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ABSTRACT
Microblog (e.g. Twitter) is fast emerging social medium for
information diffusion. This paper presents an analysis of
the pattern of information diffusion in microblog. We have
collected the data of 1,798,901 tweets from Sina microblog
service- the Chinese equivalent of Twitter. Our analysis un-
veils that the distribution of tweets’ popularity follow the
stretched exponential (SE) model. Based on this observa-
tion we analyse a multiplicative cascade model for describ-
ing tweets popularity.

1. INTRODUCTION
Microblog services, such as Twitter and Sina microblog,

have greatly changed the way of information dissemi-
nation. The speed and convenience of microblogs make
them competitive services with classical media. With
the increase of importance of microblog as a social medi-
um for information sharing, understanding mechanism-
s describing how information diffuses over microblogs,
and explaining how some tweets become popular, are
meaningful in order to predict the evolution of this new
social medium in the future.
In this paper, we make an analysis of tweet’s popular-

ity. We investigate a cascade model [1] of information
propagation in microblog services. In this model that
is particularly suited to describing web 2.0 services, we
assume that information diffusion proceeds in an even-
tually random number of successive stages. Our aim
is to validate the usage of such a model for describing
information diffusion in microblog services.
We collected the data of 1,798,901 tweets of Sina mi-

croblog from Dec. 6th, 2010 to Jan. 1st, 2011, contain-
ing all the publicly available details such as the re-tweet
number and the information of the users’ participating
in the re-tweeting process. Our analysis unveils that the
distribution of tweets’ popularity follows the stretched
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exponential (SE) model, instead of the expected power-
law model. We show that the social cascade processes of
tweets naturally converge to the SE model and the pa-
rameters can be used to estimated crucial properties of
cascade. Moreover, the re-tweet number decreases ex-
ponentially with the growth of re-tweeting hop giving
preliminary evidence for a simple multiplicative model.

2. THE MULTIPLICATIVE CASCADE MOD-
EL FOR TWEET POPULARITY

A microblog user might follow another user, i.e., he
will receive all messages (called tweets) sent by the fol-
lowed person. Followers might re-tweet some of the
messages they receive to their own followers. The dis-
tance between re-tweeters and the tweet’s publisher is
called hops. The re-tweeting mechanism enables users
to spread information to users that could not normally
access it. Through re-tweeting hot messages can be re-
ceived by tens of thousands of users. We measure pop-
ularity of a tweet by the number of people that have
re-tweeted it.
The re-tweeting pattern in microblog can be described

as a random multiplicative cascade process. Formally, a
random multiplicative cascade process X(.) can be de-
scribed at each point k as a multiplication of n random
variables m1, . . . ,mn, i.e., X(k) = m1×m2× . . .×mn.
To relate this model to the propagation of information,
we define that the i-th stage begins at the time for gen-
eration of the first re-tweet at hop i and ends until the
first re-tweet at hop i+1 appears,that is, the number of
cascade stages is equivalent to the maximum re-tweeting
hop. The number of new users that will re-tweet a tweet
at i-th (1 < i ≤ n) stage is a coefficient αi of the overall
number of users that have re-tweeted the tweet up to
the (i − 1)-th stage. Then the overall number of users
re-tweet a particular tweet t after n stages, denoted as
Nn(t), is given by Nn(t) = (1+α1)(1+α2) . . . (1+αn),
where the expansion coefficient αi is in fact related to
two main factors: the proportion of followers that will
re-tweet at i-th stage, and the outdegree (i.e. the num-
ber of followers) of the re-tweeters.
Similarly to Central limit theorem that applies to sum

of random variables, we can derive an asymptotic lim-
it theorem for multiplicative processes where all mul-
tiplied random variables are i.i.d [2]. Such processes
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Figure 1: Stretched ex-
ponential distr. Fitting
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converge to a stretched exponential (SE) distribution
defined as:

P (X ≥ x) = e−( x
x0

)c (1)

where the stretched factor is related to the number of
multiplied random variables m, i.e. the number of cas-
cade stages, through a simple relation c = 1

m , and x0

is a constant parameter that is related to ranking scale.
Because of its particular shape a stretched exponential
distribution can be easily mistaken with a power law [3].
However processes following a stretched exponential dis-
tribution will have a particular rank ordering statistic
that will be different from the one of a power law . Let
i be the rank of an observation from a stretched expo-
nentially distributed process and yi its observed value.
It can be shown theoretically that this relation is valid

yci = −a log i+ b (2)

where a = xc
0 and b = yc1, meaning that the modified

ranking diagram, showing yci the observed values with
exponent c vs. the log of its rank, follows in a straight
line with slope a = xc

0. This analysis suggest that if an
empirical distribution follows a streched exponential it
can be meaningful to search for a multiplicative cascade
that could explain the emergence of this global distri-
bution. In order to check this, we fitted SE models to
the observed tweet popularity rank-ordering distribu-
tion using the matlab toolbox provided by authors of
[4]. We show in Figure 1 the popularity distribution
for all collected tweets in both log-log scale and log-
yc scale. The parameters of the SE model along with
the R2 statistic of the fitting are marked in the figure.
The figure shows that the SE model fits the distribution
very well, except the first several points that are due to
the “King effect” [3] (this resulting from the fact that
popular topics reduce the attractiveness of other topic
because of their high popularity). We have fitted SE for
different days and list in Table 1 the obtained parame-
ters showing the relative consistency of the c parameter
in close dates.
In particular the SE model predict that we can expect

a number of maximum re-tweeting hop (a number of
cascade stage) around m = 1

c . We also show in Table
1, the number of maximum re-tweeting hop he derived

Table 1: Parameters of different days of tweets
Time c a R2 he hr

06/12/10 0.38 8.617 0.9980 2.63 2.69
07/12/10 0.36 6.523 0.9987 2.78 2.73
08/12/10 0.37 7.979 0.9987 2.70 2.72

using SE model: he = 1
c and the empirically observed

value over the dataset ha. As can be observed these
values are very close. These results give more rationals
for a multiplicative cascade model of tweet popularity.
To model the multiplicative cascade, we have ana-

lyzed how the number of re-tweets relates to the num-
ber of re-tweeting hops from the tweet generator. For
this purpose we have stratified the data into 11 strates
according to the popularity of the tweets inside it, i.e.
for 1 ≤ i ≤ 10, the i-th strate contains the tweets with
re-tweet numbers between 500i to 500(i + 1); the last
set contains all remaining tweets. We show in Figure
2 in a semi-log scale the evolution of the average num-
ber of re-tweets as a function of its hop distance from
tweet source. Interestingly all curves seems to be al-
most parallel and to be finely fitted to a straight lines.
This indicates that the average re-tweet number de-
creases exponentially with the hop distance. This is
compatible with a cascade model with a constant value
of E{αi} = α̂ for all stages. Interestingly these figures
mean that the tweet’s popularity mainly depends on the
re-tweet number at the first hop (or the two first hop-
s), i.e., the number of followers of the originator that
forward the tweet. However this conclusion needs more
analysis and larger space to be developed.

3. CONCLUSIONS AND FUTURE WORKS
In this paper, we gave evidence that diffusion in a

microblog can be explained with a very simple mul-
tiplicative cascade model.We showed that the overall
distribution of tweet popularity is compatible with this
model.We even give some indication that cascade coeffi-
cient E{α} might be constant. However, we need more
precise information about the diffusion process over the
microblog to validate this multiplicative cascade model
both microscopically (at the scale of a single tweet) and
macroscopically (at the scale of global statistics). This
is the aim of our forthcoming research.
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