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RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS

FRÉDÉRIC KLOPP

Dedicated to Johannes Sjöstrand on the occasion of his seventieth birthday.

Abstract. The present paper is devoted to the study of resonances for one-dimensional quantum
systems with a potential that is the restriction to some large box of an ergodic potential. For discrete
models both on a half-line and on the whole line, we study the distributions of the resonances in
the limit when the size of the box where the potential does not vanish goes to infinity. For periodic
and random potentials, we analyze how the spectral theory of the limit operator influences the
distribution of the resonances.

Résumé. Dans cet article, nous étudions les résonances d’un système unidimensionnel plongé dans
un potentiel qui est la restriction à un grand intervalle d’un potentiel ergodique. Pour des modèles
discrets sur la droite et la demie droite, nous étudions la distribution des résonances dans la limite
de la taille de bôıte infinie. Pour des potentiels périodiques et aléatoires, nous analysons l’influence
de la théorie spectrale de l’opérateur limite sur la distribution des résonances.

0. Introduction

Consider V : Z → R a bounded potential and, on ℓ2(Z), the Schrödinger operator H = −∆+V
defined by

(Hu)(n) = u(n+ 1) + u(n− 1) + V (n)u(n), ∀n ∈ Z,

for u ∈ ℓ2(Z).
The potentials V we will deal with are of two types:

• V periodic;
• V = Vω, the random Anderson model, i.e., the entries of the diagonal matrix V are inde-
pendent identically distributed non constant random variable.

The spectral theory of such models has been studied extensively (see, e.g., [19]) and it is well known
that

• when V is periodic, the spectrum of H is purely absolutely continuous;
• when V = Vω is random, the spectrum of H is almost surely pure point, i.e., the operator
only has eigenvalues; moreover, the eigenfunctions decay exponentially at infinity.

Pick L ∈ N
∗. The main object of our study is the operator

(0.1) HL = −∆+ V 1J−L+1,LK

when L is large. Here, J−L + 1, LK is the integer interval {−L + 1, · · · , L} and 1Ja,bK(n) = 1 if
a ≤ n ≤ b and 0 if not.
For L large, the operator HL is a simple Hamiltonian modeling a large sample of periodic or random
material in the void. It is well known in this case (see, e.g., [43]) that not only does the spectrum
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2 FRÉDÉRIC KLOPP

of HL be of importance but also its (quantum) resonances that we will now define.
As V 1J−L+1,LK has finite rank, the essential spectrum of HL is the same as that of the discrete
Laplace operator, that is, [−2, 2], and it is purely absolutely continuous. Outside this absolutely
continuous spectrum, HL has only discrete eigenvalues associated to exponentially decaying eigen-
functions.
We are interested in the resonances of the operator HL in the limit when L → +∞. They are
defined to be the poles of the meromorphic continuation of the resolvent of HL through (−2, 2),
the continuous spectrum of HL (see Theorem 1.1 and, e.g., [43]). The resonances widths, that is,

their imaginary part, play an important role in the large time behavior of e−itHL , especially the
resonances of smallest width that give the leading order contribution (see [43]).
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Figure 1: The meromorphic continuation

Quantum resonances are basic objects in quantum theory. They have been the focus of vast num-
ber of studies both mathematical and physical (see, e.g., [43] and references therein). Our purpose
here is to study the resonances of HL in the asymptotic regime L → +∞. As L → +∞, HL

converges to H in the strong resolvent sense. Thus, it is natural to expect that the differences in
the spectral nature between the cases V periodic and V random should reflect into differences in
the behavior of the resonances in both cases. We shall see below that this is the case. To illustrate
this as simply as possible, we begin with stating three theorems, one for periodic potentials, two
for random potentials, that underline these different behaviors. These results can be considered as
paradigmatic for our main results presented in section 1.
The scattering theory or the closely related questions of resonances for the operator (0.1) or for
closely related one-dimensional models has already been discussed in various works both in the
mathematical and physical literature (see, e.g., [12, 11, 29, 26, 40, 9, 27, 4, 25, 41]). We will make
more comments on the literature as we will develop our results in section 1.

0.1. When V is periodic. Assume that V is p-periodic (p ∈ N
∗) and does not vanish identically.

Consider H = −∆ + V and let ΣZ be its spectrum,
◦
ΣZ be its interior and E 7→ N(E) be its

integrated density of states, i.e., the number of states of the system per unit of volume below
energy E (see section 1.2 and, e.g., [39] for precise definitions and details).

Theorem 0.1. There exist

• D, a discrete (possibly empty) set of energies in (−2, 2) ∩
◦
ΣZ,

• a function h that is real analytic in a complex neighborhood of (−2, 2) and that does vanish
on (−2, 2) \ D

such that, for I ⊂ (−2, 2) \ D, a compact interval such that either I ∩ ΣZ = ∅ or I ⊂
◦
ΣZ, there

exists c0 > 0 such that for L sufficiently large s.t. 2L ∈ pN, one has

• if I ∩ ΣZ = ∅, then HL has no resonance in I + i[−c0, 0]
• if I ⊂

◦
ΣZ, one has

– there are plenty of resonances in I + i[−c0, 0] ; more precisely,

(0.2)
#{z ∈ I + i[−c0, 0], z resonance of HL}

2L
=

∫

I
dN(E) + o(1)
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where o(1) → 0 as L→ +∞;
– let (zj)j the resonances of HL in I + i[−c0, 0] ordered by increasing real part; then,

(0.3) L ·Re (zj+1 − zj) ≍ 1 and L · Im zj = h(Re zj) + o(1),

the estimates in (0.3) being uniform for all the resonances in I + i[−c0, 0] when L →
+∞.

After rescaling their width by L, resonances are nicely inter-spaced points lying on an analytic
curve (see Fig. 2). We give a more precise description of the resonances in Theorem 1.3 and
Propositions 1.1 and 1.2. In particular, we describe the set of energies D and the resonances
near these energies: they lie further away from the real axis, the maximal distance being of order
L−1 logL (see Fig. 3). Theorem 0.1 only describes the resonances closest to the real axis. In
section 1.2, we also give results on the resonances located deeper into the lower half of the complex
plane.

I

resonances

E0

resonances

Figure 2: The rescaled resonances for the periodic (left part) and the random (right part) potential

0.2. When V is random. Assume now that V = Vω is the Anderson potential, i.e., its entries
are i.i.d. distributed uniformly on [0, 1] to fix ideas. Consider H = −∆ + Vω. Let Σ be its
almost sure spectrum (see, e.g., [33]), E 7→ n(E), its density of states (i.e. the derivative of the
integrated density of states, see section 1.2 and, e.g., [33]) and E 7→ ρ(E), its Lyapunov exponent
(see section 1.3 and, e.g., [33]). The Lyapunov exponent is known to be continuous and positive
(see, e.g., [5]); the density of states satisfies n(E) > 0 for a.e. E ∈ Σ (see, e.g., [5]).
Define Hω,L := −∆+ Vω1J−L+1,LK. We prove

Theorem 0.2. Pick I ⊂ (−2, 2), a compact interval. Then,

• if I ∩ Σ = ∅ then, there exists cI > 0 such that, ω-a.s., for L sufficiently large,

{z resonance of Hω,L in I + i (−cI , 0]} = ∅;

• if I ⊂
◦
Σ then, for any c > 0, ω-a.s., one has

lim
L→+∞

1

L
#
{

z resonance of Hω,L in I + i
(

−∞,−e−cL
]}

=

∫

I
min

(

c

ρ(E)
, 1

)

n(E)dE.

As the first statement of Theorem 0.2 is clear, let us discuss the second. Define c+ := max
E∈I

ρ(E).

For c ≥ c+, ω-a.s., for L large, the number of resonances in the strip {Re z ∈ I, Im z ≤ −e−cL}
is approximately L

∫

I
n(E)dE; thus, in {Re z ∈ I, −ec+L ≤ Im z < 0}, one finds at most o(L)

resonances. We shall see that, for δ > 0, ω-a.s., for L large, the strip {Re z ∈ I, −e(c++δ)L ≤
Im z < 0} actually contains no resonance (see Theorem 1.6).
Define c− := min

E∈I
ρ(E). For c ≤ c−, ω-a.s., for L large, the strip {Re z ∈ I, Im z ≤ −e−cL}

contains approximately cL

∫

I

n(E)

ρ(E)
dE resonances. We shall see that, for κ ∈ [0, 1), the number of



4 FRÉDÉRIC KLOPP

resonances in the strip {Re z ∈ I, Im z ≤ −e−Lκ} is O(Lκ), thus, o(L) (cf. Theorem 1.10).

One can also describe the resonances locally. Therefore, fix E0 ∈ (−2, 2) ∩
◦
Σ such that n(E0) > 0.

Let (zLl (ω))l be the resonances of Hω,L. We first rescale them. Define

(0.4) xLl (ω) = 2n(E0)L(Re z
L
l (ω)− E0) and yLl (ω) = − 1

Lρ(E0)
log |Im zLl (ω)|.

Consider now the two-dimensional point process

ξL(E0, ω) =
∑

zLl resonances of Hω,L

δ(xL
l (ω),y

L
l (ω)).

We prove

Theorem 0.3. The point process ξL converges weakly to a Poisson process of intensity 1 in R×[0, 1].

In the random case, the structure of the (properly rescaled) resonances is quite different from that
in the periodic case (see Fig. 2). The real parts of the resonances are scaled in such a way that that
their average spacing becomes of order one. By Theorem 0.2, the imaginary parts are typically
exponentially small (in L); when the resonances are rescaled as in (0.4), their imaginary parts are
rewritten on a logarithmic scale so as to become of order 1 too. Once rescaled in this way, the local
picture of the resonances of Hω,L is that of a two-dimensional cloud of Poisson points (see the right
hand side of fig. 2).
Theorem 0.3 is the analogue for resonances of the well known result on the distribution of eigenvalues
and localization centers for the Anderson model in the localized phase (see, e.g., [31, 17, 13]).
As in the case of the periodic potential, Theorem 0.3 only describes the resonances closest to the
real axis. In section 1.3, we also give results on resonances located deeper into the lower half of
the complex plane. Up to distances of order L−∞ to the real axis, the cloud of resonances (once
properly rescaled) will have the same Poissonian behavior as described above (see Theorem 1.4).

Besides proving Theorems 0.1 and 0.3, the goal of the paper is to describe the statistical properties
of the resonances and relate them (the distribution of the resonances, the distribution of the widths)
to the spectral characteristics of H = −∆+ V , possibly to the distribution of its eigenvalues (see,
e.g., [14]).

As they can be analyzed in a very similar way, we will discuss three models:

• the model HL defined above,
• its analogue on the half-line N, i.e., on HL, we impose an additional Dirichlet boundary
condition at 0,

• the “half-infinite” model on ℓ2(Z), that is,

(0.5) H∞ = −∆+W where

{

W (n) = 0 for n ≥ 0

W (n) = V (n) for n ≤ −1

where V is chosen as above, periodic or random.

Though in the present paper we restrict ourselves to discrete models, it is clear that continuous
one-dimensional models can be dealt with essentially using the methods developed in the present
paper.

1. The main results

We now turn to our main results, a number of which were announced in [23]. Pick V : Z → R a
bounded potential and, for L ∈ N, consider the following operators:

• HZ
L = −∆+ V 1J0,LK on ℓ2(Z);
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• HN
L = −∆+ V 1J0,LK on ℓ2(N) with Dirichlet boundary conditions at 0;

• H∞ defined in (0.5).

Remark 1.1. Here, with “Dirichlet boundary condition at 0”, we mean that HN
L is the operator

HZ
L restricted to the subspace ℓ2(N), i.e., if Π : ℓ2(Z) → ℓ2(N) is the orthogonal projector on ℓ2(N),

one has HN
L = ΠHZ

LΠ. In the literature, this is sometime called “Dirichlet boundary condition at
−1” (see, e.g., [39]).
For the sake of simplicity, in the half line case, we only consider Dirichlet boundary conditions at
0. But the proofs show that these are not crucial; any self-adjoint boundary condition at 0 would
do and, mutandi mutandis, the results would be the same.
Note also that, by a shift of the potential V , replacing L by L + L′, we see that studying HZ

L is
equivalent to studying HL,L′ = −∆+ V 1J−L′,LK on ℓ2(Z). Thus, to derive the results of section 0

from those in the present section, it suffices to consider the models above, in particular, HZ
L .

For the models HN
L and HZ

L , we start with a discussion of the existence of a meromorphic continu-
ation of the resolvent, then, study the resonances when V is periodic and finally turn to the case
when V is random.
As H∞ is not a relatively compact perturbation of the Laplacian, the existence of a meromorphic
continuation of its resolvent depends on the nature of V ; so, it will be discussed when specializing
to V periodic or random.

Remark 1.2 (Notations). In the sequel, we write a . b if for some C > 0 (independent of the
parameters coming into a or b), one has a ≤ Cb. We write a ≍ b if a . b and b . a.

1.1. The meromorphic continuation of the resolvent. One proves the well known and simple

Theorem 1.1. The operator valued functions z ∈ C
+ 7→ (z −HN

L )
−1 and z ∈ C

+ 7→ (z −HZ
L)

−1)
admit a meromorphic continuation from C

+ to C\((−∞,−2] ∪ [2,+∞)) through (−2, 2) (see Fig. 1)
with values in the operators from l2comp to l2loc.
Moreover, the number of poles of each of these meromorphic continuations in the lower half-plane
is at most equal to L.

The resonances are defined to be the poles of this meromorphic continuation (see Fig. 1).

1.2. The periodic case. We assume that, for some p > 0, one has

(1.1) Vn+p = Vn for all n ≥ 0.

Let ΣN be the spectrum of HN = −∆+ V acting on ℓ2(N) with Dirichlet boundary condition at 0
and ΣZ be the spectrum of HZ = −∆+ V acting on ℓ2(Z). One has the following description for
these spectra:

• ΣZ is a union of intervals, i.e., ΣZ := σ(H) =

p
⋃

j=1

[E−
j , E

+
j ] where E

−
j < E+

j (1 ≤ j ≤ p)

and a+j−1 ≤ E−
j (2 ≤ j ≤ p) (see , e.g., [42]); the spectrum of HZ is purely absolutely

continuous and the spectral resolution can be obtained via a Bloch-Floquet decomposition
(see, e.g., [42]);

• on ℓ2(N) (see, e.g., [34]), one has
– ΣN = ΣZ ∪ {vj ; 1 ≤ j ≤ n} and ΣZ is the a.c. spectrum of H;
– the (vj)0≤j≤n are isolated simple eigenvalues associated to exponentially decaying

eigenfunctions.
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It may happen that some of the gaps are closed, i.e., that the number of connected components of

ΣZ be strictly less than p. There still is a natural way to write ΣZ := σ(H) =

p
⋃

j=1

[E−
j , E

+
j ] (see

section 4.1.1), but in this case, for some j’s, one has E+
j−1 = E−

j ; the energies E
+
j−1 = E−

j , we shall

call closed gaps (see Definition 4.1). The existence of closed gaps is non generic (see [42]).
The operators H• (for • ∈ {N,Z}) admit an integrated density of states defined by

(1.2) N(E) = lim
L→+∞

#{eigenvalues of (−∆+ V )|J−L,LK∩• in (−∞, E]}
#(J−L,LK ∩ •) .

Here, the restriction of −∆+ V to J−L,LK∩ • is taken with Dirichlet boundary conditions; this is
to fix ideas as it is known that, in the limit L→ +∞, other self-adjoint boundary conditions would
yield the same result for the limit (1.2).
The integrated density of states is the same for HN and HZ (see, e.g., [33]). It defines the distri-

bution function of some probability measure on ΣZ that is real analytic on
◦
ΣZ. Let n denote the

density of states of HN and HZ, that is, n(E) =
dN

dE
(E).

Remark 1.3. When L gets large, as HN
L tends to HN in strong resolvent sense, interesting phe-

nomena for the resonances of HN
L should take place near energies in ΣN.

Define τk to be the shift by k steps to the left, that is, τkV (·) = V (· + k). Then, for (ℓL)L s.t.
lL → +∞ and L− ℓL → +∞ when L→ +∞, τ∗lLH

Z
LτlL tend to HZ in strong resolvent sense. Thus,

interesting phenomena for the resonances of HZ
L should take place near energies in ΣZ.

1.2.1. Resonance free regions. We start with a description of resonance free regions near the real
axis. Therefore, we introduce some operators on the positive and the negative half-lattice.
Above we have defined HN; we shall need another auxiliary operator. On ℓ2(Z−) (where Z− =
{n ≤ 0}), consider the operator H−

k = −∆ + τkV with Dirichlet boundary condition at 0 (where

τk is defined to be the shift by k steps to the left, that is, τkV (·) = V (·+ k)). Let Σ−
k = σ(H−

k ).

As is the case for HN, one knows that σess(H
−
k ) = ΣZ and that σess(H

−
k ) is purely absolutely

continuous (see, e.g., [39, Chapter 7]). H−
k may also have discrete eigenvalues in R \ ΣZ.

We prove

Theorem 1.2. Let I be a compact interval in (−2, 2). Then,

(1) if I ⊂ R \ΣN (resp. I ⊂ R \ΣZ), then, there exists c > 0 such that, for L sufficiently large,
HN

L (resp. HZ
L) has no resonances in the rectangle {Re z ∈ I, Im z ∈ [−c, 0]};

(2) if I ⊂ ΣZ, then, there exists c > 0 such that, for L sufficiently large, HN
L and HZ

L have no
resonances in the rectangle {Re z ∈ I, Im z ∈ [−c/L, 0]};

(3) fix 0 ≤ k ≤ p− 1 and assume the compact interval I to be such that {vj} =
◦
I ∩ΣN = I ∩ΣN

and I ∩ΣZ = ∅ ((vj)j are defined in the beginning of section 1.2):
(a) if I ∩ Σ−

k = ∅ then, there exists c > 0 such that, for L sufficiently large such that

L ≡ k mod p, HN
L has a unique resonance in the rectangle {Re z ∈ I, −c ≤ Im z ≤ 0};

moreover, this resonance, say zj , is simple and satisfies Im zj ≍ −e−ρjL and |zj−λj| ≍
e−ρjL for some ρj > 0 independent of L;

(b) if I ∩Σ−
k 6= ∅ then, there exists c > 0 such that, for L sufficiently large such that L ≡ k

mod p, HN
L has no resonance in the rectangle {Re z ∈ I, −c ≤ Im z ≤ 0}.

So, below the spectral interval (−2, 2), there exists a resonance free region of width at least of
order L−1. For HN

L , if L ≡ k mod p, each discrete eigenvalue of HN that is not an eigenvalue of
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H−
k generates a resonance for HN

L exponentially close to the real axis (when L is large). When the

eigenvalue of H−
k is also an eigenvalue of HN = H+

0 , it may also generate a resonance but only
much further away in the complex plane, at least at a distance of order 1 to the real axis.
In case (3)(a) of Theorem 1.2, one can give an asymptotic expansion for the resonances (see sec-
tion 5.2.1).
We now turn to the description of the resonances of H•

L near [−2, 2]. Therefore, it will be useful to
introduce a number of auxiliary functions and operators.

1.2.2. Some auxiliary functions. To H−
k defined above, we associate N−

k , the distribution func-
tion of its spectral measure (that is a probability measure), i.e., for ϕ ∈ C∞

0 (R), we define
∫

R

ϕ(λ)dN−
k (λ) := ϕ(H−

k )(0, 0) where (ϕ(H−
k )(x, y))(x,y)∈(Z−)2 denotes the kernel of the opera-

tor ϕ(H−
k ).

On
◦
ΣZ, the spectral measure dN−

k admits a density with respect to the Lebesgue measure, say, n−k ,
and this density is real analytic (see Proposition 5.1).

For E ∈
◦
ΣZ, define

(1.3) S−
k (E) := p.v.

(
∫

R

dN−
k (λ)

λ− E

)

= lim
ε↓0

(
∫ E−ε

−∞

dN−
k (λ)

λ− E
−
∫ +∞

E+ε

dN−
k (λ)

λ− E

)

.

The existence and analyticity of the Cauchy principal value S−
k on

◦
ΣZ is guaranteed by the ana-

lyticity of n−k (see, e.g., [18]). Moreover, for E ∈
◦
ΣZ, one has

(1.4) S−
k (E) = lim

ε→0+

∫

R

dN−
k (λ)

λ− E − iε
− iπn−k (E).

In the lower half-plane {ImE < 0}, define the function

(1.5) Ξ−
k (E) :=

∫

R

dN−
k (λ)

λ− E
+ e−i arccos(E/2) =

∫

R

dN−
k (λ)

λ− E
+E/2 +

√

(E/2)2 − 1

where

• in the first formula, the function z 7→ arccos z is the analytic continuation to the lower
half-plane of the determination taking values in [−π, 0] on the interval [−1, 1];

• in the second formula, the branch of the square root z 7→
√
z2 − 1 has positive imaginary

part for z ∈ (−1, 1).

The function Ξ−
k is analytic in {ImE < 0} and in a neighborhood of (−2, 2) ∩

◦
ΣZ. Moreover, Ξ−

k
vanishes identically if and only if V ≡ 0 (see Proposition 5.2).

From now on we assume that V 6≡ 0. In this case, in {ImE < 0} and on (−2, 2) ∩
◦
ΣZ, the analytic

function Ξ−
k has only finitely many zeros, each of finite multiplicity (see Proposition 5.2).

We shall need the analogues of the above defined functions the already introduced operator H+
0 :=

HN = −∆ + V considered on ℓ2(N) with Dirichlet boundary conditions at 0. We define the
function N+

0 as the distribution function of the spectral measure of H+
0 , i.e., for ϕ ∈ C∞

0 (R), we

define

∫

R

ϕ(λ)dN+
0 (λ) := ϕ(H+

0 )(0, 0). In the same way as we have defined n−k , S
−
k and Ξ−

k from

H−
k , one can define n+0 , S

+
0 and Ξ+

0 from H+
0 . They also satisfy Proposition 5.1, relation (1.4) and

Proposition 5.2.
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For the description of the resonances, it will be convenient to define the following functions on
◦
ΣZ

(1.6) cN(E) := i+
Ξ−
k (E)

π n−k (E)
=

1

π n−k (E)

(

S−
k (E) + e−i arccos(E/2)

)

and

(1.7) cZ(E) :=

(

S+
0 (E) + e−i arccos(E/2)

) (

S−
k (E) + e−i arccos(E/2)

)

n+0 (E)n−k (E)
− π2

π
(

S+
0 (E) + e−i arccos(E/2)

)

n+0 (E)
+
π
(

S−
k (E) + e−i arccos(E/2)

)

n−k (E)

.

We shall see that the the zeros of c• − i play a special role for the resonances of H•
L: therefore, we

define

(1.8) D• =

{

z ∈
◦
ΣZ; c

•(z) = i

}

The set D introduced in Theorem 0.1 is the set DZ ∩ (−2, 2).

Remark 1.4. Before describing the resonances, let us explain why the operators H+
0 and H−

k
naturally occur in this study. They respectrively are the strong resolvent limits (when L → +∞
s.t. L ∈ pN + k) of the operator HZ

L restricted to J0, LK with Dirichlet boundary conditions at 0
and L “seen” respectively from the left and the right hand side.
Indeed, define HL to be the operator HN

L restricted to J0, LK with Dirichlet boundary conditions

at L (see Remark 1.1). Note that HL is also the operator HZ
L restricted to J0, LK with Dirichlet

boundary conditions at 0 and L.
Clearly, the operator H+

0 is the strong resolvent limit of HL when L→ +∞.

If τ̃L denotes the translation by −L that unitarily maps ℓ2(J0, LK) into ℓ2(J−L, 0K), then, H̃L =
τ̃LHLτ̃

∗
L converges in the strong resolvent sense to H−

k when L→ +∞ and L ≡ k mod (p). Indeed,
τLV = τkV as V is p periodic.

1.2.3. Description of the resonances closest to the real axis. Let (λl)0≤l≤L = (λLl )0≤l≤L be the

eigenvalues of HL (that is, the eigenvalues of HN
L or HZ

L restricted to J0, LK with Dirichlet boundary
conditions, see remark 1.1) listed in increasing order. They are described in Theorem 4.2; those
away from the edges of ΣZ are shown to be nicely interspaced points at a distance roughly L−1

from one another.
We first state our most general result describing the resonances in a uniform way. We, then, derive
two corollaries describing the behavior of the resonance, first, far from the set of exceptional energies
D•, second, close to an exceptional energy.

Pick a compact interval I ⊂ (−2, 2)∩
◦
ΣZ. For • ∈ {N,Z} and λl ∈ I, for L large, define the complex

number

(1.9) z̃•l = λl +
1

π n(λl)L
cot−1 ◦ c•

[

λl +
1

π n(λl)L
cot−1 ◦ c•

(

λl − i
logL

L

)]

where the determination of cot−1 is the inverse of the determination z 7→ cot(z) mapping [0, π) ×
(0,−∞) onto C

+ \ {i}.
Note that, by Proposition 5.3, for L sufficiently large, we know that, for any l such that λl ∈ I,
one has

Im c•
(

λl − i
logL

L

)

∈ (0,+∞) \ {1}
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and

Im c•
[

λl +
1

π n(λl)L
cot−1 ◦ c•

(

λl − i
logL

L

)]

∈ (0,+∞) \ {1}.

Thus, the formula (1.9) defines z̃•l properly and in a unique way. Moreover, as the zeros of E 7→
c•(E)− i are of finite order, one checks that

(1.10) − logL . L · Im z̃•l . −1 and 1 . L ·Re
(

z̃•l+1 − z̃•l
)

where the constants are uniform for l such that λl ∈ I.
We prove the

Theorem 1.3. Pick • ∈ {N,Z} and k ∈ {0, · · · , p− 1}. Let E0 ∈ (−2, 2) ∩
◦
ΣZ.

Then, there exists η0 > 0 and L0 > 0 such that, for L > L0 satisfying L = k mod (p), for each
λl ∈ I := [E0 − η0, E0 + η0], there exists a unique resonance of H•

L, say z
•
l , in the rectangle

[

Re (z̃•l + z̃•l−1)

2
,
Re (z̃•l + z̃•l+1)

2

]

+ i [−η0, 0] ;

this resonance is simple and it satisfies |z•l − z̃•l | .
1

L logL
.

This result calls for a few comments. First, the picture one gets for the resonances can be described
as follows (see also Figure 3). As long as λl stays away from any zero of E 7→ c•(E)−i, the resonances
are nicely spaced points as the following proposition proves.

Proposition 1.1. Pick • ∈ {N,Z} and k ∈ {0, · · · , p − 1}. Let I ⊂ (−2, 2) ∩
◦
ΣZ be a compact

interval such that I ∩ D• = ∅.
Then, for L sufficiently large, for each λl ∈ I, the resonance z•l admits a complete asymptotic
expansion in powers of L−1 and one has

(1.11) z•l = λl +
1

π n(λl)L
cot−1 ◦ c•(λl) +O

(

1

L2

)

where the remainder term is uniform in l.

resonances

1

IE
0

Log L

Figure 3: The resonances close to the real axis in the periodic case (after rescaling their imaginary
parts by L)

The proof of Proposition 1.1 actually yields a complete asymptotic expansion in powers of L−1 for
the resonances in this zone (see section 5.2.5).
Proposition 1.1 implies Theorem 0.1: we chose • = Z, k = 0 and the set D of exceptional points in
Theorem 0.1 is exactly DZ ∩ (−2, 2); to obtain (0.3), it suffices to use the asymptotic form of the
Dirichlet eigenvalues given by Theorem 4.2.
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Near the zeros of E 7→ c•(E)− i, the resonances take a “plunge” into the lower half of the complex
plane (see Figure 3) and their imaginary part becomes of order L−1 logL. Indeed, Theorem 1.3
and (1.9) imply

Proposition 1.2. Pick • ∈ {N,Z} and k ∈ {0, · · · , p−1}. Let E0 ∈ D• be a zero of E 7→ c•(E)− i
of order q in (−2, 2) ∩

◦
ΣZ.

Then, for α > 0, for L sufficiently large, if l is such that |λl−E0| ≤ L−α, the resonance z•l satisfies

(1.12) Im z•l =
q

2π n(λl)
·
log

(

|λl − E0|2 +
(

q logL
2π n(λl)L

)2
)

2L
· (1 + o(1))

where the remainder term is uniform in l such that |λl − E0| ≤ L−α.

When • = Z, the asymptotic (1.12) shows that there can be a “resonance” phenomenon for res-
onances: when the two functions Ξ−

k and Ξ+
0 share a zero at the same real energy, the maximal

width of the resonances increases; indeed, the factor in front of L−1 logL is proportional to the
multiplicity of the zero of Ξ−

k Ξ+
0 .

1.2.4. Description of the low lying resonances. The resonances found in Theorem 1.3 are not nec-
essarily the only ones: deeper into the lower complex plane, one may find more resonances. They
are related to the zeros of Ξ−

k when • = N and Ξ−
k Ξ+

0 when • = Z (see Proposition 5.3).
We now study what happens below the line {Im z = −η0} (see Theorem 1.3) for the resonances of
HN

L and HZ
L.

The functions Ξ−
k and Ξ+

0 are analytic in the lower half plane and, by Proposition 5.2, they don’t

vanish in an neighborhood of −i∞. Hence, the functions Ξ−
k and Ξ+

0 have only finitely many zeros
in the lower half plane.
We prove

Theorem 1.4. Pick • ∈ {N,Z} and k ∈ {0, · · · , p−1}. Let (E•
j )1≤j≤J be the zeros of E 7→ c•(E)−i

in I + i(−∞, 0). Pick E0 ∈ (−2, 2) ∩
◦
ΣZ.

There exists η0 > 0 such that, for I = E0 + [−η0, η0], for L sufficiently large s.t. L ≡ k mod (p),
one has,

• if E0 6∈ {ReE•
j ; 1 ≤ j ≤ J}, then, in the rectangle I + i(−∞, 0], the only resonances of HN

L

and HZ
L are those given by Theorem 1.3;

• if E0 ∈ {ReE•
j ; 1 ≤ j ≤ J}, then,

– in the rectangle I + i[−η0, 0], the only resonances of HN
L and HZ

L are those given by
Theorem 1.3;

– in the strip I + i[−∞,−η0], the resonances of H•
L are contained in

J
⋃

j=1

D
(

E•
j , e

−η0L
)

– in D
(

E•
j , e

−η0L
)

, the number of resonances (counted with multiplicity) is equal to the
order of E•

j as a zero of E 7→ c•(E) − i.

We see that the total number of resonances below a compact subset of (−2, 2) ∩
◦
ΣZ that do not

tend to the real axis when L → +∞ is finite. These resonances are related to the resonances of
H∞ to which we turn now.

1.2.5. The half-line periodic perturbation. Fix p ∈ N
∗. On ℓ2(Z), we now consider the operator

H∞ = −∆+ V where V (n) = 0 for n ≥ 0 and V (n+ p) = V (n) for n ≤ −1. We prove
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Theorem 1.5. The resolvent of H∞ can be analytically continued from the upper half-plane through

(−2, 2) ∩
◦
ΣZ to the lower half plane. The resulting operator does not have any poles in the lower

half-plane or on (−2, 2) ∩
◦
ΣZ .

The resolvent of H∞ can be analytically continued from the upper half-plane through (−2, 2) \ ΣZ

(resp.
◦
ΣZ \ [−2, 2]) to the lower half plane; the poles of the continuation through (−2, 2) \ΣZ (resp.

◦
ΣZ \ [−2, 2]) are exactly the zeros of the function E 7→ 1− eiθ(E)

∫

R

dN−
p−1(λ)

λ− E
when continued from

the upper half-plane through (−2, 2) \ ΣZ (resp.
◦
ΣZ \ [−2, 2]) to the lower half-plane.

Remark 1.5. In Theorem 1.5 and below, every time we consider the analytic continuation of a
resolvent through some open subset of the real line, we implicitly assume the open subset to be
non empty.

In figure 4, to illustrate Theorem 1.5, assuming that ΣZ (in blue) has a single gap that is contained
in (−2, 2), we drew the various analytic continuations of the resolvent of H∞ and the presence or
absence of resonances for the different continuations . Using the same arguments as in the proof of

Σ
Z

2-2

res. res.

no res.

res.
no res

Figure 4: The analytic continuation of the resolvent and resonances for H∞

Proposition 5.2, one easily sees that the continuations of the function E 7→ 1− eiθ(E)

∫

R

dN−
p−1(λ)

λ−E

to the lower half plane through (−2, 2) \ΣZ and
◦
ΣZ \ [−2, 2] have at most finitely many zeros and

that these zeros are away from the real axis.
This also implies that the spectrum on H∞ in [−2, 2] ∪ ΣZ is purely absolutely continuous except
possibly at the points of ∂ΣZ ∪ {−2, 2} where ∂ΣZ is the set of edges of ΣZ.

1.3. The random case. We now turn to the random case. Let V = Vω where (Vω(n))n∈Z are
bounded independent and identically distributed random variables. Assume that the common law
of the random variables admits a bounded compactly supported density, say, g.
Set HN

ω = −∆ + Vω on ℓ2(N) (with Dirichlet boundary condition at 0 to fix ideas). Let σ(HN
ω )

be the spectrum of HN
ω . Consider also HZ

ω = −∆ + Vω acting on ℓ2(Z). Then, one knows (see,
e.g., [19]) that, ω almost surely,

(1.13) σ(HZ
ω ) = Σ := [−2, 2] + supp g.

One has the following description for the spectra σ(HN
ω ) and σ(H

Z
ω ):
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• ω-almost surely, σ(HZ
ω ) = Σ; the spectrum is purely punctual; it consists of simple eigenval-

ues associated to exponentially decaying eigenfunctions (Anderson localization, see, e.g., [33,
19]); one can prove that, under the assumptions made above, the whole spectrum is dy-
namically localized (see, e.g., [10] and references therein);

• for HN
ω (see, e.g., [33, 7]), one has, ω-almost surely, σ(HN

ω ) = Σ ∪Kω where
– Σ is the essential spectrum of HN

ω ; it consists of simple eigenvalues associated to expo-
nentially decaying eigenfunctions;

– the set Kω is the discrete spectrum of HN
ω ; it may be empty and depends on ω.

1.3.1. The integrated density of states and the Lyapunov exponent. It is well known (see, e.g., [33])
that the integrated density of states of H, say, N(E) is defined as the following limit

(1.14) N(E) = lim
L→+∞

#{eigenvalues of HZ

ω|J−L,LK in (−∞, E]}
2L+ 1

.

The above limit does not depend on the boundary conditions used to define the restrictionHZ

ω|J−L,LK.

It defines the distribution function of a probability measure supported on Σ. Under our assumptions

on the random potential, N is known to be Lipschitz continuous ([33, 19]). Let n(E) =
dN

dE
(E) be

its derivative; it exists for almost all energies. If one assumes more regularity on g the density of
the random variables (ωn)n, then, the density of states n can be shown to exist everywhere and to
be regular (see, e.g., [10]).
One also defines the Lyapunov exponent, say ρ(E) as follows

ρ(E) := lim
L→+∞

log ‖TL(E,ω)‖
L+ 1

where

(1.15) TL(E;ω) :=

(

E − Vω(L) −1
1 0

)

× · · · ×
(

E − Vω(0) −1
1 0

)

For any E, ω-almost surely, the Lyapunov exponent is known to exist and to be independent of ω
(see, e.g., [10, 33, 7]). It is positive at all energies. Moreover, by the Thouless formula [10], it is
positive and continuous for all E and it is the harmonic conjugate of n(E).

For • ∈ {N,Z}, we now define H•
ω,L to be the operator −∆• + Vω1J0,LK. The goal of the next

sections is to describe the resonances of these operators in the limit L→ +∞.
As in the case of a periodic potential V , the resonances are defined as the poles of the analytic

continuation of z 7→ (H•
ω,L − z)−1 from C

+ through (−2, 2) (see Theorem 1.1).

1.3.2. Resonance free regions. We again start with a description of the resonance free region near
a compact interval in (−2, 2). As in the periodic case, the size of the H•

ω,L-resonance free region

below a given energy will depend on whether this energy belongs to σ(H•
ω) or not. We prove

Theorem 1.6. Fix • ∈ {N,Z}. Let I be a compact interval in (−2, 2). Then, ω-a.s., one has

(1) for • ∈ {N,Z}, if I ⊂ R\σ(H•
ω), then, there exists C > 0 such that, for L sufficiently large,

there are no resonances of H•
ω,L in the rectangle {Re z ∈ I, 0 ≥ Im z ≥ −1/C};

(2) if I ⊂
◦
Σ, then, for ε ∈ (0, 1), there exists L0 > 0 such that, for L ≥ L0, there are no

resonances of H•
ω,L in the rectangle {Re z ∈ I, 0 ≥ Im z ≥ −e−2η•ρL(1+ε))} where

• ρ is the maximum of the Lyapunov exponent ρ(E) on I

• η• =

{

1 if • = N,

1/2 if • = Z.
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(3) pick vj = vj(ω) ∈ Kω (see the description of the spectrum of HN
ω just above section 1.3.1)

and assume that {vj} =
◦
I ∩σ(HN

ω ) = I ∩σ(HN
ω ) and I ∩Σ = ∅, then, there exists c > 0 such

that, for L sufficiently large, HN
ω,L has a unique resonance in {Re z ∈ I, −c ≤ Im z ≤ 0};

moreover, this resonance, say zj , is simple and satisfies Im zj ≍ −e−ρj(ω)L and |zj − λj | ≍
e−ρj(ω)L for some ρj(ω) > 0 independent of L.

When comparing point (2) of this result with point (2) of Theorem 1.2, it is striking that the width
of the resonance free region below Σ is much smaller in the random case (it is exponentially small
in L) than in the periodic case (it is polynomially small in L). This a consequence of the localized
nature of the spectrum, i.e., of the exponential decay of the eigenfunctions of H•

ω.

1.3.3. Description of the resonances closest to the real axis. We will now see that below the reso-
nance free strip exhibited in Theorem 1.6 one does find resonances, actually, many of them. We
prove

Theorem 1.7. Fix • ∈ {N,Z}. Let I be a compact interval in (−2, 2) ∩
◦
Σ. Then,

(1) for any κ ∈ (0, 1), ω-a.s., one has

#
{

z resonance of H•
ω,L s.t. Re z ∈ I, 0 > Im z ≥ −e−Lκ

}

L
→
∫

I
n(E)dE;

(2) for E ∈ I such that n(E) > 0 and λ ∈ (0, 1), define the rectangle

R•(E,λ,L, ε, δ) :=

{

z ∈ C;
n(E)|Re z − E| ≤ ε/2

−eη•ρ(E)δL ≤ e2η•ρ(E)λLIm z ≤ −e−η•ρ(E)δL

}

where η• is defined in Theorem 1.6; then, ω-a.s., one has

(1.16) lim
δ→0+

lim
ε→0+

lim
L→+∞

#
{

z resonances of H•
ω,L in R•(E,λ,L, ε, δ)

}

Lε δ
= 1.

(3) for E ∈ I such that n(E) > 0, define

R•
±(E, 1, L, ε, δ) =

{

z ∈ C;
n(E)|Re z − E| ≤ ε/2

−e−2η•ρ(E)(1±δ)L ≤ Im z < 0

}

;

then, ω-a.s., one has

(1.17) lim
δ→0+

lim
ε→0+

lim
L→+∞

#
{

resonances in R•
±(E, 1, L, ε, δ)

}

Lε δ
=

{

1 if ± = −,
0 if ± = +.

(4) for c > 0, ω-a.s., one has

(1.18) lim
L→+∞

1

L
#
{

z resonances of H•
ω,L in I + i

(

−∞,−e−cL
]}

=

∫

I
min

(

c

ρ(E)
, 1

)

n(E)dE.

The striking fact is that the resonances are much closer to the real axis than in the periodic case;
the lifetime of these resonances is much larger. The resonant states are quite stable with lifetimes
that are exponentially large in the width of the random perturbation. Point (4) is an integrated
version of point (2). Let us also note here that when • = Z, point (4) of Theorem 1.7 is the
statement of Theorem 0.2.
Note that the rectangles R•(E,λ,L, ε, δ) are very stretched along the real axis; their side-length in
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imaginary part is exponentially small in L whereas their side-length in real part is of order 1.
To understand point (2) of Theorem 1.7, rescale the resonances of H•

ω,L, say, (z
•
l,L(ω))l as follows

(1.19)

x•l = x•l,L(E,ω) = n(E)L · (Re z•l,L(ω)− E) and

y•l = y•l,L(E,ω) = − 1

2η• ρ(E)L
log |Im z•l,L(ω)|.

For λ ∈ (0, 1), this rescaling maps the rectangle R•(E,λ,L, ε, δ) into {|x| ≤ Lε/2, |y − λ| ≤ δ/2};
and the rectangles R•

±(E, 1, L, ε, δ) are respectively mapped into {|x| ≤ Lε/2, 1 ∓ δ ≤ y}. The
denominator of the quotient in (1.16) is just the area of the rescaled R•(E,λ,L, ε, δ) for λ ∈ (0, 1)
or the rescaled R•

+(E, 1, L, ε, δ) \ R•
−(E, 1, L, ε, 0). So, point (2) states that in the limit ε and δ

small and L large, the rescaled resonances become uniformly distributed in the rescaled rectangles.
We see that the structure of the set of resonances is very different from the one observed in the
periodic case (see Fig. 2). We will now zoom in on the resonance even more so as to make this
structure clearer. Therefore, we consider the two-dimensional point process ξ•L(E,ω) defined by

(1.20) ξ•L(E,ω) =
∑

z•l,L resonance of H•
ω,L

δ(x•
l ,y

•
l )

where x•l , and y
•
l are defined by (1.19).

We prove

Theorem 1.8. Fix E ∈ (−2, 2)∩
◦
Σ such that n(E) > 0. Then, the point process ξ•L(E,ω) converges

weakly to a Poisson process in R× (0, 1] with intensity 1. That is, for any p ≥ 0, if (In)1≤n≤p resp.
(Cn)1≤n≤p, are disjoint intervals of the real line R resp. of [0, 1], then

lim
L→+∞

P



























































ω;

#

{

j;
x•l,L(E,ω) ∈ I1
y•l,L(E,ω) ∈ C1

}

= k1

...
...

#

{

j;
x•l,L(E,ω) ∈ Ip
y•l,L(E,ω) ∈ Cp

}

= kp



























































=

p
∏

n=1

e−µn
(µn)

kn

kn!
,

where µn := |In||Cn| for 1 ≤ n ≤ p.

This is the analogue of the celebrated result on the Poisson structure of the eigenvalues and local-
ization centers of a random system (see, e.g., [32, 31, 13]).
When considering the model for • = Z, Theorem 1.8 is Theorem 0.3.

In [22], we proved decorrelation estimates that can be used in the present setting to prove

Theorem 1.9. Fix E ∈ (−2, 2) ∩
◦
Σ and E′ ∈ (−2, 2) ∩

◦
Σ such that E 6= E′, n(E) > 0 and

n(E′) > 0. Then, the limits of the processes ξ•L(E,ω) and ξ
•
L(E

′, ω) are stochastically independent.

Due to the rescaling, the above results give only a picture of the resonances in a zone of the type

(1.21) E + L−1
[

−ε−1, ε−1
]

− i
[

e−2η•(1+ε)ρ(E)L, e−2εη•ρ(E)L
]

for ε > 0 arbitrarily small.
When L gets large, this rectangle is of a very small width and located very close to the real axis.
Theorems 1.7, 1.8 and 1.9 describe the resonances lying closest to the real axis. As a comparison
between points (1) and (2) in Theorem 1.7 shows, these resonances are the most numerous.
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One can get a number of other statistics (e.g. the distribution of the spacings between the reso-
nances) using the techniques developed for the study of the spectral statistics of a random system
in the localized phase (see [14, 13, 21]) combined with the analysis developed in section 6.

1.3.4. The description of the low lying resonances. It is natural to question what happens deeper
in the complex plane. To answer this question, fix an increasing sequence of scales (ℓL)L such that

(1.22)
ℓL

logL
→

L→+∞
+∞ and

ℓL
L

→
L→+∞

0.

We first show that there are only few resonances below the line {Im z = e−ℓL}, namely

Theorem 1.10. Pick (ℓL)L a sequence of scales satisfying (1.22) and I as above.
ω almost surely, for L large, one has

(1.23)
{

z resonances of H•
ω,L in

{

Re z ∈ I, Im z ≤ −e−ℓL
}}

= O(ℓL).

As we shall show now, after proper rescaling, the structure of theses resonances is the same as that
of the resonances closer to the real axis.
Fix E ∈ I so that n(E) > 0. Recall that (z•l,L(ω))l be the resonances of Hω,L. We now rescale

the resonances using the sequence (ℓL)L; this rescaling will select resonances that are further away
from the real axis. Define

(1.24)

x•l = x•l,ℓL(ω) = n(E)ℓL(Re z
•
l,L(ω)− E) and

y•j = y•l,ℓL(ω) =
1

2η•ℓLρ(E)
log |Im z•l,L(ω)|.

Consider now the two-dimensional point process

(1.25) ξ•L,ℓ(E,ω) =
∑

z•l,L resonance of H•
ω,L

δ(x•
l,ℓL

,y•l,ℓL
).

We prove the following analogue of the results of Theorems 1.7, 1.8 and 1.9 for resonances lying
further away from the real axis.

Theorem 1.11. Fix E ∈ (−2, 2) ∩
◦
Σ and E′ ∈ (−2, 2) ∩

◦
Σ such that E 6= E′, n(E) > 0 and

n(E′) > 0. Fix a sequence of scales (ℓL)L satisfying (1.22). Then, one has

(1) for λ ∈ (0, 1], ω-almost surely

lim
δ→0+

lim
ε→0+

lim
L→+∞

#
{

z resonances of H•
ω,L in R•(E,λ, ℓL, ε, δ)

}

ℓL ε δ
= 1

where R•(E,λ,L, ε, δ) is defined in Theorem 1.7;
(2) the point processes ξ•L,ℓ(E,ω) and ξ•L,ℓ(E

′, ω) converge weakly to Poisson processes in R ×
(0,+∞) of intensity 1;

(3) the limits of the processes ξ•L,ℓ(E,ω) and ξ•L,ℓ(E
′, ω) are stochastically independent.

Point (1) shows that, in (1.23), one actually has
{

z resonances of H•
ω,L in

{

Re z ∈ I, Im z ≤ −e−ℓL
}}

≍ ℓL.

Notice also that the effect of the scaling (1.24) is to select resonances that live in the rectangle

E + ℓ−1
L

[

−ε−1, ε−1
]

− i
[

e−2η•(1+ε)ρ(E)ℓL , e−2εη•ρ(E)ℓL
]

This rectangle is now much further away from the real axis than the one considered in section 1.3.3.
Modulo rescaling, the picture one gets for resonances in such rectangles is the same one got above
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in the rectangles (1.21). This description is valid almost all the way from distances to the real axis

that are exponentially small in L up to distances that are of order e−(logL)α , α > 1 (see (1.22)).

1.3.5. Deep resonances. One can also study the resonances that are even further away from the real
axis in a way similar to what was done in the periodic case in section 1.2.4. Define the following
random potentials on N and Z

(1.26)

Ṽ N
ω,L(n) =

{

ωL−n for 0 ≤ n ≤ L

0 for L+ 1 ≤ n
and

Ṽ Z
ω,ω̃,L(n) =



















0 for n ≤ −1

ω̃n for 0 ≤ n ≤ [L/2]

ωL−n for [L/2] + 1 ≤ n ≤ L

0 for L+ 1 ≤ n

where ω = (ωn)n∈N and ω̃ = (ω̃n)n∈N are i.i.d. and satisfy the assumptions of the beginning of
section 1.3.
Consider the operators

• H̃N
ω,L = −∆+ Ṽ N

ω,L on ℓ2(N) with Dirichlet boundary condition at 0,

• H̃Z
ω,ω̃,L = −∆+ Ṽ Z

ω,ω̃,L on ℓ2(Z).

Clearly, the random operator H̃N
ω,L (resp. H̃Z

ω,L) has the same distribution as HN
ω,L (resp. HZ

ω,L).

Thus, for the low lying resonances, we are now going to describe those of H̃N
ω,L (resp. H̃Z

ω,L) instead

of those of HN
ω,L (resp. HZ

ω,L).

Remark 1.6. The reason for this change of operators is the same as the one why, in the case of the
periodic potential, we had to distinguish various auxiliary operators depending on the congruence
of L modulo p, the period : this gives a meaning to the limiting operators when L→ +∞.

Define the probability measure dNω(λ) using its Borel transform by, for Imz 6= 0,

(1.27)

∫

R

dNω(λ)

λ− z
:= 〈δ0, (HN

ω − E)−1δ0〉.

Consider the function

(1.28) Ξω(E) =

∫

R

dNω(λ)

λ− E
+ e−i arccos(E/2) =

∫

R

dNω(λ)

λ− E
+ E/2 +

√

(E/2)2 − 1

where the determinations of z 7→ arccos z and z 7→
√
z2 − 1 are those described after (1.5).

This random function Ξω is the analogue of Ξ−
k in the periodic case. One proves the analogue of

Proposition 5.2

Proposition 1.3. If ω0 6= 0, one has Ξω(E) ∼
|E|→∞
ImE<0

−ω0E
−2. Thus, ω almost surely, Ξω does not

vanish identically in {ImE < 0}.
Pick I ⊂

◦
Σ ∩ (−2, 2) compact. Then, ω almost surely, the number of zeros of Ξω (counted with

multiplicity) in I + i (−∞, ε] is asymptotic to

∫

I

n(E)

ρ(E)
dE | log ε| as ε → 0+; moreover, ω almost

surely, there exists εω > 0 such that all the zeroes of Ξω in I + i[−εω , 0) are simple.

It seems reasonable to believe that, except for the zero at −i∞, ω almost surely, all the zeros of
Ξω are simple; we do not prove it
For the “deep” resonances, we then prove



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 17

Theorem 1.12. Fix I ⊂
◦
Σ ∩ (−2, 2) a compact interval. There exists c > 0 such that, with

probability 1, there exists cω > 0 such that, for L sufficiently large, one has

(1) for each resonance of H̃N
ω,L (resp. H̃Z

ω,ω̃,L) in I+i
(

−∞,−e−cL
]

, say E, there exists a unique

zero of Ξω (resp. Ξω Ξω̃), say Ẽ, such that |E − Ẽ| ≤ e−cωL;
(2) reciprocally, to each zero (counted with multiplicity) of Ξω (resp. Ξω Ξω̃) in the rectangle

I + i
(

−∞,−e−cL
]

, say Ẽ, one can associate a unique resonance of H̃N
ω,L (resp. H̃Z

ω,ω̃,L),

say E, such that |E − Ẽ| ≤ e−cωL.

One can combine this result with the description of the asymptotic distribution of the resonances
given by Theorem 1.11 to obtain the asymptotic distributions of the zeros of the function Ξω near
a point E − iε when ε → 0+. Indeed, let (zl(ω))l be the zeros of Ξω in {ImE < 0}. Rescale the
zeros:

(1.29) xl,ε(ω) = n(E)| log ε| · (Re zl(ω)− E) and yl,ε(ω) = − 1

2ρ(E)| log ε| log |Im zl(ω)|

and consider the two-dimensional point process ξε(E,ω) defined by

(1.30) ξε(E,ω) =
∑

zl(ω) zeros of Ξω

δ(xl,ε,yl,ε).

Then, one has

Corollary 1.1. Fix E ∈ I such that n(E) > 0. Then, the point process ξε(E,ω) converges weakly
to a Poisson process in R× R with intensity 1.

The function Ξω has been studied in [26, 27] where the average density of its zeros was computed.
Here, we obtain a more precise result.

1.3.6. The half-line random perturbation. On ℓ2(Z), we now consider the operator H∞
ω = −∆+Vω

where Vω(n) = 0 for n ≥ 0 and Vω(n) = ωn for n ≤ −1 and (ωn)n≥0 are i.i.d. and have the same
distribution as above. Recall that Σ is the almost sure spectrum of HZ

ω (on ℓ2(Z)). We prove

Theorem 1.13. First, ω almost surely, the resolvent of H∞
ω does not admit an analytic continua-

tion from the upper half-plane through (−2, 2)∩
◦
Σ to any subset of the lower half plane. Nevertheless,

ω-almost surely, the spectrum of H∞
ω in (−2, 2) ∩

◦
Σ is purely absolutely continuous.

Second, ω almost surely, the resolvent of H∞
ω does admit a meromorphic continuation from the

upper half-plane through (−2, 2) \ Σ to the lower half plane; the poles of this continuation are ex-

actly the zeros of the function E 7→ 1− eiθ(E)

∫

R

dNω(λ)

λ− E
when continued from the upper half-plane

through (−2, 2) \ Σ to the lower half-plane.

Third, ω almost surely, the spectrum of H∞
ω in

◦
Σ \ [−2, 2] is pure point associated to exponentially

decaying eigenfunctions; hence, the resolvent of H∞
ω cannot be be continued through

◦
Σ \ [−2, 2].

In figure 5, to illustrate Theorem 1.13, assuming that ΣZ (in blue) has a single gap that is contained
in (−2, 2), we drew the analytic continuation of the resolvent of H∞

ω and the associated resonances;
we also indicate the real intervals of spectrum through which the the resolvent of H∞

ω does not
admit an analytic continuation and the spectral type of H∞

ω in the intervals. Let us also note here
that if 0 ∈ suppg (where g is the density of the random variables defining the random potential),
then, by (1.13), one has [−2, 2] ⊂ Σ. In this case, there is no possibility to continue the resolvent
of H∞

ω to the lower half plane passing through [−2, 2].
Comparing Theorem 1.13 to Theorem 1.5, we see that, as the operatorH∞, when continued through
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Σ
Z

-2 2

no analytic cont.

but a.c. spectrum

res.

and dense p.p. spectrum
no analytic cont.

Figure 5: The analytic continuation of the resolvent and resonances for H∞
ω

(−2, 2) ∩
◦
Σ, the operator H∞

ω does not have any resonances but for very different reasons.
When one does the continuation through (−2, 2) \ Σ, one sees that the number of resonances is

finite; “near” the real axis, the continuation of the function E 7→ 1 − eiθ(E)

∫

R

dNω(λ)

λ− E
has non

trivial imaginary part and near ∞ it does not vanish.
Theorem 1.13 also shows that the equation studied in [26, 27], i.e., the equation Ξω(E) = 0, does
not describe the resonances of H∞

ω as is claimed in these papers: these resonances do not exist
as there is no analytic continuation of the resolvent of H∞

ω through (−2, 2) ∩ Σ! As is shown in
Theorem 1.12, the solutions to the equation Ξω(E) = 0 give an approximation to the resonances
of HN

ω,L (see Theorem 1.12).

1.4. Outline of and reading guide to the paper. In the present section, we shall explain the
main ideas leading to the proofs of the results presented above.
In section 2, we prove Theorem 1.1; this proof is classical. As a consequence of the proof, one sees
that, in the case of the half-lattice N (resp. lattice Z), the resonances are the eigenvalues of a rank
one (resp. two) perturbation of (−∆ + V )|J0,LK with Dirichlet b.c. The perturbation depends in
an explicit way on the resonance. This yields a closed equation for the resonances in terms of the
eigenvalues and normalized eigenfunctions of the Dirichlet restriction (−∆+ V )|J0,LK. To obtain a
description of the resonances we then are in need of a “precise” description of the eigenvalues and
normalized eigenfunctions. Actually the only information needed on the normalized eigenfunctions
is their weight at the point L (and the point 0 in the full lattice case), 0 and L being the endpoints
of J0, LK.
In section 3, we solve the two equations obtained previously under the condition that the weight
of the normalized eigenfunctions at L (and 0) be much smaller than the spacing between the
Dirichlet eigenvalues. This condition entails that the resonance equation we want to solve essentially
factorizes and become very easy to solve (see Theorems 3.1, 3.2 and 3.3), i.e., it suffices to solve it
near any given Dirichlet eigenvalue.

For periodic potentials, the condition that the eigenvalue spacing is much larger than the weight
of the normalized eigenfunctions at L (and 0) is not satisfied: both quantities are of the same order
of magnitude (see Theorem 4.2) for the Dirichlet eigenvalues in the bulk of the spectrum, i.e., the
vast majority of them. This is a consequence of the extended nature of the eigenfunctions in this
case. Therefore, we find another way to solve the resonance equation. This way goes through a
more precise description of the Dirichlet eigenvalues and normalized eigenfunctions which is the
purpose of Theorems 4.2. We use this description to reduce the resonance equation to an effective
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equation (see Theorem 5.1) up to errors of order O(L−∞). It is important to obtain errors of at
most that size. Indeed, the effective equation may have solutions to any order (the order is finite
and only depends on V but it is unknown); thus, to obtain solutions to the true equation from
solutions to the effective equation with a good precision, one needs the two equations to differ by
at most O(L−∞). We then solve the effective equation and, in section 5.2, prove the results of
section 1.2.

On the other hand, for random potentials, it is well known that the eigenfunctions of the Dirichlet
restriction (−∆+ V )|J0,LK are exponentially localized and, for most of them localized, far from the
edge of J0, LK. Thus, their weight at L (and 0 in the full lattice case) is typically exponentially
small in L; the eigenvalue spacing however is typically of order L−1. We can then use the results
of section 3 to solve the resonance equation. The real part of a given resonance is directly related
to a Dirichlet eigenvalue and its imaginary part to the weight of the corresponding eigenfunction
at L (and 0 in the full lattice case). The main difficulty is to find the asymptotic behavior of this
weight. Indeed, while it is known that, in the random case, eigenfunctions decay exponentially
away from a localization center and while it is known that, for the full random Hamiltonian (i.e.
the Hamiltonian on the line or half-line with a random potential), at infinity, this decay rate is
given by the Lyapunov exponent, to the best of our knowledge, before the present work, it was not
known at which length scale this Lyapunov behavior sets in (with a good probability). Answering
this question is the purpose of Theorems 6.2 and 6.3 proved in section 6.3: we show that, for the
1-dimensional Anderson model, for δ > 0 arbitrary, on a box of size L sufficiently large, all the
eigenfunctions exhibit an exponential decay (we obtain both an upper and a lower bound on the
eigenfunctions) at a rate equal to the Lyapunov exponent at the corresponding energy (up to an
error of size δ) as soon as one is at a distance δL from the corresponding localization center.
These bounds give estimates on the weight of most eigenfunctions at the point L (and 0 in the
full lattice case): it is directly related to the distance of the corresponding localization center to
the points L (and 0). One can then transform the known results on the statistics of the (rescaled)
eigenvalues and (rescaled) localization centers into statistics of the (rescaled) resonances. This is
done in section 6.2 and proves most of the results in section 1.3.
Finally, section 6.4 is devoted to the study of the full line Hamiltonian obtained from the free
Hamiltonian on one half-line and a random Hamiltonian on the other half-line; it contains in
particular the proof of Theorem 1.13.

2. The analytic continuation of the resolvent

Resonances for Jacobi matrices were considered in various works (see, e.g., [6, 16] and references
tehrein). For the sake of completeness, we provide an independent proof of Theorem 1.1. It follows
standard ideas that were first applied in the continuum setting, i.e., for partial differential operators
instead of finite difference operators (see, e.g., [38] and references therein).
The proof relies on the fact that the resolvent of free Laplace operator can be continued holomor-
phically from C

+ to C \ ((−∞,−2] ∪ [2,+∞)) as an operator valued function from l2comp to l2loc.
This is an immediate consequence of the fact that, by discrete Fourier transformation, −∆ is the
Fourier multiplier by the function θ 7→ 2 cos θ.
Indeed, for −∆ on ℓ2(Z) and ImE > 0, one has, for (n,m) ∈ Z (assume n−m ≥ 0)

〈δn, (−∆ − E)−1δm〉 = 1

2π

∫ 2π

0

e−i(n−m)θ

2 cos θ − E
dθ =

1

2iπ

∫

|z|=1

zn−m

z2 − Ez + 1
dz

=
1

2
√

(E/2)2 − 1

(

E/2−
√

(E/2)2 − 1
)n−m

=
ei(n−m)θ(E)

sin θ(E)

(2.1)
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where E = 2cos θ(E) and the determination θ = θ(E) is chosen so that Im θ > 0 and Re θ ∈ (−π, 0)
for ImE > 0. The determination satisfies θ

(

E
)

= θ(E).
The map E 7→ θ(E) can continued analytically from C

+ to the cut plane C \ ((−∞,−2] ∪ [2,+∞))
as shown in Figure 6.

2

E

−π 0

θ

−2

Figure 6: The mapping E 7→ θ(E)

The continuation is one-to-one and onto from C \ ((−∞,−2] ∪ [2,+∞)) to (−π, 0) + iR. It defines
a determination of E 7→ arccos(E/2) = θ(E).
Clearly, using (2.1), this continuation yields an analytic continuation of RZ

0 := (−∆ − E)−1 from
{ImE > 0} to C \ ((−∞,−2] ∪ [2,+∞)) as an operator from l2comp to l2loc.

Let us now turn to the half-line operator, i.e., −∆ on N with Dirichlet condition at 0. Pick E such
that ImE > 0 and set E = 2cos θ where the determination θ = θ(E) is chosen as above. If for
v ∈ C

N bounded and n ≥ −1, one sets v−1 = 0 and

(2.2) [RN
0 (E)(v)]n =

1

2i sin θ(E)

n
∑

j=−1

vj · sin((n− j)θ(E)) − eiθ(E) sin((n + 1)θ(E))

2i sin θ(E)

∑

j≥0

eijθ(E)vj.

Then, for ImE > 0, a direct computations shows that

(1) for v ∈ ℓ2(N), the vector RN
0 (E)(v) is in the domain of the Dirichlet Laplacian on ℓ2(N) ,

i.e., [RN
0 (E)(v)]−1 = 0;

(2) for n ≥ 0, one checks that

(2.3) [RN
0 (E)(v)]n+1 + [RN

0 (E)(v)]n−1 − E[RN
0 (E)(v)]n = vn.

(3) RN
0 (E) defines a bounded map from ℓ2(N) to itself;

Thus, RN
0 (E) is the resolvent of the Dirichlet Laplacian on N at energy E for ImE > 0. Using the

continuation of E 7→ θ(E), formula (2.2) yields an analytic continuation of the resolvent RN
0 (E) as

an operator from l2comp to l2loc.

Remark 2.1. Note that the resolvent RN
0 (E) at an energy E s.t. ImE < 0 is given by formula (2.2)

where θ(E) is replaced by −θ(E). For (2.2), one has to assume that (vj)j∈N decays fast enough at
∞.

To deal with the perturbation V , we proceed in the same way on Z and on N. Set V L = V 1J0,LK

(seen as a function on N or Z depending on the case). Letting R0(E) be either RZ
0 (E) or RN

0 (E),
we compute

−∆+ V L − E = (−∆− E)(1 +R0(E)V L) = (1 + V LR0(E))(−∆L − E).

Thus, it suffices to check that the operator R0(E)V L (resp. V LR0(E)) can be analytically continued
as an operator from l2loc to l2loc (resp. l2comp to l2comp). This follows directly from (2.2) and the fact

V L has finite rank.
To complete the proof of Theorem 1.1, we just note that, as

• E 7→ R0(E)V L (resp. E 7→ V LR0(E)) is a finite rank operator valued function analytic on
the connected set C \ ((−∞,−2] ∪ [2,+∞)),
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• −1 is not an eigenvalue of R0(E)V L (resp. V LR0(E)) for ImE > 0,

by the Fredholm principle, the set of energies E for which −1 is an eigenvalue of R0(E)V L (resp.
V LR0(E)) is discrete. Hence, the set of resonances is discrete.
This completes the proof of the first part of Theorem 1.1. To prove the second part, we will first
write a characteristic equation for resonances. The bound on the number of resonances will then
be obtained through a bound on the number of solutions to this equation.

2.1. A characteristic equation for resonances. In the literature, we did not find a character-
istic equation for the resonances in a form suitable for our needs. The characteristic equation we
derive will take different forms depending on whether we deal with the half-line or the full line
operator. But in both cases, the coefficients of the characteristic equation will be constructed from
the spectral data (i.e. the eigenvalues and eigenfunctions) of the operator HL (see Remark 1.4).

2.2. In the half-line case. We first consider HN
L on ℓ2(N) and prove

Theorem 2.1. Consider the operator HL defined as HN
L restricted to J0, LK with Dirichlet boundary

conditions at L and define

• (λj)0≤j≤L = (λj(L))0≤j≤L are the Dirichlet eigenvalues of HN
L ordered so that λj < λj+1;

• aNj = aNj (L) = |ϕj(L)|2 where ϕj = (ϕj(n))0≤n≤L is a normalized eigenvector associated to
λj.

Then, an energy E is a resonance of HN
L if and only if

(2.4) SL(E) :=

L
∑

j=0

aNj
λj − E

= −e−iθ(E), E = 2cos θ(E),

the determination of θ(E) being chosen so that Im θ(E) > 0 and Re θ(E) ∈ (−π, 0) when ImE > 0.

Let us note that

(2.5) ∀0 ≤ j ≤ L, aNj (L) > 0 and

L
∑

j=0

aNj (L) =

L
∑

j=0

|ϕj(L)|2 = 1.

Proof of Theorem 2.1. By the proof of the first statement of Theorem 1.1 (see the beginning of
section 2), we know that an energy E is a resonance if and only if −1 if an eigenvalue of R0(E)V L

where R0(E) is defined by (2.2). Pick E an resonance and let u = (un)n≥0 be a resonant state
that is an eigenvector of R0(E)V L associated to the eigenvalue −1. As V L

n = 0 for n ≥ L + 1,

equation (2.2) yields that, for n ≥ L+1, un = βeinθ(E) for some fixed β ∈ C
∗. As u = −R0(E)V Lu,

for n ≥ L+ 1, it satisfies un+1 + un−1 = E un. Thus, uL+1 = eiθ(E)uL and by (2.3), u is a solution
to the eigenvalues problem

{

un+1 + un−1 + Vnun = E un, ∀n ∈ J0, LK

u−1 = 0, uL+1 = eiθ(E)uL

This can be equivalently be rewritten as

(2.6)















V0 1 0 · · · 0
1 V1 1 0
...

. . .
. . .

. . .

0 1 VL−1 1

0 · · · 0 1 VL + eiθ(E)





























u0

...

uL















= E















u0

...

uL














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The matrix in (2.6) is the Dirichlet restriction of HN
L to J0, LK perturbed by the rank one operator

eiθ(E)δL ⊗ δL. Thus, by rank one perturbation theory (see, e.g., [36]), an energy E is a resonance
if and only if if satisfies (2.4).
This completes the proof of Theorem 2.1. �

Let us now complete the proof of Theorem 1.1 for the operator on the half-line. Let us first note
that, for ImE > 0, the imaginary part of the left hand side of (2.4) is positive by (2.7). On the

other hand, the imaginary part of the right hand side of (2.4) is equal to −eIm θ(E) sin(Re θ(E))
and, thus, is negative (recall that Re θ(E) ∈ (−π, 0) (see fig. 1). Thus, as already underlined,
equation (2.4) has no solution in the upper half-plane or on the interval (−2, 2).
Clearly, equation (2.4) is equivalent to the following polynomial equation of degree 2L + 2 in the

variable z = e−iθ(E)

(2.7)

L
∏

k=0

(

z2 − 2λkz + 1
)

−
L
∑

j=0

aNj
∏

0≤k≤L
k 6=j

(

z2 − 2λkz + 1
)

= 0.

We are looking for the solutions to (2.7) in the upper half-plane. As the polynomial in the right hand
side of (2.7) has real coefficients, its zeros are symmetric with respect to the real axis. Moreover,
one notices that, by (2.5), 0 is a solution to (2.7). Hence, the number of solutions to (2.7) in the
upper half-plane is bounded by L. This completes the proof of Theorem 1.1.

2.3. On the whole line. Now, consider HZ
L on ℓ2(Z). We prove

Theorem 2.2. Using the notations of Theorem 2.1, an energy E is a resonance of HZ
L if and only

if

(2.8) det





L
∑

j=0

1

λj − E

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

+ e−iθ(E)



 = 0

where det(·) denotes the determinant of a square matrix, E = 2cos θ(E) and the determination of
θ(E) is chosen as in Theorem 2.1.

So, an energy E is a resonance of HZ
L if and only if −e−iθ(E) belongs to the spectrum of the 2× 2

matrix

(2.9) ΓL(E) :=

L
∑

j=0

1

λj −E

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

.

Proof of Theorem 2.2. The proof is the same as that of Theorem 2.1 except that now E is a
resonance if there exists u a non trivial solution to the eigenvalues problem

{

un+1 + un−1 + Vnun = E un, ∀n ∈ J0, LK

u−1 = eiθ(E)u0 and uL+1 = eiθ(E)uL

This can be equivalently be rewritten as














V0 + eiθ(E) 1 0 · · · 0
1 V1 1 0
...

. . .
. . .

. . .

0 1 VL−1 1

0 · · · 0 1 VL + eiθ(E)





























u0

...

uL















= E















u0

...

uL














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Thus, using rank one perturbations twice, we find that an energy E is a resonance if and only if


1 + eiθ(E)
L
∑

j=0

|ϕj(0)|2
λj − E







1 + eiθ(E)
L
∑

j=0

|ϕj(L)|2
λj −E



 = e2iθ(E)
∑

0≤j,j′≤L

ϕj(L)ϕj′(0)ϕj′(L)ϕj(0)

(λj − E)(λj′ − E)
,

that is, if and only is (2.8) holds. This completes the proof of Theorem 2.2. �

Let us now complete the proof of Theorem 1.1 for the operator on the full-line. Let us first show
that (2.8) has no solution in the upper half-plane. Therefore, if −e−iθ(E) belongs to the spectrum

of the matrix defined by (2.8) and if u ∈ C
2 is a normalized eigenvector associated to −e−iθ(E), one

has
L
∑

j=0

1

λj −E

∣

∣

∣

∣

〈(

ϕj(L)
ϕj(0)

)

, u

〉∣

∣

∣

∣

2

= −e−iθ(E).

This is impossible in the upper half-plane and on (−2, 2) as the two sides of the equation have
imaginary parts of opposite signs.
Note that

L
∑

j=0

(

ϕj(L)
ϕj(0)

)

(

ϕj(L) ϕj(0)
)

=

(

1 0
0 1

)

.

Note also that −e−iθ(E) is an eigenvalue of (2.8) if and only if it satisfies

(2.10) 1 + eiθ(E)
L
∑

j=0

|ϕj(L)|2 + |ϕj(0)|2
λj − E

= −1

2
e2iθ(E)

∑

0≤j,j′≤L

∣

∣

∣

∣

ϕj(0) ϕj′(0)
ϕj(L) ϕj′(L)

∣

∣

∣

∣

2

(λj − E)(λj′ − E)
.

As the eigenvalues of HL are simple, one computes

(2.11)
∑

0≤j,j′≤L

∣

∣

∣

∣

ϕj(0) ϕj′(0)
ϕj(L) ϕj′(L)

∣

∣

∣

∣

2

(λj − E)(λj′ − E)
= 2

∑

0≤j≤L

1

λj − E

∑

j′ 6=j

1

λj′ − λj

∣

∣

∣

∣

ϕj(0) ϕj′(0)
ϕj(L) ϕj′(L)

∣

∣

∣

∣

2

.

Thus, equation (2.10) is equivalent to the following polynomial equation of degree 2(L + 1) in the

variable z = e−iθ(E)

(2.12) z
L
∏

k=0

(

z2 − λkz + 1
)

−
L
∑

j=0

(2aZj z + bZj )
∏

0≤k≤L
k 6=j

(

z2 − λkz + 1
)

= 0.

where we have defined

aZj :=
1

2

(

|ϕj(L)|2 + |ϕj(0)|2
)

=
1

2

∥

∥

∥

∥

(

ϕj(L)
ϕj(0)

)∥

∥

∥

∥

2

=
1

2

∥

∥

∥

∥

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)∥

∥

∥

∥

.(2.13)

and

bZj :=
∑

j′ 6=j

1

λj′ − λj

∣

∣

∣

∣

ϕj(0) ϕj′(0)
ϕj(L) ϕj′(L)

∣

∣

∣

∣

2

.

The sequence (aZj )j also satisfies (2.5). Taking |E| to +∞ in (2.11), one notes that

(2.14)
L
∑

j=0

bZj = 0 and
L
∑

j=0

λjb
Z
j = −1

2

∑

0≤j,j′≤L

∣

∣

∣

∣

ϕj(0) ϕj′(0)
ϕj(L) ϕj′(L)

∣

∣

∣

∣

2

= −1.
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We are looking for the solutions to (2.12) in the upper half-plane. As the polynomial in the right
hand side of (2.12) has real coefficients, its zeros are symmetric with respect to the real axis.
Moreover, one notices that, by (2.14), 0 is a root of order two of the polynomial in (2.12). Hence,
as the polynomial has degree 2L + 3, the number of solutions to (2.12) in the upper half-plane is
bounded by L. This completes the proof of Theorem 1.1.

3. General estimates on resonances

By Theorems 2.1 and 2.2, we want to solve equations (2.4) and (2.8) in the lower half-plane.
We first derive some general estimates for zones in the lower half-plane free of solutions to equa-
tions (2.4) and (2.8) (i.e. resonant free zones for the operators HN

L and HZ
L) and later a result on

the existence of solutions to equations (2.4) and (2.8) (i.e. resonances for the operators HN
L and

HZ
L).

3.1. General estimates for resonant free regions. We keep the notations of Theorems 2.1
and 2.2. To simplify the notations in the theorems of this section, we will write aj for either aNj
when solving (2.4) or aZj when solving (2.8). We will specify the superscript only when there is risk
of confusion.
We first prove

Theorem 3.1. Fix δ > 0. Then, there exists C > 0 (independent of V and L) such that, for any
L and j ∈ {0, · · · , L} such that −4 + δ ≤ λj−1 + λj < λj+1 + λj ≤ 4− δ, equations (2.4) and (2.8)
have no solution in the set

(3.1) Uj :=











E ∈ C;
ReE ∈

[

λj + λj−1

2
,
λj + λj+1

2

]

0 ≥ C · θ′δ ImE > −aj d2j | sin Re θ(E)|











where the map E 7→ θ(E) is defined in section 2 and we have set

(3.2) dj := min (λj+1 − λj , λj − λj−1, 1) and θ′δ := max
|E|≤2− δ

2

|θ′(E)|.

����
����
����
����

����
����
����
���� R

~

λ
j

λ j+1λ j−1
U

U

j

j

j

Figure 7: The resonance free zones Uj and

Ũj.

In Theorem 3.1 there are no conditions on the num-
bers (aj)j or (dj)j except their being positive. In our
application to resonances, this holds. Theorem 3.1
becomes optimal when aj ≪ d2j . In our applica-
tion to resonances, for periodic operators, one has
aj ≍ L−1 and dj ≍ L−1 (see Theorem 5.2) and for
random operators, one has aj ≍ e−cL and dj & L−4

(see Theorem 6.2 and (6.10)). Thus, in the random
case, Theorem 3.1 will provide an optimal strip free
of resonances whereas in the periodic case we will use
a much more precise computation (see Theorem 5.1)
to obtain sharp results.
When aj ≪ d2j , one proves the existence of another
resonant free region near a energy λj , namely,

Theorem 3.2. Fix δ > 0. Pick j ∈ {0, · · · , L} such that −4 + δ < λj−1 + λj < λj+1 + λj < 4− δ.
There exists C > 0 (depending only on δ) such that, for any L, if aj ≤ d2j/C

2, equations (2.4)
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and (2.8) have no solution in the set

Ũj :=











E ∈ C;
ReE ∈

[

λj + λj−1

2
, λj − Caj

]

∪
[

λj +Caj,
λj + λj+1

2

]

−Caj ≤ ImE ≤ −aj d2j/C











⋃











E ∈ C;
ReE ∈

[

λj + λj−1

2
,
λj + λj+1

2

]

− d2j/C ≤ ImE ≤ −Caj











(3.3)

Theorem 3.2 becomes optimal when aj is small and dj is of order one. This will be sufficient to
deal with the isolated eigenvalues for both the periodic and the random potential. It will also be
sufficient to give a sharp description of the resonant free region for random potentials. For the
periodic potential, we will rely a much more precise computations (see Theorem 5.1).
Note that Theorem 3.2 guarantees that, if dj is not too small, outside Rj , resonances are quite far
below the real axis.

Proof of Theorem 3.1. The basic idea of the proof is that, for E close to λj, SL(E) and the matrix
ΓL(E) are either large or have a very small imaginary part while, as −4 < λj−1+λj < λj+1+λj < 4,

e−iθ(E) has a large imaginary part. Thus, (2.4) and (2.8) have no solution in this region.
We start with equation (2.4). Pick E ∈ Uj for some C large to be chosen later on. Assume first

that |E − λj| ≤ ajdj(2 + C0dj)
−1 for C0 := 2e1/C . Recall that 0 < aj, dj ≤ 1. Note that, for C

sufficiently large, for E ∈ Uj , one has
∣

∣

∣
Im e−iθ(E)

∣

∣

∣
= eIm θ(E)| sinRe θ(E)| = eIm[θ(E)−θ(ReE)]| sin Re θ(E)|

≥ eθ
′
δImE| sinRe θ(E)| ≥ e−1/C | sinRe θ(E)|

(3.4)

and

(3.5)
∣

∣

∣e−iθ(E)
∣

∣

∣ ≤ 1 ≤ e1/C .

One estimates

(3.6) |SL(E)| ≥ aj
|λj −E| −

∑

k 6=j

ak
|λk − E| ≥

2

dj
+ C0 −

∑

k 6=j

2ak
min
k 6=j

|λk − λj |
≥ C0 = 2e1/C .

Thus, comparing (3.6) and (3.5), we see that equation (2.4) has no solution in the set Uj∩{|E−λj| ≤
ajdj(2 + Cdj)

−1}.
Assume now that |E − λj| > ajdj(2 + C0dj)

−1. Then, for E ∈ Uj , one has

(3.7) |ImE| ≤ 1

θ′δC
ajd

2
j | sin(Re θ(E))|.

Thus, for E ∈ Uj ∩ {|E − λj| > ajdj(2 + C0dj)
−1}, one computes

|ImSL(E)| ≤ |ImE|
(

aj
|λj − ReE|2 + |ImE|2 +

4

d2j + |ImE|2

)

≤ 1

θ′δC
ajd

2
j | sin(Re θ(E))|

(

(2 + C0dj)
2aj

a2jd
2
j

+
4

d2j

)

≤ 4

θ′δC
(1 + e1/C)2| sin(Re θ(E))| ≤ 1

2
e−1/C | sin(Re θ(E))|

(3.8)
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provided C satisfies 8e1/C(1 + e1/C)2 < θ′δC.
Hence, the comparison of (3.4) with (3.8) shows that (2.4) has no solution in Uj ∩ {|E − λj| >
ajdj(2 + C0dj)

−1} if we choose C large enough (independent of (aj)j and (λj)j). Thus, we have
proved that for some C > 0 large enough (independent of (aj)j and (λj)j), (2.4) has no solution
in Uj .

Let us now turn to the case of equation (2.8). The basic ideas are the same as for equation (2.4).
Consider the matrix ΓL(E) defined by (2.9). The summands in (2.9) are hermitian, of rank 1 and
their norm is given by (2.13).
Assume that E ∈ Uj is a solution to (2.8). Define the vectors

vj := a
−1/2
j

(

ϕj(L)
ϕj(0)

)

for j ∈ {0, · · · , L}.

Here aj = aZj .

Note that by definition of aj , one has ‖vj‖2 = 2. Pick u in C2, a normalized eigenvector of ΓL(E)

associated to the eigenvalue −e−iθ(E). Thus, u satisfies

(3.9)

L
∑

j=0

aj 〈vj , u〉 vj
λj − E

= −e−iθ(E)u

Note that, by assumption, one has

(3.10) sup
E∈Uj

∥

∥

∥

∥

∥

∥

∑

k 6=j

ak 〈vk, u〉 vk
λk − E

∥

∥

∥

∥

∥

∥

.
1

dj
and

∣

∣

∣

∣

∣

∣

Im





∑

k 6=j

ak |〈vk, u〉|2
λk −E





∣

∣

∣

∣

∣

∣

.
|ImE|
d2j

where the constants are independent of C, the one defining Uj .
Taking the (real) scalar product of equation (3.9) with u, and then the imaginary part, we obtain

−aj |〈vj , u〉|
2ImE

|λj − E|2 + Im
(

e−iθ(E)
)

= O

(

|ImE|
d2j

)

Thus, for E ∈ Uj , as aj ≤ 1, for C in (3.1) sufficiently large (depending only on δ),

aj |〈vj , u〉|2|ImE|
|λj − E|2 ≥ 1

2
| sin(Re θ(E))|.

Hence, for a solution to (2.8) in Uj and u as above, one has

|λj − E| ≤ |〈vj , u〉|
√

2aj |ImE|
| sin(Re θ(E))| ≤ 2

√

aj|ImE|
| sin(Re θ(E))| .

Hence, by the definition of Uj, for C large, we get

(3.11)

∣

∣

∣

∣

aj
λj − E

∣

∣

∣

∣

≥ Cθ′δ
dj

≫ 1

dj
.

By (3.10), the operator ΓL(E) can be written as

(3.12) ΓL(E) =
aj

λj − E
vj ⊗ vj +Rj(E) + iIj(E)

where Rj(E) and Ij(E) are self-adjoint (Ij is non negative) and satisfy

(3.13) ‖Rj(E)‖ .
1

dj
and ‖Ij(E)‖ .

|ImE|
d2j

.
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An explicit computation shows that the eigenvalues of the two-by-two matrix
aj

λj − E
vj⊗vj+Rj(E)

satisfy

either λ =
aj

λj − E

(

1 +O

(

dj
Cθ′δ

))

or |Imλ| . | ImE|
aj

where the implicit constants are independent of the one defining Uj .
Thus, by (3.12), using (3.11) and the second estimate in (3.13), we see that the eigenvalues of the
matrix ΓL(E) satisfy

either λ =
aj

λj − E

(

1 +O

(

dj
Cθ′δ

))

or |Imλ| ≤ 2

Cθ′δ
.

Clearly, for C large, no such value can be equal to −e−iθ(E) being to large by (3.11) in the first
case or having too small imaginary part in the second. The proof of Theorem 3.1 is complete. �

Proof of Theorem 3.2. Again, we start with the solutions to (2.4). For z ∈ Ũj , we compute

ImSL(E) =

L
∑

k=0

ak ImE

(λk − ReE)2 + Im2E

=
aj ImE

(λj − ReE)2 + Im2E
+
∑

0≤k≤L
k 6=j

−ak ImE

(λk − ReE)2 + Im2E
.

(3.14)

When −d2j/C ≤ ImE ≤ −Caj, the second equality above and (2.5) yield, for C sufficiently large,

(3.15) 0 ≤ ImSL(E) .
aj

|ImE| +
|ImE|

d2j + Im2E
≤ 2

C
.

On the other hand, for some K > 0, one has
∣

∣

∣
Im e−iθ(E)

∣

∣

∣
≥ |Im e−iθ(ReE)| −Kd2j/C.

Now, as, under the assumptions of Theorem 3.2, one has

(3.16) min
E∈

[

λj+λj−1

2
,
λj+λj+1

2

]

∣

∣

∣Im e−iθ(E)
∣

∣

∣ ≥ 1

4
min

(

√

16− (λj + λj−1)2,
√

16− (λj + λj+1)2
)

,

we obtain that (2.4) has no solution in Ũj ∩ {−dj/C ≤ ImE ≤ −Caj}.
Pick now E ∈ Ũj such that −Caj ≤ ImE ≤ −ajd2j/C. Then, (3.5) and (2.5) yield, for C sufficiently
large,

ImSL(E) .
ajImE

C2a2j + Im2E
+
Caj
d2j

≤ 1

C
+

1

2C
.

The imaginary part of e−iθ(E) is estimated as above. Thus, for C sufficiently large, (2.4) has no

solution in Ũj ∩ {−Caj ≤ ImE ≤ −ajd2j/C}.
The case of equation (2.8) is studied in exactly the same way except that, as in the proof of
Theorem 3.1, one has to replace the study of SL(E) by that of 〈ΓL(E)u, u〉 for u a normalized

eigenvector of ΓL(E) associated to −e−iθ(E) and, thus, the coefficient ak in (3.14) gets multiplied
by a factor |〈vk, u〉|2 that is bounded by 2.
This completes the proof of Theorem 3.2. �
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3.2. The resonances near an “isolated” eigenvalue. We will now solve equation (2.4) near a
given λj under the additional assumptions that aj ≪ d2j . By Theorems 3.1 and 3.2, we will do so

in the rectangle Rj (see Fig. 7). Actually, we prove that, in Rj, there is exactly one resonance and
give an asymptotic for this resonance in terms of aj, dj and λj. This result is going to be applied
to the case of random V and to that of isolated eigenvalues (for any V ).
Using the notations of section 3, for j ∈ {0, · · · , L}, we define

(3.17) SL,j(E) :=
∑

k 6=j

aNk
λk − E

and ΓL,j(E) :=
∑

k 6=j

1

λk − E

(

|ϕk(L)|2 ϕk(0)ϕk(L)

ϕk(0)ϕk(L) |ϕk(0)|2
)

.

We prove

Theorem 3.3. Pick j ∈ {0, · · · , L} such that −4 < λj−1 + λj < λj+1 + λj < 4. There exists
C > 1 (depending only on (λj−1 + λj) + 4 and 4− (λj+1 + λj)) such that, for any L, if aj ≤ d2j/C,

equation (2.4) and (2.8) has exactly one solution in the set

(3.18) Rj :=

{

E ∈ C;
ReE ∈ λj + Caj [−1, 1]

−Caj ≤ImE ≤ −aj d2j/C

}

.

Moreover, the solution to (2.4), say zNj , satisfies

(3.19) zNj = λj +
aNj

SL,j(λj) + e−iθ(λj)
+O

(

(

aNj d
−1
j

)2
)

.

and the solution to (2.8), say zZj , satisfies

(3.20) zZj = λj +

〈(

ϕj(L)
ϕj(0)

)

,
(

ΓL,j(λj) + e−iθ(λj)
)−1

(

ϕj(L)
ϕj(0)

)〉

+O

(

(

aZj d
−1
j

)2
)

.

Note that, if aNj d
−2
j is small, formula (3.19) gives the asymptotic of the width of the solution zNj ,

namely,

(3.21) Im zNj =
aNj · sin θ(λj)

[SL,j(λj) + cos θ(λj)]2 + sin2 θ(λj)
(1 + o(1)).

Recall that sin θ(λj) < 0 (see Theorem 2.1). For HZ
L , using the bounds (3.28) and (3.29), we see

that the asymptotic of the imaginary part of the solution zZj satisfies

(3.22) − 1

C
aZj ≤ Im zZj ≤ −CaZj d2j .

This and (3.21) will be useful when aj ≪ d2j as will be the case for random potentials. The case
when aj and dj are of the same order of magnitude requires more information. This is the case
that we meet in the next section when dealing with periodic potentials.
The proof of Theorem 3.3 also yields the behavior of the functions E 7→ SL(E) + e−iθ(E) and

E 7→ det
(

ΓL(E) + e−iθ(E)
)

near their zeros in Rj and, in particular shows the following

Proposition 3.1. Fix δ > 0. Under the assumptions of Theorem 3.3, there exists c > 0 such that,
for −4 + δ < λj−1 + λj < λj+1 + λj < 4− δ, one has

inf
0<r<caNj d

−1

j

min
|E−zNj |=r

∣

∣SL(E) + e−iθ(E)
∣

∣

r
≥ c and

inf
0<r<caZj d

−1

j

min
|E−zZj |=r

∣

∣det
(

ΓL(E) + e−iθ(E)
)∣

∣

r
≥ c.
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Proposition 3.1 is a consequence of the analogues of (3.24) and (3.30) on the rectangles

R̃j = z̃j + ca•jd
−1
j [−1, 1] × [−1, 1]

for • ∈ {N,Z} and c sufficiently small.

Proof of Theorem 3.3. Let us start with equation (2.4). To prove the statement on equation (2.4),

in Rj, we compare the function E 7→ SL(E) + e−iθ(E) to the function

E 7→ S̃L,j(E) =
aNj

λj − E
+ SL,j(λj) + e−iθ(λj).

Clearly, in C, the equation S̃L,j(E) = 0 admits a unique solution given by

z̃j = λj +
aNj

SL,j(λj) + e−iθ(λj)
.

For E ∈ ∂Rj , the boundary of Rj , one has

∣

∣

∣S̃L,j(E)
∣

∣

∣ ≥ 1

2C
and

∣

∣

∣

∣

∣

aNj
λj − E

∣

∣

∣

∣

∣

≥ 1

2C
,

∣

∣

∣
e−iθ(E) − e−iθ(λj)

∣

∣

∣
≤ CaNj and |SL,j(E) − SL,j(λj)| ≤ CaNj d

−2
j .

(3.23)

Hence, as dj ≤ 1, one gets

max
E∈∂Rj

∣

∣

∣S̃L,j(E) − SL(E)− e−iθ(E)
∣

∣

∣

|S̃L,j(E)|
≤ 4CaNj d

−2
j

Thus, by Rouché’s theorem, equation (2.4) has a unique solution in Rj.
To obtain the asymptotics of the solution, it suffices to use Rouché’s theorem again with the
functions S̃L,j and SL(E) + e−iθ(E) on the smaller rectangle R̃j = z̃j +K(aNj d

−1
j )2[−1, 1]× [−1, 1].

One then estimates

(3.24) max
E∈∂R̃j

∣

∣

∣
S̃L,j(E) − SL(E) − e−iθ(E)

∣

∣

∣

|S̃L,j(E)|
≤ 4CK−1.

Thus, for K sufficiently large, this completes the proof of the statements on the solutions to
equation (2.4) contained in Theorem 3.3.

Let us turn to equation (2.8). On Rj , we now compare ΓL(E) + e−iθ(E) to the matrix valued
function

E 7→ Γ̃L,j(E) :=
1

λj −E

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

+ ΓL,j(λj) + e−iθ(λj).

The matrix

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

is rank 1 and can be diagonalized as

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

= Pj

(

aZj 0

0 0

)

P ∗
j

where aZj is given by (2.13) and

Pj =
1
√

aZj

(

ϕj(L) −ϕj(0)

ϕj(0) ϕj(L)

)

.
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Thus, Γ̃L,j(E) is unitarily equivalent to

(3.25) M :=
1

λj − E

(

aZj 0

0 0

)

+ P ∗
j ΓL,j(λj)Pj + e−iθ(λj).

As P ∗
j ΓL,j(λj)Pj is real and the imaginary part of e−iθ(λj ) does not vanish, the matrix M0 :=

P ∗
j ΓL,j(λj)Pj + e−iθ(λj ) is invertible. By rank 1 perturbation theory (see , e.g., [37]), we know that

M is invertible if and only if aZj
[

M−1
0

]

11
+ λj 6= E (where [M ]11 is the upper right coefficient of

the 2× 2 matrix M). In this case, one has

(3.26) M−1 =M−1
0 −

aZj

aZj
[

M−1
0

]

11
+ λj − E

M−1
0

(

1 0
0 0

)

M−1
0 .

Hence, 0 is an eigenvalue of M if and only if

E = λj + aZj

[

(

P ∗
j ΓL,j(λj)Pj + e−iθ(λj)

)−1
]

11

= λj +

〈(

ϕj(L)
ϕj(0)

)

,
(

ΓL,j(λj) + e−iθ(λj )
)−1

(

ϕj(L)
ϕj(0)

)〉

.

(3.27)

Note that, as ΓL,j(λj) is real symmetric and ‖ΓL,j(λj)‖ ≤ Cd−1
j , one has

(3.28)

∣

∣

∣

∣

〈(

ϕj(L)
ϕj(0)

)

,
(

ΓL,j(λj) + e−iθ(λj )
)−1

(

ϕj(L)
ϕj(0)

)〉∣

∣

∣

∣

≤
aZj

|sin θ(λj)|
.

and

(3.29) Im

(〈(

ϕj(L)
ϕj(0)

)

,
(

ΓL,j(λj) + e−iθ(λj)
)−1

(

ϕj(L)
ϕj(0)

)〉)

≤
aZj d

2
j sin θ(λj)

1 + d2j
.

Using (3.25), (3.26), (3.28) and (3.29),we see that, for E ∈ ∂Rj , the boundary of Rj , Γ̃L,j(E) is
invertible and that one has

∥

∥

∥

∥

[

Γ̃L,j(E)
]−1
∥

∥

∥

∥

≤ 2C and ‖ΓL,j(E)− ΓL,j(λj)‖ ≤ CaZj d
−2
j .

Hence, as dj ≤ 1, taking (3.23) into account, one gets

max
E∈∂Rj

∥

∥

∥

∥

1−
[

Γ̃L,j(E)
]−1 (

ΓL(E) + e−iθ(E)
)

∥

∥

∥

∥

≤ 4C2aZj d
−2
j

In the same way, one proves

(3.30) max
E∈∂R̃j

∥

∥

∥

∥

1−
[

Γ̃L,j(E)
]−1 (

ΓL(E) + e−iθ(E)
)

∥

∥

∥

∥

. K−1

where we recall that R̃j = z̃j +K(aNj d
−1
j )2[−1, 1]× [−1, 1].

Thus, we can apply Rouché’s Theorem to compare the following two functions on ∂Rj and ∂R̃j

(for K sufficiently large),

det
(

Γ̃L,j(E)
)

and det
(

ΓL(E) + e−iθ(E)
)
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as
∣

∣

∣det
(

Γ̃L,j(E)
)

− det
(

ΓL(E) + e−iθ(E)
)

∣

∣

∣

∣

∣

∣det
(

Γ̃L,j(E)
)∣

∣

∣

=

∣

∣

∣

∣

1− det

(

1−
[

1−
[

Γ̃L,j(E)
]−1 (

ΓL(E) + e−iθ(E)
)

])∣

∣

∣

∣

.

We then conclude as in the case of equation (2.4). This completes the proof of Theorem 3.3. �

Combining Theorems 3.3, 3.1 and 3.2, we get a pretty clear picture of the resonances near the
Dirichlet eigenvalues in (−2, 2) as long as the associated aj and dj behave correctly. As said, this
and the knowledge of the spectral statistics for random operators will enable us to prove the results
described in section 1.3. For the periodic case, Theorems 3.1, 3.2 and 3.3 will prove not too be
sufficient. As we shall see, in this case, aj and dj are of the same order of magnitude. Thus,
neighboring Dirichlet eigenvalues have a sizable effect on the location of resonances. Therefore, in
the next section, we compute the Dirichlet spectral data for the truncated periodic potential.

4. The Dirichlet spectral data for periodic potentials

As we did not find any suitable reference for this material, we first derive a suitable description
of the spectral data (i.e. the (aj)j and (λj)j) for the Dirichlet restriction of a periodic operator to
the interval J0, LK when L becomes large.
Consider a potential V : N → R such that, for some p ≥ 1, one has Vk = Vk+p for all k ≥ 0. We
assume p to be minimal, i.e., to be the period of V . In our first result, we describe the spectrum of
HZ = −∆+ V on ℓ2(Z) and HN = −∆+V on ℓ2(N) (with Dirichlet boundary conditions at 0). In
the second result we turn to HL, the Dirichlet restriction HN to J0, LK and described its spectral
data, i.e., its eigenvalues and eigenfunctions.
We recall

Theorem 4.1. The spectrum of HZ, say ΣZ, is a union of at most p disjoint intervals that all
consist in purely absolutely continuous spectrum.
The spectrum of HN is the union of ΣZ and at most finitely many simple eigenvalues outside ΣZ,
say, (vj)0≤j≤n. ΣZ consists of purely absolutely continuous spectrum of HN and the eigenfunctions
associated to (vj)0≤j≤n, say (ψj)0≤j≤n, are exponentially decaying at infinity.

Except for the exponential decay of the eigenfunctions, the proof of the statement for the periodic
operator on Z and N is classical and can e.g. be found in a more general setting in [39, chapters 2,
3 and 7] (see also [42, 35]). The exponential decay is an immediate consequence of Floquet theory
for the periodic Hamiltonian on Z and the fact that the eigenvalues lie in gaps of ΣZ.
For HZ one can define its Bloch quasi-momentum (see the beginning of section 4.1 for details) that

we denote by θp; it is continuous and strictly increasing on ΣZ and real analytic on
◦
ΣZ. Decompose

ΣZ into its connected components, i.e., ΣZ =

q
⋃

r=1

Br where q ≤ p. Let cq be the number of closed

gaps contained in q. Then, θp is continuous and strictly increasing on Br and real analytic on
◦
Br,

the interior of the r-th band. Moreover, on this set, its derivative can be expressed in terms of the
density of states defined in (1.2) as

(4.1) n(λ) =
1

π
θ′p(λ).

We first describe the eigenvalues of HL.
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Theorem 4.2. One has

(1) For any k ∈ {0, · · · , p − 1}, there exists hk : ΣZ → R, a continuous function that is real

analytic in a neighborhood of
◦
ΣZ such that, for L sufficiently large s.t. L ≡ k mod p,

(a) for 1 ≤ r ≤ q, the function hk maps Br into (−(cr + 1)π, (cr + 1)π);
(b) define the function

(4.2) θp,L := θp −
hk

L− k
;

it is continuous and strictly monotonous on each Br (1 ≤ r ≤ q);
(c) for 1 ≤ r ≤ q, the eigenvalues of HL in Br, the r-th band of ΣZ, say (λrj)j , are the

solutions (in ΣZ) to the quantization conditions

(4.3) θp,L(λ
r
j) =

jπ

L− k
, j ∈ Z.

(2) There exists c > 0 such that, if λ is an eigenvalue of HL outside ΣZ, then, for L = Np+ k
sufficiently large, there exists λ∞ ∈ Σ+

0 ∪ Σ−
k \ΣZ s.t., one has |λ− λ∞| ≤ e−cL.

Recall that Σ+
0 and Σ−

k are respectively the spectra of H+
0 and H−

k defined in section 1.2.2.
In Theorem 4.2, when solving equation (4.3), one has to do it for each band Br, and, for each

band and each j such that
jπ

L− k
∈ θp,L(Br), equation (4.3) admits a unique solution. But, it may

happen that one has two solutions to (4.3) for a given j belonging to neighboring bands. In the
sequel to simplify the notations, we will not distinguish between the different bands, i.e., we will
write eigenvalues (λj)j not referring to the band they belong to.
Let us now describe the associated eigenfunctions.

Theorem 4.3. Recall that (λj)j are the eigenvalues of HL in ΣZ (enumerated as in Theorem 4.2).

(1) There exist p + 2 positive functions, say, f+0 , (f−k )0≤k≤p−1 and f̃ , that are real analytic

in a neighborhood of
◦
ΣZ such that, there exists σr ∈ {+1,−1} such that, for L = Np + k

sufficiently large, for λj in
◦
Br, the interior of r-th band of ΣZ, one has

|ϕl(L)|2 =
f−k (λj)

L− k

(

1 +
f̃(λj)

L− k

)−1

, |ϕl(0)|2 =
f+0 (λj)

f−k (λj)
|ϕl(L)|2,

ϕl(L)ϕl(0) = σr e
iπl|ϕl(L)||ϕl(0)| = σr e

i(L−k)θp(λj)−hk(λj )|ϕl(L)||ϕl(0)|.
(4.4)

(2) Let λ be an eigenvalue of HL outside ΣZ (see point (3) in Theorem 4.2). If ϕ is a normalized
eigenfunction associated to λ and HL, one has one of the following alternatives for L large
(a) if λ∞ ∈ Σ+

0 \Σ−
k , one has

(4.5) |ϕ(L)| ≍ e−cL and |ϕ(0)| ≍ 1;

(b) if λ∞ ∈ Σ−
k \Σ+

0 , one has

(4.6) |ϕ(L)| ≍ 1 and |ϕ(0)| ≍ e−cL;

(c) if λ∞ ∈ Σ−
k ∩Σ+

0 , one has

(4.7) |ϕ(L)| ≍ 1 and |ϕ(0)| ≍ 1.

For later use, let us define θp,L, f0,L and fk,L by

(4.8) fk,L(λ) = f−k (λ)

(

1 +
f̃(λ)

L− k

)−1

and f0,L(λ) = f+0 (λ)

(

1 +
f̃(λ)

L− k

)−1



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 33

where θp, hk, f0, fk and f̃ are defined in Theorem 4.2.
As a consequence of Theorem 4.2, we obtain

Corollary 4.1. For λ ∈
◦
ΣZ, for L ≡ k mod (p) sufficiently large, one has

dN−
k

dλ
(λ) = n−k (λ) = f−k (λ)n(λ) =

1

π
f−k (λ)θ′p(λ) =

1

π
fk,L(λ)θ

′
p,L(λ),(4.9)

dN+
0

dλ
(λ) = n+0 (λ) = f+0 (λ)n(λ) =

1

π
f+0 (λ)θ′p(λ) =

1

π
f0,L(λ)θ

′
p,L(λ).(4.10)

Here, θP , f
+
0 and f−k are defined the functions defined in Theorem 4.2.

Proof of Corollary 4.1. To prove the first equalities in (4.9) and (4.10), it suffices to prove that, for

any χ ∈ C∞
0 (

◦
ΣZ),

〈δ0, χ(H−
k )δ0〉 =

∫

R

χ(λ)dN−
k (λ) =

1

π

∫

R

χ(θ−1
p (k))f−k (θ−1

p (k))dk

=
1

π

∫

R

χ(λ)f−k (λ)θ′p(λ)dλ,
(4.11)

〈δ0, χ(H+
0 )δ0〉 =

∫

R

χ(λ)dN+
0 (λ) =

1

π

∫

R

χ(θ−1
p (k))f+0 (θ−1

p (k))dk

=
1

π

∫

R

χ(λ)f+0 (λ)θ′p(λ)dλ,
(4.12)

the full statement then following by standard density argument. The operator HL converges to
H+

0 in norm resolvent sense. Thus, we know that 〈δ0, χ(H+
0 )δ0〉 = lim

L→+∞
〈δ0, χ(HL)δ0〉. Now, by

Theorem 4.2, as χ is supported in
◦
ΣZ, using the Poisson formula, one computes

〈δ0,χ(HL)δ0〉 =
∑

j

χ(λj)||ϕj(0)|2 =
1

L− k

∑

l

χ

(

θ−1
p,L

(

lπ

L− k

))

f0,L

(

θ−1
p,L

(

lπ

L− k

))

=
1

L− k

∑

j∈Z

∫

R

e−i2πjλχ

(

θ−1
p,L

(

π λ

L− k

))

f0,L

(

θ−1
p,L

(

π λ

L− k

))

dλ

=
1

π

∑

j∈Z

∫

R

e−i2(L−k)jθp,L(λ)χ (λ) f0,L (λ) θ′p,L(λ)dλ.

Thus, using the non stationary phase, i.e., integrating by parts, one gets, for any N ≥ 2,
∣

∣

∣

∣

〈δ0, χ(HL)δ0〉 −
1

π

∫

R

χ (λ) f0,L (λ) θ′p,L(λ)dλ

∣

∣

∣

∣

≤
∑

j≥1

CN,K‖χ‖CN (|j|(L − k))−N

≤ CN,K‖χ‖CN ((L− k))−N .

(4.13)

Here, we have used the analyticity of the functions θp,L and f0,L.

To deal with H−
k , we recall the operator H̃L (that is unitarily equivalent to HL) defined in Re-

mark 1.4. One has 〈δL,HLδL〉 = 〈δ0, χ(H̃L)δ0〉, thus, as H−
k is the strong resolvent sense limit of

H̃L, one gets 〈δ0, χ(H−
k )δ0〉 = lim

L→+∞
〈δL, χ(HL)δL〉.

Then, (4.11) and (4.12) and, thus, the first equalities in (4.9) and (4.10), follow as θ′p,L, f0,L and

fk,L converge (locally uniformly on
◦
ΣZ) respectively to θ′p, f

+
0 and f−k (see (4.8) and Theorem 4.2).
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Let us now prove the second equalities in (4.9) and (4.10). Therefore, we use an almost analytic
extension (see [30]) of χ, say, χ̃, that is, a function χ̃ : C → C satisfying (

(1) for z ∈ R, χ̃(z) = χ(z),
(2) supp(χ̃) ⊂ {z ∈ C; |Im(z)| < 1},
(3) χ̃ ∈ S({z ∈ C; |Im(z)| < 1}),
(4) The family of functions x 7→ ∂χ̃

∂z
(x+ iy) · |y|−n (for 0 < |y| < 1) is bounded in S(R) for any

n ∈ N.

Moreover, χ̃ can be chosen so that one has the following estimates: for n ≥ 0, α ≥ 0, β ≥ 0, there
exists Cn,α,β > 0 such that

(4.14) sup
0<|y|≤1

sup
x∈R

∣

∣

∣

∣

xα
∂β

∂xβ

(

|y|−n · ∂χ̃
∂z

(x+ iy)

)∣

∣

∣

∣

≤ Cn,α,β sup
β′≤n+β+2α′≤α

sup
x∈R

∣

∣

∣

∣

∣

xα
′ ∂β

′

χ

∂xβ′ (x)

∣

∣

∣

∣

∣

.

By the definition of χ, the right hand side of (4.14) is bounded uniformly in E complex.
Let χ ∈ C∞

0 (R) and χ̃ be an almost analytic extension of χ(x). Then, by [15] and [20], we know
that, for any n and ω ∈ Ω, the following formula hold,

(4.15) χ(H•) =
i

2π

∫

C

∂χ̃

∂z
(z) · (z −H•)

−1dz ∧ dz

where H• = HL, H̃L, H
+
0 or H−

k .
Using the geometric resolvent equation (see, e.g., [19, Theorem 5.20]) and the Combes-Thomas
estimate (see , e.g., [19, Theorem 11.2]), we know that for some C > 0, for Imz 6= 0,

(4.16)
∣

∣

∣

〈

δ0,
[

(H̃L − z)−1 − (H−
k − z)−1

]

δ0

〉∣

∣

∣

+
∣

∣

〈

δ0,
[

(HL − z)−1 − (H+
0 − z)−1

]

δ0
〉∣

∣ ≤ C

|Imz|e
−L|Imz|/C .

Plugging (4.16) into (4.15) and using (4.14), we get
∣

∣

∣

∣

∣

∣

L
∑

j=0

χ(λj)|ϕj(0)|2 −
∫

R

χ(λ)dN+
0 (λ)

∣

∣

∣

∣

∣

∣

≤ C̃N

∫

|y|≤1
|y|N−1e−L|y|/Cdy ≤ CNL

−N

Thus, by (4.12) and (4.13), we obtain that, for χ ∈ C∞
0 (

◦
ΣZ) and any N ≥ 0, there exists CN > 0

such that
∣

∣

∣

∣

∫

R

χ (λ)
[

f0,L (λ) θ′p,L(λ)− f+0 (λ) θ′p(λ)
]

dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

χ (λ) f0,L (λ) θ′p,L(λ)dλ−
∫

R

χ(λ)dN+
0 (λ)

∣

∣

∣

∣

≤ CNL
−N .

(4.17)

Now, by (4.3) and (4.8), the function f0,Lθ
′
p,L − f+0 θ

′
p admits an expansion in inverse powers of L

that is converging uniformly on compact subsets of
◦
ΣZ, namely,

f0,Lθ
′
p,L − f+0 θ

′
p =

∑

k≥1

L−kαk.

Thus, (4.17) immediately yields that, for any k ≥ 1, one has αk ≡ 0 on
◦
ΣZ. Hence, f0,Lθ

′
p,L ≡ f+0 θ

′
p

on
◦
ΣZ. This completes the proof of Corollary 4.1. �
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4.1. The proofs of Theorems 4.2 and 4.3. We will first describe some objects from the spectral
theory of HZ, use them to describe the spectral theory of HN, prove Theorem 4.2 and finally prove
Theorem 4.3.

4.1.1. The spectral theory of HZ. This material is classical (see, e.g., [42, 39]); we only recall it for

the readers convenience. For 0 ≤ j ≤ p − 1, define T̃j = T̃j(E) to be a monodromy matrix for the

periodic finite difference operator HZ, that is ,

(4.18) T̃j(E) = Tj+p−1,j(E) = Tj+p−1(E) · · · Tj(E) =:

(

ajp(E) bjp(E)

ajp−1(E) bjp−1(E)

)

where

(4.19) Tj(E) =

(

E − Vj −1
1 0

)

.

The coefficients of T̃j(E) are monic polynomials in the energy E: ajp(E) has degree p and bjp(E)

has degree p − 1. Clearly, det T̃j(E) = 1. As j 7→ Vj is p-periodic, so is j 7→ T̃j(E). Moreover, for
j′ < j, one has

(4.20) T̃j(E)Tj,j(E) = Tj+p−1,j′+p−1(E) T̃j′(E) = Tj,j′(E) T̃j′(E).

Thus, the discriminant ∆(E) := tr T̃j(E) = ajp(E) + bjp−1(E) is a polynomial of degree p that

is independent of j; so are ρ(E) and ρ−1(E), the eigenvalues of T̃j(E). One defines the Bloch
quasi-momentum E 7→ θp(E) by

(4.21) ∆(E) = ρ(E) + ρ−1(E) = 2 cos(p θp(E)).

Let us recall some basic properties of the discriminant ∆ and the coefficients of T̃j , the proofs of
which can be found in [42]:

(1) if ∆′(E) = 0 then |∆(E)| ≥ 2;
(2) the zeros of ∆′ are simple;

(3) E is a zero of ∆′ s.t. |∆(E)| = 2 if and only if T̃j(E) ∈ {+Id,− Id} (for any j);

(4) the polynomials bjp and ajp−1 only vanish in the set {|∆(E)| ≥ 2} ; they keep a fixed sign in

each of the connected components of the set {|∆(E)| < 2}.
Note that ∆(E) is real when E is real. Thus, for E real, |∆(E)| ≤ 2 implies that ρ−1(E) = ρ(E) and

|∆(E)| > 2 that ρ(E) is real. When |∆(E)| ≤ 2, we will fix ρ(E) := eipθp(E) and when |∆(E)| > 2,
we will fix ρ(E) so that |ρ(E)| < 1.
E belongs to the spectrum of HZ (i.e. −∆+ V on ℓ2(Z)) if and only if |∆(E)| ≤ 2 (see, e.g., [39]).
Properties (1)-(3) above imply that, for E0 a zero of ∆′ such that ∆(E0) = ±2, θp is real analytic
near E0 and θ′p(E0) 6= 0.

Definition 4.1. E0 is said to be a closed gap if and only if |∆(E0)| = 2 and ∆′(E0) = 0 or

equivalently if and only if T̃0(E0) is diagonal.

Consider ∂ΣZ. It is the set of energies solutions to |∆(E)| = 2 where T̃0(E) is not diagonal; it is
also the set of roots of |∆(E)| = 2 that are not closed gaps. From the upper half of the complex
plane, one can continue E 7→ θp(E) analytically to the universal cover of C \ ∂ΣZ. Each of the
points in ∂ΣZ is a branch point of θp of square root type. Moreover, for E 6∈ ∂ΣZ, there exists
two linearly independent solutions to the eigenvalue equation (−∆ + V − E)u = 0, say ϕ±(E),
satisfying, for n ∈ Z

(4.22) ϕ±(n+ p,E) = e±ipθp(E)ϕ±(n,E).
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4.1.2. The spectral theory of HN. Let us now turn to the spectrum of the operator on the half-
lattice.
The operator H+

0 . For the operator H+
0 = HN (that is −∆+ V on ℓ2(N) with Dirichlet boundary

conditions at 0), E is in the spectrum if and only if

• either |∆(E)| ≤ 2

• or |∆(E)| > 2 and [T̃0(E)]n
(

1
0

)

stays bounded as n→ +∞.

The second condition is equivalent to asking that [T̃j(E)]nTj−1(E) · · · T0(E)

(

1
0

)

stay bounded as

n→ +∞.
When |∆(E)| 6= 2 and a0p−1(E) 6= 0, one can diagonalize T̃0(E) in the following way

(4.23)

(

a0p−1(E) ρ(E)− a0p(E)
−a0p−1(E) a0p(E)− ρ−1(E)

)

× T̃0(E)

=

(

ρ(E) 0
0 ρ−1(E)

)

×
(

a0p−1(E) ρ(E)− a0p(E)
−a0p−1(E) a0p(E)− ρ−1(E)

)

.

Thus, using

(4.24)

∣

∣

∣

∣

ρ(E) − a0p(E) −b0p(E)
−a0p−1(E) ρ(E) − b0p−1(E)

∣

∣

∣

∣

=

∣

∣

∣

∣

ρ(E) − a0p(E) −b0p(E)
−a0p−1(E) a0p(E)− ρ−1(E)

∣

∣

∣

∣

= 0

for n ∈ Z, one computes

(4.25)
(

T̃0(E)
)n

=

(

t̃110,n(E) t̃120,n(E)

t̃210,n(E) t̃220,n(E)

)

where

(4.26)

t̃110,n(E) := ρn(E)
a0p(E)− ρ−1(E)

ρ(E) − ρ−1(E)
+ ρ−n(E)

ρ(E)− a0p(E)

ρ(E) − ρ−1(E)
,

t̃120,n(E) :=
(

ρ−n(E) − ρn(E)
) b0p(E)

ρ(E) − ρ−1(E)
,

t̃210,n(E) :=
(

ρn(E)− ρ−n(E)
) a0p−1(E)

ρ(E) − ρ−1(E)
,

t̃220,n(E) := ρ−n(E)
a0p(E)− ρ−1(E)

ρ(E)− ρ−1(E)
+ ρn(E)

ρ(E)− a0p(E)

ρ(E) − ρ−1(E)
.

Clearly, the formulas (4.23), (4.25) and (4.26) stay valid even if a0p−1(E) = 0. They also stay valid

if |∆(E)| = 2 and ∆′(E) = 0. Indeed, by points (1)-(3) in section 4.1.1, the functions ρ − ρ−1,
a0p − ρ−1, −ρ− a0p, b

0
p and a0p−1 are analytic near and have simple zeros at such points.

We have thus proved that

Lemma 4.1. For E 6∈ ∂ΣZ,
(

T̃0(E)
)n

has the form (4.25) - (4.26)

Simple computations then show that E is in the spectrum of H+
0 , that is, −∆+ V on ℓ2(N) with

Dirichlet boundary conditions at 0 if and only if one of the following conditions is satisfied:

(1) |∆(E)| ≤ 2: moreover, the set {E ∈ R; |∆(E)| ≤ 2} is contained in the absolutely contin-
uous spectrum of H+

0 ;
(2) |∆(E)| > 2 and

(4.27) a0p−1(E) = 0 and |a0p(E)| < 1.
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Thus, on ΣZ, the spectrum of H+
0 is purely absolutely continuous; it does not contain any embedded

eigenvalues.

Note that, in case (2), [T̃0(E)]n
(

1
0

)

actually decays exponentially fast. In this case, E is an

eigenvalue associated to the (non normalized) eigenfunction (ul)l∈N where, for n ≥ 0 and j ∈
{0, · · · , p− 1},

unp+j(E) =

〈

Tj−1(E) · · · T0(E)

(

1
0

)

,

(

1
0

)〉

·
[

a0p(E)
]n

= aj(E)
[

a0p(E)
]n

(4.28)

writing

(4.29) Tj−1(E) · · · T0(E) =:

(

aj(E) bj(E)
aj−1(E) bj−1(E)

)

.

It is well know that, for any j, the zeros of aj and bj are simple (see, e.g., [39, section 4]), and
the roots of aj+1 (resp. bj+1) interlace those of aj (resp. bj). Let E′ be an eigenvalue of H+

0 .
Differentiating (4.24) at the energy E′, we compute

(4.30) b0p(E
′)
da0p−1

dE
(E′) + (ρ(E′)− ρ−1(E′))

d(ρ − a0p)

dE
(E′) = 0.

The eigenvalues of the operator H−
k . Let us now turn to H−

k . Recalling (4.29) and using the

representation (4.25), we obtain that the eigenvalues of H−
k outside ΣZ satisfy

(4.31)

(

ρ(E)− a0p(E) −a0p−1(E)
−b0p(E) a0p(E)− ρ−1(E)

)(

ak+1(E)
bk+1(E)

)

= 0.

As for H+
0 , the eigenfunction associated to E and H−

k decays exponentially fast. Indeed, the

eigenvalues of H−
k in the region |∆(E)| > 2 can be analyzed as we analyzed those of H+

0 , i.e., they

are the energies such that [T̃k(E)]−n

(

0
1

)

stays bounded; this yields the quantization conditions

bkp(E) = 0 and |bkp−1(E)| < 1. In this case, E is an eigenvalue associated to the (non normalized)

eigenfunction (ul)−l∈N where, for n ≥ 0 and k ∈ {0, · · · , p − 1},

(4.32) u−np−k(E) = bk(E)
[

bkp−1(E)
]−n

.

Common eigenvalues to H+
0 and H−

k . Assume now that E′ is simultaneously an eigenvalue of H−
k

and H+
0 . In this case, one has a0p−1(E

′) = 0, |a0p(E′)| < 1 and b0p(E
′)bk+1(E

′) = ak+1(E
′)(ρ−1(E′)−

ρ(E′)). So (4.31) (see also (4.30)) becomes

(4.33)

(

d(ρ−a0p)

dE (E′) −da0p−1

dE (E′)
−b0p(E) a0p(E

′)− ρ−1(E′)

)

(

ak+1(E
′)

bk+1(E
′)

)

= 0.

Hence, the analytic function E 7→ ak+1(E)(a0p(E)− ρ(E))− bk+1(E)a0p−1(E) has a root of order at

least 2 at E′. It also implies that ak+1(E
′) 6= 0. Indeed, if ak+1(E

′) = 0, (4.33) implies bk+1(E
′) = 0

as
da0p−1

dE (E′) 6= 0.

Conversely, if E′ ∈ σ(H+
0 ) such that |∆(E′)| > 2 and E 7→ ak+1(E)(a0p(E)−ρ(E))−bk+1(E)a0p−1(E)

has a root of order at least 2 at E′, then (4.33) holds and E′ is an eigenvalue of H−
k .

We have thus proved

Lemma 4.2. E0 ∈ σ(H+
0 ) ∩ σ(H−

k ) \ Z if and only if |∆(E0)| > 2 and E0 is a double root of

E 7→ ak+1(E)(a0p(E)− ρ(E))− bk+1(E)a0p−1(E).
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4.1.3. The Dirichlet eigenvalues for a periodic potential : the proof of Theorem 4.2. Let us now
turn to the study of the eigenvalues and eigenvectors of HL, i.e., to the proof of Theorem 4.2. We
first prove the statements for the eigenvalues and then, in the next section, turn to the eigenvectors.
Recall that L ≡ k mod p; we write L = Np + k. By definition, E is an eigenvalue of −∆+ V on
J0, LK with Dirichlet boundary conditions if and only if

0 = det

(

TL+1(E)TL(E)TL−1(E) · · · T0(E)

(

1
0

)

,

(

0
1

))

= det

(

Tk(E) · · · T0(E) · [T̃0(E)]N
(

1
0

)

,

(

0
1

))(4.34)

where T̃k(E) is the monodromy matrix defined above.
We use the notations of sections 4.1.2 and 4.1.1. Let us first show point (1) of Theorem 4.2, namely,

Lemma 4.3. For L large, one has

∂ΣZ ∩ σ(HL) = {E0; ak+1(E0) = a0p−1(E0) = 0 and b0p(E0) 6= 0}.

Proof. For E0 ∈ ∂ΣZ, we know that |∆(E0)| = 2 and T̃0(E0) is not diagonal. Assume ∆(E0) = 2

(the case ∆(E0) = −2 is dealt with in the same way); hence, T̃0(E0) has a Jordan normal form,
i.e., there exists P , a 2× 2 invertible matrix and α ∈ R

∗ such that

(4.35) T̃0(E0) = P−1

(

1 0
α 1

)

P where P =

(

p11 p12
p21 p22

)

.

Thus, by (4.34), E0 ∈ σ(HL) is and only if

0 =

∣

∣

∣

∣

(

ak+1(E0) bk+1(E0)
ak(E0) bk(E0)

)

(

T̃0(E0)
)N

(

1
0

)

,

(

0
1

)∣

∣

∣

∣

=

∣

∣

∣

∣

(

ak+1(E0) bk+1(E0)
ak(E0) bk(E0)

)

P−1

(

1 0
Nα 1

)

P

(

1
0

)

,

(

0
1

)∣

∣

∣

∣

,

(4.36)

that is,

0 =

∣

∣

∣

∣

(

1 0
Nα 1

)

P

(

1
0

)

, P

(

−bk+1(E0)
ak+1(E0)

)∣

∣

∣

∣

= (detP ) ak+1(E0)−N αp11 (−p11bk+1(E0) + p12ak+1(E0)).

For N large, this expression vanishes if and only if (detP ) ak+1(E0) = 0 and αp11 (−p11bk+1(E0)+
p12ak+1(E0)) = 0. As P is invertible, as |bk+1(E0)| + |ak+1(E0)| 6= 0 and as α 6= 0, one has
ak+1(E0) = 0 and p11 = 0.
In this case, using bk+1(E0) 6= 0, we can then rewrite the eigenvalue equation (4.36) as

(4.37) 0 =

∣

∣

∣

∣

(T̃0(E0))
N

(

1
0

)

,

(

1
0

)∣

∣

∣

∣

= t̃210,N (E0)

For E ∈
◦
ΣZ close to E0, by (4.26), we have

t210,N (E) =

(

ρN (E) − ρ−N (E)
)

a0p−1(E)

ρ(E) − ρ−1(E)
= ρN−1





N−1
∑

j=0

ρ−2j(E)



 a0p−1(E).

As ρ is continuous at E0 and ρ2(E0) = 1, taking E to E0, we get

a0p−1(E0) = 0.

As T̃0(E0) is not diagonal, this implies b0p(E0) 6= 0. This completes the proof of Lemma 4.3. �
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Now, pick E 6∈ ∂ΣZ. Then, by Lemma 4.1, the quantization condition (4.34) becomes

(4.38)

∣

∣

∣

∣

∣

∣

∣

∣

ρN (E)
a0p(E)− ρ−1(E)

ρ(E) − ρ−1(E)
+ ρ−N (E)

ρ(E) − a0p(E)

ρ(E) − ρ−1(E)
−bk+1(E)

(

ρN (E)− ρ−N (E)
) a0p−1(E)

ρ(E)− ρ−1(E)
ak+1(E)

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The eigenvalues outside of ΣZ. Let us first study the eigenvalues outside ΣZ, i.e., in the region
|∆(E)| > 2. If, for j ∈ N, we define

αj(E) := aj(E)
a0p(E)− ρ−1(E)

ρ(E)− ρ−1(E)
+ bj(E)

a0p−1(E)

ρ(E) − ρ−1(E)

and βj(E) := aj(E)
ρ(E)− a0p(E)

ρ(E) − ρ−1(E)
− bj(E)

a0p−1(E)

ρ(E) − ρ−1(E)
,

(4.39)

equation (4.38) can be rewritten as βk+1(E) + ρ2N (E)αk+1(E) = 0; using

(4.40) αk+1(E) + βk+1(E) = ak+1(E),

(4.38) becomes

(4.41) βk+1(E) = − ρ2N (E)

1− ρ2N (E)
ak+1(E).

We first show

Lemma 4.4. There exists η > 0 such that, for L sufficiently large, σ(HL)∩[(ΣZ+[−η, η])\ΣZ] = ∅.
Proof. Using (4.39), we rewrite (4.41) as

(4.42) ak+1(E)(ρ(E) − a0p(E))− bk+1(E)a0p−1(E) = ρ2N+1(E)
1− ρ2(E)

1 − ρ2N (E)
ak+1(E).

Pick E0 ∈ ∂ΣZ . Then, by our choice for ρ, for η > 0 small, we know that, for E ∈ ([E0 − η,E0 +

η]) \ ΣZ, ρ
2(E) = e−c0

√
|E−E0|(1+O(

√
|E−E0|)). Hence, for E ∈ ([E0 − η,E0 + η]) \ ΣZ, one has

(4.43)

∣

∣

∣

∣

ρ2N+1(E)
1− ρ2(E)

1− ρ2N (E)

∣

∣

∣

∣

. min

(

√

|E − E0|,
1

N

)

.

Thus, if ak+1(E0)(ρ(E0) − a0p(E0)) − bk+1(E0)a
0
p−1(E0) 6= 0, equation (4.42) has no solution in

[E0 − η,E0 + η] \ ΣZ for η small and L sufficiently large.
Let us now assume that ak+1(E0)(ρ(E0)− a0p(E0))− bk+1(E0)a

0
p−1(E0) = 0. Hence,

• if ak+1(E0) 6= 0: one computes

ak+1(E)(ρ(E) − a0p(E))− bk+1(E)a0p−1(E) = ak+1(E0)(ρ(E) − ρ(E0))(1 + o(1))

and

ρ2N+1(E)
1− ρ2(E)

1 − ρ2N (E)
ak+1(E) = −(ρ(E)− ρ(E0)) ak+1(E0)

ρ2(N+1)(E)

1− ρ2N (E)
(1 + o(1)).

Hence, for η > 0 small and E ∈ [E0 − η,E0 + η] \ΣZ, the two sides of equation (4.42) have
opposite signs: there is no solution to equation (4.42) in this interval;

• if ak+1(E0) = 0: then bk+1(E0) 6= 0, a0p−1(E0) = 0, ρ(E0) = a0p(E0) and (a0p−1)
′(E0) 6= 0;

one computes

ak+1(E)(ρ(E) − a0p(E)) − bk+1(E)a0p−1(E) = −bk+1(E0)(a
0
p−1)

′(E0)(E − E0)(1 + o(1))
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and, by (4.43), for η > 0 small and E ∈ [E0 − η,E0 + η] \ ΣZ,
∣

∣

∣

∣

ρ2N+1(E)
1− ρ2(E)

1 − ρ2N (E)
ak+1(E)

∣

∣

∣

∣

. |E − E0|min

(

√

|E − E0|,
1

N

)

Hence, for η > 0 small and E ∈ [E0− η,E0 + η] \ΣZ, there is no solution to equation (4.42)
in this interval.

This completes the proof of Lemma 4.4. �

In Lemma 4.3, we saw that, if E0 ∈ ∂ΣZ satisfies ak+1(E0) = 0 and ak+1(E0)(ρ(E0) − a0p(E0)) −
bk+1(E0)a

0
p−1(E0) = 0, then E0 is an eigenvalue of HL for L large.

By Lemma 4.4, if now suffices to consider energies such that |∆(E)| > 2+η for some η > 0. In this
case, we note that the left hand side in (4.41) is the left hand side of the first equation in (4.31)
(up to the factor ρ− ρ−1 that does not vanish outside ΣZ). On the other hand, the right hand side
in (4.41) is uniformly exponentially small for large N on {E ∈ R; |∆(E)| > 2 + η}. Thus, for L
large, the solutions to (4.41) are exponentially close to E′ that is either an eigenvalue of H+

0 or one
of H−

k . One distinguishes between the following cases:

(1) if E′ is an eigenvalue of H+
0 but not of H−

k , then E′ is a simple root of the function
E 7→ βk+1(E) (see section 4.1.2); one has to distinguish two cases depending on whether
ak+1(E

′) vanishes or not. Assume first ak+1(E
′) = 0; then, by (4.28), we know that the

eigenvector of H+
0 actually satisfies the Dirichlet boundary conditions at L; thus, E′ is a

solution to (4.41), i.e., an eigenvalue of HL, and (4.28) gives a (non normalized) eigenvector.
Assume now that ak+1(E

′) 6= 0; then, by Rouché’s Theorem, the unique solution to (4.41)
close to E′ satisfies

(4.44) E − E′ = − ρ2N (E′)
β′k+1(E

′)
ak+1(E

′)(1 + o(ρ2N (E′)));

(2) if E′ is an eigenvalue of H−
k but not of H+

0 , mutandi mutandis, the analysis is the same as
in point (1);

(3) if E′ is an eigenvalue of both H+
0 and H−

k , then, we are in a resonant tunneling situation.
The analysis done in the appendix, section 7, shows that near E′, HL has two eigenvalues,
say E± satisfying, for some constant α > 0,

(4.45) E± − E′ = ±αρN (E′))
(

1 +O
(

Nρ(E′)N
))

.

This completes the proof of the statements of Theorem 4.2 for the eigenvalues outside ΣZ.

The eigenvalues inside ΣZ. We now study the eigenvalues in the region
◦
ΣZ. One can express ρ(E)

in terms of the Bloch quasi-momentum θp(E) and use ρ−1(E) = ρ(E). Notice that, on
◦
ΣZ, one has

• Im ρ(E) does not vanish
• the function E 7→ ρ(E) is real analytic,
• the functions E 7→ a0p(E), E 7→ a0p−1(E), E 7→ ak+1(E) and E 7→ bk+1(E) are real valued
polynomials.

We prove

Lemma 4.5. The function αk+1 is analytic and does not vanish on
◦
ΣZ.

Proof. Assume that the function αk+1 vanishes at a point E0 in
◦
ΣZ:

• if ρ(E0) 6= ρ−1(E0): then, one has ak+1(E0) (a
0
p(E0)−ρ−1(E0))+bk+1(E0) a

0
p−1(E0) = 0: as

ρ(E0) 6= ρ−1(E0) and E0 ∈
◦
ΣZ, one has ρ

−1(E0) = ρ(E0) 6∈ R; thus, for ak+1(E0) (a
0
p(E0)−



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 41

ρ−1(E0))− bk+1(E0) a
0
p−1(E0) to vanish, one needs ak+1(E0) = 0 and a0p−1(E0) = 0 (as bk+1

and ak+1 don’t vanish together); this implies that ρ(E0) = ±1 and contradicts ρ(E0) 6=
ρ−1(E0);

• if ρ(E0) = ρ−1(E0): such a point E0 is a simple root of the three functions a0p−1, ρ−ρ−1 and

a0p − ρ that are analytic near E0 (see points (1)-(4) in section 4.1.1). Moreover, one checks
that the derivatives of these functions at that point are respectively real, purely imaginary
and neither real, nor purely imaginary: for E close to E0, one has

a0p−1(E) = A(E − E0)(1 +O(E −E0)),

ρ(E)− ρ−1(E) = 2iC(E − E0)(1 +O(E −E0)),

a0p(E)− ρ−1(E) = (B + iC)(E − E0)(1 +O(E − E0)) where (A,B,C) ∈ (R∗)3.

(4.46)

Now, as ak+1 and bk+1 are real valued and can’t vanish at the same point, we see that
αk+1(E0) 6= 0.

This complete the proof of Lemma 4.5 �

Now, as L = Np+ k, the characteristic equation (4.38) (valid for E ∈
◦
ΣZ) becomes

ρ2N (E) = e2iNpθp(E) = −αk+1(E)

αk+1(E)
= −βk+1(E)

βk+1(E)

=
ak+1(E)(ρ(E) − a0p(E))− bk+1(E)a0p−1(E)

ak+1(E)(ρ(E) − a0p(E))− bk+1(E)a0p−1(E)
=: e2ihk(E).

(4.47)

By Lemma 4.5, the function E 7→ hk(E) defined in (4.47) is real analytic on
◦
ΣZ. Clearly, as inside

ΣZ, ρ is real only at bands edges or closed gaps, hk takes values in πZ only at bands edges or closed
gaps. This implies point (a) of Theorem 4.2. We prove

Lemma 4.6. The function hk can be extended continuously from
◦
ΣZ to ΣZ; for E0 ∈ ∂ΣZ, one has

hk(E0) ∈
{

π
2 + πZ if ak+1(E0) 6= 0 and ak+1(E0)(ρ(E0)− a0p(E0))− bk+1(E0)a

0
p−1(E0) = 0,

πZ if not.

The function θp,L is strictly increasing on the bands of ΣZ.

Proof. Pick E0 ∈ ∂ΣZ. It suffices to study the behavior of E ∈ ΣZ 7→ s(E) := ak+1(E)(ρ(E) −
a0p(E)) − bk+1(E)a0p−1(E) near E0 inside ΣZ. Write E = E0 ± t2 for t real positive; here, the sign

± depends on whether E0 is a left or right edge of ΣZ and is chosen so that E = E0 ± t2 ∈
◦
ΣZ for

t small.
First, t 7→ ρ(E0 ± t2) is analytic near 0; thus, so is t 7→ s(E0 ± t2). Solving the characteristic
equation ρ2(E)−∆(E)ρ(E) + 1 = 0, one finds

ρ(E0 ± t2) = ρ(E0) + iat+ bt2 +O(t3), a ∈ R
∗, b ∈ R.

Thus,
s(E0 ± t2) = s(E0) + iak+1(E0) · a · t+ c · t2 +O(t3)

where

c := a′k+1(E0)(ρ(E0)−a0p(E0))+ak+1(E0)(b−(a0p)
′(E0))−(b′k+1(E0)a

0
p−1(E0)+bk+1(E0)(a

0
p−1)

′(E0)).

Hence,

• if s(E0) 6= 0, then s(E0 ± t2) = s(E0) + O(t) ; hence, hk(E0 ± t2) = πn + O(t) for some
n ∈ Z
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• if s(E0) = 0 and ak+1(E0) 6= 0, one has s(E0 ± t2) = iak+1(E0) · a · t + O(t2); thus,
hk(E0 ± t2) = π

2 + πn+O(t) for some n ∈ Z;

• if s(E0) = ak+1(E0) = 0, one has bk+1(E0) 6= 0, a0p−1(E0) = 0, ρ(E0) = a0p(E0) and

(a0p−1)
′(E0) 6= 0; thus s(E0 ± t2) = −bk+1(E0)(a

0
p−1)

′(E0)t
2 + 0(t2); hence, hk(E0 ± t2) =

πn+O(t) for some n ∈ Z.

This completes the proof of the statement of Lemma 4.6 on the function hk.

Let us now control the monotony of θp,L (see Theorem 4.2) on the bands of ΣZ. It is well known that
keeping the above notations, θp(E0 ± t2)− θp(E0) = ±αt(1 + tg0(t)) with α >. The computations

done in the previous paragraph show that hk(E0 ± t2) = hk(E0) + atk(1 + tg1(t)), k ≥ 1. Hence,

• if k > 1, we have θp,L(E0 ± t2)− θp,L(E0) = ±αt(1 + tg2(t)),

• if k = 1, we have θp,L(E0 ± t2)− θp,L(E0) =

(

±α+
a

L− k

)

t(1 + tg2(t)).

Hence, θp,L is strictly increasing inside the band near E0 for L sufficiently large. Outside a neighbor-
hood of the edges of a band, by analyticity of hk, as the bands are compact, we have |θ′p,L−θ′p| . L−1.
As θp is strictly increasing on each band, θp,L is also strictly increasing outside a neighborhood of
the edges of a band. This completes the proof of Lemma 4.6. �

One proves

Lemma 4.7. Let E0 be a closed gap for HZ (see Definition 4.1). Then, for any L = Np + k the
following assertions are equivalent:

(4.48) E0 ∈ σ(HL) ⇐⇒ hk(E0) ∈ πZ ⇐⇒ ak+1(E0) = 0 ⇐⇒ αk+1(E0) ∈ iR∗.

Proof. The proof of the first equivalence follows immediately from Definition 4.1 and the quantiza-
tion condition (4.47); the second follows from (4.39) and the expansions in (4.46); the third follows
Lemma 4.6, (4.39) and (4.47). �

Let us note that, in particular, closed gaps where ak+1 vanishes are eigenvalues of HL for all
L = Np+ k.

Remark 4.1. The characteristic equation (4.47) and the computations done at the end of the
proof of Lemma 4.5 show that, for L = Np + k large, an energy E0 such that ρ(E0) = ρ−1(E0) is
an eigenvalues of HL if and only if ak+1(E0) = 0. This is an extension of Lemma 4.3.

In view of the definition and monotony of θp,L, the quantization condition (4.47) is clearly equivalent
to (4.3). This completes the proof Theorem 4.1 on the eigenvalues of HL. Let us now turn to the
computation of the associated eigenfunctions.

4.1.4. The Dirichlet eigenfunctions for a truncated periodic potential: the proof of Theorem 4.3.

Recall that we assume L = Np+k. First, if (ujl )
L
l=0 is an eigenfunction associated to the eigenvalue

λj, the eigenvalue equation reads
(

ujl+1

ujl

)

= Tl(λj)

(

ujl
ujl−1

)

for 0 ≤ l ≤ L where ujL+1 = uj−1 = 0.

To normalize the solution, we assume that uj0 = 1. The coefficients we want to compute are

(4.49) |ϕj(L)|2 = |ujL|2
(

L
∑

l=0

∣

∣

∣u
j
l

∣

∣

∣

2
)−1

and |ϕj(0)|2 =

(

L
∑

l=0

∣

∣

∣u
j
l

∣

∣

∣

2
)−1

.
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Fix l = np + m. Thus, using the notations of section 4.1.3 and the expressions (4.25), (4.26)
and (4.23), one computes

(4.50)

(

ujl
ujl−1

)

= Tm−1,0(λj)
(

T̃0(λj)
)n
(

1
0

)

=

(

αm(λj)ρ
n(λj) + βm(λj)ρ

−n(λj)
αm−1(λj)ρ

n(λj) + βm−1(λj)ρ
−n(λj)

)

where αm and βm are defined in (4.39).

The eigenvectors associated to eigenvalues inside ΣZ. As ρ
−1(λj) = ρ(λj), βm(λj) = αm(λj) and

as the functions (αm)0≤m≤p−1 do not vanish on
◦
ΣZ, we compute

(4.51)
∣

∣

∣u
j
np+m

∣

∣

∣

2
= 2|αm(λj)|2

(

1 + Re

[

αm(λj)

αm(λj)
ρ2n(λj)

])

.

As L = Np+ k, using the quantization condition (4.47), we obtain that

L
∑

l=0

∣

∣

∣
ujl

∣

∣

∣

2
= 2

k
∑

m=0

|αm(λj)|2
(

1 + Re

[

αm(λj)

αm(λj)
ρ2N (λj)

])

+ 2

p−1
∑

m=0

|αm(λj)|2
N−1
∑

n=0

(

1 + Re

[

αm(λj)

αm(λj)
ρ2n(λj)

])

= N pf(λj)

(

1 +
1

Np
f̃(λj)

)

(4.52)

where we have defined

(4.53) f(E) :=
2

p

p−1
∑

m=0

|αm(E)|2 .

and, using the quantization condition (4.47), computed

f̃(E) :=
2

f(E)
Re

[(

p−1
∑

m=0

α2
m(E)

)

1

1− ρ2(E)

(

1 +
αk+1(E)

αk+1(E)

)]

+
2

f(E)

k
∑

m=0

|αm(E)|2
(

1− Re

[

αm(E)αk+1(E)

αm(E)αk+1(E)

])
(4.54)

The function E 7→ f(E) is real analytic and does not vanish on
◦
ΣZ.

We prove

Proposition 4.1. For E0, a closed gap, one has

p−1
∑

m=0

α2
m(E0) = 0.

Proof. By the definition of (aj , bj), see (4.29), and that of αj(E), see (4.39), the sequence (αj(E))j∈Z
satisfies the equation αj+1 + αj−1 + (Vj − E)αj = 0. As T̃0(E) = Tp−1(E) · · · T0(E), by (4.23),
for j ∈ Z, one has αj+p(E) = ρ(E)αj(E). Hence, the column vector A(E) = (α1(E), · · · , αp(E))t
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satisfies

(Hρ − E)A(E) = 0 where Hρ =



















V1 1 0 · · · 0 ρ(E)
1 V2 1 0 · · · 0
0 1 V3 1 · · · 0
...

. . .
...

0 · · · 0 1 Vp−1 1
ρ−1(E) 0 · · · 0 1 Vp



















.

Thus, we have

(4.55) 〈(Hρ − E)A(E), A(E)〉R = 0

where 〈·, ·〉R denotes the real scalar product over Cp, i.e.,

〈







z1
...
zp






,







z′1
...
z′p







〉

R

=

p
∑

j=1

zjz
′
j.

The functions E 7→ A(E) and E 7→ ρ(E) being analytic over
◦
ΣZ, one can differentiate (4.55) with

respect to E to obtain

(4.56) 0 = −〈A(E), A(E)〉R
+ (ρ(E)− ρ−1(E))

(

ρ−1(E)ρ′(E)α1(E)αp(E)− αp(E)α′
1(E) + α1(E)α′

p(E)
)

.

Here, we have used the fact that, if Ht
ρ is the transposed of the matrix Hρ, then

Ht
ρ −Hρ = (ρ(E)− ρ−1(E))















0 · · · 0 −1
0 · · · 0 0
...

...
0 0 · · · 0
1 0 · · · 0















.

At E0, a closed gap, one has ρ(E0) = ρ−1(E0). Hence, (4.56) implies

0 = 〈A(E0), A(E0)〉R =

p−1
∑

m=0

α2
m(E0).

This completes the proof of Proposition 4.1. �

In view of (4.54), the function f̃ is real analytic on
◦
ΣZ; indeed, the only poles of the function

E 7→ [ρ(E) − ρ−1(E)]−1 in
◦
ΣZ are the closed gaps; they are simple poles of this function and, by

Proposition 4.1, the real analytic function E 7→
p−1
∑

m=0

α2
m(E) vanishes at these poles.

Now that we have computed the normalization constant, let us compute the coefficient ujL defined
in (4.49). As L = Np+ k, the characteristic equation for λj, that is, (4.47) reads

(4.57) αk+1(λj)ρ
N (λj) = −βk+1(λj)ρ

−N (λj) = −αk+1(λj)ρN (λj).
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Hence, one computes

ujL = αk(λj)ρ
N (λj) + αk(λj)ρN (λj) = ρN (λj)

αk(λj)αk+1(λj)− αk(λj)αk+1(λj)

αk+1(λj)

=
−ρN (λj) a

0
p−1(λj)

(ρ(λj)− ρ−1(λj))αk+1(λj)
=

−ei[Npθp(λj)−hk(λj)] a0p−1(λj)
∣

∣

∣ak+1(λj)(a0p(λj)− ρ−1(λj)) + bk+1(λj)a
0
p−1(λj)

∣

∣

∣

=
− eiπj a0p−1(λj)

∣

∣

∣
ak+1(λj)(a0p(λj)− ρ−1(λj)) + bk+1(λj)a

0
p−1(λj)

∣

∣

∣

(4.58)

where we have used the quantization condition satisfied by λj , the last equality in (4.47), and that

∣

∣

∣

∣

αk+1(λj) αk(λj)

αk+1(λj) αk(λj)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a0p−1(λj)

ρ(λj)−ρ−1(λj)

a0p(λj)−ρ−1(λj)

ρ(λj)−ρ−1(λj)

− a0p−1
(λj)

ρ(λj)−ρ−1(λj )

ρ(λj)−a0p(λj )

ρ(λj)−ρ−1(λj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bk+1(λj) bk(λj)
ak+1(λj) ak(λj)

∣

∣

∣

∣

and
∣

∣

∣

∣

∣

∣

1
a0p(λj)−ρ−1(λj)

ρ(λj)−ρ−1(λj)

−1
ρ(λj)−a0p(λj)

ρ(λj)−ρ−1(λj)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

bk(λj) bk+1(λj)
ak(λj) ak+1(λj)

∣

∣

∣

∣

= 1

Lemma 4.8. Define the function f̃−k (E) by

f̃−k (E) :=
|a0p−1(E)|2

|ak+1(E)(a0p(E)− ρ−1(E)) + bk+1(E)a0p−1(E)|2 ;

Then, the function f̃−k does not vanish on
◦
ΣZ.

Proof. By the definition of αk+1, one has f̃−k (E) =
|a0p−1(E)|2

|ρ(E) − ρ−1(E))|2 |αk+1(E)|2 . That this ex-

pression is well defined and does not vanish on
◦
ΣZ follows from Lemma 4.5 and the computations

made in the proof thereof. �

Plugging (4.58) this and (4.51) into (4.49), recalling that uj0 = 1, outside the bad closed gaps, we
obtain (4.4) if,

• in addition to (4.53) and (4.54), we set f+0 (E) :=
1

f(E)
and f−k (E) = f+0 (E) · f̃−k (E),

• we remember that the function a0p−1 only changes sign in the gaps of the spectrum ΣZ (see

point (4) in section 4.1.1) and set σr to be the sign of −a0p−1 on Br, the r-th band.

By (4.49) and (4.51), we obtain (4.4) using Lemma 4.8. This completes the proof of the statements

in Theorem 4.3 on the eigenfunctions of HL associated to eigenvalues in
◦
ΣZ.

Remark 4.2. To complete our study let us also see what happens the eigenfunctions near the
edges of the spectrum. Pick E0 ∈ ∂ΣZ. One then knows that, for E ∈ ΣZ, E close to E0, one has

(4.59) θp(E)− θp(E0) = a
√

|E − E0|(1 + o(1))
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(see the proof of Lemma 4.6).

Let us rewrite f̃ (see (4.54)) in the following way

f̃(E) =
2

f(E)

[

p−1
∑

m=0

|αm(E)|2 cos(hk(E)− 2hm−1(E) − pθp(E))

]

sin(hk(E))

sin(pθp(E))

+
2

f(E)

k
∑

m=0

|αm(E)|2 (1− cos(2(hk(E)− hm−1(E)))) .

(4.60)

Let us first show

Lemma 4.9. For any 0 ≤ m ≤ p− 1, E 7→ 2|αm(E)|2
p f(E) can be extended continuously from

◦
ΣZ to ΣZ.

Proof. For p = 1 there is nothing to be done as 2|αm(E)|2
p f(E) ≡ 1.

For p ≥ 2, we note that, for 0 ≤ m ≤ m+ 1 ≤ p− 1, as

∣

∣

∣

∣

am+1(E) bm+1(E)
am(E) bm(E)

∣

∣

∣

∣

= 1 by (4.29),

0 = am+1(E0)(a
0
p(E0)− ρ−1(E0)) + bm+1(E0)a

0
p−1(E0)

= am(E0)(a
0
p(E0)− ρ−1(E0)) + bm(E0)a

0
p−1(E0)

if and only if a0p−1(E0) = 0 (as this implies a0p(E0)− ρ−1(E0) = 0).

Let us assume this is the case. As p ≥ 2, we know that

p−1
∑

j=0

|aj(E0)|2 6= 0. By (4.46), for at

least one m0 ∈ {0, · · · , p − 1}, one has am0
(E0) 6= 0 and αm0

(E) = bc−1am0
(E0) +O(

√

|E − E0|).

Hence, E 7→ 2|αm(E)|2
p f(E) can be continued to E0 setting

2 |αm(E0)|2
p f(E0)

=
|am(E0)|2

|a0(E0)|2 + · · ·+ |ap−1(E0)|2
.

Actually, f(E) can be continued at E0 by setting

(4.61) f(E0) = |a0(E0)|2 + · · ·+ |ap−1(E0)|2.
Let us now assume that a0p−1(E0) 6= 0. We study the behavior of αm near E0. Recall (4.39). Then,
one has

(1) either dm := am(E0)(a
0
p(E0)− ρ−1(E0)) + bm(E0)a

0
p−1(E0) 6= 0: in this case, by (4.46), one

has αm(E) = dmc−1√
|E−E0|

(1 + o(1));

(2) or dm = am(E0)(a
0
p(E0)−ρ−1(E0))+bm(E0)a

0
p−1(E0) = 0: in this case, as for some Am ∈ R

∗

and km ≥ 1, one has

am(E)(a0p(E)− ρ−1(E0)) + bm(E)a0p−1(E) = Am(E − E0)
km(1 + o(1)),

and, by (4.46), one can continue αm to E0 by setting αm(E0) = am(E0)/2.

As a0p−1(E0) 6= 0, we know that for some m0 ∈ {0, · · · , p− 1}, we are in case (a). Hence, one has

(4.62) f(E) =
2

p|E − E0|

p−1
∑

m=0

|am(E0)(a
0
p(E0)− ρ−1(E0)) + bm(E0)a

0
p−1(E0)|2(1 + o(1))

and E 7→ 2|αm(E)|2
p f(E) can be continued to E0 setting

2 |αm(E0)|2
p f(E0)

=
|dm|2

|d0|2 + · · · + |dp−1|2
(using the

notation introduced in point (a).
This completes the proof of Lemma 4.9. �
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By Lemma 4.6, we know that for 1 ≤ k ≤ p and E0 ∈ ∂ΣZ, one has 2hk(E0) ∈ πZ. Thus, for
1 ≤ k ≤ p, 1 ≤ m ≤ p and E0 ∈ ∂ΣZ, one has cos(hk(E0)− 2hm−1(E0)− pθp(E0)) sin(hk(E0)) = 0.
Using the expansions leading to the proof of Lemma 4.6, one gets

cos(hk(E)− 2hm−1(E)− pθp(E)) sin(hk(E)) = c
√

|E − E0|(1 + o(1)).

Recalling (4.59) and the fact that pθp(E0) ∈ πZ, Lemma 4.9 implies that f̃ can be extended
continuously up to E0. Hence, the expansion (4.52) again yields

(4.63)

L
∑

l=0

∣

∣

∣u
j
l

∣

∣

∣

2
≍ Npf(λj).

Let us now review the computation (4.58) in this case. We distinguish two cases:

(1) if a0p−1(E0) = 0: then, (4.58) and the fact that ak+1(E0) 6= 0 (this case was dealt with in

point (1)), yields that, for |λj − E0| sufficiently small,

|ujL| ≍
√

|λj − E0|.

By (4.61) and (4.63), we obtain

(4.64) |ϕj(L)|2 ≍ |λj − E0|
Np

and |ϕj(0)|2 ≍ 1

Np
.

(2) if a0p−1(E0) 6= 0: then
(a) if dk+1 6= 0 (see case (a) in the proof of Lemma 4.9): by (4.62) and (4.63), one has

(4.65) |ϕj(0)|2 ≍ |λj − E0|
Np

and |ϕj(L)|2 ≍
|λj − E0|
Np

.

(b) if dk+1 = 0: by (4.62) and (4.63), one has

(4.66) |ϕj(0)|2 ≍ |λj − E0|
Np

and |ϕj(L)|2 ≍ 1

Np
.

The eigenvectors associated to eigenvalues outside ΣZ. Let us now turn to the eigenfunctions asso-
ciated to eigenvalues HL in the gaps of ΣZ, i.e., in the region {E; |∆(E)| > 2}. On R \ ΣZ, the
eigenvalue E 7→ ρ(E) is real valued (recall that we pick it so that |ρ(E)| < 1) and so are all the
functions (αm)0≤m≤p−1 and (βm)0≤m≤p−1 (see (4.39)). For 0 ≤ m ≤ p− 1, (4.50) yields

(4.67)
∣

∣

∣
ujnp+m

∣

∣

∣

2
= α2

m(E)ρ2n(E) + β2m(E)ρ−2n(E) + 2αm(E)βm(E).

As when we studied the eigenvalues of HL, let us now distinguish the cases when E is close to an
eigenvalue of H+

0 or to an eigenvalue of H−
k :

(1) Pick E′ an eigenvalue of H+
0 but not an eigenvalue of H−

k ; then, recall that a0p−1(E
′) = 0 =

a0p(E
′) − ρ(E′). Thus, for 0 ≤ m ≤ p − 1, one has βm(E′) = 0. Assume E be close to E′.

As E satisfies (4.44), using (4.41), (4.67) becomes

∣

∣

∣u
j
np+m

∣

∣

∣

2
= ρ2n(E′)

∣

∣

∣

∣

∣

αm(E′)− β′m(E′)
β′k+1(E

′)
ak+1(E

′)

·
[

ρ(E′)− ρ−1(E′)
]

ρ2(N−n)(E′) +O(ρ2N (E))

∣

∣

∣

∣

∣

2

.
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for 0 ≤ m ≤ p− 1 if 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ k if n = N .
Using (4.40), one computes

(4.68)
∣

∣

∣u
j
np+m

∣

∣

∣

2
= ρ2n(E′)

∣

∣

∣

∣

∣

am(E′)− β′m(E′)
β′k+1(E

′)
ak+1(E

′)ρ2(N−n)(E′) +O(ρ2N (E))

∣

∣

∣

∣

∣

2

.

This yields

L
∑

l=0

∣

∣

∣
ujl

∣

∣

∣

2
=

p−1
∑

m=0

N−1
∑

n=0

ρ2n(E′)a2m(E′) +O(Nρ2N (E))

=
1

1− ρ2(E′)

p−1
∑

m=0

a2m(E′) +O(Nρ2N (E)).

Moreover, by (4.49), (4.67) and (4.39), as a0p−1(E
′) = 0 = a0p(E

′)− ρ(E′), we obtain

|ϕj(L)|2 = ρ2N (E′)
(1− ρ2(E′))a2k+1(E

′)

[

β′k+1(E
′)
]2

p−1
∑

m=0

a2m(E′)

∣

∣

∣

∣

β′k(E
′) ak(E

′)
β′k+1(E

′) ak+1(E
′)

∣

∣

∣

∣

2

+O(Nρ4N (E))

= γρ2N (E′) +O(Nρ4N (E)).

where

γ :=
(1− ρ2(E′))a2k+1(E

′)

[

β′k+1(E
′)
]2

p−1
∑

m=0

a2m(E′)

(

da0p−1

dE
(E′)

)2

> 0.

Hence, |ϕj(L)| is exponentially small in L (recall |ρ(E)| < 1).

(2) if E′ is an eigenvalue of H−
k but not of H+

0 , then inverting the parts of H−
k and H+

0 , we see
that |ϕj(L)| is of order 1. A precise asymptotic can be computed but it won’t be needed.

(3) if E′ is an eigenvalue of H+
0 and of H−

k , the double well analysis done in section 7 shows
that for normalized eigenvectors, say, ϕ1,2 associated to the two eigenvalues of HL close to
E′, the four coefficients |ϕ1,2(0)| and |ϕ1,2(L)| are of order 1. Again precise asymptotics
can be computed but won’t be needed.

This completes the description of the eigenfunctions given by Theorem 4.3 and completes the proof
of this result. �

5. Resonances in the periodic case

We are now in the state to prove the results stated in section 1.2. Therefore, we first study the

function E 7→ SL(E) and E 7→ ΓL(E) in the complex strip I + i(−∞, 0) for I ⊂
◦
ΣZ.

5.1. The matrix ΓL in the periodic case. Using Theorem 4.2, we first prove

Theorem 5.1. Fix I ⊂
◦
ΣZ a compact interval. There exists εI > 0 and σI ∈ {+1,−1} such that,

for any N ≥ 0, there exists CN > 0 such that, for L sufficiently large s.t L ≡ k mod (p), one has

(5.1) sup
ReE∈I

−εI<ImE<0

∣

∣

∣ΓL(E)− Γeff
L (E)

∣

∣

∣ ≤ CNL
−N .
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where
(5.2)

Γeff
L (E) = − θ′p(E)

sinuL(E)





e−iuL(E)f−k (E) σI

√

f−k (E)f+0 (E)

σI

√

f−k (E)f+0 (E) e−iuL(E)f+0 (E)



+









∫

R

dN−
k (λ)

λ− E
0

0

∫

R

dN+
0 (λ)

λ−E









and uL(E) := (L− k)θp,L(E) (see (4.2)),

The sign σI only deepends on the spectral band containing I.
Deeper into the lower half-plane, we obtain the following simpler estimate

Theorem 5.2. There exists C > 0 such that, for any ε > 0 and for L ≥ 1 sufficiently large s.t.
L = Np+ k, one has

(5.3) sup
ReE∈I
ImE<−ε

∣

∣

∣

∣

∣

∣

∣

∣

ΓL(E)−









∫

R

dN−
k (λ)

λ− E
0

0

∫

R

dN+
0 (λ)

λ− E









∣

∣

∣

∣

∣

∣

∣

∣

≤ Cε−2e−εL/C .

In sections 5.2, the approximations (5.1) and (5.3) theorems will be used to prove Theorems 1.2, 1.3
and 1.4.
Let us note that, as cot z = i+O

(

e−2iIm z
)

, for ε ∈ (0, εI), the asymptotics given by Theorems 5.1
and 5.2 coincide in the region {ReE ∈ I, ImE ∈ (−εI ,−ε)}: indeed one has,

sup
ReE∈I

−εI<ImE<−ε

∥

∥

∥

∥

∥

∥

θ′p(E)

sinuL(E)





e−iuL(E)f−k (E) σI

√

f−k (E)f+0 (E)

σI

√

f−k (E)f+0 (E) e−iuL(E)f+0 (E)





∥

∥

∥

∥

∥

∥

≤ e−εL/C .

Let us now turn to the proofs of Theorems 5.1 and 5.2.

5.1.1. The proof of Theorem 5.1. To prove Theorem 5.1, we split the sum SL(E) into two parts,
one containing the Dirichlet eigenvalues “close” to ReE, the second one containing those “far”
from ReE. By “far”, we mean that the distance to ReE is lower bounded by a small constant
independent of L. The “close” eigenvalues are then described by Theorem 4.2. For the “far”
eigenvalues, the strong resolvent convergence of HL to H+

0 , that of H̃L to H−
k (see Remark 1.4)

and Combes-Thomas estimates enable us to compute the limit and to show that the prelimit and
the limit are O(L−∞) close to each other. For the “close” eigenvalues, the sum coming up in (2.9),
the definition of ΓL, is a Riemann sum. We use the Poisson summation formula to obtain a precise
approximation.

As I is a compact interval in
◦
ΣZ, we pick ε > 0 such that, for E ∈ I, one has [E−6ε,E+6ε] ⊂

◦
ΣZ.

Let χ ∈ C∞
0 (R) be a non-negative cut-off function such that χ ≡ 1 on [−4ε, 4ε] and χ ≡ 0 outside

[−5ε, 5ε]. For E ∈ I, define χE(·) = χ(· − E).

We first give the asymptotic for the sum over the Dirichlet eigenvalues far from ReE. We prove

Lemma 5.1. For any N > 1, there exists CN > 0 such that, for L sufficiently large such that
L ≡ k mod (p), one has

(5.4) sup
E∈C

∣

∣

∣

∣

∣

∣

L
∑

j=1

1− χReE(λj)

λj − E

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

− M̃(E)

∣

∣

∣

∣

∣

∣

≤ CNL
−N
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where

(5.5) M̃(E) :=









∫

R

(1− χReE)(λ)
dN−

k (λ)

λ− E
0

0

∫

R

(1− χReE)(λ)
dN+

0 (λ)

λ− E









.

Proof of Lemma 5.1. Recall (see Theorem 2.1) that HL is the operator H+
0 restricted to J0, LK with

Dirichlet boundary condition at L; as L ≡ k mod (p), it is unitarily equivalent to the operator H−
k

restricted to J−L, 0K with Dirichlet boundary condition at −L (see Remark 1.4).
Pick χ̃ ∈ C∞

0 such that χ̃ ≡ 1 on σ(H+
0 ) ∪ σ(H−

k ). First, we compute

L
∑

j=0

(1− χReE)(λj)
|ϕj(0)|2
λj − E

−
∫

R

(1− χReE)(λ)
dN+

0 (λ)

λ−E

= 〈δ0, [χ̃(1− χReE)] (HL)(HL − E)−1δ0〉
− 〈δ0, [χ̃(1− χReE)] (H

+
0 )(H+

0 − E)−1δ0〉,
L
∑

j=0

(1− χReE)(λj)
|ϕj(L)|2
λj −E

−
∫

R

(1− χReE)(λ)
dN−

k (λ)

λ− E

= 〈δL, [χ̃(1− χReE)] (HL)(HL − E)−1δL〉
− 〈δL, [χ̃(1− χReE)] (H

−
k )(H−

k − E)−1δL〉,
and

L
∑

j=0

(1− χReE)(λj)
ϕj(L)ϕj(0)

λj − E
= 〈δL, [χ̃(1− χReE)] (HL)(HL − E)−1δ0〉.

By the definition of χReE , the function λ 7→ (λ − E)−1χ̃(λ)(1 − χReE)(λ) is C∞
0 on R; moreover,

its semi-norms (see (4.14)) are bounded uniformly in E ∈ C. Thus, there exists an almost analytic
extension of [χ̃(1− χReE)](·)(· − E)−1 such that, uniformly in E, one has (4.14).
In the same way as we obtained (4.16), we obtain

(5.6)
∣

∣

∣

〈

δL,
[

(H̃L − z)−1 − (H−
k − z)−1

]

δL

〉∣

∣

∣

+
∣

∣

〈

δ0,
[

(HL − z)−1 − (H+
0 − z)−1

]

δ0
〉∣

∣

+
∣

∣

〈

δ0, (HL − z)−1δL
〉∣

∣ ≤ C

|Imz|2 e
−L|Imz|/C

Plugging (5.6) into (4.15) and using (4.14) for [χ̃(1− χReE)](·)(· − E)−1, we get

∀K ∈ N, sup
L≥1

L≡k mod (p)

LK

∣

∣

∣

∣

∣

∣

L
∑

j=0

(1− χReE)(λj)
|ϕj(0)|2
λj − E

−
∫

R

(1− χReE)(λ)
dN+

0 (λ)

λ− E

∣

∣

∣

∣

∣

∣

< +∞

This entails (5.4) and completes the proof of Lemma 5.1. �

Let us now estimate the part of ΓL(E) associated to the Dirichlet eigenvalues close to ReE. There-
fore, define

(5.7) Γχ
L(E) =

L
∑

j=1

χReE(λj)

λj − E

(

|ϕj(L)|2 ϕj(0)ϕj(L)

ϕj(0)ϕj(L) |ϕj(0)|2
)

.

We prove
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Lemma 5.2. There exists ε > 0 such that, for N ≥ 1, there exists CN such that, for L sufficiently
large such that L ≡ k mod (p), one has

sup
ReE∈I

−ε<ImE<0

∣

∣

∣Γ
χ
L(E) − Γeff

L (E) + M̃(E)
∣

∣

∣ ≤ CNL
−N

where M̃ is defined in (5.5).

Clearly Lemmas 5.1 and 5.2 immediately yield Theorem 5.1.

Proof of Lemma 5.2. Recall that the quasi-momentum θp defines a real analytic one-to-one mono-
tonic map from the interior of each band of spectrum onto the set (0, π), (−π, 0) or (−π, π) (de-
pending on the spectral band containing I + [−4ε, 4ε] where ε > 0 has been fixed above) (see ,
e.g., [39]). Moreover, the derivative θ′p is positive in the interior of a spectral band. Thus, for L
sufficiently large, the real part of the derivative θ′p,L (see (4.2)) is positive I + [−2ε, 2ε] and θp,L is

real analytic one-to-one on a complex neighborhood of (I + [−3ε, 3ε]) + i[−3ε, 3ε] (possibly at the
expense of reducing ε somewhat).
By (2.9), (4.8) and Theorem 4.2, one may write

(5.8) Γχ
L(E) =

1

L− k

∑

j∈Z

χReE

(

θ−1
p,L

(

πj
L−k

))

θ−1
p,L

(

πj
L−k

)

− E
M

(

θ−1
p,L

(

πj

L− k

))

where

(5.9) M(λ) :=

(

fk,L(λ) σI e
i(L−k)θp,L(λ)

√

fk,L(λ)f0,L(λ)

σI e
i(L−k)θp,L(λ)

√

fk,L(λ)f0,L(λ) f0,L(λ)

)

.

and the matrixM is analytic in the rectangle (I+[−3ε, 3ε])+ i[−3ε, 3ε]. Thus, the Poisson formula
tells us that

Γχ
L(E) =

1

L− k

∑

j∈Z

∫

R

e−2iπjx
χReE

(

θ−1
p,L

(

πx
L−k

))

θ−1
p,L

(

πx
L−k

)

− E
M

(

θ−1
p,L

(

πx

L− k

))

dx

=
∑

j∈Z

1

π

∫

R

e−2ij(L−k)θp,L(λ)
χReE(λ)

λ− E
θ′p,L(λ)M (λ) dλ

=
∑

j∈Z

1

π

∫

R

Mj,χ(E,λ, λ)dλ

(5.10)

by the definition of χReE ; here, we have set

Mj,χ(E,λ, β) := e−2ij(L−k)θp,L(β+ReE) χ(λ)

β − iImE
θ′p,L(β +ReE)M(β +ReE).

Let us now study the individual terms in the last sum in (5.10). Therefore, recall that, on [−4ε, 4ε], χ
is identically 1 and that λ 7→ θp,L(λ+ReE) and λ 7→M(λ) are analytic in (I+[−3ε, 3ε])+i[−3ε, 3ε];
moreover, by (4.3), for some δ > 0, one has

(5.11) lim inf
L→+∞

inf
λ∈[−4ε,4ε]

θ′p,L(λ+ReE) ≥ lim inf
L→+∞

inf
E∈I

θ′p,L(E) ≥ δ.

Recall also that ImE < 0. Consider χ̃ : R → [0, 1] smooth such that χ̃ = 1 on [−2ε, 2ε] and χ̃ = 0
outside [−3ε, 3ε].
In the complex plane, consider the paths γ± : R → C defined by

γ±(λ) = λ± 2iεχ̃(λ).
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As −ε ≤ImE < 0, by contour deformation, we have
∫

R

Mj,χ(E,λ, λ)dλ =

∫

R

Mj,χ(E,λ, γ+(λ))dλ,

∫

R

Mj,χ(E,λ, λ)dλ = −2iπe−2ij(L−k)θp,L(E)θ′p,L(E)M(E) +

∫

R

Mj,χ(E,λ, γ−(λ))dλ.

We then estimate

• for j < 0, using a non-stationary phase argument as the integrand is the product of a smooth
function with an rapidly oscillating function (using |j|(L− k) as the large parameter), one
then estimates

∫

R

Mj,χ(E,λ, γ+(λ))dλ = O
(

(|j|L)−∞) .

The phase function is complex but its real part is non positive as Im θp,L(γ+(·)+ReE) ≥ 0
on the support of χ (by (5.11)). Note that the off-diagonal terms of M(λ) also carry a
rapidly oscillating exponential (see (5.9)) but it clearly does not suffice to counter the main
one.

• in the same way, for j > 0, one has
∫

R

Mj,χ(E,λ, γ−(λ))dλ = O
(

(|j|L)−∞) .

Thus, we compute

for j < 0 :

∫

R

Mj,χ(E,λ, λ)dλ = O
(

(|j|L)−∞) ,(5.12)

for j > 0 :

∫

R

Mj,χ(E,λ, λ)dλ = −2iπe−2ij(L−k)θp,L(E)θ′p,L(E)M(E) +O
(

(|j|L)−∞) .(5.13)

Finally, for j = 0, the contour deformation along γ+ yields
∫

R

χ(λ)

λ− iImE
M(λ+ReE)dλ =

∫

R

χReE(λ)

λ− E
θ′p,L(λ)

(

fk,L(λ) 0
0 f0,L(λ)

)

dλ+O
(

L−∞)

=

∫

R

χReE(λ)

λ− E

(

dN−
k (λ) 0
0 dN+

0 (λ)

)

+O
(

L−∞)

by Corollary 4.1.
Plugging this, (5.12) and (5.13) into (5.10) and computing the geometric sum immediately yields the
following asymptotic expansion (where the remainder term is uniform on the rectangle I+ i[−ε, 0))

Γχ
L(E) = −2i

∑

j>0

e−2ij(L−k)θp,L(E)θ′p,L(E)M(E)

+

∫

R

χReE(λ)

λ− E

(

dN−
k (λ) 0
0 dN+

0 (λ)

)

+O
(

L−∞)

=
−e−i(L−k)θp,L(E)

sin((L− k)θp,L(E))
θ′p,L(E)M(E)

+

∫

R

χReE(λ)

λ− E

(

dN−
k (λ) 0
0 dN+

0 (λ)

)

+O
(

L−∞) .

(5.14)

This completes the proof of Lemma 5.2. �
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5.1.2. The proof of Theorem 5.2. To prove (5.1), for ImE < −ε, it suffices to write

L
∑

j=0

|ϕj(0)|2
λj − E

−
∫

R

dN+
0 (λ)

λ− E
= 〈δ0, (HL − E)−1δ0〉 − 〈δ0, (H+

0 − E)−1δ0〉

= 〈δ0, (HL − E)−1δL〉〈δL+1, (H
+
0 − E)−1δ0〉

and

L
∑

j=0

|ϕj(L)|2
λj − E

−
∫

R

dN−
k (λ)

λ− E
= 〈δ0, (HL − E)−1δL〉〈δL+1, (H

−
k − E)−1δ0〉,

L
∑

j=0

ϕj(L)ϕj(0)

λj − E
= 〈δL, (HL −E)−1δ0〉

and to use the Combes-Thomas estimate (5.6). This completes the proof of Theorem 5.2. �

5.2. The proofs of Theorems 1.2, 1.3 and 1.4. We will now use Theorems 5.1 and 5.2 to prove
Theorems 1.2, 1.3 and 1.4.

5.2.1. The proof of Theorem 1.2. The first statement of Theorem 1.2 is an immediate consequence
of the characteristic equations for the resonances (2.4) and (2.8) and the description of the eigen-
values of HL given in Theorem 4.2.
When • = N, i.e., for the operator on the half-line, if I ⊂ (−2, 2) does not meet ΣN, there exists
C > 0 s.t. for L sufficiently large dist(I, σ(HL)) > 1/C. Thus, on the set I − i[0,+∞), one has
ImSL(E) ≤ ImE/C. As on I, one has Im θp(E) > 1/C (see section 2), the characteristic equa-
tion (2.4) admits a solution E such that ReE ∈ I only if ImE < 1/C2. This completes the proof
of point (1) of Theorem 1.2 for • = N.
For • = Z, i.e., to study equation (2.8), one reasons in the same way except that one replaces
the study of SL(E) by that of 〈ΓL(E)u, u〉 for u an arbitrary vector in C

2 of unit length. This
completes the proof of point (1) of Theorem 1.2
Point (3a) is an immediate consequence of Theorems 3.3 and 3.2 and the description of the eigenval-
ues of HL outside ΣZ. Notice that in the present case dj in Theorems 3.3 and 3.2 is bounded from
below by a constant independent of L and a•j is exponentially small and described by Theorem 4.2.

Point (3b) is an immediate consequence of the description of the eigenvalues of HL outside ΣZ in
case (3) of Theorem 5.2 and Theorem 3.1. Indeed, in the present case dj and and a•j are both of

order 1; thus, Theorem 3.1 guarantees, around the common eigenvalue for H−
k and H+

0 , a rectangle
of width of order 1 free of resonances.
Let us now turn to the proof of point (2). Therefore, we first prove the following corollary of
Theorem 5.1

Corollary 5.1. Fix I ⊂
◦
ΣZ compact. There exists η0 > 0 such that, for L sufficiently large, one

has

(5.15) min
ReE∈I

ImE∈[−η0/L,0)

∣

∣

∣
SL(E) + e−iθ(E)

∣

∣

∣
≥ η0 and min

ReE∈I
ImE∈[−η0/L,0)

∣

∣

∣
det
(

ΓL(E) + e−iθ(E)
)∣

∣

∣
≥ η0.

Clearly, Corollary 5.1 implies that neither equation (2.4) nor equation (2.8) can have a solution in
I + i]− η0/L, 0]. This proves point (2) of Theorem 1.2. �

Before proving Corollary 5.1, we first prove Propositions 5.2 and 5.3 as these will be used in the
proof of Corollary 5.1.
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5.2.2. Results on the auxiliary functions defined in section 1.2.2. Recall that N−
k is defined in

section 1.2.2. We prove

Proposition 5.1. For k ∈ {0, · · · , p− 1}, dN−
k is a positive measure that is absolutely continuous

on ΣZ. Moreover, its density, say, E 7→ n−k (E) is real analytic on
◦
ΣZ and there exists f−k :

◦
ΣZ → R

a positive real analytic function such that, on
◦
ΣZ, one has n−k (E) = f−k (E)n(E).

Proof. Proposition 5.1 is an immediate consequence of Theorems 5.1 and 5.2 and Corollary 4.1. �

For Ξ−
k defoined in (1.5), we prove

Proposition 5.2. Ξ−
k vanishes identically if and only if V ≡ 0, i.e., V vanishes identically. More-

over, if V 6≡ 0 then there exists ξ−k 6= 0 and α−
k ∈ {2, 3, · · · } such that Ξ−

k (E) ∼
|E|→∞
ImE<0

ξ−k E
−α−

k .

Proof. We will do the proofs for the function Ξ−
k . Proposition 5.2 is an immediate consequence of

the fact that, in the lower half-plane, the function E 7→ −e−i arccos(E/2) = −E
2

−
√

E2

4
− 1 (i.e.

the determination of it defined above) is equal to the Stieltjes (or Borel) transform of the spectral
measure associated to the Dirichlet Laplacian on N and the vector δ0; this follows from a direct
computation (see Remark 2.1 and (2.2) for n = 0). Now, if one letsW be the symmetric of τkV with
respect to 0, the spectral measure dN−

k is also the spectral measure of the Schrödinger operator
Hk = −∆+W on N associated to δ0. The equality of the Borel transforms implies the equality of
the measures but δ0 is cyclic for both operators so the operators have equal spectral measures. This
implies that the two operators are equal and, thus, the symmetric of τkV has to vanish identically
on N. As V is periodic, V must vanish identically.
As for the second point, if the function Ξ−

k were to vanish to infinite order at E = −i∞, as each of

the terms

∫

R

dN−
k (λ)

λ− E
and −E

2
−
√

E2

4
− 1 admits an infinite asymptotic expansion in powers of

E−1, these two expansions would be equal. The n-th coefficient of these expansion are respectively
the n-th moments of the spectral measures of Hk and −∆+

0 (associated to the cyclic vector δ0). So
these moments would coincide and, thus, the spectral measures would coincide. One concludes as
above. � �

For c• defined in (1.6) and (1.7), we prove

Proposition 5.3. Pick • ∈ {N,Z}. Let I ⊂ (−2, 2) ∩
◦
ΣZ be a compact interval.

There exists a neighborhood of I such that, in this neighborhood, the function E 7→ c•(E) is analytic
and has a positive imaginary part.
The function cN (resp. cZ) takes the value i only at the zeros of Ξ−

k (resp. Ξ−
k Ξ+

0 ).

Proof. On {ImE < 0}, define the functions

g−k (E) := i+
Ξ−
k (E)

π n−k (E)
=

1

π n−k (E)

(

S−
k (E) + e−i arccos(E/2)

)

,(5.16)

g+0 (E) := i+
Ξ+
0 (E)

π n+0 (E)
=

1

π n+0 (E)

(

S+
0 (E) + e−i arccos(E/2)

)

.(5.17)

First, the analyticity of g−k and g+0 is clear; indeed, all the functions involved are analytic and the

functions n+0 and n−k stay positive on
◦
ΣZ. Moreover, these functions can be analytically continued
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through (−2, 2) ∩
◦
ΣZ . By (1.4), for E real, one has Im g−k (E) =Im g+0 (E) = Im e−iθ(E) which is

positive (see section 2). Thus, the functions E 7→ g−k (E) and E 7→ g+0 (E) do not vanish on I.
Moreover, as

(5.18)
g+0 (E)g−k (E)− 1

g+0 (E) + g−k (E)
= − 1

g+0 (E) + g−k (E)
+

1
1

g+0 (E)
+

1

g−k (E)

;

this function has a positive imaginary part on I.
This proves the first two properties of c• stated in Proposition 5.3. By the very definition of c• and
g−k , the last property stated in Proposition 5.3 is obviously satisfied in the case of the half-line; for
the full line , i.e., if • = Z, the last property is a consequence of the following computation

cZ(E)− i =
g+0 (E)g−k (E)− 1

g+0 (E) + g−k (E)
− i =

(g+0 (E)− i)(g−k (E)− i)

g+0 (E) + g−k (E)

=
Ξ+
0 (E)Ξ−

k (E)

2iπ2n+0 (E)n−k (E) + πn−k (E)Ξ+
0 (E) + πn+0 (E)Ξ−

k (E)
.

(5.19)

This completes the proof of Proposition 5.3. � �

5.2.3. The proof of Corollary 5.1. In view of Theorem 5.1, to obtain (5.15), it suffices to prove that
there exists η0 > 0 such that, for L sufficiently large, one has

min
ReE∈I

ImE∈[−η0/L,0)

∣

∣

∣

∣

∣

θ′p,L(E)f−k (E)e−iuL(E)

sinuL(E)
−
∫

R

dN−
k (λ)

λ− E
− e−iθ(E)

∣

∣

∣

∣

∣

≥ η0

where uL(E) := (L− k)θp,L(E).
We compute

(5.20)
θ′p,L(E)f−k (E)e−iuL(E)

sinuL(E)
−
∫

R

dN−
k (λ)

λ− E
− e−iθ(E) = θ′p,L(E)f−k (E)

(

cot uL(E) − g−k (E)
)

where g−k is defined in (5.16). Thus,
∣

∣

∣

∣

∣

θ′p,L(E)f−k (E)e−iuL(E)

sinuL(E)
−
∫

R

dN−
k (λ)

λ− E
− e−iθ(E)

∣

∣

∣

∣

∣

&
∣

∣cot uL(E) − g−k (E)
∣

∣

as, for η sufficiently small and L ≥ 1, one has

0 < min
ReE∈I

ImE∈[−η/L,0)

∣

∣θ′p,L(E)f−k (E)
∣

∣ ≤ max
ReE∈I

ImE∈[−η/L,0)

∣

∣θ′p,L(E)f−k (E)
∣

∣ < +∞.

Now, notice that, by Corollary 4.1, for E ∈ I, one has

(5.21) Im

(∫

R

dN−
k (λ)

λ− E

)

= −θ′p,L(E)f−k (E) = − 1

π
n−k (E).

Thus, as E 7→Im e−iθ(E) is positive on I, the analytic function E 7→ g−k (E) has positive imaginary
part larger than, say, 2η̃ on I; hence, it has imaginary part larger than, say, η̃ in some neighborhood
of I +D(0, η0) (for sufficiently small η0 > 0). Let M be the maximum modulus of this function on
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I +D(0, η0). Thus, as max
ReE∈I

ImE∈[−η0/L,0)

|θ′p,L(E)| . 1, one has

max
ReE∈I

ImE∈[−η0/L,0)
| cot(uL(E))|<2M

|Im cot uL(E)| . (M2 + 1)η0.

Possibly reducing η0, this guarantees that, for ReE ∈ I and ImE ∈ [−η0/L, 0), one has

either
∣

∣cot uL(E)− g−k (E)
∣

∣ ≥ 2M −M ≥M

or Im
(

cot uL(E)− g−k (E)
)

≤ −η̃ + η̃/2 = −η̃/2.
This completes the proof of the first lower bound in (5.15) in Corollary 5.1.
To prove the second bound in (5.15), using (5.2), we compute

det
(

Γeff
L (E) + e−iθ(E)

)

n−k (E)n+0 (E)
=
(

cot uL(E)− g−k (E)
) (

cot uL(E) − g+0 (E)
)

− 1

sin2 uL(E)

= −
(

g+0 (E) + g−k (E)
)

(

cot uL(E)− g+0 (E)g−k (E)− 1

g+0 (E) + g−k (E)

)

(5.22)

where g−k and g+0 are defined by (5.16) and (5.17).

Using Proposition 5.3, one then concludes the non-vanishing of E 7→ det
(

Γeff
L (E) + e−iθ(E)

)

in the
complex rectangle {ReE ∈ I, ImE ∈ [−η0/L, 0)} (for η0 sufficiently small) in the same way as
above. This completes the proof of Corollary 5.1. �

5.2.4. The proof of Theorem 1.3. To solve (2.4) and (2.8), by Theorem 5.1, we respectively first
solve the equations

(5.23)
θ′p,L(E)f−k (E)e−iuL(E)

sinuL(E)
=

∫

R

dN−
k (λ)

λ− E
− e−iθ(E) and det

(

Γeff
L (E) + e−iθ(E)

)

= 0

in a rectangle I+i[−η,−η̃/L]. Indeed, in such a rectangle, by Theorem 5.1, equations (2.4) and (2.8)
are respectively equivalent to

(5.24)

θ′p,L(E)f−k (E)e−iuL(E)

sinuL(E)
=

∫

R

dN−
k (λ)

λ−E
− e−iθ(E) +O

(

L−∞)

and det
(

Γeff
L (E) + e−iθ(E)

)

= O
(

L−∞)

where the terms O (L−∞) are analytic in a rectangle Ĩ + i[−2η,−0) (where I ⊂ Ĩ) and the bound
O (L−∞) holds in the supremum norm.
Thanks to (5.20) for • = N and to (5.22) for • = Z, to solve the equations (5.23), it suffices to solve

(5.25) cot uL(E) = c•(E)

where we recall uL(E) := (L − k)θp,L(E) and, g+0 and g−k being respectively defined in (5.17)
and (5.16), and, as in section 1.2.3, one has set

• cN(E) := g−k (E) in the case of the half-line,

• cZ(E) :=
g+0 (E)g−k (E) − 1

g+0 (E) + g−k (E)
in the case of the line.

We want to solve (5.25) is a rectangle I+ i[−ε, 0) for some ε small but fixed. Using Proposition 5.3,
we pick ε so small that, in the rectangle I + i[−ε, 0], the only zeros of c• − i are those on the real
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line and Im c• is positive in I + i[−ε, 0).
To solve (5.25), we change variables u = (L− k)θp,L(E) that is, we write

E = θ−1
p,L

(

u

L− k

)

.

As, for L0 sufficiently large, inf
L≥L0

E∈I+i[−ε,0)

Re θ′p,L(E) > c > 0, at the cost of possibly reducing ε, this

real analytic change of variables maps I + [−ε, ε] + i[−ε, 0) into, say, DL such that IL + i[−η(L −
k), 0] ⊂ DL (for some η > 0) where IL = (L−k)θp,L(I+[−ε/2, ε/2]); the inverse change of variable
maps IL + i[−η(L − k), 0] into some domain, say, D̃L such that I + [−ε′, ε′] + i[−ε′, 0] ⊂ D̃L (for
some 0 < ε′ < ε). Now, to find all the solutions to (5.25) in I+ i[−ε′, 0), we first solve the following
equation in IL + i[−η(L− k), 0]

(5.26) cot u = c• ◦ θ−1
p,L

(

u

L− k

)

As u 7→ cot u is π periodic, we split IL + i[−η(L − k), 0] into vertical strips of the type lπ +
[0, π] + i[−η(L− k), 0], l− ≤ l ≤ l+, (l−, l+) ∈ Z

2. Without loss of generality, we may assume that
IL = [l−, l+]π. To solve (5.26) on the rectangle lπ + [0, π] + i[−η(L − k), 0], we shift u by lπ and
solve the following equation on [0, π] + i[−η(L− k), 0]

(5.27) cot u = c•l,L(u) where c•l,L(·) := c• ◦ θ−1
p,L

( ·+ lπ

L− k

)

.

In proving Theorem 1.2, we have already shown that for some η̃ > 0 (independent of L sufficiently
large and l− ≤ l ≤ l+), (5.27) does not have a solution in [0, π] + i[−η̃, 0]. The cotangent is an
analytic one-to-one mapping from [0, π) + i(−∞, 0] to C

+ \ {i}. Thus, for L sufficiently large and
η̃ sufficiently small, the cotangent defines a one-to-one mapping from [0, π)+ i[−η(L− k),−η̃] onto
TL = D(z+, r+) \D(z−, r−), analytic in the interior of [0, π) + i[−η(L− k),−η̃] and continuous up
to the boundary where we have defined

z+ = i
e4η(L−k) + 1

e4η(L−k) − 1
, z− = i

e4η̃ − 1

e4η̃ − 1
, r+ =

2e2η̃

e4η̃ − 1
, r− =

2e2η(L−k)

e4η(L−k) − 1
.

Moreover, the boundaries {0}+ i[−η(L− k),−η̃] and {π}+ i[−η(L− k),−η̃] are mapped onto the
interval [z− + ir−, z+ + ir+].

Let Z̃• denote the finite set of zeros of E 7→ c•(E) − i in I. Then, by a Taylor expansion near the

zeros of c− i, we know that, for η sufficiently small, there exists ε0 > 0 and k̃ ≥ 1 such that, for L
sufficiently large,

• for ε ∈ (0, ε0), there exists 0 < η− such that, for l− ≤ l ≤ l+, if ∀Ẽ ∈ Z̃•, one has
∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

≥ ε

then ∀u ∈ [0, π] + i[−η(L− k), 0], one has η− ≤ |Im c•l,L(u)− 1|;

• for u ∈ [0, π] + i[−η(L − k), 0] and Ẽ the point in Z̃• closest to θ−1
p,L

(

lπ

L− k

)

, one has

(5.28) ε0 ≤
(

1− Im c•l,L(u)
)

·
[∣

∣

∣

∣

θ−1
p,L

(

Reu+ lπ

L− k

)

− Ẽ

∣

∣

∣

∣

+
|Imu|
L− k

]−k̃

≤ 1

ε0

where k̃ is the order of Ẽ as a zero of E 7→ c•(E)− i.

As a consequence of the above description of c•l,L, we obtain
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Lemma 5.3. There exists η̃ and η small such that, for L sufficiently large, for all l− ≤ l ≤ l+,
u 7→ c•l,L(u) maps the rectangle [0, π]+i[−η(L−k),−η̃] into a compact subset of D(z+, r+)\D(z−, r−)
in such a way that

(5.29) sup
u∈∂([0,π]+i[−η(L−k),−η̃])

∣

∣cot u− c•l,L(u)
∣

∣ &

(∣

∣

∣

∣

Ẽ − θ−1
p,L

(

lπ

L− k

)∣

∣

∣

∣

+
η̃

L− k

)k̃

where Ẽ is the root of E 7→ c•(E)− i closest to θ−1
p,L

(

lπ

L− k

)

and k̃ is the order of this root.

Note that, under the assumptions of Lemma 5.3, (5.29) implies that

sup
u∈∂([0,π]+i[−η(L−k),−η̃])

∣

∣cot u− c•l,L(u)
∣

∣ & L−k̃

Thus, we can define the analytic mapping cot−1 ◦ c•l,L on [0, π] + i[−η(L − k),−η̃]; it maps the

rectangle [0, π] + i[−η(L − k),−η̃] into a compact subset of (0, π) + i(−η(L − k),−η̃). The equa-
tion (5.27) on [0, π] + i[−η(L− k),−η̃] is, thus, equivalent to the following fixed point equation on
the same rectangle

(5.30) u = cot−1 ◦ c•l,L(u)

We note that, for α ∈ (0, 1), for L sufficiently large, if for some Ẽ ∈ Z̃• of multiplicity k̃, one has
∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

< L−α then, equation (5.27) has no solution in [0, π]+ i[−η(L−k),−η̃] outside
of the set

Rl,L := [0, π] + i

[

−η(L− k),
αk̃

4
log

[∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

+
1

L

]

]

.

Indeed, for u ∈ ([0, π] + i[−η(L− k),−η̃]) \Rl,L, by (5.28), that is, for

0 ≤ Reu ≤ π and − αk̃

4
logL ≤ αk̃

4
log

[∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

+
1

L

]

≤ Imu ≤ −η̃

one has
∣

∣

∣c•l,L(u)− i
∣

∣

∣ . L−αk̃ and | cot u− i| & L−αk̃/2.

So, if for some Ẽ ∈ Z̃•, one has

∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

< L−α, it suffices to solve (5.30) on Rl,L. We

compute the derivative of c•l,L in the interior of Rl,L

d

du

(

cot−1 ◦ c•l,L
)

(u) = − 1

L− k

c′ ◦ θ−1
p,L

(

u+lπ
L−k

)

1 +
(

c•l,L(u)
)2 · 1

θ′p,L

(

θ−1
p,L

(

u+lπ
L−k

))

=
1

L− k

c′ ◦ θ−1
p,L

(

u+lπ
L−k

)

c•l,L(u)− i
· 1

c•l,L(u) + i
· 1

θ′p,L

(

θ−1
p,L

(

u+lπ
L−k

)) .

Thus, fixing α ∈ (0, 1),
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• if l is such that, for some Ẽ ∈ Z̃•, one has

∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

< L−α, for u ∈ Rl,L, we

estimate
∣

∣

∣

∣

d

du

(

cot−1 ◦ c•l,L
)

(u)

∣

∣

∣

∣

.
1

L− k

[∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

+
|Imu|
L− k

]−1

.
1

(L− k)
∣

∣

∣θ−1
p,L

(

lπ
L−k

)

− Ẽ
∣

∣

∣+
∣

∣

∣log
[∣

∣

∣θ−1
p,L

(

lπ
L−k

)

− Ẽ
∣

∣

∣+ η̃
L−k

]∣

∣

∣

.
1

logL
;

(5.31)

• if l is such that, for all Ẽ ∈ Z̃•, one has

∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

≥ L−α, for u ∈ [0, π]+i[−η(L−
k),−η̃], we estimate

∣

∣

∣

∣

d

du

(

cot−1 ◦ c•l,L
)

(u)

∣

∣

∣

∣

.
1

L− k

[∣

∣

∣

∣

θ−1
p,L

(

lπ

L− k

)

− Ẽ

∣

∣

∣

∣

+
|Imu|
L− k

]−1

.
1

(L− k)
∣

∣

∣θ−1
p,L

(

lπ
L−k

)

− Ẽ
∣

∣

∣

.
1

L1−α
.

(5.32)

Hence, for L sufficiently large, cot−1 ◦ c•l,L is a contraction on Rl,L. Equation (5.30) thus admits a

unique solution, say, ũ•l,L in the rectangle [0, π]+ i[−η(L− k),−η̃]. This solution is a simple root of

u 7→ u−cot−1 ◦ c•l,L(u). Hence, ũ•l,L is the only solution to equation (5.27) in [0, π]+i[−η(L−k),−η̃].
By (5.24), for L sufficiently large, for l− ≤ l ≤ l+, both the equations

(5.33)

SL ◦ θ−1
p,L

(

u+ lπ

L− k

)

+ e−iθ(θ−1

p,L(
u+lπ
L−k )) = 0 and

det

(

ΓL ◦ θ−1
p,L

(

u+ lπ

L− k

)

+ e−iθ(θ−1

p,L(
u+lπ
L−k ))

)

= 0

can be rewritten as

(5.34) u = cot−1
(

c•l,L(u) +O
(

L−∞)) = cot−1 ◦ c•l,L(u) +O
(

L−∞)

in [0, π] + i[−η(L− k),−η̃].
Thus, each of the equations in (5.33) admits a single solution in [0, π] + i[−η(L − k),−η̃] and
this root is simple; moreover, this solution, say, ul,L satisfies

∣

∣

∣
u•l,L − ũ•l,L

∣

∣

∣
= O (L−∞); indeed, the

bounds (5.31) and (5.32) guarantee that one can apply Rouché’s Theorem on the disk D(ũ•l,L, L
−k)

for any k ≥ 0.
Thus, we have proved the

Lemma 5.4. Pick I as above. Then, there exists η > 0 such that, for L sufficiently large s.t.
L = Np+ k, the resonances in I + i[−η, 0] are the energies (z•l )l−≤l≤l+ defined by

(5.35) z•l = θ−1
p,L

(

u•l,L + lπ

L− k

)

belonging to I + i[−η, 0].
Let us complete the proof of Theorem 1.7 that is, prove that, for η sufficiently small, for L sufficiently

large such that L ≡ k mod (p), is the unique resonance in

[

Re (z̃•l + z̃•l−1)

2
,
Re (z̃•l + z̃•l+1)

2

]

+
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i [−η, 0]; recall that z̃•l is defined in (1.9).

Therefore, we first note that the Taylor expansion of θ−1
p,L, (4.1) and the quantization condition (4.3)

imply that

z•l = λl +
1

πn(λl)L
u•l,L +O

(

(

logL

L

)2
)

as Reul,L ∈ [0, π) and − logL . Imul,L . −1.

Moreover, as c•l,L(u) = c•
[

λl +
u

π n(λl)L
+O

(

u2

L2

)]

using (1.9) and (5.35), we compute

z•l − z̃•l =
1

πn(λl)L

(

u•l,L − cot−1 ◦ c•
[

λl +
1

π n(λl)L
cot−1 ◦ c•

(

λl − i
logL

L

)])

+O

(

(

logL

L

)2
)

.

Thus, one has

z•l − z̃•l =
1

πn(λl)L

(

u•l,L − cot−1 ◦ c•l,L
[

cot−1 ◦ c•l,L (−iπ n(λl) logL)
])

+O

(

(

logL

L

)2
)

.

As ul,L solves (5.34), using (5.31) and (5.32), we thus obtain that

|z•l − z̃•l | .
1

L logL

∣

∣u•l,L − cot−1 ◦ c•l,L (−iπ n(λl) logL)
∣

∣+

(

logL

L

)2

.

∣

∣

∣
u•l,L

∣

∣

∣
+ logL

L log2 L
+

(

logL

L

)2

.
1

L logL

using again Reul,L ∈ [0, π) and − logL . Imul,L . −1.
Taking into account (1.10), this complete the proof of Theorem 1.3. �

5.2.5. The proofs of Propositions 1.1 and 1.2. Proposition 1.2 is an immediate consequence of
Theorem 1.3, the definition of z̃•l (1.9) and the standard asymptotics of cot near −i∞, i.e., cot z =

i+ 2ie−2iz +O
(

e−4iz
)

.

To prove Proposition 1.1, it suffices to notice that, under the assumptions of Proposition 1.1, the
bound (5.32) on the derivative of cot−1 ◦ c•l,L on the the rectangle Rl,L becomes

∣

∣

∣

∣

d

du

(

cot−1 ◦ c•l,L
)

(u)

∣

∣

∣

∣

.
1

L
.

Thus, as a solution to (5.30), u•l,L admits an asymptotic expansion in inverse powers of L. Plugging

this into (5.35) yields the asymptotic expansion for the resonance. Then, (1.11) follows from the
computation of the first terms. �

5.2.6. The proof of Theorem 1.4. Theorem 1.4 is an immediate consequence of Theorem 5.2, the
fact that the functions are analytic in the lower complex half-plane and have only finitely many
zeros there and the argument principle. �

5.3. The half-line periodic perturbation: the proof of Theorem 1.5. Using the same no-
tations as above, we can write

H∞ =

(

H−
−1 |δ−1〉〈δ0|

|δ0〉〈δ−1| −∆+
0

)

.
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where −∆+
0 is the Dirichlet Laplacian on ℓ2(N).

Define the operators

Γ(E) := H−
−1 − E − 〈δ0|(−∆+

0 − E)−1|δ0〉 |δ−1〉〈δ−1|

and

Γ̃(E) := −∆+
0 − E − 〈δ−1|(H−

−1 −E)−1|δ−1〉 |δ0〉〈δ0|.
For ImE 6= 0, 〈δ−1|(H−

−1 − E)−1|δ−1〉 and 〈δ0|(−∆+
0 − E)−1|δ0〉 have a non vanishing imaginary

part of the same sign; hence, the complex number

(〈δ0|(−∆+
0 −E)−1|δ0〉)−1 − 〈δ−1|(H−

−1 − E)−1|δ−1〉
does not vanish. Thus, by rank one perturbation theory, (see, e.g., [37]), we know that Γ(E) and

Γ̃(E) are invertible and their inverses are given by

(5.36) Γ−1(E) := (H−
−1 − E)−1 +

|H−
−1 − E)−1|δ−1〉〈δ−1|(H−

−1 − E)−1|
(〈δ0|(−∆+

0 − E)−1|δ0〉)−1 − 〈δ−1|(H−
−1 − E)−1|δ−1〉

.

and

(5.37) Γ̃−1(E) := (−∆+
0 − E)−1 +

| −∆+
0 − E)−1|δ0〉〈δ0|(−∆+

0 − E)−1|
(〈δ−1|(H−

−1 − E)−1|δ−1〉−1 − 〈δ0|(−∆+
0 − E)−1|δ0〉)

.

Thus, for ImE 6= 0, using Schur’s complement formula, we compute

(5.38) (H∞ − E)−1 =

(

Γ(E)−1 γ(E)

γ∗
(

E
)

Γ̃(E)−1

)

.

where γ∗
(

E
)

is the adjoint of γ
(

E
)

and

γ(E) := −|Γ(E)−1|δ−1〉〈δ0|(−∆+
0 − E)−1|.

Now, when coming from ImE > 0 and passing through (−2, 2) ∩
◦
ΣZ, the complex numbers

〈δ−1|(H−
−1 − E)−1|δ−1〉 and 〈δ0|(−∆+

0 − E)−1|δ0〉 keep imaginary parts of the same positive sign;

thus, the two operator-valued functions E 7→ Γ−1(E) and E 7→ (H∞ − E)−1 can be analytically

continued through (−2, 2) ∩
◦
ΣZ from the upper to the lower complex half-plane (as operators re-

spectively from ℓ2comp(N) to ℓ
2
loc(N) and from ℓ2comp(Z) to ℓ

2
loc(Z)).

When coming from the upper half-plane and passing through (−2, 2)\ΣZ and
◦
ΣZ\[−2, 2], (5.38) also

provides an analytic continuation of (H∞−E)−1. Definition (5.36) and formula (5.38) immediately
show that the poles of these continuations only occur at the zeros of the function

E 7→ 1− 〈δ−1|(H−
−1 −E)−1|δ−1〉〈δ0|(−∆+

0 − E)−1|δ0〉 = 1− eiθ(E)

∫

R

dN−
p−1(λ)

λ− E

when continued from the upper half-plane through the sets (−2, 2)\ΣZ and
◦
ΣZ \ [−2, 2] (these sets

are finite unions of open intervals).
This completes the proof of Theorem 1.5. �

6. Resonances in the random case

As for the periodic potential, for the random potential, we start with a description of the function
E 7→ ΓL(E) (see (2.9)), that is, with a description of the spectral data for the Dirichlet operator
Hω,L.
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6.1. The matrix ΓL in the random case. We recall a number of results on the Dirichlet eigen-
values of Hω,L that will be used in our analysis.
It is well known that, under our assumptions, in dimension one, the whole spectrum of Hω is in
the localization region (see, e.g., [28, 10, 7]) that is

Theorem 6.1. There exists ρ > 0 and α ∈ (0, 1) such that, one has

(6.1) sup
L∈N∪{+∞}

y∈J0,LK
ImE 6=0

E







∑

x∈J0,LK

eρ|x−y||〈δx, (Hω,L − E)−1δy〉|α






<∞

and

(6.2) sup
L∈N∪{+∞}

y∈J0,LK

E











∑

x∈J0,LK

eρ|x−y| sup
supp f⊂R

|f |≤1

|〈δx, f(Hω,L)δy〉|











<∞.

where Hω,+∞ := HN
ω and J0,+∞K = N. The supremum is taken over the functions f that are

Borelian and compactly supported.

As a consequence, one can define localization centers e.g. by means of the following results

Lemma 6.1 ([13]). Fix (lL)L a sequence of scales, i.e., lL → +∞ as L→ +∞. There exists ρ > 0
such that, for L sufficiently large, with probability larger than 1− e−ℓL, if

(1) ϕj,ω is a normalized eigenvector of Hω,L associated to Ej,ω in Σ,
(2) xj(ω) ∈ J0, LK is a maximum of x 7→ |ϕj,ω(x)| in J0, LK,

then, for x ∈ J0, LK, one has

(6.3) |ϕj,ω(x)| ≤
√
Le2ℓLe−ρ|x−xj(ω)|.

Note that Lemma 6.1 is of interest only if ℓL . L; otherwise (6.3) is obvious. This result can e.g.
be applied for the scales lL = 2 logL. In this case, the probability estimate of the bad sets (i.e.
when the conclusions of Lemma 6.2 does not hold) is summable. The point xj(ω) is a localization
center for Ej,ω or ϕj,ω. It is not defined uniquely, but, one easily shows that there exists C > 0
such that for any two localization centers, say, x and x′, one has |x−x′| ≤ C logL (see [13]). To fix
ideas, we set the localization center associated to the eigenvalue Ej,ω to be the left most maximum
of x 7→ ‖ϕj,ω‖x.
We show

Lemma 6.2. For any p > 0, there exists C > 0 and L0 > 0 (depending on α and p) such that, for
L ≥ L0, for any sequence satisfying (1.22), with probability at least 1 − L−p, there exists at most
CℓL eigenvalues having a localization center in J0, ℓLK ∪ JL− ℓL, LK.

We will now use the fact that we are dealing with one-dimensional systems to improve upon the
estimate (6.3). We prove

Theorem 6.2. For any δ > 0 and p ≥ 0, there exists C > 0 and L0 > 0 (depending on p and δ)
such that, for L ≥ L0, with probability at least 1− L−p, if Ej,ω is an eigenvalue in Σ associated to
the eigenfunction ϕj,ω and the localization center xj,ω then,

• if xj,ω ∈ J0, L− C logLK, one has

(6.4) − ρ(Ej,ω)− δ ≤ log |ϕj,ω(L)|
L− xj,ω

≤ −ρ(Ej,ω) + δ.
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• if xj,ω ∈ JC logL,LK, one has

(6.5) − ρ(Ej,ω)− δ ≤ log |ϕj,ω(0)|
xj,ω

≤ −ρ(Ej,ω) + δ.

To analyze the resonances of HN
ω,L (resp. HZ

ω,L), we shall use (6.4) (resp. (6.4) and (6.5)).
We now use these estimates as the starting point of a short digression from the main theme of this
paper. Let us first state a corollary to Theorem 6.2, we prove

Theorem 6.3. For any δ > 0 and p ≥ 0, for L sufficiently large (depending on p and δ), with
probability at least 1 − L−p, if Ej,ω is an eigenvalue in Σ associated to the eigenfunction ϕj,ω and
the localization center xj,ω then, for |x− xj,ω| ≥ δL and 1 ≤ x ≤ L, one has

(6.6) − ρ(Ej,ω)− δ ≤ log(|ϕj,ω(x)|+ |ϕj,ω(x− 1)|)
|x− xj,ω|

≤ −ρ(Ej,ω) + δ.

Compare (6.6) to (6.3). There are two improvements. First, the unknown rate of decay ρ is replaced
by the Lyapunov exponent ρ(Ej,ω) which was expected to be the correct decay rate. Indeed, for the
one-dimensional discrete Anderson model on the half-axis, it is well known (see, e.g., [5, 7, 33]) that,
ω-almost surely, the spectrum is localized and the eigenfunctions decay exponentially at infinity at
a rate given by the Lyapunov exponent. In Theorem 6.3, we state that, with a good probability,
this is true for finite volume restrictions.
Second, in (6.6), we get both an upper and lower bound on the eigenfunction. This is more precise
than (6.3).
To our knowledge, such a result was not known until the present paper. The strategy that we use
to prove this result can be applied in a more general one-dimensional setting to obtain analogues
of (6.6) (see [24]).
We complement this with the much simpler

Lemma 6.3. For any C > 0 and p ≥ 0, there exists K > 0 and L0 > 0 (depending on I, p and δ)
such that, for L ≥ L0, with probability at least 1− L−p, if Ej,ω is an eigenvalue in Σ associated to
the eigenfunction ϕj,ω and the localization center xj,ω then,

• if xj,ω ∈ JL− C logL,LK, one has L−K ≤ |ϕj,ω(L)|;
• if xj,ω ∈ J0, C logLK, one has L−K ≤ |ϕj,ω(0)|.

The proof of this result is obvious and only uses the fact that the matrices in the cocycle defining the
operator (see section 6.3) are bounded that is, equivalently, that the solutions to the Schrödinger
equation grow at most exponentially at a rate controlled by the potential.

Let us return to the resonances in the random case and the description of the function SL. Recall
that in (2.4), the values (λj)j are the eigenvalues (Ej,ω)0≤j≤L of Hω,L and the coefficients (a•j )j are
defined in Theorem 2.1 and by (2.13). Thus, Theorem 6.2 describes the coefficients (a•j )j coming

into SL and ΓL (see (2.4) and (2.8)). Let us now state a few consequences of Theorem 6.2.
Fix I a compact interval in Σ the almost sure spectrum of Hω. For • ∈ {N,Z}, define

(6.7) d•j,ω =

{

L− xj,ω for • = N,

min(xj,ω, L− xj,ω) for • = Z.

Taking p > 2 in Theorem 6.2 and using Borel-Cantelli argument, we obtain that

ω almost surely, for δ > 0 and L sufficiently large, if λj = Ej,ω ∈ I

and d•j,ω ≥ C logL then − 2ρ(λj)− δ ≤
log a•j
d•j,ω

≤ −2ρ(λj) + δ.
(6.8)
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This and the continuity of the Lyapunov exponent (see, e.g., [5, 7, 33]) guarantees that

(6.9) ω almost surely, for any δ > 0 and L large, one has − 2η• sup
E∈I

ρ(E)(1 + δ)L ≤ inf
λj∈I

log a•j

where η• is defined in Theorem 1.6.
To use the analysis performed in section 3, we also need a description for the (λj)j , i.e., the Dirichlet
eigenvalues of Hω,L. Therefore, we will use the results of [13], [22] and [21] (see also [14]).
We first recall the Minami estimate satisfied by Hω,L (see, e.g., [8] and references therein): there
exists C > 0 such that, for I ⊂ R, one has

P (tr(1I(Hω,L))) ≥ 2) ≤ E (tr(1I(Hω,L))[tr(1I(Hω,L))− 1]))

≤ C|I|2(L+ 1)2.

Here, 1I(H) denotes the spectral projector for the self-adjoint operator H onto the energy interval
I.
By a simple covering argument, this entails the following estimate

P
(

∃i 6= j s.t. |λi − λj | ≤ L−q
)

≤ CL−q+2.

Thus, for q > 3, a Borel-Cantelli argument yields, that

(6.10) ω almost surely, for L sufficiently large, min
i 6=j

|λi − λj | ≥ L−q.

6.2. The proofs of the main results in the random case. We are now going to prove the
results stated in section 1.3.

6.2.1. The proof of Theorem 1.6. As for Theorem 1.2, this result follows from Theorem 3.1. The
point (1) is proved exactly as the point (1) in Theorem 1.2. Point (2) follows immediately from
Theorem 3.1 and (6.9). This completes the proof of Theorem 1.6.

6.2.2. The proof of Theorem 1.7. Recall that κ ∈ (0, 1). To prove (1) we proceed as follows. The
standard result guaranteeing the existence of the density of states N (see, e.g., [5, 7, 33]) imply
that, ω almost surely, one has

(6.11)
#{λj ∈ I}
L+ 1

→
∫

I
dN(E).

This, in particular, shows that, if I ⊂
◦
Σ is a compact interval, then, ω almost surely, for L sufficiently

large, I is covered by intervals of the form [λj , λj+1] and their number is of size ≍ L (actually this
holds for λj ∈ I+[−ε, ε] if ε > 0 is chosen small enough). Moreover, the estimate (6.10) guarantees
that dj ≥ L−q (for any q > 3 fixed) for all λj ∈ I. Thus, Theorems 3.1, 3.2 and 3.3 and the
estimate (6.8) guarantee that, ω almost surely, all the resonances in the strip I − i[e−Lκ

, 0) are
described by Theorem 3.3. Indeed, for such a resonance the imaginary part must be larger than
−e−Lκ

; thus, by Theorem 3.1, for every rectangle [(λj+λj−1)/2, (λj+λj+1)/2]−i[e−Lκ
, 0) containing

a resonance, one has aj . e−Lκ
L2q Thus, aj ≪ d2j and one can apply Theorem 3.3 to compute the

resonance.
Let us count the number of those resonances. Therefore, let ℓL = τLκ where τ is to be chosen.
By (6.8) and (6.10), ω almost surely, one has aj ≪ d2j for all j such that λj ∈ I as long as the

Dirichlet eigenvalue λj is associated to a localization center in J0, L − ℓLK (actually it holds for
λj ∈ I + [−ε, ε] if ε > 0 is chosen small enough); thus, we can apply Theorems 3.3 and 3.2 to each
of the (λj)j that are associated to a localization center in J0, L − ℓLK. By formula (3.19), each of
these eigenvalues gives rise to a single simple resonance the imaginary part of which is of size ≍ aj;

it lies above the line {Imz ≥ e−ρℓL = e−Lκ} for τρ = 1. Actually, the estimate (6.10) guarantees
that dj ≥ L−q (for any q > 3 fixed) and Theorem 3.2 shows that these resonances are the only ones
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above a line Imz ≥ −L−q. Moreover, by Lemma 6.2, we know there at most CℓL eigenvalues λj
that do not have their localization center in J0, L− ℓLK. Thus, we obtain, ω almost surely,

lim
L→+∞

1

L
#
{

z resonance of Hω,L s.t. Re z ∈ I, Im z ≥ −e−Lκ}

=

∫

I
dN(E).

Point (2) is proved in the same way. Pick λ ∈ (0, 1). In addition to what was used above, one uses
the continuity of the density of states E 7→ n(E) and Lyapunov exponent E 7→ ρ(E). Assume E is
as in point (2). Then, ω almost surely, the reasoning done above shows that, for any η > 0, there
exists ε0 > 0 such that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has,

#







λl e.v of HN
ω,L in E +

ε

2n(E)
[−1 + η, 1− η] such

that − eη•ρ(E)δL . e2η•ρ(E)λLal . −e−η•ρ(E)δL







≤ #
{

z resonance of H•
ω,L in R•(E,λ,L, ε, δ)

}

≤ #







λl e.v of HN
ω,L in E +

ε

2n(E)
[−1− η, 1 + η] such

that − eη•ρ(E)δL . e2η•ρ(E)λLal . −e−η•ρ(E)δL







Using Theorem 6.2 and the continuity of the Lyapunov exponent in conjunction with the definition
of aj (see (2.4) and (2.13)), we obtain that, ω almost surely, for any η > 0, there exists ε0 > 0 such
that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has,

#







e.v of HN
ω,L in E +

ε

2n(E)
[−1 + η, 1 − η]

with localization center in I•(L, δ,−η)







≤ #
{

z resonance of H•
ω,L in R•(E,λ,L, ε, δ)

}

≤ #







e.v of HN
ω,L in E +

ε

2n(E)
[−1− η, 1 + η]

with localization center in I•(L, δ, η)







where IN(L, λ, δ, η) is the interval (here [r] denotes the integer part of r ∈ R)

IN(L, λ, δ, η) = [Lλ] + J−Lδ(1 + η), Lδ(1 + η)K

and, IZ(L, λ, δ, η) is the union of intervals

IZ(L, λ, δ, η) =

([

Lλ

2

]

+ J−Lδ(1 + η), Lδ(1 + η))K

)

∪
([

L

(

1− λ

2

)]

+ J−Lδ(1 + η)), Lδ(1 + η))K

)

.

Now, using the exponential localization of the eigenfunctions, one has that, ω almost surely, for
any η > 0, there exists ε0 > 0 such that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large, one
has

(6.12) #

{

e.v of HN

ω,L,λ,δ,−2η,• in E +
ε

2n(E)
[−1 + 2η, 1 − 2η]

}

≤ #
{

z resonance of H•
ω,L in R•(E,λ,L, ε, δ)

}

≤ #

{

e.v of HN
ω,L,λ,δ,2η,• in E +

ε

2n(E)
[−1− 2η, 1 + 2η]

}
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whereHN
ω,L,λ,δ,η,• =

(

HN
ω,L

)

|I•(L,λ,δ,η)
with Dirichlet boundary conditions at the edges of the interval

I•(L, λ, δ, η).
This immediately yields point (2) for λ ∈ (0, 1) using (6.11) for the operators HN

ω,L,λ,δ,η,•. The case
λ = 1 is dealt with in the same way.
As already said, point (3) is an “integrated” version of point (2). Using the same ideas as above,
partitioning I = ∪P

p=0Ip s.t. |Ip| ∼ ε centered in Ep, one proves

P
∑

p=0

#

{

e.v of H−
ω,p,L,• in Ep +

ε

2n(Ep)
[−1 + 2η, 1 − 2η]

}

≤ #
{

z resonance of H•
ω,L in I +

[

−e−Lκ
,−e−cL

]}

≤
P
∑

p=0

#

{

e.v of H+
ω,p,L,• in Ep +

ε

2n(Ep)
[−1− 2η, 1 + 2η]

}

where

• H−
ω,p,L,• is the operator HN

ω restricted to

– J2Lκ, (inf(cρ−1(Ep), 1) − η)LK if • = N,
– to J2Lκ, (inf(cρ−1(Ep), 1)/2− η)LK∪ J(1− inf(cρ−1(Ep), 1)/2 + η)L,L− 2LκK if • = Z;

• H+
ω,p,L,• is the operator HN

ω restricted to

– JLκ/2, (inf(cρ−1(Ep), 1) + η)LK if • = N,
– to JLκ/2, (inf(cρ−1(Ep), 1)/2+η)LK∪J(1− inf(cρ−1(Ep), 1)/2−η)L,L−Lκ/2K if • = Z;

In the computation above, we used the continuity of both, the density of states E 7→ n(E) and
Lyapunov exponent E 7→ ρ(E). Thus, we obtain

#
{

z resonance of H•
ω,L in I +

(

−∞, e−cL
]}

= L





P
∑

p=0

inf(cρ−1(Ep), 1)n(Ep)|Ip|+ o(1)





+#
{

z resonance of H•
ω,L in I +

(

−∞, e−Lκ]}

.

The last term being controlled by Theorem 1.10, one obtains point (3) as the Riemann sum in the
right hand side above converges to the integral in the right hand side of (1.18) as ε → 0. This
completes the proof of Theorem 1.7. �

6.2.3. The proof of Theorem 1.8. The proof of Theorem 1.8 relies on [13, Theorem 1.13] which
describes the local distribution of the eigenvalues and localization centers (Ej,ω, xj,ω): namely, one
has

(6.13) lim
L→+∞

P



























































ω;

#

{

n;
Ej,ω ∈ E + L−1I1

xj,ω ∈ LC1

}

= k1

...
...

#

{

n;
Ej,ω ∈ E + L−1Ip

xj,ω ∈ LCp

}

= kp



























































=

p
∏

n=1

e−µ̃n
(µ̃n)

kn

kn!

where µ̃n := n(E)|In||Cn| for 1 ≤ n ≤ p.
Recall that (zLj (ω))j are the resonances of Hω,L. By the argument used in the proof of Theorem 1.7,
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we know that, ω almost surely, all the resonances in KL := [E − ε,E + ε] + i
[

−e−Lκ
, 0
]

are
constructed from the (λ•j , a

•
j ) by formula (3.19). Thus, up to renumbering, the rescaled real and

imaginary parts (see (1.19)) become

xj = (Re z•l,L(ω)− E)L = (λj − E)L+O(Laj) = (Ej,ω − E)L+O(Le−Lκ
)

yj = − 1

2L
log |Im z•l,L(ω)| = −

log a•j
2L

+O(1/L) = ρ(E)
d•j,ω
L

+ o(1).

where λj = Ej,ω and xj,ω is the associated localization center; here we used the continuity of
E 7→ ρ(E).
On the other hand, for the resonances below the line in {Im z = −e−Lκ}, one has yj . Lκ−1. So
all these resonances are “pushed upwards” towards the upper half-plane. Hence, the statement of
Theorem 1.8 is an immediate consequence of (6.13). �

6.2.4. The proof of Theorem 1.9. Using the computations of the previous section, as E 6= E′,
Theorem 1.9 is a direct consequence of [22, Theorem 1.2] (see also [13, Theorem 1.11]).

6.2.5. The proof of Theorem 1.10. Consider equations (2.4) and (2.8). By Theorem 6.2 and
Lemma 6.2, ω almost surely, for L large, the number of (a•j )j larger than e−10ℓL is bounded by

CℓL. Solving (2.4) and (2.8) in the strip {ReE ∈ I, ImE < −e−ℓL}, we can write SL(E) =
S−
L (E) + S+

L (E) where

S−
L (E) :=

∑

aNj ≤e−10ℓL

aNj
λj − E

and S+
L (E) :=

∑

aNj >e−10ℓL

aNj
λj − E

and similarly decompose ΓL(E) = Γ−
L (E) + Γ+

L (E). For L large, one then has

(6.14) sup
ImE<−e−ℓL

‖S−
L (E)‖ + ‖Γ−

L (E)‖ ≤ e−8ℓL .

����
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Figure 8: The new path

The count of the number of resonances given by the proof
of Theorems 2.1 and 2.2 then shows that the equations (2.4)
and (2.8) where SL and ΓL are respectively replaced by S+

L

and Γ+
L have at most CℓL solutions in the lower half plane.

The equations where SL and ΓL are replaced by S+
L and

Γ+
L we will call the +-equations. The analogue of Theo-

rems 3.1, 3.2 and 3.3 for the +-equations and Theorem 6.2
show that the only solutions to the +-equations in the strip
{ReE ∈ I, −e−4ℓL/5 <ImE < −e−3ℓL/4} are given by formu-
las (3.19) and (3.20) for the eigenvalues of the Dirichlet prob-
lem associated to a localization center in JL−2ℓL, L− ℓL/2K if
• = N and in JℓL/2, 2ℓLK∪ JL− 2ℓL, L− ℓL/2K if • = Z. Thus,
these zeros are simple and separated by a distance at least L−4 from each other (recall (6.10)).
Moreover, we can cover the interval I by intervals of the type [(λj + λj−1)/2, (λj + λj+1)/2], that
is, one can write

(6.15) I ⊂
j+
⋃

j=j−

[

λj + λj−1

2
,
λj + λj+1

2

]

where λj−−1 6∈ I, λ1+j+ 6∈ I, λj− ∈ I and λj+ ∈ I. Consider now the line {ImE = −e−ℓL} and its

intersection with the vertical strip [(λj + λj−1)/2, (λj + λj+1)/2] − iR+. Three things may occur:
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(1) either e−ℓL < ajdj
2| sin θ(λj)|/C (the constant C is defined in Theorem 3.1), then, on the

interval [(λj + λj−1)/2, (λj + λj+1)/2]− ie−ℓL , one has

(6.16)
∣

∣

∣S+
L (E) + e−iθ(E)

∣

∣

∣ & 1 and
∣

∣

∣det
(

Γ+
L (E) + e−iθ(E)

)∣

∣

∣ & 1;

this follows from the proof of Theorem 3.1 (see in particular (3.5), (3.6), (3.7) and (3.8))
for some fixed c > 0; recall that, on the interval I + ie−ℓL , one has | sin θ(E)| & 1;

(2) either e−ℓL > Caj (the constant C is defined in Theorem 3.2), then, on the interval [(λj +

λj−1)/2, (λj + λj+1)/2] − ie−ℓL , one has again (6.16) for a possibly different constant; this
follows from the proof of Theorem 3.2 (see in particular (3.15) and (3.16));

(3) if we are neither in case (1) nor in case (2), then the line {ImE = −e−ℓL} may cross Rj

(defined in Theorem 3.3; see also Fig. 7); we change the contour {ImE = −e−ℓL} so as to

enter Ũj until we reach the boundary of Rj and then follow this boundary getting closer to

the real axis, turning around Rj and finally reaching the line {ImE = −e−ℓL} again on the

other side of Rj and following it up to the boundary of Ũj (see Figure 8); on this new line,
the bound (6.16) again holds; moreover, this new line is closer to the real axis than the line
{ImE = −e−ℓL}.

Let us call Cℓ the path obtained by gluing together the paths constructed in points (1)-(3) for

j− ≤ j ≤ j+ and the half-lines
λj−+λj−−1

2 − i[e−ℓL ,+∞) and
λj++λj++1

2 − i[e−ℓL ,+∞) (see (6.15)).
One can then apply Rouché’s Theorem to compare the + equations to the equations (2.4) and (2.8):

by (6.14) and (6.16), on the line Cℓ, one has
∣

∣S−
L

∣

∣ <
∣

∣

∣
S+
L + e−iθ

∣

∣

∣
and

∣

∣

∣
det
(

ΓL(E) + e−iθ(E)
)

det
(

Γ+
L (E) + e−iθ(E)

)∣

∣

∣
≤ 1

2

∣

∣

∣
det
(

ΓL(E) + e−iθ(E)
)∣

∣

∣
.

Thus, the number of solutions to equations (2.4) and (2.8) below the line Cℓ is bounded by CℓL;
as Cℓ lies above {ImE = −e−ℓL}, in the half-plane {ImE < −e−ℓL}, the equations (2.4) and (2.8)
have at most CℓL solutions. We have proved Theorem 1.10. �

6.2.6. The proof of Theorem 1.11. The first point in Theorem 1.11 is proved in the same way as
point (2) in Theorem 1.7 up to the change of scales, L being replaced by ℓL. Pick scales (ℓ′L)L
satisfying (1.22) such that ℓ′L ≪ ℓL. One has

Lemma 6.4. Fix two sequences (aL)L and (bL)L such that aL < bL. With probability one, for L
sufficiently large,

#
{

e.v. of Hω,ℓL−2ℓ′L/ρ
in
[

aL + e−ℓ′L , bL − e−ℓ′L

]}

≤ # {e.v. of Hω,L in [aL, bL] with loc. cent. in J0, ℓLK}

≤ #
{

e.v. of Hω,ℓL+2ℓ′L/ρ
in
[

aL − e−ℓ′L , bL + e−ℓ′L

]}

where ρ is given by Lemma 6.1.

Proof. To prove Lemma 6.4, we apply Lemma 6.1 to L = ℓL + ℓ′L (i.e. for the operator Hω

restricted to the interval J0, ℓL + ℓ′LK) and lL = ℓ′L. The probability of the bad set is the O (L−∞),
thus, summable in L. Using the localization estimate (6.3), one proves that

• each eigenvalue of Hω,ℓL−2ℓ′L/ρ
is at a distance of at most e−ℓ′L of an eigenvalue of Hω,L with

loc. cent. in J0, ℓLK;

• each eigenvalue of Hω,L with loc. cent. in J0, ℓLK is at a distance of at most e−ℓ′L of an
eigenvalue of Hω,ℓL+2ℓ′L/ρ

.
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Lemma 6.4 follows. �

The first point in Theorem 1.11 is then point (2) of Theorem 1.7 for the operator Hω,ℓL−2ℓ′L/ρ
and

Hω,ℓL+2ℓ′L/ρ
and the fact that ℓ′L ≪ ℓL.

The proof of the second statement in Theorem 1.11 is very similar to that of Theorem 1.8. Fix I a

compact interval in
◦
Σ. As ℓL satisfies (1.22), one can find ℓ′L < ℓ′′L also satisfying (1.22) such that

e−ℓ′′L ≪ e−ℓL ≪ e−ℓ′L . For the same reasons as in the proof of Theorem 1.8, after rescaling, all the

resonances in I − i(−∞, 0) outside the strip I − i
[

e−ℓ′L , e−ℓ′′L

)

are then pushed to either 0 or i∞
as L→ +∞.

On the other hand, the resonances in the strip I − i
[

e−ℓ′L , e−ℓ′′L

)

are described by (3.19). The

rescaled real and imaginary parts of the resonances (see (1.24)) now become xj = (Ej,ω−E)ℓL+o(1)

and yj = ρ(E)
dj,ω
ℓL

+ o(1).

Now, to compute the limit of P(#{j; xj ∈ I, yj ∈ J} = k), using the exponential decay prop-
erty (6.3), it suffices to use [13, Theorem 1.14]. Let us note here that [13, condition (1.50)] on the
scales (ℓL)L is slightly stronger than (1.22). That condition (1.22) suffices is a consequence of the
stronger localization property known in the present case (compare Theorem 6.2 to [13, Assumption
(Loc)]). This completes the proof of the second point in Theorem 1.11. The final statement in 1.11
is proved in exactly the same way as Theorem 1.9.
The proof of Theorem 1.11 is complete. �

6.2.7. The proofs of Proposition 1.3 and Theorem 1.12. Localization for the operator HN
ω can be

described by the following

Lemma 6.5. There exists ρ > 0 and q > 0 such that, ω almost surely, there exists Cω > 0 s.t. for
L sufficiently large, if

(1) ϕj,ω is a normalized eigenvector of Hω,L associated to Ej,ω in Σ,
(2) xj(ω) ∈ N is a maximum of x 7→ |ϕj,ω(x)| in N,

then, for x ∈ N, one has

(6.17) |ϕj,ω(x)| ≤ Cω(1 + |xj(ω)|2)q/2e−ρ|x−xj(ω)|.

Moreover, the mapping ω 7→ Cω is measurable and E(Cω) < +∞.

This result for our model is a consequence of Theorem 6.1 (see, e.g., [28, 10, 7]) and [13, Theorem
6.1].
We thus obtain the following representation for the function Ξω

(6.18) Ξω(E) =
∑

j

|ϕj,ω(0)|2
Ej,ω − E

+ e−i arccos(E/2)

As HN
ω satisfies a Dirichlet boundary condition at −1, one has

(6.19) ∀j, |ϕj,ω(0)| > 0 and
∑

j

|ϕj,ω(0)|2 = 1.

As E → −i∞, the representation (6.18) yields

Ξω(E) = −E−2
∑

j

|ϕj,ω(0)|2Ej,ω +O
(

E−3
)

= −E−2〈δ0,HN
ω δ0〉+O

(

E−3
)

= −ω0E
−2 +O

(

E−3
)

.
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This proves the first point in Proposition 1.3.
As a direct consequence of Theorem 6.1 and the computation leading to Theorem 5.2 (see sec-
tion 5.1.2), we obtain that there exists c̃ > 0 s.t. for L sufficiently large, with probability at least
1− e−c̃L, one has

(6.20) sup
ImE≤−e−c̃L

∣

∣

∣

∣

∫

R

dNω(λ)

λ−E
− 〈δ0, (Hω,L − E)−1δ0〉

∣

∣

∣

∣

≤ e−c̃L.

Taking

(6.21) L = Lε ∼ c−1| log ε|
for some sufficiently small c > 0, this and Rouché’s Theorem implies that, with probability 1− ε3,
the number of zeros of Ξω (counted with multiplicity) in I + i(−∞, ε] is bounded

• from above by the number of resonances of Hω,Lε in I+ε + i(−∞,−ε− ε2];
• from below by the number of resonances of Hω,Lε in I−ε + i(−∞,−ε+ ε2].

where I+ε = [a− ε, b+ ε] and I+ε = [a+ ε, b− ε] if I = [a, b].
Here, to apply Rouché’s Theorem, we apply the same strategy as in the proof of Theorem 1.10
and construct a path bounding a region larger (resp. smaller) than I+ε + i(−∞,−ε − ε2] (resp.

I−ε + i(−∞,−ε+ ε2]) on which one can guarantee
∣

∣

∣SL(E) + e−iθ(E)
∣

∣

∣ & 1.

Now, we choose the constant c (see (6.21)) to be so small that c < min
E∈I

ρ(E). Applying point (3)

of Theorem 1.7 to Hω,Lε with this constant c, we obtain that the number of resonances of Hω,Lε in
I+ε + i(−∞, ε− ε2] (resp. I−ε + i(−∞, ε + ε2]) is upper bounded (resp lower bounded) by

Lε

∫

I
min

(

c

ρ(E)
, 1

)

n(E)dE (1 +O(1)) =
| log ε|
c

∫

I

c

ρ(E)
n(E)dE (1 +O(1))

=| log ε|
∫

I

n(E)

ρ(E)
dE (1 +O(1)).

Hence, we obtain the second point of Proposition 1.3. The last point of this proposition is then
an immediate consequence of the arguments developed to obtain the second point if one takes into
account the following facts:

• the minimal distance between the Dirichlet eigenvalues of HN
ω,L is bounded from below by

L−4 (see (6.10)),
• the growth of the function E 7→ SL(E) + e−iθ(E) near the resonances (i.e. its zeros) is well
controlled by Proposition 3.1.

Indeed, this implies that the resonances of HN
ω,L are simple in I+i[−e−

√
L, 0) (one can choose larger

rectangles) and that near each resonance one can apply Rouché’s Theorem to control the zero of
Ξω. Note that this also yields ω-almost surely, there exists cω such that

(6.22) min
z zero of Ξω
z∈I+i(−εω,0)

inf
0<r<εω(Im z)3/2

min
|E−z|=r

|Ξω(E)|
r

& 1.

This completes the proof of Proposition 1.3. �

Theorem 1.12 is a consequence of the following

Theorem 6.4. There exists c̃ > 0 such that, ω almost surely, for L ≥ 1 sufficiently large one has

sup
ReE∈I

ImE<−e−c̃L

∣

∣

∣

∣

∣

∣

∣

∣

ΓL,ω,ω̃(E)−









∫

R

dNω̃(λ)

λ− E
0

0

∫

R

dNω(λ)

λ− E









∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

SL,ω(E)−
∫

R

dNω(λ)

λ− E

∣

∣

∣

∣

≤ e−c̃L
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where ΓL,ω,ω̃(E) (resp. SL,ω(E)) is the matrix ΓL(E) (resp. the function SL(E)) (see (2.9))

constructed from the Dirichlet data on J0, LK of −∆+ V Z
ω,ω̃,L (resp. −∆+ V N

ω,L) (see (1.26)) using

formula (2.9) (resp. (2.4)).

Theorem 6.4 is proved exactly as Theorem 5.2 except that one uses the localization estimates (6.2)
instead of the Combes-Thomas estimates.
Theorem 1.12 is then an immediate consequence of the estimate (6.20). Indeed, this implies that

if z is a resonance for e.g. HN
ω,L in I + i

(

−∞, ec̃L
]

, then |Ξω(z)| ≤ e−c̃L. By the last point of
Proposition 1.3, ω almost surely, we know that the multiplicity of the zeros of Ξω is bounded
by Nω. Moreover, for the zeros of Ξω in I + i(−εω, 0), we know the bound (6.22). This bound
and (6.20) imply that

max
z zero of Ξω

z∈I+i(−εω ,e−c̃L)

max
|E−z|=e−c̃L

∣

∣Ξω(E)−
(

Sω,L(E) + e−iθ(E)
)∣

∣

|Ξω(E)| < e−c̃L.

This yields point (2) in Theorem 1.12 by an application of Rouché’s Theorem. Point (1) is obtained
in the same way using Proposition 3.1 that gives

max
z resonance of HN

ω,L

z∈I+i(−εω ,e−c̃L)

max
|E−z|=e−c̃L

∣

∣Ξω(E) −
(

Sω,L(E) + e−iθ(E)
)∣

∣

∣

∣Sω,L(E) + e−iθ(E)
∣

∣

< e−c̃L.

The case of HZ
ω,ω̃,L is dealt with in the same way.

This completes the proof of Theorem 1.12. �

6.3. Estimates on the growth of eigenfunctions. In the present section we are going to prove
Theorems 6.2 and 6.3. At the end of the section, we also prove the simpler Lemma 6.2.
The proof of Theorem 6.2 relies on locally uniform estimates on the rate of growth of the cocy-
cle (1.15) attached to the Schrödinger operator that we present now. Define

(6.23) TL(E,ω) = T (E,ωL) · · · T (E,ω0)

where

T (E,ωj) =

(

E − ωj −1
1 0

)

We start with an upper bound on the large deviations of the growth rate of the cocycle that is
uniform in energy. Fix α > 1 and δ ∈ (0, 1). For one part, the proof of Theorem 6.2 relies on the
following

Lemma 6.6. Let I ⊂ R be a compact interval. For any δ > 0, there exists Lδ > 0 and η > 0 such
that, for L ≥ Lδ and any K > 0, one has

(6.24) P





∀0 ≤ k ≤ K, ∀E ∈ I, ∀‖u‖ = 1,

log ‖TL(E; τk(ω))u‖
L+ 1

≤ ρ(E) + δ



 ≥ 1−Ke−η(L+1)

where we recall that τ : Ω → Ω denotes the left shift (i.e. if ω = (ωn)n≥0 then [τ(ω)]n = ωn+1 for
n ≥ 0) and τn = τ ◦ · · · ◦ τ n times.

At the heart of this result is a large deviation principle for the growth rate of the cocycle (see [5,
section I and Theorem 6.1]). As it also serves in the proof of Theorem 6.2, we recall it now. One
has
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Lemma 6.7. Let I ⊂ R be a compact interval. For any δ > 0, there exists Lδ > 0 and η > 0 such
that, for L ≥ Lδ, one has

(6.25) sup
E∈I
‖u‖=1

P

(∣

∣

∣

∣

log ‖TL(E;ω)u‖
L+ 1

− ρ(E)

∣

∣

∣

∣

≥ δ

)

≤ e−η(L+1).

While this result is not stated as is in [5], it can be obtained from [5, Lemma 6.2 and Theorem
6.1]. Indeed, by inspecting the proof of [5, Lemma 6.2 and Theorem 6.1], it is clear that the
quantities involved (in particular, the principal eigenvalue of T (z;E) = T (z) in [5, Theorem 4.3])
are continuous functions of the energy E. Thus, taking this into account, the proof of [5, Theorem
6.1] yields, for our cocycle, a convergence that is locally uniform in energy, that is, (6.25).

To prove Theorem 6.2, in addition to Lemma 6.6, we also need to guarantee a uniform lower bound
on the growth rate of the cocycle. We need this bound at least on the spectrum of Hω,L with a
good probability. Actually, this is the best one can hope for: a uniform bound in the style of (6.24)
will not hold.
We prove

Lemma 6.8. Fix I a compact interval and δ > 0. Pick u ∈ C
2 s.t. ‖u‖ = 1. For 0 ≤ j ≤ L, if

j ≤ L− 1, define

K+
j (ω,L, δ, u) :=







E ∈ I;

∣

∣

∣

∣

∣

∣

log
∥

∥

∥
T−1
L−(j+1)(E, τ

j+1(ω))u
∥

∥

∥

L− j
− ρ(E)

∣

∣

∣

∣

∣

∣

> δ







and, if 1 ≤ j, define

K−
j (ω,L, δ, u) :=

{

E ∈ I;

∣

∣

∣

∣

log ‖Tj−1(E,ω)u‖
j

− ρ(E)

∣

∣

∣

∣

> δ

}

;

finally, define K+
L (ω,L, δ, u) = ∅ = K−

0 (ω,L, δ, u).
Recall that (Ej,ω)0≤j≤L are the eigenvalues of Hω,L and let xj,ω be the associated localization centers.
For 0 ≤ ℓ ≤ L, define the sets

Ω+
B(L, ℓ, δ, u) :=

{

ω;
∃j s.t. L− xj,ω ≥ ℓ and

Ej,ω ∈ K+
xj,ω

(ω,L, δ, u)

}

and

Ω−
B(L, ℓ, δ, u) :=

{

ω;
∃j s.t. xj,ω ≥ ℓ and

Ej,ω ∈ K−
xj,ω

(ω,L, δ, u)

}

.

Then, the sets Ω±
B(L, ℓ, δ, u) are measurable and, for any δ > 0, there exists η > 0 and ℓ0 > 0 such

that, for L ≥ ℓ ≥ ℓ0, one has

(6.26) max
(

P(Ω+
B(L, ℓ, δ, u)),P(Ω

−
B (L, ℓ, δ, u))

)

≤ (L+ 1)|I|e−η(ℓ−1)

1− e−η
.

Here, the constant η is the one given by (6.25).

First, let us explain the meaning of Lemma 6.8. As, by Lemma 6.6, we already control the growth
of the cocycle from above, we see that in the definitions of the set K−

j (ω,L, δ, u) resp. K+
j (ω,L, δ, u),

it would have sufficed to require

log ‖Tj−1(E,ω)u‖
j

− ρ(E) ≤ −δ
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resp.

log
∥

∥

∥T−1
L−(j+1)(E, τ

j+1(ω))u
∥

∥

∥

L− (j + 1)
− ρ(E) ≤ −δ.

Hence, what Lemma 6.8 measures is that the probability that the cocycle at energy En,ω leading
from a localization center xn,ω to either 0 or L decays at a rate smaller than the rate predicted by
the Lyapunov exponent.
The sets Ω±

B(L, ℓ, δ, u) are the sets of bad configurations, i.e., the events when the rate of decay

of the solution is far from the Lyapunov exponent. Indeed, for ω outside Ω±
B(L, ℓ, δ), i.e., if the

reverse of the inequalities defining K±
j (ω,L, δ, u) hold, when j = xn,ω and E = En,ω, then, we

know that the eigenfunction ϕn,ω has to decay from the center of localization xn,ω (which is a local
maximum of its modulus) towards the edges of the intervals at a rate larger than γ(En,ω)− δ. The

eigenfunction being normalized, at the localization center, it is of size at least L−1/2. This will
entail the estimates (6.4) and (6.5) with a good probability.

There is a major difference in the uniformity in energy obtained in Lemmas 6.8 and 6.6. In
Lemma 6.8, we do not get a lower bound on the decay rate that is uniform all over I: it is merely
uniform over the spectrum inside I (which is sufficient for our purpose as we shall see). The
reason for this difference in the uniformity between Lemma 6.6 and 6.8 is the same that makes the
Lyapunov exponent E 7→ ρ(E) in general only upper semi-continuous and not lower semi-continuous
(in the present situation, it actually is continuous).

We postpone the proofs of Lemmas 6.6 and 6.8 to the end of this section and turn to the proofs of
Theorems 6.2 and 6.3.

6.3.1. The proof of Theorem 6.2. By Lemma 6.6, as TL(E,ω) ∈ SL(2,R), with probability at least

1−KLe−η(L+1), for L ≥ Lδ and any K > 0, one also has

∀0 ≤ k ≤ K, ∀E ∈ I, ∀‖u‖ = 1,
log ‖T−1

L (E; τk(ω))u‖
L+ 1

≤ ρ(E) + δ.

Now pick ℓ = C logL where C > 0 is to be chosen later on. We know that, with probability P

satisfying

(6.27) P ≥ 1− L2e−ηℓ,

for L ≥ Lδ and any l ∈ [ℓ, L] and any k ∈ [0, L], one also has

(6.28) ∀E ∈ I, ∀‖u‖ = 1,
log ‖T−1

l (E; τk(ω))u‖
l + 1

≤ ρ(E) + δ.

Let ϕj,ω be a normalized eigenfunction associated to the eigenvalue Ej,ω ∈ I with localization center
xj,ω. By the definition of the localization center, one has

(6.29)
1

L+ 1
≤
∥

∥

∥

∥

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

2

≤ 1 and
1

L+ 1
≤
∥

∥

∥

∥

(

ϕj,ω(xj,ω + 1)
ϕj,ω(xj,ω)

)∥

∥

∥

∥

2

≤ 1.

By the eigenvalue equation, for x ∈ J0, LK, one has

(6.30)

(

ϕj,ω(x)
ϕj,ω(x− 1)

)

=























Tx−xj,ω(E; τxj,ω(ω))

(

ϕj,ω(xj,ω)

ϕj,ω(xj,ω − 1)

)

if x ≥ xj,ω,

T−1
xj,ω−x(E; τx(ω))

(

ϕj,ω(xj,ω)

ϕj,ω(xj,ω − 1)

)

if x ≤ xj,ω.
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Hence, by (6.24) and (6.28), with probability at least 1 − 2L2e−ηℓ − L−p, if |xj,ω − x| ≥ ℓ, for
xj,ω < x ≤ L, one has

e−(ρ(Ej,ω)+δ)|x−xj,ω |
√
L+ 1

≤ e−(ρ(Ej,ω)+δ)|x−xj,ω |
∥

∥

∥

∥

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

≤
∥

∥

∥

∥

Tx−xj,ω(E; τxj,ω (ω))

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

=

∥

∥

∥

∥

(

ϕj,ω(x)
ϕj,ω(x− 1)

)∥

∥

∥

∥

(6.31)

and, for 0 ≤ x < xj,ω, one has
∥

∥

∥

∥

(

ϕj,ω(x)
ϕj,ω(x− 1)

)∥

∥

∥

∥

=

∥

∥

∥

∥

T−1
x−xj,ω

(E; τxj,ω (ω))

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

≥ e−(ρ(Ej,ω)+δ)|x−xj,ω |
∥

∥

∥

∥

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

≥ e−(ρ(Ej,ω)+δ)|x−xj,ω |
√
L+ 1

(6.32)

On the other hand, by the definition of the Dirichlet boundary conditions, we know that
(

ϕj,ω(0)
ϕj,ω(−1)

)

= ϕj,ω(0)

(

1
0

)

and

(

ϕj,ω(L+ 1)
ϕj,ω(L)

)

= ϕj,ω(L)

(

0
1

)

.

Thus,

ϕj,ω(0)Txj,ω−1(E;ω)

(

1
0

)

=

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)

and

ϕj,ω(L)

(

0
1

)

= TL−xj,ω−1(E; τxj,ω+1(ω))

(

ϕj,ω(xj,ω + 1)
ϕj,ω(xj,ω)

)

.

Thus, for ω 6∈ Ω+
B(L, ℓ, δ, u+) ∪ Ω−

B(L, ℓ, δ, u−) where we have set u− :=

(

0
1

)

and u+ :=

(

1
0

)

, we

know that

e−(ρ(Ej,ω)−δ)(L−xj,ω) ≤
∥

∥

∥T−1
L−xj,ω−1(E; τxj,ω+1(ω))u+

∥

∥

∥

and

e−(ρ(Ej,ω)−δ)xj,ω ≤
∥

∥Txj,ω−1(E;ω)u−
∥

∥

Thus, we obtain that, for ω 6∈ Ω+
B(L, ℓ, δ, u+) ∪ Ω−

B(L, ℓ, δ, u−), one has

|ϕj,ω(L)| =
∥

∥

∥

∥

T−1
L−xj,ω

(E; τxj,ω+1(ω))

(

0
1

)∥

∥

∥

∥

−1 ∥
∥

∥

∥

(

ϕj,ω(xj,ω + 1)
ϕj,ω(xj,ω)

)∥

∥

∥

∥

≤ e−(ρ(Ej,ω)−δ)(L−xj,ω−1)

(6.33)

and

|ϕj,ω(0)| =
∥

∥

∥

∥

Txj,ω
(E; τxj,ω (ω))

(

0
1

)∥

∥

∥

∥

−1 ∥
∥

∥

∥

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

≤ e−(ρ(Ej,ω)−δ)(xj,ω−1).

(6.34)

The estimates given by Lemma 6.8 on the probability of Ω+
B(L, ℓ, δ, u+) and Ω−

B(L, ℓ, δ, u−) for

ℓ = C logL and the estimate (6.27) then imply that, with a probability at least 1−4L2e−η(ℓ−1)−L−p,
the bounds (6.31), (6.32), (6.33) and (6.34) hold. Thus, picking ℓ = C logL for C > 0 sufficiently
large (depending only on η, thus, on δ and p), these bounds hold with a probability at least 1−L−p.
This complete the proof of Theorem 6.2. �
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Remark 6.1. One may wonder whether the uniform growth estimate given by Lemmas 6.6 and 6.8
is actually necessary in the proof of Theorem 6.2. That they are necessary is due to the fact that

both the eigenvalue Ej,ω and the localization center xj,ω (and, thus, the vector

∥

∥

∥

∥

(

ϕj,ω(xj,ω)
ϕj,ω(xj,ω − 1)

)∥

∥

∥

∥

)

depend on ω. Thus, (6.25) is not sufficient to estimate the second term in the left hand sides of (6.31)
and (6.32).

6.3.2. The proof of Theorem 6.3. To prove Theorem 6.3, we follow the strategy that led to the
proof of Theorem 6.2. First, note that (6.31) and (6.32) provide the expected lower bounds on the
eigenfunction with the right probability. As for the upper bound, by (6.30), using the conclusions
of Theorem 6.2 and the bounds given by Lemma 6.6, we know that, e.g. for 0 ≤ x < xj,ω

∥

∥

∥

∥

(

ϕj,ω(x)
ϕj,ω(x− 1)

)∥

∥

∥

∥

=

∥

∥

∥

∥

Tx(E;ω)

(

1
0

)∥

∥

∥

∥

|ϕj,ω(0)| ≤ e(ρ(Ej,ω)+δ)xe−(ρ(Ej,ω)−δ)xj,ω

≤ e−(ρ(Ej,ω)−Cδ)|x−xj,ω |

if (1 + C)x ≤ (C − 1)xj,ω, i.e., 2(1 + C)−1xj,ω ≤ xj,ω − x.
For x ≥ xj,ω one reasons similarly and, thus, completes the proof of Theorem 6.3. �

Remark 6.2. Actually, as the proof shows, the results one obtains are more precise than the claims
made in Theorem 6.3 (see [24]).

6.3.3. The proof of Lemma 6.8. The proofs for the two sets Ω±
B(L, ℓ, δ, u) are the same. We will only

write out the one for Ω+
B(L, ℓ, δ, u). Let us first address the measurability issue for Ω+

B(L, ℓ, δ, u).
The functions ω 7→ Ej,ω and ω 7→ ϕj,ω are continuous (as the eigenvalues and eigenvectors of finite
dimensional matrices depending continuously on the parameter ω = (ωj)0≤j≤L). Thus, for fixed j,

the sets {ω; Ej,ω ∈ K−
j (ω,L, δ, u)} and {ω; xj,ω > j} are open (we used the definition of xj,ω as

the left most localization center (see Theorem 6.2)). This yields the measurability of Ω+
B(L, ℓ, δ, u).

We claim that

(6.35)
1

L+ 1
1Ω+

B(L,ℓ,δ,u) ≤
L+1−ℓ
∑

j=0

〈δj ,1K+

j (ω,L,δ,u)(Hω,L)δj〉

where 1K+

j (ω,L,δ,u)(Hω,L) denotes the spectral projector associated to Hω,L on the set K+
j (ω,L, δ, u).

Indeed, if one has Ej,ω 6∈ K+
xj,ω

(ω,L, δ, u) for all j then the left hand side of (6.35) vanishes and the

right hand side is non negative. On the other hand, if, for some j, one has 0 ≤ xj,ω ≤ L − ℓ and
Ej,ω ∈ K+

xj,ω
(ω,L, δ, u) then, we compute

L−ℓ
∑

l=0

〈δl,1K+

j (ω,L,δ,u)(Hω,L)δl〉 =
L−ℓ
∑

l=0

∑

k s.t
Ek,ω∈K+

j (ω,L,δ,u)

|ϕk,ω(l)|2 ≥ |ϕj,ω(xj,ω)|2

≥ 1

L+ 1
≥ 1

L+ 1
1Ω+

B(L,ℓ,δ,u)

by the definition of xj,ω.
An important fact is that, by construction (see Lemma 6.8), the set of energies K+

j (ω,L, δ, u) does

not depend on ωj. Hence, denoting by Eωj(·) the expectation with respect to ωj and Eω̂j
(·) the

expectation with respect to ω̂j = (ωk)k 6=j , we compute

E





L−ℓ
∑

j=0

〈δj ,1K+

j (ω,L,δ,u)(Hω,L)δj〉



 =

L−ℓ
∑

j=0

Eω̂j

(

Eωj

(

〈δj ,1K+

j (ω,L,δ,u)(Hω,L)δj〉
))
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As ωj is assumed to have a bounded compactly supported distribution and as K+
j (ω,L, δ, u) does

not depend on ωj , a standard spectral averaging lemma (see, e.g., [37, Theorem 11.8]) yields

Eωj

(

〈δj ,1K+

j (ω,L,δ,u)(Hω,L)δj〉
)

≤ |K+
j (ω,L, δ, u)|

where | · | denotes the Lebesgue measure. Thus, we obtain

(6.36) E





L−ℓ
∑

j=0

〈δj ,1K+

j (ω,L,δ,u)(Hω,L)δj〉



 ≤
L−ℓ
∑

j=0

Eω̂j

(

|K+
j (ω,L, δ, u)|

)

=

L−ℓ
∑

j=0

E

(

|K+
j (ω,L, δ, u)|

)

.

By Lemma 6.7 and the Fubini-Tonelli theorem, we know that

E

(

|K+
j (ω,L, δ, u)|

)

= E

(∫

I
1K+

j (ω,L,δ,u)(E)dE

)

=

∫

I
E

(

1K+

j (ω,L,δ,u)(E)
)

dE

≤ |I| sup
E∈I

P





∣

∣

∣

∣

∣

∣

log
∥

∥

∥
T−1
L−(j+1)(E,ω)u

∥

∥

∥

L− j
− ρ(E)

∣

∣

∣

∣

∣

∣

> δ





≤ |I| e−η(L−j).

Taking the expectation of both sides of (6.35) and plugging this into (6.36), we obtain

P(Ω+
B(L, ℓ, δ, u)) ≤ (L+ 1)|I|e−η(ℓ−1)

L−ℓ
∑

j=0

e−ηj ≤ (L+ 1)|I|e−η(ℓ−1)

1− e−η
.

In the same way, one obtains

P(Ω−
B(L, ℓ, δ, u)) ≤

(L+ 1)|I|e−η(ℓ−1)

1− e−η
.

This completes the proof of Lemma 6.8. �

Remark 6.3. This proof can be seen as the analogue of the so-called Kotani trick for products of
finitely many random matrices (see , e.g., [10]).

6.3.4. The proof of Lemma 6.6. The basic idea of this proof is to use the estimate (6.25), in
particular, the exponentially small probability and some perturbation theory for the cocycles so as
to obtain a uniform estimate.
Let η be given by (6.25). Fix η′ < η/2 and write

(6.37) I = ∪j∈J [Ej , Ej+1] where e
−η′(L+1)/2 ≤ Ej+1 − Ej ≤ 2e−η′(L+1);

thus, #J . eη
′(L+1).

We now want to estimate what happens for E ∈ [Ej , Ej+1]. Therefore, using (1.15) and
(

E − Vω(n) −1
1 0

)

−
(

Ej − Vω(n) −1
1 0

)

= (E − Ej)∆T

where

∆T :=

∣

∣

∣

∣

(

1
0

)〉〈(

1
0

)∣

∣

∣

∣

we compute

(6.38) TL(E,ω) = TL(Ej , ω) +

L
∑

l=1

(E − Ej)
lSl



RESONANCES FOR LARGE ONE-DIMENSIONAL “ERGODIC” SYSTEMS 77

where

Sl :=
∑

n1<n2<···<nl

Tn1
(Ej , τ

L−n1ω)×∆T × Tn2−n1−1(Ej , τ
n2ω)

×∆T × · · · ×∆T × TL−nl−1(Ej , τ
nlω)

=
∑

n1<n2<···<nl

l
∏

m=2

〈(

1
0

)

, Tnm−nm−1−1(Ej , τ
nmω)

(

1
0

)〉

∣

∣

∣

∣

Tn1
(Ej , τ

L−n1ω)

(

1
0

)〉〈(

1
0

)∣

∣

∣

∣

TL−nl−1(Ej , τ
nlω)

Clearly, as the random variables have compact support, one has the uniform bound

(6.39) sup
E∈I
ω∈Ω

‖TL(E;ω)‖ ≤ eCL.

Thus one has

(6.40) sup
ω∈Ω

‖Sl‖ ≤ LleCL.

Hence, for l0 fixed, one computes

(6.41)

∥

∥

∥

∥

∥

∥

L
∑

l=l0

(E − Ej)
lSl

∥

∥

∥

∥

∥

∥

≤
L
∑

l=l0

(E − Ej)
l‖Sl‖ ≤

L
∑

l=l0

e−η′(L+1)lLleCL ≤ 1

if η′l0 > 2C and L is sufficiently large (depending only on η′ and C).
We now assume that l0 satisfies η′l0 > 2C and pick 1 ≤ l ≤ l0. Pick δ0 ∈ (0, 1) small to be fixed
later. Assume moreover that L is so that δ0L ≥ Lδ where Lδ is defined in Lemma 6.7. Then, by
Lemma 6.7, for m ∈ {2, · · · , l}, one has

(1) either nm − nm−1 ≤ Lδ; then, one has
∥

∥Tnm−nm−1−1(Ej , τ
nm−1ω)

∥

∥ ≤ eC(nm−nm−1);

(2) or nm − nm−1 ≥ Lδ; then, by (6.25), with probability at least equal to 1− e−η(nm−nm−1)/2,
one has

∥

∥Tnm−nm−1−1(Ej , τ
nm−1ω)

∥

∥ ≤ e(nm−nm−1)(ρ(Ej )+δ).

Define

Gn1,··· ,nl
= {m ∈ {2, · · · , l};nm − nm−1 ≥ Lδ}

and

Bn1,··· ,nl
= {2, · · · , l} \Gn1,··· ,nl

.

By definition, one has

(6.42)
∑

m∈Bn1,··· ,nl

(nm − nm−1) ≤ lLδ and
∑

m∈Gn1,··· ,nl

(nm − nm−1) ≥ L− lLδ.

For a fixed sequence n1 < n2 < · · · < nm, the random variables
(

Tnm′−nm′−1−1(Ej , τ
nm′ω)

)

1≤m′≤m

are independent. Hence, by (6.25), for a fixed (m1, · · · ,mK) ∈ Gn1,··· ,nl
, one has

P

(

inf
1≤k≤K

∥

∥

∥Tnmk
−nmk−1−1(Ej , τ

nmkω)
∥

∥

∥ ≥ e(ρ(Ej)+δ)(nmk
−nmk−1)

)

≤ e−η
∑K

k=1
nmk

−nmk−1 .
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Thus, for ε ∈ (0, 1), one has

P











∃(m1, · · · ,mK) ∈ Gn1,··· ,nl
s.t.

K
∑

k=1

nmk
− nmk−1 ≥ εL

inf
1≤k≤K

∥

∥

∥
Tnmk

−nmk−1−1(Ej , τ
nmk

−1ω)
∥

∥

∥
≥ e(ρ(Ej )+δ)(nmk

−nmk−1)











≤ Lle−ηεL.

Hence, with probability at least 1− Lle−ηεL, we know that

∃(m1, · · · ,mK) ∈ Gn1,··· ,nl
s.t.

K
∑

k=1

nmk
− nmk−1 ≥ L− lLδ − εL

∀1 ≤ k ≤ K,
∥

∥

∥
Tnmk

−nmk−1−1(Ej , τ
nmk

−1ω)
∥

∥

∥
≤ e(ρ(Ej)+δ)(nmk

−nmk−1).

Using estimates (6.42) and (6.39) for the remaining terms in the product below, for any given
m-uple (n1, · · · , nm), one obtains

P









l
∏

m=1

∥

∥Tnm−nm−1−1(Ej , τ
nmk

−1ω)
∥

∥

≤ e(ρ(Ej)+δ)(1−ε)(L−lLδ )+C(εL+lLδ)









≥ 1− Lle−ηεL.

Hence, with probability at least 1− l0L
l0 e−ηεL, for 1 ≤ l ≤ l0, we estimate

‖Sl‖ ≤
∑

n1<n2<···<nl

l
∏

m=1

∥

∥Tnm−nm−1−1(Ej , τ
nmkω)

∥

∥

≤ Lle(ρ(Ej )+δ)(1−ε)L+CεL+(C−(ρ(Ej )+δ)(1−ε))lLδ

≤ Lle[ρ(Ej)+δ+(C−ρ(Ej )−δ)ε]L+[C−(ρ(Ej)+δ)(1−ε)]Lδ l

≤ Ll0e[ρ(Ej)+δ+(C−ρ(Ej )−δ)ε]L+[C−(ρ(Ej)+δ)(1−ε)]Lδ l0 .

(6.43)

It remains now to choose the quantities η′, l0 and ε so that the following requirements be satisfied

η′l0 > 2C, (C − ρ(Ej)− δ)ε ≤ δ

2
, l0L

l0 e−ηεLeη
′(L+1) ≪ 1

and
[C − (ρ(Ej) + δ)(1 − ε)]Lδl0

L+ 1
≤ δ

2(ρ(Ej) + δ)
.

(6.44)

Fixing ε small, picking 0 < η′ < ηε/3 and setting l0 = Lα where α ∈ (0, 1), we see that all the
conditions in (6.44) are satisfied for L sufficiently large. Moreover, one has

l0L
l0 e−ηεLeη

′(L+1) ≤ e−ηεL/2.

Plugging this and the last estimate in (6.43) into (6.38), we obtain that, with probability at least

1− e−ηεL/2, for any j ∈ J (see (6.37)), for E ∈ [Ej, Ej+1], one has

‖TL(E,ω)− TL(Ej , ω)‖ ≤ 1 +

l0
∑

l=1

e−η′l(L+1)Lle(ρ(Ej )+2δ)L

≤ 1 + e(ρ(Ej )+2δ)(L+1)

(6.45)

As ρ is continuous (see, e.g., [5]), one gets that, for any δ > 0, for L sufficiently large, with

probability at least 1− e−ηεL/2, one has, for any E ∈ I,

‖TL(E,ω)‖ . e(ρ(E)+2δ)(L+1) .
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Hence, as TL(E,ω) ∈ SL(2,R), one has
∥

∥T−1
L (E,ω)

∥

∥ . e(ρ(E)+2δ)(L+1).
Using the fact that the probability measure on Ω is invariant under the shift (it is a product
measure), we obtain (6.24). This completes the proof of Lemma 6.6. �

6.3.5. The proof of Lemma 6.2. Assume the realization ω is such that the conclusions of Lemma 6.1
hold in I for the scales lL = 2 log L. Fix α > 0 and let EL,ω be the set of indices of the eigenvalues
(Ej,ω)0≤j≤L of Hω,L having a localization center in JL − ℓL, LK. Fix C > α > 0 and consider the
projector on the sites in JL− CℓL, LK, i.e., ΠC := 1JL−CℓL,LK.
Consider the following Gram matrices

G(EL,ω) = ((〈ϕj,ω, ϕj,ω〉))(n,m)∈EL,ω×EL,ω
= IdN

where N = #EL,ω and

Gπ(EL,ω) = ((〈ΠCϕj,ω,ΠCϕj,ω〉))(n,m)∈EL,ω×EL,ω
.

By definition, the rank of Gπ(EL,ω) is bounded by the rank of ΠC , i.e., by CℓL. Moreover, as

by (6.3) one has ‖(1 −ΠC)ϕj,ω‖ ≤ Lqe−ρηCℓL , one has

‖IdN −Gπ(EL,ω)‖ ≤ L2+qe−ρηCℓL ≤ L2+q−Cρη.

Thus, picking Cηρ > q + 2 yields that, for L sufficiently large, Gπ(EL,ω) is invertible and its rank
is N . This yields #EL,ω = N ≤ CℓL and the proof of Lemma 6.2 is complete. �

6.4. The half-line random perturbation: the proof of Theorem 1.13. Using the same
notations as in section 5.3, we can write

H∞ =

(

H−
ω,−1 |δ−1〉〈δ0|

|δ0〉〈δ−1| −∆+
0

)

where

• −∆+
0 is the Dirichlet Laplacian on ℓ2(N),

• H−
ω,−1 = −∆+ Vω on ℓ2({n ≤ −1}) with Dirichlet boundary conditions at 0.

Define the operators

Γω(E) := −∆+
0 − E − 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉 |δ0〉〈δ0|,
Γ̃ω(E) := H−

ω,−1 − E − 〈δ0|(−∆+
0 − E)−1|δ0〉 |δ−1〉〈δ−1|.

For ImE 6= 0, the numbers 〈δ−1|(H−
ω,−1 −E)−1|δ−1〉 and 〈δ0|(−∆+

0 −E)−1|δ0〉 have non vanishing

imaginary parts of the same sign; hence, the complex number (〈δ−1|(H−
ω,−1 − E)−1|δ−1〉)−1 −

〈δ0|(−∆+
0 − E)−1|δ0〉 does not vanish. Thus, by rank one perturbation theory, (see, e.g., [37]), we

thus know that Γω(E) and Γ̃ω(E) are invertible for ImE 6= 0 and that

Γ−1
ω (E) = (−∆+

0 −E)−1

+
|(−∆+

0 − E)−1|δ0〉〈δ0|(−∆+
0 − E)−1|

(〈δ−1|(H−
ω,−1 − E)−1|δ−1〉)−1 − 〈δ0|(−∆+

0 − E)−1|δ0〉
(6.46)

Γ̃−1
ω (E) = (H−

ω,−1 − E)−1

+
|(H−

ω,−1 − E)−1|δ−1〉〈δ−1|(H−
ω,−1 − E)−1|

(〈δ0|(−∆+
0 − E)−1|δ0〉)−1 − 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉
.

(6.47)

Thus, for ImE 6= 0, using Schur’s complement formula, we compute

(6.48) (H∞
ω − E)−1 =

(

Γ̃−1
ω (E) γ(E)
γ∗
(

E
)

Γ−1
ω (E)

)

.
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where γ∗
(

E
)

is the adjoint of γ
(

E
)

and

γ(E) := −|(H−
ω,−1 − E)−1|δ−1〉〈δ0|Γ−1

ω (E)|

6.4.1. The continuation through (−2, 2) \ Σ. Let us start with the analytic continuation through
(−2, 2) \Σ.
One easily checks that the function E 7→ 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉−1 is analytic outside Σ, the

essential spectrum of H−
ω,−1 and has simple zeros at the isolated eigenvalues of H−

ω,−1. Hence,

E 7→ Γ−1
ω (E) can be analytically continued near an isolated eigenvalue of H−

ω,−1 different from −2
and 2.
As for Γ̃−1

ω , using the spectral decomposition of of H−
ω,−1 − E)−1, as for any eigenvector of H−

ω,−1,

say, ϕ, one has 〈δ−1, ϕ〉 6= 0, for E0, an isolated eigenvalue of H−
ω,−1 different from −2 and 2, doing

a polar decomposition of Γ̃−1
ω near E0, one checks that E 7→ Γ̃−1

ω (E) can be analytically continued
to a neighborhood of E0.
Finally let us check what happens with γ. We compute

γ(E) = −〈δ−1|(H−
ω,−1 − E)−1|δ−1〉−1|(H−

ω,−1 −E)−1|δ−1〉〈δ0|(−∆+
0 − E)−1|.

As E 7→ 〈δ−1|(H−
ω,−1−E)−1|δ−1〉−1(H−

ω,−1−E)−1 is analytic near any isolated eigenvalue of (H−
ω,−1,

we see that E 7→ γ(E) can be can be analytically continued to a neighborhood of an isolated
eigenvalue of H−

ω,−1.

Hence, the representation (6.48) immediately shows that the resolvent (H∞
ω −E)−1 can be continued

through (−2, 2) \Σ, the poles of the continuation being given by the zeros of the function

E 7→ 1− 〈δ0|(−∆+
0 − E)−1|δ0〉〈δ−1|(H−

ω,−1 − E)−1|δ−1〉 = 1− eiθ(E)

∫

R

dNω(λ)

λ− E
.

6.4.2. No continuation through (−2, 2)∩
◦
Σ. Let us study the analytic continuation through (−2, 2)∩

◦
Σ. Considering the lower right coefficient of this matrix, we see that, when coming from upper

half-plane through (−2, 2) ∩
◦
Σ, E 7→ (H∞

ω − E)−1 can be continued meromorphically to the lower
half plane (as an operator from ℓ2comp(Z) to ℓ

2
loc(Z)) only if E 7→ Γ−1

ω (E) can be meromorphically

(as an operator from ℓ2comp(N) to ℓ
2
loc(N)).

As E 7→ (−∆+
0 − E)−1 can be analytically continued (see section 2), by (6.46), the meromorphic

continuation of E 7→ Γ−1
ω (E) will exist if and only if the complex valued map

E 7→ gω(E) :=
1

(〈δ−1|(H−
ω,−1 − E)−1|δ−1〉)−1 − 〈δ0|(−∆+

0 − E)−1|δ0〉

can be meromorphically continued from the upper half-plane through (−2, 2) ∩
◦
Σ. Fix ω s.t. the

spectrum of H−
ω,−1 be equal to Σ and pure point (this is almost sure (see, e.g., [7, 33]). As δ−1 is a

cyclic vector for H−
ω,−1, for E an eigenvalue of H−

ω,−1, one then has

(6.49) lim
ε→0+

(〈δ−1|(H−
ω,−1 −E − iε)−1|δ−1〉)−1 = 0.

Hence, if the analytic continuation of gω would exist, on (−2, 2) ∩
◦
Σ, it would be equal to

(6.50) gω(E + i0) = − 1

〈δ0|(−∆+
0 −E − i0)−1|δ0〉

.

By analyticity of both sides, this in turn would imply that (6.50) holds on the whole upper half-
plane, thus, in view of the definition of gω, that (6.49) holds on the whole upper half plane: this
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is absurd! Thus, we have proved that, ω almost surely, E 7→ (H∞
ω − E)−1 does not admit a

meromorphic continuation through (−2, 2) ∩
◦
Σ.

6.4.3. Absolutely continuity of the spectrum of H∞
ω in (−2, 2) ∩

◦
Σ. Let us now prove that the

spectral measure of H∞
ω in (−2, 2) ∩

◦
Σ is purely absolutely continuous. Therefore, it suffices (see,

e.g., [39, section 2.5] and [37, Theorem 11.6]) to prove that, for all E ∈ (−2, 2) ∩
◦
Σ, one has

lim sup
ε→0+

∣

∣〈δ0, (H∞
ω − E − iε)−1δ0〉

∣

∣+
∣

∣〈δ−1, (H
∞
ω − E − iε)−1δ−1〉

∣

∣ < +∞.

Using (6.46), (6.47) and (6.48), for ImE 6= 0, we compute

(6.51) 〈δ−1, (H
∞
ω − E)−1δ−1〉 =

〈δ−1|(H−
ω,−1 − E)−1|δ−1〉

1− 〈δ0|(−∆+
0 − E)−1|δ0〉 · 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉
,

for n ≥ 1, m ≤ 0,

(6.52) 〈δ−n, (H
∞
ω − E)−1δm〉 =

−〈δ−n|(H−
ω,−1 − E)−1|δ−1〉〈δ0|(−∆+

0 − E)−1|δm〉
1− 〈δ0|(−∆+

0 − E)−1|δ0〉 · 〈δ−1|(H−
ω,−1 − E)−1|δ−1〉

and

(6.53) 〈δ0, (H∞
ω − E)−1δ0〉 =

〈δ0|(−∆+
0 − E)−1|δ0〉

1− 〈δ0|(−∆+
0 − E)−1|δ0〉 · 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉
.

Thus, to prove the absolute continuity of the spectral measure of H∞
ω in (−2, 2) ∩

◦
Σ, it suffices to

prove that, for E ∈ (−2, 2) ∩
◦
Σ, one has

lim sup
ε→0+

(∣

∣

∣

∣

∣

1

(〈δ−1|(H−
ω,−1 − E − iε)−1|δ−1〉)−1 − 〈δ0|(−∆+

0 − E − iε)−1|δ0〉

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

(〈δ0|(−∆+
0 − E − iε)−1|δ0〉)−1 − 〈δ−1|(H−

ω,−1 − E − iε)−1|δ−1〉

∣

∣

∣

∣

∣

)

<∞.

This is the case as

• the signs of the imaginary parts of −(〈δ−1|(H−
ω,−1−E− iε)−1|δ−1〉)−1 and 〈δ0|(−∆+

0 −E−
iε)−1|δ0〉 are the same (negative if ImE < 0 and positive if ImE > 0),

• for E ∈ (−2, 2), 〈δ0|(−∆+
0 − E − iε)−1|δ0〉 has a finite limit when ε→ 0+,

• forE ∈ (−2, 2), the imaginary part of 〈δ0|(−∆+
0 −E− iε)−1|δ0〉 does not vanish in the limit

ε→ 0+.

So, we have proved the part of Theorem 1.13 concerning the absence of analytic continuation of

the resolvent of H∞
ω through (−2, 2) ∩

◦
Σ and the nature of its spectrum in this set.

6.4.4. The spectrum of H∞
ω is pure point in

◦
Σ \ [−2, 2]. Let us now prove the last part of The-

orem 1.13. The proof relies again on (6.48). We pick β ∈ (0, α/2) where α is determined by
Theorem 6.1 for H−

ω,−1. Then, for n ≥ 1 and m ≤ 0, using the Cauchy-Schwartz inequality, for
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ImE 6= 0, we compute

(6.54) E

(

∣

∣〈δ−n, (H
∞
ω − E)−1δm〉

∣

∣

β
)2

≤ |〈δ0|(−∆+
0 − E)−1|δm〉|2 · E

(

∣

∣

∣
〈δ−n|(H−

ω,−1 − E)−1|δ−1〉
∣

∣

∣

2β
)

· E





∣

∣

∣

∣

∣

1

1− 〈δ0|(−∆+
0 − E)−1|δ0〉 · 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉

∣

∣

∣

∣

∣

2β




For J ⊂ (−2, 2) \ Σ a compact interval, we know that, for n ≥ 1 and m ≤ 0,

• sup
ImE 6=0

|〈δ0|(−∆+
0 − E)−1|δm〉| . e−cm by the Combes-Thomas estimates;

• sup
ImE 6=0

E

(

∣

∣

∣〈δ−n|(H−
ω,−1 −E)−1|δ−1〉

∣

∣

∣

2β
)

. e−2βρn by the characterization (6.1) of localiza-

tion in Σ for H−
ω,−1.

It suffices now to estimate the last term in (6.54) using a standard decomposition of rank one
perturbations (see, e.g., [37, 2]), one writes

1

1− 〈δ0|(−∆+
0 − E)−1|δ0〉 · 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉
=
ω−1 − b

ω−1 − a

where a and b only depend on (ω−n)n≥2. Thus, as (ω−n)n≥1 have a bounded density, for ImE 6= 0,
one has

E





∣

∣

∣

∣

∣

1

1− 〈δ0|(−∆+
0 − E)−1|δ0〉 · 〈δ−1|(H−

ω,−1 − E)−1|δ−1〉

∣

∣

∣

∣

∣

2β


 ≤ E(ω−n)n≥2
Eω−1

(

∣

∣

∣

∣

ω−1 − b

ω−1 − a

∣

∣

∣

∣

2β
)

≤ Cβ < +∞.

Thus, we have proved that, for J ⊂ Σ \ [−2, 2] a compact interval, for β ∈ (0, α/2) and some ρ̃ > 0,
for n ≥ 1 and m ≤ 0, one has

sup
ImE 6=0
ReE∈I

E

(

∣

∣〈δ−n, (H
∞
ω − E)−1δm〉

∣

∣

β
)

< Cβe
−ρ̃(m−n).

In the same way, using (6.51) and (6.53), one proves that

sup
ImE 6=0
ReE∈I

E

(

∣

∣〈δ0, (H∞
ω −E)−1δ0〉

∣

∣

β
+
∣

∣〈δ−1, (H
∞
ω − E)−1δ−1〉

∣

∣

β
)

< +∞

Thus, we have proved that, for some ρ̃ > 0, one has

sup
ImE 6=0
ReE∈I

sup
m∈Z

E

(

∑

n∈Z
eρ̃(m−n)

∣

∣〈δ−n, (H
∞
ω − E)−1δm〉

∣

∣

β

)

< +∞.

Hence, we know that the spectrum of H∞
ω in Σ \ [−2, 2] (as J can be taken arbitrary contained in

this set) is pure point associated to exponentially decaying eigenfunctions (see, e.g., [2, 1, 3]). This
completes the proof of Theorem 1.13.
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7. Appendix

In this section we study the eigenvalues and eigenvectors of HL (see Remark 1.4) near an energy
E′ that is an eigenvalue of both H+

0 and H−
k (see the ends of sections 4.1.3 and 4.1.4). We keep

the notations of sections 4.1.3 and 4.1.4.
Let ϕ+ ∈ ℓ2(N) (resp. ϕ− ∈ ℓ2(Z−)) be normalized eigenvectors of H+

0 (resp. H−
k ) associated to

E−. Thus, by (4.28) and (4.32), we can pick, for n ≥ 0 and l ∈ {0, · · · , p− 1},
(7.1) ϕ+

np+l = cal(E
′)ρn(E′) and ϕ−

−np−l = c−bl(E
′)ρn(E′).

Assume L = Np+ k and, for l ∈ {0, · · · , L}, define ϕ±,L ∈ ℓ2(J0, LK) by

(7.2)
ϕ+,L
l := ϕ+

l , ϕ+,L
−1 = ϕ+,L

L+1 := ϕ+
−1 = 0 and

ϕ−,L
l := ϕ−

l−L, ϕ−,L
−1 = ϕ−,L

L+1 := ϕ−
0 = 0.

Thus, one has

(7.3)
HLϕ

+,L = E′ϕ+,L + ϕ+
L+1δL, HLϕ

−,L = E′ϕ−,L + ϕ−
−L−1δ0

and 〈ϕ+,L, ϕ−,L〉 = O(NρN (E)).

Recall that ak(E
′) 6= 0 6= bk(E

′) (see sections 4.1.3 and 4.1.4); thus, by (7.1), one has

(7.4) |ϕ−
−L−1| ≍ |ρ(E′)|n ≍ |ϕ+

L+1|.
Moreover, as HL converges to H+

0 in strong resolvent sense, for ε > 0 sufficiently small, for L
sufficiently large, HL has no spectrum in the compact E′ + [−2ε, ε/2] ∪ [ε/2, 2ε]. Let ΠL be the

spectral projector onto the interval [ε/2, ε/2] that is ΠL :=
1

2iπ

∫

|z−E′|=ε
(HL − z)−1dz. By (7.3),

one computes

(1−ΠL)ϕ
+,L =

ϕ+
L+1

2iπ

∫

|z−E′|=ε
(E′ − z)−1(HL − z)−1δ0dz

Thus, one gets

(7.5) ‖(1−ΠL)ϕ
+,L‖+ ‖(1 −ΠL)ϕ

−,L‖ . |ρ(E′)|N .
Define

χ̃+,L =
1

‖ΠLϕ+,L‖ΠLϕ
+,L and χ̃−,L =

1

‖ΠLϕ−,L‖ΠLϕ
−,L.

The Gram matrix of (χ̃+,L, χ̃−,L) then reads Id+O(NρN(E)). Orthonormalizing (χ̃+,L, χ̃−,L) into
(χ+,L, χ−,L) and, computing the matrix elements of ΠL(HL − E′) in this basis, we obtain

(

ϕ+
L+1〈δL, ϕ+,L〉 ϕ+

L+1〈δ0, ϕ+,L〉
ϕ−
−L−1〈δL, ϕ−,L〉 ϕ−

−L−1〈δ0, ϕ−,L〉

)

+O(N2ρ2N (E)) = α ρN (E)

(

0 1
1 0

)

+O(N2ρ2N (E))

Thus, we obtain that the eigenvalues of HL near E′ are given by E′±αρN (E)+O(N2ρ2N (E)) and
the eigenvectors by 1√

2
(ϕ+,L ± ϕ−,L) +O(ρN (E)). In particular, their components at 0 and L are

asymptotic to non vanishing constants.
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