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ABSTRACT 

 

We present two new algorithms for the orthogonal and non-

orthogonal joint blind source separation (JBSS), a flexible 

framework that extends the well-known blind source 

separation to the case when multiple datasets are 

decomposed simultaneously. The algorithms minimize the 

total sum of squares of the off-diagonal terms by means of 

very simple gradient ascent iterations. 

 

Index Terms— Joint Blind Source Separation, 

Hyperscanning, Brain Coupling, Synchronization. 

 

 

1. INTRODUCTION 

 

Blind Source Separation (BSS) is a well-known framework 

including Independent Component Analysis and other 

decomposition methods aiming at recovering source signals 

in MIMO systems [1]. BSS nowadays encompasses a wide 

range of engineering applications such as speech 

enhancement, image processing, geophysical data analysis, 

wireless communication and biomedical signal analysis. 

Generally speaking, BSS takes as input a multivariate 

linearly mixed signal received over N sensors and outputs a 

P≤N multivariate demixed signal. More recently the joint 

blind source separation (JBSS) approach has been proposed 

in biomedical imaging [2-5]. Whenever M datasets are 

available and a relation exists among the sources of the M 

sets, this approach exploits the joint statistics of the M 

datasets by solving the M BSS problems simultaneously 

rather than independently. Several algorithms for 

performing JBSS in the case of orthogonal mixing matrices 

have been proposed [2-5]. In this paper we extend previous 

work performed on BSS [5-7] and we describe a least-

squares gradient approach to JBSS allowing a simple 

solution for both the orthogonal and nonorthogonal case. 

 

 

2. METHOD 

 

2.1. Problem Statement 

 

Suppose we are given M datasets, with m=1,…,M. As usual, 

we suppose that each data set is multidimensional, such 

as          1
,...,

T
N

m m mt x t x t 
 

x , wherein N random 

variables hereafter indexed by n=1,…,N, unfold over the 

discrete dimension t=1,…,T. Note that n and t may refer to, 

for instance, space and time, respectively, as it is the case 

for the human electroencephalogram (EEG), but this is not 

important for the sequel. Suppose further that K 

observations are available for each dataset, indexed by 

k=1,…,K, yielding KM groups of N variables, hereafter 

denoted compactly as  ,m k tx . To give just a few examples, 

in the second-order statistics framework the K observations 

may refer to K experimental conditions, to recordings in K 

different times (or trials), or to an expansion of the original 

data in K discrete frequencies or K time-frequency regions. 

We assume the following generative model for the data: 

 

      , , ,m k m m k m kt t t x A s η  (1.1) 

 

where Amℝ
NxP

 is a (t, k)-invariant full column rank mixing 

matrix, sm,k(t) ℝP
, with P≤N, holds the source components 

over the t dimension and m,k(t) ℝN 
is spatially 

uncorrelated additive noise, assumed also uncorrelated with 

sm,k(t). Notice that the mixing matrix is specific to each 

dataset, but is the same for each dataset along the K 

observations. This model is an extension to multiple datasets 

of the typical model found in the BSS literature. It has been 

proposed already several times [2-5, 8]. It reduces to the 

very common model used in BSS      k k kt t t x As η  

when only one dataset is available. In JBSS we require to 

find the M matrices Bmℝ
NxP

, m=1,…,M, yielding the 

source estimates    , ,

T

m k m m kt ts B x , where, under mild 

assumptions on the noise, the demixing matrices Bm 

estimate the Moore-Penrose pseudo-inverse of the mixing 

matrices up to a sign, scale and permutation indeterminacy, 

as in the BSS case. However in JBSS we require the 

permutation be the same for all M datasets, otherwise the 

analysis of the corresponding sources in the M datasets 

becomes difficult. This is, among others, a key advantage of 

the JBSS approach. Notice that for the sake of simplicity we 

suppose hereafter that N=P, this quantity being the same 

across datasets. 



 

2.2. The Joint Blind Source Separation (JBSS) 

 

In order to apply JBSS we extract K[M(M+1)/2] matrices of 

second-order statistics from the K observations of M 

multivariate datasets [2, 5, 8]. From Eq. (1.1) these matrices 

follow the theoretical model 

 

 
, , ,

T

ij k i ij k j ij k C AΛ A N , with i,j=1,…,M, (1.2) 

 

where the ij,k matrices, the unknown source statistics, are 

supposed all diagonal, surely non-null if i=j (auto-statistics 

within datasets) and possibly non-null even for i≠j (cross-

statistics between corresponding sources of the i and j 

datasets). The matrices Nij,k are unknown noise matrices 

holding additive measurement noise and sample estimation 

errors. In order to estimate the M demixing matrices we seek 

matrices making all K[M(M+1)/2] distinct products 

 

 
, ,

T

ij k i ij k jQ B C B  (1.3) 

 

as diagonal as possible. This implies that the output (source) 

statistics within datasets are diagonalized (for i=j), as in the 

BSS framework. In addition, the output cross-statistics 

between datasets are also diagonalized, thus corresponding 

sources across datasets may be correlated. Notice that 

Cij,k=C
T

ji,k, thus it suffices to consider K[M(M+1)/2] products 

instead of all KM 
2 
products. 

 

2.3. Least-Squares Functional 

 

We want to find matrices B
T

m minimizing the sum of 

squares of the elements outside the diagonals of all Qij,k, that 

is 

 
1

2

,
,...,

, ,

min  
M

T

i ij k j
F

i j k

off
B B

B C B , 

where the off operator nullifies the diagonal elements of the 

matrix argument. The overall strategy is to sequentially 

search for each matrix Bi, for i=1,…,M and iterate such 

sequential search until convergence. Let us denote with B 

the set of all demixing matrices. In the sequel, following [3], 

let us define the functional of interest for any given 

i=1,…,M as 

 

    
2 2

| , ,2
i

off

ij k ii k
F F

j i k k

off off


   B B Q Q , (1.4) 

wherein we have used Eq. (1.3) and we have separated the 

partitions for i≠j (firt Frobenius norm) and the partition for 

i=j (second Frobenius norm). Equation (1.4) can also be 

written such as 

 | | | |i i i i

off tot diag tot diag   
B B B B B B B B , (1.5) 

 

where the “total” and “diagonal” parts are 

    2

| , , ,2
i

tot T

ij k ij k ii k

k j i

tr tr


 
   

 
 B B

Q Q Q  and (1.6) 

          
2 2

| , ,2
i

diag T T T T

ij k ii ki n j n i n i n
k j i n n

 
   

 
  B B

b C b b C b (1.7) 

 

respectively. In Eq. (1.7), bi(n) is the n
th

 column vector of Bi, 

with n=1,…,N and b
T

i(n) its transpose. 

 

2.4. The Orthogonal Mixing Matrices Case 

 

In this case the exact estimation of Bi is equal to Ai up to 

permutation and scale indeterminacy, for all m=1,…,M and 

it is well known that the “total” function is invariant with 

respect to B. Thus we are left with the problem of 

maximizing iteratively the “diag” functional in (1.7), for 

i=1,…,M. Let us rewrite the objective function as 

   
2 2

| , ,2
i

diag

ij k ii k
FF

k j i j i

diag diag
 

 
   

 
  B B

Q Q , 

where the diag operator nullifies the off-diagonal elements 

of the matrix argument, and then as 

 

 

, ,

|

, ,

2

i

n ij k n n ji k n
diag j i n

k
n ii k n n ii k n

n

tr

tr



  
  

    
 
  

 



B B

E Q E E Q E

E Q E E Q E

, 

 

where matrix En is the elementary matrix filled with entry 1 

at position (n,n) and 0 elsewhere. The above function is a 

matrix polynomial of second degree in Bi. The derivative is 

of first degree in Bi for the first trace and of third degree in 

Bi for the second trace. However, using the symmetry of 

matrices Cii,k, the gradient simplifies to 

 

 

 

, ,

|

, ,

4

4

i

ij k j n n ji k ndiag

j i n

ki ii k i n n ii k n

n



 
  

  
  

 






B B

C B E E Q E

B C B E E Q E
. 

 

Thus 
       

|

1 1
4 ,...,i

diag

i i i N i N

i


 
 

B B
M b M b

B
, (1.8) 

where  
      , ,

T T

ij k ij ki n j n j n
k j

M C b b C .  (1.9) 

 

In words, the gradient of the N vectors of Bi should be taken 

as the eigenvectors of corresponding matrices Mi(n) 

associated with their largest eigenvalue, for all n=1,…,N. In 

order to update these vectors we limit ourselves to a single 

power iteration [6-7]. After updating all vectors of Bi we 

need to orthogonalize Bi so as to ensure that at each step Bi 

stays in the orthogonal group [5]. Therefore, we have the 

following simple updating rule: 



for all i=1,…,M do        1 1
,...,

 

i i i i N i N

iorthogonalize

    


B M b M b

B
. 

The iterative algorithm is summarized here below: 

 

 

 

 

 

 

 

 

 

 

 

Note that in practice the orthogonalization is computed 

faster as Bi←UV
T
, where UΓV

T
 is the SVD of Bi [5]. 

 

2.5. The Non-Orthogonal Mixing Matrices Case 

 

In this case the “total” function is not invariant to B, hence 

we need to explicitly minimize the “off” functional in (1.4). 

Furthermore we need to avoid the trivial solution B
T

m=0, for 

any m=1,…,M. Therefore, we minimize the “off” functional 

in (1.5)-(1.7) with a constraint (w.c.) on the norm of the 

column vectors of Bm, such as 

 

 
     | ,w.c. 1,  1,...,

i

tot diag T

i n i n i n
n N   

B B
b M b , (1.10) 

 
where matrices Mi(n) are given in (1.9). Note that this is an 

“intrinsic” constraint, as proposed first in [6-7]. We use the 

method of Lagrange multipliers to turn (1.10) into an 

unconstrained optimization problem. The method leads us to 

minimize 

     

   

2

| , , ,

2 2

, , , ,

2

4 4

i

tot diag

ij k ji k ij k

k j i

n ij k j n ji k n n ii k i n ii k n

k j i n n

L tr tr

 







 
    

 

 
 

 

 

  

B B
Q Q Q

C B E Q E C B E Q E

where the Lagrangian multipliers δn are adjusted in order to 

satisfy the constraint. Using again the symmetry of the 

matrices Cii,k and exploiting the previous results in (1.8), the 

gradient of the Lagrangian reads 

 

 
   

| |

, , , ,4 4i i

tot diag diag

ij k j ij k ii k i ii k

k j ii i

L 



   
   

  
 

B B B B
C B Q C BQ

B B
 

or   
 

       

|

1 1
4 4 ,...,i

tot diag

i i i i i N i N

i

L  
  
 

B B
M B M b M b

B
, 

where    , ,

T T

i ij k j j ij k i n
k j n

  M C B B C M , 

 

that is, the sum of matrices already found in (1.9). Setting 

the gradient to zero gives us a stationary point for our 

optimization, which for each Bi is given by 

MiBi=[Mi(1)bi(1),…,Mi(n)bi(n)]. This is a generalized 

eigenvalue-eigenvector problem, where each bi(n) is the 

eigenvector of Mi(n) in the metric of Mi. Again, limiting 

ourselves to one single power iteration per update step, this 

yields the simple updating rule: 

 

For i=1,…,M do

       

          

1

1 1

1/2

,...,

for =1,...,  do 

          

i i i i i N i N

T

i n i n i n i n i n

n N





  
 








B M M b M b

b b b M b

. 

 

In practice, we sought to avoid the computation of the 

matrix inverse, therefore we proceed more efficiently, albeit 

equivalently, in the following way : 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 

 

In this section the behavior of the proposed algorithms is 

assessed by means of simulations. Input matrices Cij,k are 

generated according to the model in Eq.(1.2); matrices ij,k 

are generated as square diagonal matrices with each 

diagonal entry randomly distributed as a chi-squared with M 

degrees of freedom and divided by M; noise matrices Nij,k 

are symmetric and have entries randomly Gaussian 

distributed with zero mean and σ standard deviation (sd). 

The parameter σ controls the signal to noise ratio of the 

input matrices. Several different values of σ will be 

considered in the simulations. The mixing matrices Am, 

m=1,…,M, are generated as orthogonal or non-orthogonal. 

Orthogonal matrices are generated by first generating a 

matrix with entries randomly drawn from a Gaussian 

distribution with zero mean and sd=1 and then taking its left 

singular vector matrix. In this case the conditioning of the 

mixing matrices does not jeopardize the performance of the 

algorithms and we can evaluate their robustness with respect 

to noise. In order to generate non-orthogonal matrices, the 

matrices generated as above are perturbed by adding to each 

entry a number randomly drawn from a Gaussian 

distribution with zero mean and sd=1/2. In this case the 

mixing matrices have variable conditioning and we can 

Algorithm OJoB (Orthogonal Joint BSS) 

Initialize B1,…,BM as orthogonal matrices (e.g., identity) 

Repeat 

For i=1,…,M do 

 Compute the N matrices Mi(n) using (1.9) 

 For n=1,…,N do bi(n)←Mi(n) bi(n) 

 Bi ← (Bi
T
Bi)

-1/2
Bi 

Until Convergence 

Algorithm NOJoB (Non-Orthogonal Joint BSS) 

Initialize B1,…,BM so as to satisfy constraint in (1.10) 

Repeat 

For i=1,…,M do 

Get the N matrices Mi(n) using (1.9) and their sum Mi 

Do Cholesky decomposition Mi=LL
T
. 

For n=1,…,N do 

Solve Lx=Mi(n)bi(n) for x and L
T
y=x for y 

 bi(n)←y(y
T
Mi(n) y)

-1/2
 

Until Convergence 



evaluate the behavior of the algorithms with respect to the 

conditioning of the mixing matrices. 

 

The algorithms estimate the demixing matrices B
T

1,…,B
T

M, 

which should approximate the pseudo-inverse of actual 

mixing matrices A1,…,AM up to row scaling (including sign) 

and global permutation. Then, matrices G
m
= B

T
mAm should 

approximate as much as possible a scaled permutation 

matrix [1]. For each estimated demixing matrix we consider 

the Amari-like performance index [1], which is computed as 

 

 1 1 2 1
max max

m m
xy xyy x

m m m
x yxy xy

y x

g g
N N

g g


   
       
   

  

 
  , 

 

where indexes x and y run over 1,…,N (rows and columns of 

matrices G
m
), g

m
xy is the (x,y) entry of matrix G

m
, and |.| 

denotes the absolute value of the argument. We define the 

composite performance as a function of the geometric mean 

of the performance indexes obtained over the M matrices, 

such as 

   10log 1 1M
mm

     . (1.11) 

 

Values of π above 2 indicate a very good performance. Note 

that the composite performance defined this way is 

dominated by the worst performance over the M 

performances. The higher the value of the composite index 

(1.11), the higher the performance. Likewise, the composite 

conditioning with respect to matrix inverse of the mixing 

matrices is defined as 

 

     10log max / minm mm
eig eig   A A , (1.12) 

 

where maxeig and mineig are the largest and smallest 

eigenvalue of the argument, respectively. Figure 1 shows the 

performance (1.11) obtained by the OJoB and NoJoB 

algorithms with orthogonal mixing (input) matrices, N=P=3 

sensors/sources and several combinations of M (number of 

datasets), K (number of observations), and σ (noise level). 

One hundred simulations have been performed for each 

algorithm and for each combination of M, K and σ. Each dot 

represent the intersection of the performance obtained in one 

simulation when the algorithm is initialized with identity 

matrices (x-axis), that is, possibly far from the optimal 

solution, and with the exact solutions (y-axis). Dots lying on 

the 45° line indicate that the algorithms have a stable 

attractor, despite the added noise. Dots lying above the 45° 

line indicate that the algorithm gets far from the exact 

solution. These results show that for both algorithms the 

degradation engendered by noise is mitigated by increasing 

either K or M. Also, when either M or K are much larger 

than N no divergence of the algorithms is noticed. Overall, 

NoJoB appears more stable than OJoB. 

 

Figure 2 shows the performance of the NoJoB algorithm (y-

axis) vs. the mixing matrices conditioning (1.12) with non-

orthogonal mixing (input) matrices, N=P=3 and several 

combinations of M, K, and σ. Results show that the more 

noise there is in the system the more the conditioning affects 

the performance. Furthermore, the degradation is not 

mitigated by increasing K and only moderately mitigated by 

increasing M. 

 

4. CONCLUSION 

 

We have presented two new algorithms performing JBSS in 

a least-squares framework. Preliminary results encourage 

further investigation. Before NoJoB, only one non-

orthogonal JBSS algorithm has been proposed [8].  
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Figure 1. Composite performance of the OJoB (top row: a to d) and NOJoB (bottom row: e to h) algorithms (1.11) 

when initialized with the identity matrices (x-axis) vs. when initialized with the inverse of the actual mixing 

matrices (y-axis), for N=P=3, three noise levels (σ) and several combinations of M and K. 

 
Figure 2. Composite performance of the NOJoB algorithm (y-axis) vs. composite condition number (1.12) of 

mixing matrices. Same parameters as Fig. 1. 


