in Ωr at equilibrium, i.e such that TL = τL

and TR = τR, and a > 0. Then, the Riemann solution (x, t) → vr(x/t;vr
L,vr

R)
is made of four constant states separated by three contact discontinuities prop-
agating with velocities λ(−1,r) = −a, λ(0,r) = 0 and λ(1,r) = a, namely

vr(x/t;vr
L,vr

R) =















vr
L if x

t < −a,
vr

L∗ if −a < x
t < 0,

vr
R∗ if 0 < x

t < a,
vr

R if x
t > a.

(27)
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The intermediate states vr
L∗ and vr

R∗ are defined from :











uL∗ = uR∗ = u∗ :=
1

2
(uL + uR) − 1

2a
(pR − pL),

πL∗ = πR∗ = π∗ :=
1

2
(pL + pR) − a

2
(uR − uL),

(28)

and

τL∗ = τL +
u∗ − uL

a
, τR∗ = τR − u∗ − uR

a
, (29)

TL∗ = τL, TR∗ = τR.

To conclude this section, the proposed approximate Riemann solver for (12)
then naturally corresponds to the choice l = 3 and

ṽ
(x

t
;vL,vR

)

=















vL, x
t < λ(−1,r) = −a,

vL∗ = v(vr
L∗), −a < x

t < λ(0,r) = 0,

vR∗ = v(vr
R∗), 0 < x

t < λ(1,r) = a,
vR, x

t > a,

(30)

where we have set
v(vr) = v

(

(τ, u, T )t
)

= (τ, u)t. (31)

The typical structure is then given on Figure 3 below. It can be easily proved

x

0-wave

t−a-wave a-wave

vL

vL∗ vR∗

vR

Figure 3: Typical wave structure of a classical relaxation approximate Riemann
solution of (12).

that the consistency relation (18) is satisfied. The consistency with the integral
form of the entropy inequality (8) is also valid under the CFL condition (17)
and provided that the constant a is carefully chosen, more precisely if

a2 > max
τ∈⌊τL,τL∗,τR∗,τR⌉

−p′(τ). (32)

We refer again for instance the reader to [4], [1], [7]. However, let’s keep in mind
that this consistency property will be proved in a more general context in the
next sections. Let us just mention for the moment that an important quantity
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for such a proof and for the relaxation system (24) is the so-called relaxation
specific total energy Σ(vr) defined by:

Σ(vr) =
u2

2
+ e(T ) +

π2 − p2(T )

2 a2
. (33)

It plays the role of a relaxation entropy which coincides at equlibrium T = τ
with the entropy U defined by (5). By the chain rule and for smooth solutions
of (24), we easily get:

∂tΣ(vr) + ∂xπ(vr)u = −1

ǫ
(a2 + p′(T ))(T − τ)2, (34)

the right-hand side being negative under the sub-characteristic condition (26)
(the relaxation entropy is dissipated by the relaxation procedure). Then, the
proposed relaxation process is entropy consistent in the sense of [10].

3 Generalized Suliciu Relaxation ARS

In order to motivate the introduction of a generalized Suliciu relaxation ARS,
let us observe that if the initial data is such that vL and vR can be joined by an
isolated admissible shock wave propagating with velocity s 6= 0 (s = s(vL,vR)),
there is no chance for the classical Suliciu relaxation ARS to be exact. Indeed,
the sub-characteristic condition imposes in particular −a < s < a. Note also
that this relaxation ARS satisfies TL∗ = τL and TR∗ = τR which is not expected
for an isolated shock wave since the discontinuity between the left and right
states should occur across a wave propagating with velocity s and not across an
artificial stationary wave. In order to overcome this shortcoming, we propose to
introduce an additional wave in this Approximate Riemann Solver, with a speed
of propagation to be defined and denoted by σ. Naturally, one of our objectives
will be to make σ coincide with s in the case vL and vR can be joined by an
admissible shock wave propagating with velocity s. The typical wave structure
of this new ARS is represented on Figures 4 and 5 below, for the specific choices
σ > 0 and σ < 0 respectively. The original idea is in fact to introduce a new
intermediate state in the solution and to impose a relevant jump condition for
T across this new wave. This jump condition will in fact dictate the definition
of the intermediate states v1, v2 and v3 on Figures 4 and 5. More precisely,
being given vr

L and vr
R in Ωr at equilibrium, i.e such that TL = τL and TR = τR,

and setting vL = v(vr
L) and vR = v(vr

R) as in (31), the new ARS will be given
by the exact Riemann solver of the following modified relaxation system







∂tτ − ∂xu = 0,
∂tu + ∂xπ = 0,
∂tT = M(vL,vR, θ)δx=σt,

(35)

where for some real parameter θ ∈ [0, 1], the weight M(vL,vR, θ) of the Dirac
measure concentrated on the new discontinuity x = σt with σ = σ(vL,vR) will
be such that

T2(θ) ∈ ⌊TL, TR⌉.
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Here T2(θ) is defined as a nonlinear function of the real parameter θ, solving
under a relevant sub-characteristic condition given hereafter,

p(T2(θ)) + a2T2(θ) = I2(θ), (36)

with

I2(θ) =

{

(1 − θ)IL + θIR, σ < 0,
θIL + (1 − θ)IR, σ > 0.

(37)

Here and with clear notations, Ik = p(Tk)+a2Tk, k = L, R. We will still have by
construction T1 = τL and T3 = τR. The free parameter θ ∈ [0, 1] will be defined
hereafter in order to satisfy the entropy inequality (20) with (η, q) = (U ,F). Let
us observe from (37) that we will recover the classical Suliciu relaxation ARS of
the previous section for the choice θ = 0, while the choice θ = 1 will restore the
case of an admissible isolated shock wave between vL and vR and propagating
with velocity s, and will naturally lead to v1 = v2 = vL, v3 = vR and s = σ if
s > 0, and v1 = vL, v2 = v3 = vR and s = σ if s < 0. Let us underline at this
stage that in practice, only the definition of I2(θ) will matter in the sense that
the explicit knowledge of T2(θ) can be completely bypassed in the finite volume
formulation. Its interest relies on the non linear entropy analysis we intend to
perform.

3.1 Definition of σ

Before giving the proposed ARS, let us be more precise on the definition of σ.
This speed of propagation of the additional wave plays in some sense the role
of a prediction for the speed of propagation s of an isolated shock wave joining
two states v− and v+ in the exact Riemann solution associated with the initial
states vL and vR. By the well-known Rankine-Hugoniot relations, we have











s = −u+ − u−

τ+ − τ−
,

s =
p+ − p−
u+ − u−

,

with τ+ < τ− and s < 0 for an admissible shock associated with the first
eigenvalue λ(−1) and τ+ > τ− and s > 0 for an admissible shock associated with
λ(1). Recall that the latter relations are equivalent to the validity of the entropy
inequality (4) across the discontinuity, that is to

−s(UR − UL) + (FR −FL) ≤ 0,

see for instance [14]. Note also that the first two relations also give

s2 = −p+ − p−
τ+ − τ−

, (38)

this relation involving only the variable τ . The right-hand side of (38) is always
positive since p′(τ) < 0 for all τ by assumption. As a natural and generic
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approximation of s, we propose (with a little abuse in the notations)

σ = σ(vL,vR) = σ(τL, τR) =























−
√

−pR − pL

τR − τL
if τR < τL,

√

−pR − pL

τR − τL
if τR > τL.

(39)

As expected, this prediction is of course exact when vL and vR can actually be
joined by an admissible discontinuity. Note also that it is actually well-defined
even in the asymptotic regime τL = τR since

lim
τR→τ−

L

σ = −
√

−p′(τL)

and

lim
τR→τ+

L

σ = +
√

−p′(τL).

The apparent defect in continuity will be discussed in more details but no-
tice from now on that it will not prevent the proposed ARS to be Lipschitz-
continuous.

The next two sections define the proposed ARS in both situations σ > 0 and
σ < 0.

3.2 The case σ > 0

We turn in this section to the definition of the intermediate states v1, v2 and v3

in the case σ > 0, see Figure 4. Each state containing three components, nine

x

0-wave

t−a-wave a-waveσ-wave

vL

v1 v2 v3

vR

Figure 4: Typical wave structure of the generalized Suliciu relaxation ARS in
the case σ > 0.

relations are expected. As motivated in the previous section, we first impose
the consistency relations (18) associated with the first two equations of (35),
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which gives here
{

(uL − uR) = −a(τ1 − τL) + σ(τ3 − τ2) + a(τR − τ3),
πR − πL = −a(u1 − uL) + σ(u3 − u2) + a(uR − u3),

(40)

where πL = pL and πR = pR since vr
L and vr

R are assumed to be at equilibrium
(TL = τL and TR = τR). Then, we make the natural choice of imposing the
Rankine-Hugoniot relations associated with the mass conservation (i.e. the first
equation in (35)) across each wave of the ARS. We get















uL − aτL = u1 − aτ1,
u1 = u2,
u2 + στ2 = u3 + στ3,
uR + aτR = u3 + aτ3.

(41)

Note however that (41) provides only three additional independent relations
since the first equation of (40) is a linear combination of the four equations in
(41). Then, four equations are still missing.
Considering now the Rankine-Hugoniot relations associated with the momentum
conservation (i.e. the second equation in (35)) across each wave of the ARS leads
to















auL + πL = au1 + π1,
π1 = π2,
σu2 − π2 = σu3 − π3,
auR − πR = au3 − π3.

(42)

Here again, the sum of the four equations in (42) gives the second equation
in (40), so that one equation is still missing. Note in passing that the first
(respectively last) equations of (41) and (42) imply that I = π+a2τ is constant
across the first (resp. last) wave, that is

{

I1 = IL,
IR = I3,

(43)

or equivalently (still under a relevant sub-characteristic condition given here-
after)

{

T1 = TL,
TR = T3,

(44)

thanks to (36). At last, the system is closed by considering the Rankine-
Hugoniot relation associated with the last equation in (35) and the σ-wave,
which writes here

−σ(T3 − T2) = M(vL,vR, θ)

where M(vL,vR, θ) is such that

I2 = (1 − θ)IR + θIL, θ ∈ [0, 1]. (45)

Note in particular that for θ = 0, we have I2 = IR which is expected.
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Solving (41)-(42)-(45). Thus, one has to solve the nine by nine linear system
(41)-(42)-(45) in order to determine the intermediate states of our ARS. Let us
first evaluate the jumps of τ , u and π across the σ-wave. The last equation of
(43) together with (45) first gives

π3 − π2 = θ(IR − IL) − a2(τ3 − τ2)

with, thanks to mass and momentum conservation across the σ-wave,

σ(τ3 − τ2) = −(u3 − u2) = −π3 − π2

σ
.

Then we get

π3 − π2 = θ(IR − IL) +
a2

σ2
(π3 − π2),

and straightforwardly



























π3 − π2 = −σ2θ(IR − IL)

a2 − σ2
= −σ2θ(τR − τL),

u3 − u2 = −σθ(IR − IL)

a2 − σ2
= −σθ(τR − τL),

τ3 − τ2 =
θ(IR − IL)

a2 − σ2
= θ(τR − τL),

(46)

since IR −IL = (a2 − σ2)(τR − τL) (recall that IR −IL = (pR − pL) + a2(τR −
τL)and pR − pL = −σ2(τR − τL)). As expected, we clearly recover that the
jumps of τ , u and π are trivial when θ goes to zero and the classical Suliciu
relaxation solver is recovered. Let us then evaluate the pressure and velocity
associated with v2 and v3. Since the pressure and velocity are constant across
the 0-wave, the first and last equations of (42) give

{

auL + πL = au2 + π2,
auR − πR = au3 − π3,

or equivalently, using (46),











π3 + π2 = 2π∗ −
aσθ(IR − IL)

a2 − σ2
= 2π∗ − aσθ(τR − τL),

u3 + u2 = 2u∗ −
σ2θ(IR − IL)

a(a2 − σ2)
= 2u∗ −

σ2θ

a
(τR − τL),

(47)

where we have set










u∗ =
1

2
(uL + uR) − 1

2a
(πR − πL),

π∗ =
1

2
(πL + πR) − a

2
(uR − uL).

Observe that these values correspond to the intermediate values of the velocity
and pressure in the classical Suliciu relaxation Approximate Riemann Solver
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proposed in section 2.3.2. Combining (46) and (47) easily gives











































π2 = π∗ −
σθ(IR − IL)

2(a + σ)
= π∗ −

σθ

2
(a − σ)(τR − τL),

π3 = π∗ −
σθ(IR − IL)

2(a − σ)
= π∗ −

σθ

2
(a + σ)(τR − τL),

u2 = u∗ +
σθ(IR − IL)

2a(a + σ)
= u∗ +

σθ

2a
(a − σ)(τR − τL),

u3 = u∗ −
σθ(IR − IL)

2a(a − σ)
= u∗ −

σθ

2a
(a + σ)(τR − τL),

(48)

while the specific volumes follow from the mass conservation across the a-wave :











τ3 = τR +
1

a
(uR − u3),

τ2 = τ3 −
θ(IR − IL)

a2 − σ2
= τ3 − θ(τR − τL).

(49)

In particular, we note that when θ equals zero we recover the intermediate
values associated with the classical Suliciu relaxation approach. On the other
hand, the mass conservation across the −a-wave allows to determine the specific
volume of v1 by

τ1 = τL +
1

a
(u1 − uL),

which completes the calculation of the three intermediate states since

{

u1 = u2,
π1 = π2.

3.3 The general case

The case σ < 0 can be treated following exactly the same way but considering
the wave pattern given on Figure 5.

x

t

0-wave

−a-wave a-waveσ-wave

vL

v1 v2 v3

vR

Figure 5: Typical wave structure of the generalized Suliciu relaxation ARS in
the case σ < 0.
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Actually, we can take advantage of the underlying Galilean symmetry to
infer the required formulae from the ones derived in the setting of a positive
wave speed σ > 0. Galilean symmetry is achieved when reversing the x-axis
and exchanging the sign of all velocities. Namely being given a pair of states
(vr

L,vr
R) with associated wave speed σ < 0, we first define v̂r

L (respectively
v̂r

R) from vr
L (resp. vr

R) with velocity ûL = −uL (resp. ûR = −uR), all
the other data being kept unchanged. We then solve the generalized Riemann
solution which we denote ω̂(x, t; v̂r

R, v̂r
L,−σ) when changing the speed sign of

the additional wave σ̂ = −σ. Let us stress that by Galilean symmetry, the role
of the modified left and right states and the sign of the additional wave speed
σ̂ = −σ > 0 have been reversed. The self-similar solution coming with the
original pair (vr

L,vr
R), denoted by ω(x, t;vr

L,vr
R, +σ), is then recovered when

reversing the x-axis and the sign of all the velocities in the formulae defining
ω̂(x, t; v̂r

R, v̂r
L,−σ), the other quantities being kept unchanged, except τ2 and

I2(θ).
In order to gather the definitions of the intermediate states in the same

formalism in both cases σ < 0 and σ > 0, we propose to use the subscript −

(respectively +) for the left (resp. right) state of the σ-wave, instead of 2 in the
case σ > 0 and 1 in the case σ < 0 (resp. 3 in the case σ > 0 and 2 in the case
σ < 0). It is then easily shown that we have the following definitions for the
components of the intermediate states, the calculations being left to the reader :







































































































u− = u∗ +
σθ(IR − IL)

2a(a + σ)
= u∗ +

σθ

2a
(a − σ)(τR − τL),

u+ = u∗ −
σθ(IR − IL)

2a(a − σ)
= u∗ −

σθ

2a
(a + σ)(τR − τL),

τ1 = τL +
1

a
(u− − uL),

τ3 = τR +
1

a
(uR − u+),

τ2 =















τ1 +
σθ(IR − IL)

σ(a2 − σ2)
= τ1 + θ(τR − τL), σ < 0,

τ3 −
σθ(IR − IL)

σ(a2 − σ2)
= τ3 − θ(τR − τL), σ > 0,

π− = π∗ −
σθ(IR − IL)

2(a + σ)
= π∗ −

σθ

2
(a − σ)(τR − τL),

π+ = π∗ −
σθ(IR − IL)

2(a − σ)
= π∗ −

σθ

2
(a + σ)(τR − τL),

(50)

with














I1 = IL,

I2(θ) =

{

(1 − θ)IL + θIR = IL + θ(IR − IL), σ < 0,
(1 − θ)IR + θIL = IR − θ(IR − IL), σ > 0,

I3 = IR.

(51)

Observe that we have expressed the values of the relaxation pressure π every-
where within the fan instead of the underlying values of the relaxation specific
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volume T . In fact, only the values of (τ, u, π) enter the definition of the forth-
coming numerical flux function. Notice that all these values linearly depend on
the real parameter θ, and are thus readily defined as soon as θ is conveniently
prescribed. As will be seen in the forthcoming sections, the non linear function
T2(θ) is in fact implicitly defined according to (36) so as to yield some explicit
bound for θ from a non linear entropy analysis.

3.4 Basic properties

We conclude this section by establishing some basic properties that will be useful
in the forthcoming developments.

Lemma 3.1. Under the sub-characteristic condition

a2 > max
τ∈⌊τL,τR⌉

−p′(τ) (52)

we have
(i) σ(IR − IL) ≥ 0 (and then σθ(IR − IL) ≥ 0),
(ii) τ1 ≥ τL∗ > 0,
(iii) τ3 ≥ τR∗ > 0,
(iv) τ2 ≤ τL∗ if σ < 0,
(v) τ2 ≤ τR∗ if σ > 0,
where τL∗ and τR∗ are defined in (29). In addition and provided that θ satisfies

σθ(IR − IL) ≤ a2|σ|(a + |σ|)
a + |σ|/2

(1 − α)τL∗ if σ < 0,

σθ(IR − IL) ≤ a2|σ|(a + |σ|)
a + |σ|/2

(1 − α)τR∗ if σ > 0,
(53)

we have for all α ∈ (0, 1)
(vi) τ2 ≥ ατL∗ if σ < 0,
(vii) τ2 ≥ ατR∗ if σ > 0.

Proof. Let us first recall that θ ∈ [0, 1] and σ is defined by (39).
(i) We clearly have by definition of I = I(τ)

σ(IR − IL) = σ
(

p(τR) − p(τL) + a2(τR − τL)
)

= σ(τR − τL)(a2 + p′(ξ))

for some ξ in the interval ⌊τL, τR⌉. Which clearly gives the conclusion under the
condition (52) and since σ(τR − τL) ≥ 0 by (39).
(ii) We have by (50)

τ1 = τL +
u∗ − uL

a
+

σθ(IR − IL)

2a2(a + σ)
,

that is by (29)

τ1 = τL∗ +
σθ(IR − IL)

2a2(a + σ)
.
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Under the condition (52), we clearly have (a + σ) > 0 so that τ1 ≥ τL∗ by (i).
(iii) We have by (50)

τ3 = τR +
uR − u∗

a
+

σθ(IR − IL)

2a2(a − σ)
,

that is by (29)

τ3 = τR∗ +
σθ(IR − IL)

2a2(a − σ)
.

Under the condition (52), we clearly have (a − σ) > 0 so that τ3 ≥ τR∗ by (i).
(iv) We have by (50)

τ2 = τ1 +
σθ(IR − IL)

σ(a2 − σ2)
,

that is

τ2 = τL∗ +
σθ(IR − IL)

2a2(a + σ)
+

σθ(IR − IL)

σ(a2 − σ2)
,

or equivalently

τ2 = τL∗ +
σθ(IR − IL)(2a2 + σa − σ2)

2a2σ(a2 − σ2)

Under the condition (52), we clearly have (2a2+σa−σ2) = 2(a+σ)(a−σ/2) > 0
and then τ2 ≤ τL∗ since here σ < 0.
(v) We have by (50)

τ2 = τ3 −
σθ(IR − IL)

σ(a2 − σ2)
,

that is

τ2 = τR∗ +
σθ(IR − IL)

2a2(a − σ)
− σθ(IR − IL)

σ(a2 − σ2)
,

or equivalently

τ2 = τR∗ +
σθ(IR − IL)(−2a2 + σa + σ2)

2a2σ(a2 − σ2)
.

Under the condition (52) and since we have assumed σ > 0, we clearly have
(−2a2 + σa − σ2) = −2a(a − σ)(a + σ/2) < 0 and then τ2 ≤ τR∗.
(vi) Let us assume σ < 0. We have

τ2 = τL∗ +
σθ(IR − IL)(2a2 + σa − σ2)

2a2σ(a2 − σ2)

so that

τ2 ≥ ατL∗ ⇐⇒ σθ(IR − IL)(2a2 + σa − σ2) ≤ 2a2|σ|(a2 − σ2)(1 − α)τL∗

which gives as expected

τ2 ≥ ατL∗ ⇐⇒ σθ(IR − IL) ≤ a2|σ|(a + |σ|)
a + |σ|/2

(1 − α)τL∗.
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(vii) Let us now assume σ > 0. We have

τ2 = τR∗ +
σθ(IR − IL)(−2a2 + σa + σ2)

2a2σ(a2 − σ2)

so that

τ2 ≥ ατR∗ ⇐⇒ σθ(IR − IL)(2a2 − σa − σ2) ≤ 2a2σ(a2 − σ2)(1 − α)τR∗

that is

τ2 ≥ ατR∗ ⇐⇒ σθ(IR − IL) ≤ a2σ(a + σ)

a + σ/2
(1 − α)τR∗

which is the expected inequality.

4 Properties of the generalized Suliciu Relax-

ation ARS

Aim of this section is to define the free parameter θ and establish the main prop-
erties of the proposed ARS in terms of non linear stability (entropy inequality),
continuity and accuracy.

4.1 Entropy inequality

Our objective in this section is to prove under a relevant choice of θ that the
proposed ARS satisfies a discrete entropy inequality. Due to Galilean symmetry,
we focus ourselves and without restriction to the situation of a positive velocity
σ > 0. According to (20), we have to prove that

F(vR)−F(vL) ≤ −a
(

U(v1)−U(vL)
)

+σ
(

U(v3)−U(v2)
)

+a
(

U(vR)−U(v3)
)

,
(54)

where U and F are definied by (5). Let us introduce the so-called relaxation
entropy-entropy flux pair (Σ,Fr) defined by

Σ(vr) =
u2

2
+ e(T ) +

π2 − p2(T )

2a2
, Fr(vr) = πu. (55)

We then propose to prove the validity of (54) by showing the following set of
equalities and inequalities,















































F(vR) −Fr(vr
3) = a

(

U(vR) − Σ(vr
3)

)

,
0 ≤

(

a − σ
)(

Σ(vr
3) − U(v3)

)

,
Fr(vr

3) −Fr(vr
2) ≤ σ

(

Σ(vr
3) − Σ(vr

2)
)

,
0 ≤ σ

(

Σ(vr
2) − U(v2)

)

,
Fr(vr

2) −Fr(vr
1) = 0,
0 ≤ σ

(

Σ(vr
1) − U(v1)

)

,
Fr(vr

1) −F(vL) = −a
(

Σ(vr
1) − U(vL)

)

,
0 ≤

(

a + σ
)(

Σ(vr
1) − U(v1)

)

,

(56)
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which by direct summation clearly resumes to a set of sufficient conditions. Let
us first focus on the three equalities, which equivalently write as follows







Fr(vr
R) −Fr(vr

3) = a
(

Σ(vr
R) − Σ(vr

3)
)

,
Fr(vr

2) = Fr(vr
1),

Fr(vr
1) −Fr(vL) = −a

(

Σ(vr
1) − Σ(vr

L)
)

,

since the left and right states vL
r and vR

r are at equilibrium, that is πk =
p(Tk) = p(τk), k = L, R. The second equality clearly holds since π2 = π1 and
u2 = u1. Thanks to the definitions (55) and the continuity properties (44), the
first and third ones write











πRuR − π3u3 = a
(1

2
u2

R +
1

2a2
π2

R − 1

2
u2

3 −
1

2a2
π2

3

)

,

π1u1 − πLuL = −a
(1

2
u2

1 +
1

2a2
π2

1 − 1

2
u2

L − 1

2a2
π2

L

)

,

or equivalently































































(πR − π3)(uR + u3)

2
+

(uR − u3)(πR + π3)

2
=

a
(uR − u3)(uR + u3)

2
+

(πR − π3)(πR + π3)

2a
,

(π1 − πL)(u1 + uL)

2
+

(u1 − uL)(π1 + πL)

2
=

−a
(u1 − uL)(u1 + uL)

2
− (π1 − πL)(π1 + πL)

2a
,

which is valid thanks to the first and last equations of (42). Let us now consider
the first, third, fifth and last inequalities of (56). Since −a < 0 < σ < a, they
are equivalent to







U(v3) ≤ Σ(vr
3),

U(v2) ≤ Σ(vr
2),

U(v1) ≤ Σ(vr
1),

and by definition of U and Σ to







2a2
(

e(τ3) − e(T3)
)

≤ π2
3 − p2(T3),

2a2
(

e(τ2) − e(T2)
)

≤ π2
2 − p2(T2),

2a2
(

e(τ1) − e(T1)
)

≤ π2
1 − p2(T1).

Using that π = p(T ) + a2(T − τ), it equivalently recasts as







2
(

e(τ3) − e(T3)
)

≤ a2(T3 − τ3)
2 + 2p(T3)(T3 − τ3),

2
(

e(τ2) − e(T2)
)

≤ a2(T2 − τ2)
2 + 2p(T2)(T2 − τ2),

2
(

e(τ1) − e(T1)
)

≤ a2(T1 − τ1)
2 + 2p(T1)(T1 − τ1),
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so that second-order Taylor expansions around T easily give







−p′(ξ3) ≤ a2,
−p′(ξ2) ≤ a2,
−p′(ξ1) ≤ a2,

for some ξi within the intervals
(

min(τi, Ti), max(τi, Ti)
)

. Provided that a is
such that the sub-characteristic like condition

a2 > min
τ∈(τm,τM)

−p′(τ) (57)

with, since TL = T1 = τL and T3 = TR = τR,

{

τm = min(τL, τ1, τ2, τ3, τR, T2),
τM = max(τL, τ1, τ2, τ3, τR, T2),

(58)

the first, third, fifth and last inequalities of (56) then hold true.
It then remains to consider the validity of the second inequality of (56). Let us
denote E(θ) the entropy dissipation rate across the σ-wave defined by

E(θ) = −σ
(

Σ(vr
3) − Σ(vr

2)
)

+
(

Fr(vr
3) −Fr(vr

2)
)

.

One has to prove that E(θ) ≤ 0, at least for a relevant choice of θ which is still a
free parameter at this stage. Using the definition of Σ and Fr, we clearly have

E(θ) = −σ
(

(

e(T3) −
p2(T3)

2a2

)

−
(

e(T2) −
p2(T2)

2a2

)

)

−σ(
u2

3

2
− u2

2

2
) + (π3u3 − π2u2)

−σ(
π2

3

2a2
− π2

2

2a2
),

which also writes

E(θ) = −σ
(

(

e(T3) −
p2(T3)

2a2

)

−
(

e(T2) −
p2(T2)

2a2

)

)

− σ2 − a2

2σa2
(π2

3 − π2
2)

since the Rankine-Hugoniot relation σ(u3 − u2) = π3 − π2 yields

−σ(
u2

3

2
− u2

2

2
) + (π3u3 − π2u2) =

π2
3 − π2

2

2σ
,

in view of the following Leibniz formula

π3u3 − π2u2 =
π3 + π2

2
(u3 − u2) +

u3 + u2

2
(π3 − π2).

Using (50) we also have

−σ2 − a2

2σa2
(π2

3 − π2
2) = −σ2 − a2

2σa2
(π3 − π2)(π3 + π2)
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with
{

π3 + π2 = 2π∗ − aσθ(τR − τL),
π3 − π2 = −σ2θ(τR − τL),

so that we eventually get, recalling that T3 = τR :

E(θ) = −σ
(

(

e(τR) − p2(τR)

2a2

)

−
(

e(T2(θ)) −
p2(T2(θ))

2a2

)

)

+
σ2

2a(a2 − σ2)
(IR − IL)2θ

(

θ − 2(a2 − σ2)

aσ

π∗

IR − IL

)

.
(59)

Let us comment on the non linearities in θ that are involved in the entropy
jump condition (59). First observe that the second contribution just resumes to
a nice convex quadratic term with respect to θ (since again a2 > σ2 > 0). Then
the remaining non linearity in θ is obviously related to T2(θ). We propose to
perform a sharp upper-bound of E(θ) that will result in quadratic estimate in
θ. By sharp, it is meant that it systematically coincides for the choice θ = 1 to
the equality (59)

E(1) = −σ
(

(

e(τR) − p2(τR)

2a2

)

−
(

e(τL) − p2(τL)

2a2

)

)

+
σ2

2a(a2 − σ2)
(IR − IL)2

(

1 − 2(a2 − σ2)

aσ

π∗

IR − IL

)

.
(60)

This will allow to exactly capture isolated entropy shock solutions. In order to
provide such a relevant upper bound for E(θ), let us first prove the following
lemma.

Lemma 4.1. Under the sub-characteristic condition (57)-(58), the mapping

I ∈ [min(I2, I3), max(I2, I3)] → f(I) :=
(

e − p2

2a2

)(

T (I)
)

with I2 = p(T2)+a2T2 and I3 = p(T3)+a2T3 is well-defined and strictly convex.

Proof. It is first clear that the function I ∈ [min(I2, I3), max(I2, I3)] → T (I)
is well-defined by the relation

p(T (I)) + a2T (I) = I

under the sub-characteristic condition (57)-(58). We then have

d

dI
(

e − p2

2a2

)(

T (I)
)

= − p

a2
(a2 + p′(T (I)))

dT
dI (I) = −p

(

T (I)
)

a2
,

and then
d2

dI2

(

e − p2

2a2

)(

T (I)
)

= −p′
(

T (I)
)

a2

dT
dI (I) > 0

under the sub-characteristic condition (57)-(58) since

dT
dI (I) =

1

a2 + p′
(

T (I)
) .

23



This concludes the proof.

As an immediate consequence, we have

E(θ) ≤ (61)

θ
(

−σ
(

(e− p2

2a2
)R−(e− p2

2a2
)L

)

+
σ2

2a(a2 − σ2)
(IR−IL)2

(

θ−2(a2 − σ2)

aσ

π∗

IR − IL

)

)

.

Indeed, recall that in the case σ > 0 we have T3 = TR and T2(θ) = T2(I2(θ))
with

I2(θ) = (1 − θ)IR + θIL,

so that

f(IR) − f(I2(θ)) = f(IR) − f
(

(1 − θ)IR + θIL

)

≥ θ
(

f(IR) − f(IL)
)

clearly holds true by convexity of f .

We propose the following condensed form for (61),

E(θ) ≤ σ(IR − IL)θ
(σ(IR − IL)θ

2a(a2 − σ2)
+ A(vL,vR)

)

, (62)

with the following clear definition for A(vL,vR) :

A(vL,vR) = −
(

(e − p2

2a2 )R − (e − p2

2a2 )L

)

(IR − IL)
− π∗

a2
.

Remark 4.2. Observe that the choice θ = 1 reduces to the expected equality :

E(1) = σ(IR − IL)
( σ(IR − IL)

2a(a2 − σ2)
+ A(vL,vR)

)

. (63)

The proposed upper-bound is thus sharp with respect to our purpose, while just
resuming to a factored second order polynomial in θ in the general situation.

4.1.1 Definition of θ

Aim of this short section is to precisely define θ ∈ [0, 1]. From the calculations
above, one has to satisfy (62). Let us recall that σ(IR −IL) ≥ 0 by Lemma 3.1.
A first natural definition is then given by

σ(IR − IL)θ = max
(

0, min
(

σ(IR − IL),−2a(a2 − σ2)A(vL,vR)
)

)

. (64)

But asking in addition for (53), we are led to propose

σ(IR − IL)θ = max
(

0, (65)
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min
(

σ(IR − IL),−2a(a2 − σ2)A(vL,vR),
a2|σ|(a + |σ|)

a + |σ|/2
(1 − α)τ∗

)

)

with

τ∗ =

{

τL∗ if σ < 0,
τR∗ if σ > 0.

The precise value of α ∈ (0, 1) will be optimized in the next sections. Note that
it is not necessary to define θ dividing by σ(IR − IL) (which equals zero when
τL = τR) since first, θ is always multiplied by (IR − IL) in formulas (50) and
(51) that define the ARS, and second by σ 6= 0.

4.2 Lipschitz-continuity

This section aims at proving that the proposed ARS is Lipschitz-continuous
with respect to the initial states vL and vR. It is clear from formulas (50) and
(51) that the only difficulty may come from the approximate speed of propa-
gation σ which is not continuous in the asymptotic regime τL → τR as already
stated in section 3.1. However, we are going to prove that the only quantities
σθ(IR − IL)

(a ± σ)
and

θ(IR − IL)

(a2 − σ2)
=

σθ(IR − IL)

σ(a2 − σ2)
involved in (50) and (51) are ac-

tually Lipschitz-continuous in this regime.

With this in mind, let us first prove that σ(IR − IL)θ equals σ(IR − IL) in
the asymptotic regime τR → τL. Note first that we clearly have

lim
τR→τL

−2a(a2 − σ2)A(vL,vR) =

−2a
(

a2 + p′(τL)
)( (e − p2

2a2 )′(τL)

I ′(τL)
− p(τL)

a2
+

1

2a
(uR − uL)

)

that is, since I(τ) = p(τ) + a2τ and e′(τ) = −p(τ),

lim
τR→τL

−2a(a2 − σ2)A(vL,vR) =

(

a2 + p′(τL)
)(

4p(τL) − (uR − uL)
)

.

On the other hand,

lim
τR→τL

a2|σ|(a + |σ|)
a + |σ|/2

(1 − α)τ∗ =

a2
√

−p′(τL)(a +
√

−p′(τL))

a +
√

−p′(τL)/2
(1 − α)τ∗

with

τ∗ =







τL +
uR − uL

2a
if σ < 0,

τL +
uR − uL

2a
if σ > 0.
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Let us then observe that by definition of σ and I,

σ(IR − IL) = ±
√

−pR − pL

τR − τL

(

pR − pL + a2(τR − τL)
)

which clearly gives
lim

τR→τL

σ(IR − IL) = 0.

As an immediate consequence, σ(IR−IL)θ = σ(IR −IL) = 0 in the asymptotic
regime τR → τL by definition (65).

It is now easy to prove that in the limit τR → τL,

σθ(IR − IL)

(a ± σ)
=

σ(IR − IL)

(a ± σ)

is Lipschitz-continuous, since

σ

(a ± σ)

(IR − IL)

τR − τL

is clearly bounded. Indeed,

lim
τR→τL

σ

(a ± σ)

(IR − IL)

τR − τL
=

ǫ
√

−p′(τL)(a2 + p′(τL))

a ± ǫ
√

−p′(τL)

with ǫ = ±1.
In the same way, we have in the limit τR → τL

θ(IR − IL)

a2 − σ2
=

σθ(IR − IL)

σ(a2 − σ2)
=

σ(IR − IL)

σ(a2 − σ2)
=

(IR − IL)

(a2 − σ2)
,

which is Lipschitz-continuous since

1

(a2 − σ2)

(IR − IL)

τR − τL

is clearly bounded. Indeed

lim
τR→τL

1

(a2 − σ2)

(IR − IL)

τR − τL
=

1

(a2 + p′(τL))
(a2 + p′(τL)) = 1.

4.3 The case of an isolated entropy shock solution

Let us assume that the initial states vL and vR are such that they can be joined
by an admissible entropy shock solution propagating with velocity s, assuming
s > 0 without restriction from Galilean symmetry. This means that we have
the validity of the following Rankine-Hugoniot relations

{

−s(τR − τL) − (uR − uL) = 0,
−s(uR − uL) + (pR − pL) = 0,

(66)
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together with the validity of the following entropy inequality

− s(UR − UL) + (FR −FL) ≤ 0, (67)

or equivalently by well-known consideration :

− s
(

(eR − eL) − pL + pR

2
(τR − τL)

)

≤ 0. (68)

Note that in this case σ defined by (39) exactly coincides with the exact speed
of propagation s and satisfies in particular

s2 = σ2 = −pR − pL

τR − τL
. (69)

Our purpose is to prove that

v1 = v2 = vL and v3 = vR. (70)

This will be done into two steps. We will first prove that such initial states lead
by definition (65) to the choice

σ(IR − IL)θ = σ(IR − IL),

or equivalently θ = 1, and second that this choice gives (70). Let us first state
some basic relations easily obtained from (66) and (67).

Lemma 4.3. Let us assume that (66) and (67) hold true. Then we have























σ(IR − IL) = σ(a2 − σ2)(τR − τL),
(a2 − σ2)(τR − τL) = a2(τR∗ − τL∗),

u∗ =
1

2a

(

(a − σ)uR + (a + σ)uL

)

,

π∗ =
1

2
(pL + pR) +

σa

2
(τR − τL).

Let us now prove that σ(IR − IL)θ = σ(IR − IL).

Lemma 4.4. Let us assume that (66) and (67) hold true. Assume that α is
such that







α ≤ τR∗

τL∗
if σ < 0,

α ≤ τL∗

τR∗
if σ > 0.

Then, by definition (65) we have

σ(IR − IL)θ = σ(IR − IL).

Proof. Let us first prove that

σ(IR − IL) ≤ −2a(a2 − σ2)A(vL,vR),
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that is, since again IR − IL = (a2 − σ2)(τr − τL)

σ(τR − τL) ≤ −2aA(vL,vR).

By definition of A(vL,vR) and π∗, this is equivalent to

σ(τR − τL) ≤ 2a
(

(e − p2

2a2 )R − (e − p2

2a2 )L

)

(a2 − σ2)(τR − τL)
+

pL + pR

a
− (uR − uL),

and by the first equation in (66) (recall that s = σ) to

0 ≤ 2a
(

(e − p2

2a2 )R − (e − p2

2a2 )L

)

(a2 − σ2)(τR − τL)
+

pL + pR

a
.

Recalling that shock solutions with σ > 0 comes with the property τR > τL, we
multiply the above inequality by σ(a2 − σ2)(τR − τL) > 0 and use (69) to infer
the equivalent form

−σ
(

(eR − eL) − pL + pR

2
(τR − τL)

)

≤ 0,

which is nothing but (68).
It remains to prove that

σ(IR − IL) = σ(a2 − σ2)(τR − τL) ≤ a2|σ|(a + |σ|)
a + |σ|/2

(1 − α)τ∗,

with

τ∗ =

{

τL∗ if σ < 0,
τR∗ if σ > 0,

that is to say

σ(a − |σ|)(a + |σ|)(τR − τL) ≤ a2|σ|(a + |σ|)
a + |σ|/2

(1 − α)τ∗,

or again

σ(a − |σ|)(τR − τL) ≤ a2|σ|
a + |σ|/2

(1 − α)τ∗.

A sufficient condition is

σ(a − |σ|)(a + |σ|)(τR − τL) ≤ a2|σ|(1 − α)τ∗.

that is
σ(a2 − σ2)(τR − τL) ≤ a2|σ|(1 − α)τ∗,

or by Lemma 4.3
σa2(τR∗ − τL∗) ≤ a2|σ|(1 − α)τ∗,

that is
σ(τR∗ − τL∗) ≤ |σ|(1 − α)τ∗.
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If σ > 0 (which gives τR > τL and by Lemma 4.3 τR∗ > τL∗), we get

α ≤ τL∗

τR∗
,

while if σ < 0 (which gives τR < τL and by Lemma 4.3 τR∗ < τL∗), we get

α ≤ τR∗

τL∗
,

which concludes the proof.

At last and to conclude this section, let us show that v1 = v2 = vL and
v3 = vR. It just amounts to replace σ(IR − IL)θ by

σ(IR − IL) = (a2 − σ2)(τR − τL)

as proposed in (50). Let us consider for instance the case σ > 0 without restric-
tion so that v− = v2 and v+ = v3. Using the definition of π∗ established in
Lemma 4.3, we easily get

π− = π2 = π1 = pL and π+ = π3 = pR.

Using next the definition of u∗ established in Lemma 4.3, we easily get

u− = u2 = u1 = pL and u+ = u3 = uR.

As an immediate consequence we have by (50)

τ1 = τL and τ3 = τR.

At last and still by (50) we have (recall that σ > 0 for the sake of specificity)

τ2 = τ3 − (τR − τL) = τR − (τR − τL) = τL.

4.4 Summary

The next proposition sums up the properties satisfied by the proposed ARS
based on a generalized Suliciu relaxation approach.

Proposition 4.5. Under the sub-characteristic condition (57), the proposed
approximate Riemann solver
(i) is exact for isolated admissible shock waves,
(ii) is entropy satisfying,
(iii) is Lipschitz-continuous with respect to the initial states vL and vR,
(iv) is L1 stable in the sense that the intermediate states belong to the phase
space.
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About the choice of α and the sub-characteristic condition (57). As-
sume that α is chosen as follows :







α =
τR∗

τL∗
if σ < 0,

α =
τL∗

τR∗
if σ > 0.

Then, we have by Lemma 3.1














τ1 ≥ τL∗, for all σ,
τ3 ≥ τR∗, for all σ,
τ2 ≥ τR∗, for all σ < 0,
τ2 ≥ τL∗, for all σ > 0,

so that the sub-characteristic condition (57) simply writes

a2 > max
τ∈⌊τL,τL∗,τR∗,τR⌉

−p′(τ). (71)

This is nothing but the usual sub-characteristic condition (32) of the classical
relaxation approach (without the additional σ-wave).

5 Numerical schemes

In this section, we propose two different numerical schemes using the approxi-
mate Riemann solver derived in the previous sections. The first one is a classical
approximate Godunov-type method as described in subsection 2.2 with the pro-
posed approximate Riemann solver, and the second one is an original Glimm-
type scheme with random sampling strategy, the objective of which is to give
sharp shock discontinuities (without numerical diffusion). We first briefly de-
scribe this method and show numerical results for both methods.

Let us first recall that the classical Godunov-type method defines the update
value of the unknown at the new time step by simply averaging at time t = ∆t
the solution made of the juxtaposition of the approximate Riemann solutions
defined as proposed in the previous sections and set at each cell interfaces. With
clear notations, we more precisely have

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ũ(x, ∆t)dt.

This scheme is then conservative and entropy-satisfying from the previous sec-
tions.

In the Glimm-type method, we first propose to average at time t = ∆t the
approximate solution made of the juxtaposition of the proposed Riemann solu-
tions on the modified cells [x̄j−1/2, x̄j+1/2] defined by

x̄j+1/2 = xj+1/2 + σj+1/2∆t.
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More precisely, we propose to set

un+1
j =

1

∆xj

∫ xj+1/2

xj−1/2

ũ(x, ∆t)dt,

with

∆xj = x̄j+1/2 − x̄j−1/2

as illustrated on the figure below. This way, no spurious intermediate state (and
then no numerical diffusion) is created when dealing with isolated admissible
shocks since the approximate Riemann solver is exact in this case. In order to
recover the initial mesh and define un+1

j without introducing numerical diffusion,
we then proceed with a random sampling procedure similar to the random choice
method [11] (see also for similar strategies [5], [8], [9] and the references therein).
More precisely, let be given (an)n a well-distributed random sequence within
(0, ∆x) (e.g. the van der Corput sequence [11]), we simply set

un+1
j =











un+1
j−1 if an+1 ∈ (0, ∆t

∆xσ+
j−1/2)

un+1
j if an+1 ∈ [ ∆t

∆xσ+
j−1/2, 1 + ∆t

∆xσ−
j+1/2)

un+1
j+1 if an+1 ∈ [1 + ∆t

∆xσ−
j+1/2, 1)

where σj+1/2 is the speed of propagation of the additional wave coming from

xj+1/2 while σ+
j+1/2 = max(σj+1/2, 0) and σ−

j+1/2 = min(σj+1/2, 0).

tn

tn+1
σj−1/2 σj+1/2 σj+3/2

un+1
j un+1

j+1

xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

We now propose three numerical illustrations associated with Riemann initial
data with left state vL = (τL, uL) and right state vR = (τR, uR). The computa-
tional domain is (0, 1) and the initial discontinuity is located at point x = 0. The
pressure law is p(τ) = τγ with γ = 2 and the mesh is made of 100 points. The
first test case corresponds to an isolated shock discontinuity with vL = (1, 0)
and vR = (2,−

√
3/2). The second test case corresponds to a Riemann solution

with a rarefaction wave and a shock discontinuity, and is associated with the
choice vL = (0.3, 0) and vR = (0.6, 0). At last, the third test case has two shock
discontinuities, one propagating with a negative velocity and one with a positive
velocity, and corresponds to vL = (0.5, 2) and vR = (0.6, 0). The results are
given on Figures 6, 7 and 8 for both methods. As expected, we observe that
the Godunov-type method provides good numerical results with usual numeri-
cal diffusion, while the Glimm-type method gives sharp discontinuities without
numerical diffusion.
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Figure 6: Test 1 : τ (left) and u (right) at time t = 0.15.
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Figure 7: Test 2 : τ (left) and u (right) at time t = 0.04.
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Figure 8: Test 3 : τ (left) and u (right) at time t = 0.05.
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