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Abstract—As network link rates are being pushed beyond 
40Gbps, IP lookup in high-speed routers is moving to hardware. 
The TCAM (Ternary Content Addressable Memory)-based IP 
lookup engine and the SRAM (Static Random Access Memory)-
based IP lookup pipeline are the two most common way to 
achieve high throughput. However, route updates in both engines 
degrade lookup performance and may lead to packet drops. 
Moreover, with the growing importance of virtual IP routers 
where more frequent updates happen, finding solutions that both 
achieve fast lookup and low update overhead becomes urgent. In 
this paper, we propose a hybrid IP lookup architecture with fast 
updates. The architecture is based on an efficient trie partitioning 
scheme that divides the Forwarding Information Base (FIB) into 
two prefix sets: a large disjoint leaf prefix set and a small 
overlapping prefix set. Then, the large disjoint set is mapped into 
an external TCAM-based lookup engine and the small 
overlapping set is mapped into an on-chip SRAM-based lookup 
pipeline. Critical optimizations are developed on both IP lookup 
engines to reduce the update overhead. We show how to extend 
the proposed hybrid architecture to support virtual routers. Our 
implementation shows a throughput of 250 million lookups per 
second (MLPS). The update overhead is significantly lower than 
that of previous work and the utilization ratio of most external 
TCAMs is up to 100%. 

I. INTRODUCTION 

IP lookup is a critical function of Internet routers. Since the 
introduction of CIDR (Classless Inter-Domain Routing) in 
1993, finding the next hop for a destination IP address has 
become a longest prefix matching (LPM) problem. Indeed, 
given a destination address, multiple IP address prefixes of 
different lengths may exist, in the Forwarding Information 
Base (FIB) of the router, that match (i.e. contain) the given 
address and the longest such prefix must be used to determine 
the next hop for the corresponding packet to ensure correct 
forwarding operation. 

The longest prefix-match problem lends itself to a 
hierarchical data structure for which a trie is an efficient 
representation (see Fig. 1(a)). In the context of IP lookup, a trie 
contains two types of nodes: 1) nodes (which we call prefix 
nodes and are shown as dark nodes in Fig. 1(a)) that represent 
predefined prefixes for which valid next hop information exists; 
and 2) nodes (which we call non-prefix nodes and are drawn 
clear) that do not contain next hop information. The longest-
prefix matching a destination address is then determined by 
following a single path from the trie root, with the longest-

prefix match corresponding to the last prefix node encountered 
before the end of the path. Note that any encountered leaf node 
will contain a longest-prefix match. Moreover, the address 
space represented by the prefix stored at a node is always 
contained within the address space represented by the prefix 
stored at its ancestor nodes.  Nonetheless, as there is only one 
leaf node per trie-path, prefixes stored at different leaf nodes 
are disjoint, i.e., the corresponding address spaces of two 
leaves have no address in common. 

As network link rates are being pushed beyond 40Gbps, IP 
lookup with LPM becomes a major bottleneck in high-speed 
routers. For example, to achieve a throughput of 40Gbps, the IP 
lookup for a 40-byte packet must be performed within 8 ns. 
These short processing time is not achievable in software [1] 
and two major hardware implementation techniques have been 
used to achieve such high performance: TCAM (Ternary 
Content Addressable Memory)-based and SRAM (Static 
Random Access Memory)-based solutions.  

A TCAM implements a high-speed associative memory, 
where in a single clock cycle a search key is compared 
simultaneously with all the entries, i.e. keys, stored in the 
TCAM to determine a match and output the address of it. As 
TCAM entries can be specified using three states (0, 1, and ‘X’ 
meaning don’t care), this type of memory is particularly well 
suited to storing IP prefixes where masked bits are given ‘X’ 
states. Indeed, because of the ‘X’ bits, several TCAM entries 
could match a given IP address, so TCAMs are designed to 
always return the first matching entry encountered (TCAM 
entries have an intrinsic order represented by an address). 
Therefore, in order to provide correct LPM operations, prefixes 
are stored in the TCAM with reverse order in overlap, i.e., 
longest prefix should be stored first. These order constraints 
lead sometimes to a large number of TCAM entry movements 
on routing updates, with impact on the lookup performance and 
possible packet drops[2].  

Because of the interest of the TCAM and the importance of 
the problems solved by it, several research efforts have led to 
new algorithms to solve the issue of TCAM updates. For 
example, in [3] two approaches named PLO_OPT and 
CAO_OPT have been proposed. PLO_OPT maintains the 
prefix-length order by putting all the prefixes in order of 
decreasing prefix lengths and keeping the unused space in the 
center of a TCAM. CAO_OPT relaxes the constraint to only 
overlapping prefixes in the same chain (a single path from the 
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trie root). Both the algorithms can decrease the number of entry 
movements per update. However, multiple entry movements 
are still needed for one route update in the worst cases[3]. In 
another approach, order constraints can be completely avoided 
in a TCAM, by converting the whole prefix set into an 
equivalent minimum independent prefix set (MIPS) [4] using 
the leaf pushing technique [5]. However, leaf pushing may lead 
to prefix duplication. When a prefix is updated, all of its 
duplicates should also be modified. Therefore, multiple write 
accesses may still be needed during a single route update. 

The other major hardware implementation technique is the 
SRAM-based lookup pipeline[6], which corresponds to a 
straightforward mapping of each trie level onto a corresponding 
pipeline stage with its own SRAM memory, in order to achieve 
a throughput of one lookup per clock cycle through the pipeline. 
In such solutions, the number of pipeline stages depends on the 
stride used (that is, the number of bits used to determine which 
branch to take at each stage -- in Fig. 1 and in the rest of this 
paper we use 1-bit strides). Therefore, the lookup pipeline will 
require a rather high number of separate SRAMs (up to 32 in 
the case of IPv4). The Field Programmable Gate Array (FPGA) 
is a natural hardware choice for implementation of the SRAM-
based pipeline, as it contains hundreds of separate SRAMs. 
Nevertheless, the on-chip SRAM is generally a scarce resource 
which should be allocated efficiently, or otherwise be 
complemented by external SRAMs[7]. One major issue here is 
that assigning the right size of the SRAM to each stage of the 
pipeline is complicated by the fact that it intimately depends on 
the shape of the trie. While much work has been devoted to this 
last issue[8-10], the fact remains that on-chip SRAM is still 
unable to accommodate the typically large inter-domain FIB 
(about 360K prefixes to date). For example, in [10] it is 
reported that OLP(Optimized Linear Pipeline) can support 30K 
IPv4 prefixes using 3.456 Mb of on-chip SRAMs. Hence, 
given a state-of-the-art large Virtex-6 FPGA (e.g. 
XC6VHX565T) with 32 Mb of on-chip SRAMs, about 277K 
IPv4 prefixes can be stored using OLP. There is no reason to 
believe that even the adoption of IPv6 would change the 
current inflation trend of FIB to reverse.  This means that the 
memory size challenge in the SRAM-based lookup pipeline 
will still have to be solved. 

Route updates are handled in the SRAM-based lookup 
pipeline by using a technique known as write bubbles[11], 
which essentially encode and encapsulate the updates into write 
bubbles to be performed at each stage of the pipeline. 
Nevertheless, the SRAM modules used in building lookup 

pipelines in the past[11-12] only had a single port for read and 
write. This means that write bubbles may lead to disruption to 
the IP lookup process. Much work[11-12] has targeted the 
reduction of the number of write bubbles resulting from route 
updates. Fortunately, state-of-the-art FPGAs now integrate dual 
port SRAMs, capable of concurrent reading and writing (with 
the possibility to do a write after a read has been completed). 
This removes the problem of disruption caused by updates. 

In a virtual router context, several router instances, and thus 
multiple FIBs, must be accommodated. This clearly 
exacerbates the memory requirement issues of hardware lookup 
solutions. Recent researches [13-14] have concentrated on 
techniques to merge different virtual routers FIBs into a single, 
“compressed” trie structure, with a view to reduce the total 
memory requirement of the lookup engine. Nevertheless, route 
updates in the current Internet are known to occur at rates of 
several hundred updates per second, with peak update rates 
affecting over 10,000 prefixes per second [15]. In the presence 
of virtual routers, a same network event could trigger 
simultaneous updates to multiple FIBs, thus increasing the rate 
of updates to the hardware lookup engine. Unfortunately, 
merging several FIBs together results in complex data 
structures whose update mechanisms become very 
challenging[16]. 

In this paper, we propose a different view to the problem of 
hardware lookup engine design for virtual routers. Rather than 
using only one type of hardware solution: TCAM or SRAM-
based, we mix these two in order to benefit from the positive 
points of each architecture without being hindered by the 
weaknesses of each. Our aim is to design a very fast lookup 
architecture that enables fast updates. The core idea of our 
solution is to exploit an empirically observed structure in 1-bit 
tries build from real FIBs (see TABLE I for more details). This 
observed structure is as follow: 

1) About 90% of all prefixes are stored in trie leaves, and 
are thus disjoint from each other. 

2) When the original leaf nodes are removed from the trie, 
non-prefix internal nodes that only led to those leaf nodes can 
also be removed, and we are left with a much smaller trimmed 
trie, which contains, on average, only about 12% of the nodes 
of the original trie. 

The large disjoint prefix set, resulting from property 1 
above, makes a TCAM the ideal component to look these up, 
as naturally disjoint prefixes do not impose any order 
constraints within the TCAM, making updates trivial (no entry 
movements are required and one write access is sufficient for 
each update since no prefix duplication is introduced). On the 
other hand, the small trimmed trie resulting from the removal 
of the leaf prefixes from the original trie, which represents the 
set of prefixes that overlap with the above mentioned disjoint 
prefix set, need much less memory space and can be stored in 
an SRAM-based lookup pipeline. We will refer to this small 
trimmed trie as “the overlapping trie”. In fact, several such 
trimmed tries can easily be accommodated in SRAMs of an 
existing FPGA. Updating this SRAM-based pipeline is also 
trivial, by exploiting the dual port capabilities of SRAMs 
mentioned earlier. 

 
 

Figure 1. (a) A sample trie, (b) the corresponding disjoint prefix set, and 
(c) the corresponding overlapping prefix set (a small trie). 
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In this paper, we mainly target fast FIB updates in high-
speed routers. For this purpose, we propose a hybrid lookup 
architecture, composed of a TCAM-based lookup engine and 
an SRAM-based pipeline operating in parallel. The TCAM 
contains the disjoint prefixes and the SRAM-based pipeline 
contains the overlapping tries. We show that this hybrid 
approach results in fast lookup combined with easy and fast 
updates. We also show how our approach can be applied in the 
context of virtual routers, by simply prefixing IP addresses with 
a virtual router ID (VID), and performing the lookup on those 
“extended addresses”. 

We implemented the proposed hybrid architecture on our 
PEARL hardware platform[17], and achieved a maximum 
throughput of 250 Millions Lookups Per Second (MLPS), 
which surpasses the throughput requirement of 100G Ethernet 
(about 148 MLPS for 64-byte small packets). Comparative 
results show that the update overhead is significantly lower 
than that of previous works. Moreover, our TCAM memory 
can easily be dimensioned to achieve memory space utilization 
close to 100%. 

The rest of the paper is organized as follows. In section II, 
we introduce our hybrid architecture and describe the 
optimizations for fast updates. In section III, we expand our 
approaches to support virtual routers. In section IV, we 
describe the architecture implementation on our PEARL 
platform and compare its performance with other techniques. 
We discuss some extensions in section V and conclude the 
paper in section VI. 

II. ARCHITECTURE 

In this section, we will describe our hybrid IP lookup 
architecture with fast updates in the context of a single router. 
We use 1-bit tries to illustrate the concepts. First, a trie 
partitioning scheme will be proposed that partitions the trie into 
a large disjoint leaf prefix set and a small trimmed overlapping 
trie (we will use the terms an overlapping trie and an 
overlapping prefix set interchangeably through the paper). The 
large disjoint leaf prefix set is mapped into an external TCAM-
based IP lookup engine, while the small trimmed overlapping 
trie is mapped into an on-chip SRAM-based IP lookup pipeline 
in FPGA.  

A.    Trie Partitioning Scheme 

The trie partitioning scheme is based on the key observation 
that about 90% of prefixes in real FIBs are disjoint leaf 
prefixes[18]. 

We collect fourteen real routing tables from RIPE RIS 
Project[19] on 05/20/2011 and show in TABLE I that if one 
removes the disjoint leaf prefixes from the 1-bit trie built from 
a real routing table, and moreover removes non-prefix leaf 
nodes in the remaining trie recursively until all the leaf nodes 
in the final trie are prefix nodes, the size of the final trimmed 
trie becomes only about 12% of that of the original trie. 

Based on that observation, an efficient trie partitioning 
scheme is proposed. All the leaf prefixes in the trie are 
collected to form a large disjoint prefix set, and all the leaf 
nodes are removed from the trie. Then, we can further trim the 
remaining trie by removing non-prefix leaf nodes recursively 
until all the leaf nodes in the final trimmed trie are prefix nodes. 

Fig. 1 illustrates the trie partitioning scheme. A 1-bit trie 
built from a sample FIB is shown in Fig. 1(a).  In the trie, 
prefix P2, P4, P5, and P6 are leaf prefixes. All these leaf 
prefixes are moved to a disjoint prefix set (see Fig. 1(b)), and 
the leaf nodes 4, 7, 8, and 9 are deleted from the trie. Then the 
remaining trie can be further trimmed, e.g., node 5 becomes a 
leaf node but it doesn’t contain any prefix so it can be removed. 
The final trimmed trie is shown in Fig. 1(c) and represents the 
small overlapping prefix set (a small overlapping trie).  

B. Overall Architecture 

The hybrid IP lookup architecture is depicted in Fig. 2. It’s 
composed of two IP lookup engines operating in parallel. The 
large disjoint leaf prefix set (for example, see Fig. 1(b)) is 
stored in the TCAM-based lookup engine, while the small 
overlapping trie (for example, see Fig. 1(c)) is mapped into the 
on-chip SRAM-based pipeline. The destination IP address of 
an incoming packet is extracted in the header parser module 
and sent to the two lookup engines to search in parallel. 
Meanwhile, the packet is stored in a buffer waiting for the next 
hop information.  Since the length of the prefix matched in the 
disjoint prefix set is by design longer than that in the 
overlapping prefix set, the search result of the TCAM-based 
lookup engine has a higher priority than that of the SRAM-
based lookup engine. Note, however, that a match does not 
necessarily exist in either lookup engine. The priority arbiter 
module resolves the priority and determines the final next hop 
information. Thereafter the packet is read from the buffer and 
modifications are conducted based on the next hop information. 
Finally, the packet becomes ready to be scheduled to the 
corresponding output interface. 

TABLE I. ANALYSIS OF REAL ROUTING TABLES 
FIB # prefixes # nodes of 

the trie 
# leaf prefixes # nodes of the 

trimmed trie 
rrc00 368057 905941 332409 (90.31%) 110109 (12.15%)
rrc01 358925 880946 325667 (90.73%) 103326 (11.73%)
rrc03 355603 873608 322419 (90.67%) 102984 (11.80%)
rrc04 366656 903163 332962 (90.81%) 104169 (11.53%)
rrc05 358355 879902 324594 (90.58%) 104457 (11.87%)
rrc06 351919 863114 319654 (90.83%) 100819 (11.68%)
rrc07 361881 888468 327781 (90.58%) 106517 (11.99%)
rrc10 355106 871466 321995 (90.68%) 102833 (11.80%)
rrc11 361708 888394 327742 (90.61%) 105552 (11.88%)
rrc12 363761 895781 329377 (90.55%) 106584 (11.90%)
rrc13 363057 894876 328942 (90.60%) 106024 (11.85%)
rrc14 361232 885979 327160 (90.57%) 105475 (11.90%)
rrc15 359326 880902 325154 (90.49%) 104536 (11.87%)
rrc16 366711 903062 331674 (90.45%) 108509 (12.02%)

Figure 2. The hybrid IP lookup architecture 
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C. Optimizations for Fast Updates 

Efforts are made in both lookup engines to optimize the 
update process.To achieve fast updates, In the TCAM-based IP 
lookup engine, only the large disjoint prefix set is 
accommodated. In such a disjoint prefix set, a given IP address 
can match at most one prefix. Hence, the prefixes can be stored 
in the TCAM without any order constraints and a new prefix 
can be directly inserted at any available location. Therefore, 
route updates do not need any entry movement. Moreover, the 
leaf prefix set is naturally disjoint and no prefix is duplicated. 
Hence, at most one write access is sufficient for one route 
update in the worst case.  

As explained in introduction, in the first generation of 
SRAM-based pipelines[11-12], write bubbles may lead to 
disruption to the IP lookup process since a write operation and 
a read operation could not be performed simultaneously on the 
same port of a SRAM. In this paper, we use new generation of 
FPGAs, like the Xilinx FPGAs, that have dual port on-chip 
SRAMs[20]. These SRAMs can be configured into a simple 
dual port (SDP) mode where the SRAM has separate read and 
write ports (see Fig. 3(b)). In this mode read and write can be 
performed simultaneously without any collision. Using this 
mode we design a pipeline with separate lookup and update 
paths in order to totally eliminate the disruption (see Fig. 3(a)). 
In this pipeline lookups are performed by only accessing the 
read port of the SRAM in each stage, while write bubbles are 
performed by only accessing the write port. In this way, IP 
lookups and write bubbles can be performed simultaneously in 
separate paths without collision.  

Before a write bubble is injected into the pipeline, the data 
to be written to each stage of the pipeline are previously stored 
into a write bubble FIFO relative to each stage (see Fig. 3(b)).  
When the write bubble enters into the pipeline it visits each 
stage for one clock cycle, and goes to the next stage. When a 
write bubble visits a stage, the data stored in the associated 
write bubble FIFO are written into the corresponding address 
when the valid flag is true. Through this scheme, the write 
bubble doesn’t need to wait for the data and it can update all 
stage in just one clock cycle (that means it can go through the 
pipeline at the same speed as the lookup). 

As a write bubble and an IP lookup can run at the same 
speed, and one write bubble is sufficient for a worst-case route 
update when using the 1-bit trie-based data structure for 
pipelining[12], an IP lookup never traverses the trie in an 
inconsistent state. More precisely even when a lookup and a 
write bubble access the same node of the same stage 
simultaneously, the lookup still reads the old node before 
modification (thanks to the READ_FIRST feature of the SDP 
SRAM in Xilinx FPGA[20]), and this read-write order is kept 
when they both move to the next stage. Therefore, an IP lookup 
always accesses the trie in a consistent state during updating. 

In summary, in our proposed architecture one write access 
is sufficient for a worst-case route update in our TCAM-based 
lookup engine, and route updates have zero impact on the 
lookup process in our SRAM-based lookup pipeline. 

D. Fast  Incremental Updating Algorithms 

We need to describe how an incremental routing update is 
translated into updates in the TCAM-based lookup engine and 
the SRAM-based lookup pipeline. A route update can be 
classified into three main categories [18]: (1) insertion of a new 
prefix, (2) deletion of an existing prefix, and (3) modification 
of an existing prefix.  The third type of the route update can 
easily be performed since it doesn’t change the shape of the trie. 
However, the first two types are more complicated. Insertion of 
a new prefix or deletion of an existing prefix may lead to prefix 
changes in both the disjoint prefix set and the overlapping trie. 

For this purpose we maintain, an auxiliary 1-bit trie built 
from the FIB in the control plane of the router that keeps track 
of prefixes stored in our hybrid architecture. One update 
operation consists of two phases. In the first phase, the route 
update is performed on the 1-bit trie and changes in the disjoint 
prefix set and the overlapping trie are found. In the second 
phase, optimized write accesses describe in previous section 
are applied to the hybrid architecture. In order to illustrate the 

 
 

Figure 4. A pipeline stage 
Figure 4. (a) Insertion of a new prefix, (b) its corresponding disjoint 

prefix set, and (c) its corresponding overlapping trie 
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Figure 5. (a) Deletion of a new prefix, (b) its corresponding disjoint 
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incremental update process in our hybrid architecture, two 
complex update scenarios are shown in Fig. 4 and Fig. 5.   

Fig. 4 illustrates the insertion of a new leaf prefix P7 (000*). 
After the insertion, prefix P2 turns into a non-leaf prefix and a 
new leaf prefix P7 appears. This results into three changes in 
the corresponding disjoint prefix set and overlapping trie: (1) 
prefix P2 should be inserted into the overlapping trie, (2) prefix 
P2 should be deleted from the disjoint prefix set, and (3) prefix 
P7 should be inserted into the disjoint prefix set. After these 
changes are found in the control plane, P2 will be inserted into 
the SRAM-based pipeline, and then P7 will be inserted into the 
TCAM at the location where P2 was previously stored. The 
TCAM location where the leaf prefix is stored is recorded in 
the node data structure of the 1-bit trie.  

Fig. 5 illustrates the deletion of an existing leaf prefix P2 
(00*). After the deletion, prefix P1 turns into a new leaf prefix. 
It leads to three changes in the corresponding disjoint prefix set 
and overlapping trie: (1) prefix P2 should be deleted from the 
disjoint prefix set, (2) prefix P1 should be inserted into the 
disjoint prefix set, and (3) prefix P1 should be deleted from the 
overlapping trie. After detecting these changes in the control 
plane, P1 is stored in the TCAM at the same location where P2 

was previously stored, and thereafter P1 should be deleted from 
the overlapping trie. 

Due to space limitation in this paper, we only illustrate two 
complex update scenarios but all scenarios are as easy to 
update. The complete insertion and deletion algorithms are 
presented in Fig. 6 and Fig. 7. Both of these algorithms are 
performed in software with a time complexity O(l) where l is 
the prefix length of prefix P to update. In both algorithms, one 
route update generates at most one write operation to each 
lookup engine. It is noteworthy that the order between the two 
write operations should be maintained to avoid incorrect 
longest prefix matching during updating. For example, deleting 
prefix Q and inserting prefix P in the TCAM (statement 10 in 
Fig. 6) can be combined by just overwriting prefix Q with P. 
The execution of statement 9 and 10 also should be kept in the 
order shown in Fig. 6. Otherwise, prefix Q will disappear in 
both lookup engines temporarily, which may lead to incorrect 
longest prefix matching. 

III. LOOKUP FOR VIRTUAL ROUTERS 

We described in previous section the hybrid IP lookup 
architecture for a single router. Nonetheless, our lookup 
architecture can be extended to support virtual routers naturally.  

A virtual router platform contains multiple FIBs; each FIB 
has the same feature as the FIB of a traditional non-virtual 
router. Therefore, the trie partitioning scheme proposed above 
is still suitable for each individual FIB in the virtual router 
platform. However, when each FIB is partitioned separately, 
multiple large disjoint prefix sets and relatively small 
overlapping tries are generated.  We have therefore to merge 
these disjoint prefix sets into a single one, and merge the 
overlapping tries into a single trie. 

Several approaches have been proposed for merging prefix 
sets for virtual routers, e.g., common prefix set[13] and virtual 
prefix technique [18]. For our purpose we have chosen the 

Input: Trie T, and Prefix P which is to be deleted from T. 
Output: Changes in the disjoint prefix set S1 and the 
overlapping prefix set S2. 
1 Delete prefix P from trie T, the new trimmed trie is T’ 
2 Find the longest prefix of P in T: Prefix Q 
3 if P is a non-leaf node in T 
4    Del P from S2; 
5 else if P is a leaf node in T 
6    if Q is a non-leaf prefix in T’  
7        Del P from S1;                      
8    else if Q is a leaf prefix in T’ 
9        Del P from S1, and add Q into S1; 
10        Del Q from S2; 
11    end if     
12 end if 

Figure 7. Algorithm: Deletion of a prefix 

 
 

Figure 8. (a) Another sample trie, (b) the corresponding disjoint prefix 
set, and (c) the corresponding overlapping prefix set. 

 
 

Figure 9. (a) The merged disjoint prefix set, and (b) the merged 
overlapping prefix set. 

Input:  Trie T, and Prefix P which is to be inserted to T. 
Output: Changes in the disjoint prefix set S1 and the 
overlapping prefix set S2. 
1 Insert prefix P into trie T, the new trie is T’ 
2 Find the longest prefix of P in T’ : Prefix Q 
3 if P is a non-leaf node in T’ 
4    Add P into S2; 
5 else if P is a leaf node in T’ 
6    if Q is a non-leaf prefix in T 
7        Add P into S1; 
8    else if Q is a leaf prefix in T 
9        Add Q into S2; 
10        Del Q from S1, and add P into S1; 
11    end if     
12 end if 

Figure 6. Algorithm: Insertion of a prefix 
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virtual prefix technique since it is simple and has a fast 
execution time[18]. In this scheme, by appending a unique 
virtual router ID (VID) before the prefix we form a virtual 
prefix. This ensures that the virtual prefix sets of all virtual 
routers are not overlapping. Hence, we can directly merge the 
virtual prefix sets of all virtual routers together to form a large 
prefix set. Taking two simple FIBs as an example, if we assign 
a VID 0 to the FIB shown in Fig. 1(a) and a VID 1 to the FIB 
shown in Fig. 8(a), their corresponding prefix sets can be 
merged into two new prefix sets (see Fig. 9(a) and Fig. 9(b)).  

Using the VID, all FIBs of virtual routers can be merged 
into a large disjoint prefix set and a relatively small 
overlapping trie (for example, see Fig. 9(a) and 9(b)). These 
two sets have the same feature as that in a single router. 
Therefore, the merged disjoint prefix set can be mapped into 
the external TCAM-based IP lookup engine, and the merged 
overlapping trie can be mapped into the on-chip SRAM-based 
IP lookup pipeline. This makes the architecture depicted in Fig. 
2 suitable for virtual routers with a slight modification. The IP 
address used to search both lookup engines should be changed 
to a virtual IP address (VIP) by appending a VID to IP 
addresses. This is done in the header parser module shown in 
Fig. 2.  

From this point, the update process in virtual routers is 
similar to that in a single router. When a route update is to be 
performed on one FIB of virtual routers, the same fast 
incremental updating algorithm described before is applied on 
the corresponding 1-bit trie to detect the changes in its disjoint 
prefix set and overlapping trie, with the difference that now the 
new prefix to update must be constructed by concatenating the 
prefix with the VID. Taking the insertion in Fig. 4 as an 
example, and assuming that they are relative to a virtual router 
instance with a VID 0, the changes in the final merged sets are 
as follows: (1) virtual prefix P02 (000*) should be inserted into 
the overlapping trie, (2) virtual prefix P02 (000*) should be 
deleted from the disjoint prefix set, and (3) virtual prefix P07 
(0000*) should be inserted into the disjoint prefix set. 

As mentioned before, one route update causes at most one 
write operation to each lookup engine for a single router. This 
remains valid for virtual routers; any route update in a FIB of 
virtual routers need at most one write operation on each lookup 
engine.  

IV. PERFORMANCE EVALUATION 

A. Analysis of Real Routing Tables 

Fourteen real ipv4 routing tables have been collected from 
RIPE RIS Project[19] on 05/20/2011. Analysis is performed on 
these real routing tables to validate the advantage of the trie 
partitioning scheme. The analysis results are shown in TABLE 
I. 

The number of prefixes and leaf prefixes in each FIB are 
shown respectively in column # prefixes and # leaf prefixes. 
We can see that for all the fourteen FIBs, more than 90% of the 
prefixes are leaf prefixes. We applied the partitioning scheme. 
The number of nodes in the original trie is represented in 
column # nodes of the trie. After moving the leaf prefixes into 
a disjoint leaf prefix set and trimming the trie further, the 

number of nodes remaining in the final trimmed trie is shown 
in column # nodes of the trimmed trie. The results show that 
after trimming, the number of remaining nodes is about 12% of 
that in the original trie.  These observations confirm the initial 
empirical finding which is the base of the trie partitioning.  

 Based on the above analysis, the following conclusions can 
be drawn. 

1) Using the proposed partitioning and merging schemes, 
most of the prefixes are moved to external TCAMs. Meanwhile, 
all of them are naturally disjoint and they can be stored without 
any order constraints. This feature can be used to guarantee fast 
updates in a TCAM.  

2) After removing the leaf nodes, the amount of memory 
needed in the SRAM-based pipeline is reduced significantly.  
Hence, the memory size issue of on-chip SRAM-based 
pipelines in FPGA can be well addressed. 

The above conclusions still hold for virtual routers as each 
router will have a FIB that will validate the above properties. 

B. Throughput 

We have implemented the hybrid architecture on our 
PEARL [17] hardware platform, which is equipped with a 
Xilinx Virtex-5 XC5VLX110T-1 FPGA and an IDT 
IDT75K72100 TCAM. The post place and route result in 
FPGA shows a maximum clock frequency of 297 MHz and the 
TCAM has a maximum throughput of 250 MLPS. Hence, the 
implementation enables a maximum throughput of 250 MLPS, 
which exceeds largely the throughput requirement of 100G 
Ethernet that is about 148 MLPS at 64-byte packets. However, 
the PEARL platform has only four Gigabit Ethernet interfaces 
needing at most a maximum lookup rate of about 5.95 MLPS. 
We show in Fig. 10, the measured and theoretical throughput 
obtained over the PEARL platform with the proposed hybrid IP 
lookup scheme.  

It is noteworthy, that it’s hard to make a fair comparison 
with throughput measured in previous work, since the device 
types and optimization parameters of implementation tools 
were very different. However, the throughput of our 
implementation is clearly adequate for practical virtual routers.  

C. Update Overhead             

The number of TCAM write accesses per update is used as 
the metric to estimate the update overhead of TCAM-based 
engines. For the SRAM-based pipeline we use the number of 
disrupted lookup cycles per write bubble as the metric of 

 
Figure 10.  The throughput of the hybrid architecture 
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comparison. We have chosen PLO_OPT/CAO_OPT[3], 
MIPS[4] and write bubbles in [11-12] as comparison basis. 

Theoretical comparison. In the best case, only one TCAM 
write access is required for each route update in both 
PLO_OPT and CAO_OPT[3], and zero TCAM write access is 
required for each update in both MIPS[4] and our architecture. 
However, the results in the worst case are quite different. In 
PLO_OPT[3], the prefix-length order should be kept and the 
empty space is arranged in the center of a TCAM. Therefore, a 
route update requires at most W/2 write accesses to the TCAM, 
where W is the maximum length of the prefixes (32 for IPv4). 
In CAO_OPT[3], the chain-ancestor order should be kept and 
the empty space is still arranged in the center. Therefore, a 
route update requires at most D/2 write access to the TCAM, 
where D is the maximum length of the chain. Theoretically, D 
may be up to W. MIPS[4] utilizes leaf pushing to convert the 
prefix set into an independent (disjoint) prefix set. However, 
leaf pushing may duplicate a prefix many times. In the 
theoretical worst case, a prefix could be duplicated to 2W-1 
prefixes. Therefore, the maximum number of TCAM accesses 
for one route update is 2W-1. In our hybrid architecture, the 
prefix set stored in the TCAM is naturally disjoint and prefix 
duplication is not required. One route update leads to at most 
one write access to the TCAM in any case.  The theoretical 
comparison between the different schemes is summarized in 
TABLE II.  

Empirical comparison. We get from the RIPE RIS project 
[19] one of the publicly available routing tables rrc00 (see 
TABLE I)  and one-hour update traces on it. The update traces 
contain 165,721 updates. Fig. 11 shows the running average of 
the number of TCAM accesses per update required for all the 
four compared TCAM update schemes as a function of the 
number of updates. The average in our proposed hybrid 
architecture remains persistently under one TCAM access 
(about 0.91) per update. This is expected since only one TCAM 
access is required for a leaf prefix update and zero TCAM 
access for a non-leaf prefix update. It can be seen that the 
average number of update in the hybrid scheme is much lower 
than that of all other three competing solutions. More 
importantly, the maximum number of TCAM accesses per 
update that directly determines the size of the packet buffer 
required in a lookup engine to avoid packet drops during 
updating, is precisely equal to one and significantly lower than 
that of competitor schemes (see TABLE III). 

Obviously, the number of TCAM accesses per update in 
our proposed architecture can be proved to be optimal as at 
most a single write access per update to the TCAM is 
mandatory. This means that we can guarantee a minimum 
worst-case update overhead in TCAM-based lookup engine. 
The summary of comparison results on routing table rrc00 is 
shown in TABLE III. Last but not least, even if MIPS is able to 
achieve a performance relative to an average number of write 
accesses per update that is close to 1, the worst-case overhead 
for a single update is very high (see TABLE II and TABLE III).  

In [11-12], write bubbles are used for route updates in 
SRAM-based pipelines. Each write bubble may disrupt the IP 
lookup process for one cycle in the worst case and minimizing 
the number of write bubbles reduces the update overhead. In 
our approach we have addressed this challenge by devising a 
pipeline with separate lookup and update paths in order to 
totally eliminate the disruption to IP lookup process caused by 
write bubbles.  

In summary, each route update leads to at most one write 
access in the TCAM-based IP lookup engine and has zero 
impact on the SRAM-based pipeline. Therefore, The update 
overhead is significantly lower than that of previous work[3-4, 
11-12]. 

D. Memory Utilization 

As explained before if the entire routing table was going to 
be managed by a SRAM-based pipeline, external memories 
would have been mandatory to support the large routing tables 
in practice. However, due to the limited number of available 
I/O pins in FPGA, only a few external memories can be used. 
Hence, the utilization ratio of external memories becomes very 
important.  

When external SRAMs are used for trie-based pipelines, a 
few large levels are moved into external SRAMs[7]. However, 
the size of those levels is variable and controlling the memory 
distribution among these stages is hard to achieve[7]. Therefore, 
the external SRAMs should be over-provisioned and memory 
waste can rarely be avoided. In the 2-3 tree-based routers[18], 
the last few stages of the SRAM-based pipeline are moved to 

TABLE III. THE COMPARISION RESULTS ON RCC00 ROUTING TABLE 
TCAM-based Engines Maximum Average Minimum

PLO_OPT  16 6.42 1 
CAO_OPT 4 1.55 1 

MIPS 247 1.15 0 
Our architecture 1 0.91 0 

Figure 11.  The running average of the number of TCAM accesses per update 
on rrc00 routing table. 

TABLE II. THEORETICAL COMPARISON  OF THE NUMBER OF TCAM 

WRITE ACCESSES PER UPDATE 
TCAM-based Engines Maximum Minimum 

PLO_OPT  W/2 (16) 1 
CAO_OPT D/2 (16) 1 

MIPS 2W-1 (231) 0 
Our Architecture 1 0 
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external SRAMs. In these routers a balanced tree named 2-3 
tree is build such that the size of needed memory in level i+1 is 
about twice of that in level i. However, it is impractical to find 
in the market external SRAMs with exact needed sizes. Due to 
this fact, it is hard to avoid memory waste when using 2-3 tree-
based routers and the memory utilization ratio is usually low.  

In our proposed architecture, the disjoint prefix set can be 
stored in external TCAMs without any order constraints. As a 
result, a disjoint prefix set can be mapped into a TCAM until it 
becomes full. Multiple external TCAMs can be cascaded to 
store more prefixes and each of those TCAMs can achieve a 
memory utilization ratio of 100% except the last TCAM. We 
should reserve enough empty space in the last one for further 
updating. Therefore, memory waste can be avoided. 
Additionally, the memory utilization among on-chip SRAMs in 
FPGA can be well balanced using the scheme proposed in [10]. 

V. DISCUSSIONS 

A. Dual Pipelines 

The SRAMs in Xilinx FPGA[20] are dual port. A read or 
write operation can be performed on each port alternatively. In 
this paper, one port of the SRAM is dedicated to read 
operations (lookups) and the other port is dedicated to write 
operations (updates). In such a pipeline with separate lookup 
and update paths, IP lookups and route updates can run 
simultaneously without any collision. Therefore, route updates 
have zero impact on lookups. However, by using each port of 
the SRAM both for lookups and updates, one can build true 
dual pipelines[18]. In dual pipelines even though route update 
may disrupt the lookup process in the same pipeline, it has no 
impact on the lookup process in the other pipeline. Therefore, 
the final forwarding performance of dual pipelines is much 
higher than the performance of a pipeline with separate lookup 
and update paths.  However, we still choose the pipeline with 
separate lookup and update paths in our hybrid architecture for 
two reasons: 

First, the forwarding performance of the pipeline with 
separate lookup and update paths is sufficient in our hybrid 
architecture. Generally, the clock frequency of a SRAM is 
higher than that of a TCAM. Given a typical SRAM with a 
clock frequency of 400 MHz and a typical TCAM with a clock 
frequency of 200 MHz, a SRAM-based pipeline can achieve a 
maximum throughput of 400 MLPS and a TCAM-based engine 
can achieve up to 200 MLPS. Obviously, in a hybrid 
architecture composed of a TCAM-based lookup engine and a 
SRAM-based pipeline operating in parallel, the final lookup 
performance is determined by the TCAM-based engine and it’s 
not necessary to devise dual pipelines in the SRAM part. 

Second, the implementation of dual pipelines is more 
complicated than that of the pipeline with two separate paths. 
In dual pipelines, each pipeline should be switched for lookups 
or updates. However, in the pipeline with two separate paths, 
the lookups and the updates run separately without any 
collision. Obviously, the two-path pipeline is simpler. 

B. Memory Footprint 

Although external TCAMs can be fully utilized and only 
90% of the prefixes of the FIBs should be stored in TCAMs, 
compact data structures should be further developed in order to 
achieve a small memory footprint in a TCAM. For example, an 
existing large TCAM can accommodate up to 1024K 40-bit 
entries[21]. However, there are about 300K leaf prefixes in a 
single FIB (see TABLE I), which means that only leaf prefixes 
of about three FIBs can be accommodated in such a large 
TCAM. Therefore, the leaf prefixes stored in the TCAM should 
be compacted to support more FIBs in the context of virtual 
routers. 

The compactions can be performed in two ways. First, leaf 
prefixes within a single FIB can be compacted. For example, if 
two leaf prefixes have the same parent node in a trie, and they 
have the same next hop, they can be replaced by their parent 
prefix. Second, leaf prefixes of different FIBs can be 
compacted. For example, if a prefix 110* with a VID 0 and a 
prefix 110* with a VID 1 coexist in the TCAM, and they have 
the same next hop, they can be merged to a single entry *110*. 
Indeed this issue exists for all TCAM management techniques. 

Memory balancing[8-10] and compact data structure like 
trie merging[13-14] can also be applied to the memory of on-
chip SRAMs in FPGA to achieve a small memory footprint.  

It’s noteworthy that a good balance between memory 
footprint and update overhead during compacting is mandatory, 
since in the extreme, a very compact data structure may 
drastically increases the update overhead.  

As mentioned before, external SRAMs can also be used to 
extend the total memory size of on-chip SRAM-based pipelines. 
Each external SRAM should be over-provisioned and memory 
waste couldn’t be avoided. However, a SRAM usually has a 
higher density than a TCAM. We will aim into studying which 
kind of external memories can support more FIBs after 
compaction in the near future. 

C. Multi-bit Trie 

In this paper, we use a 1-bit trie for partitioning a FIB into 
the disjoint leaf prefix set and the overlapping prefix set. 
However, a multi-bit trie can be chosen to represent the final 
small overlapping trie before mapping it into the on-chip 
SRAM-based pipeline. However, the use of a multi-bit trie 
brings new problems. 

In order to transform the FIB to an equivalent set with the 
allowed prefix length, prefix expansion is needed when using a 
multi-bit trie. However, prefix expansion may lead to node 
duplication [22].  Therefore, a single route update may need 
more than one write access on a single pipeline stage and for a 
complete route update, multiple write bubbles may be required. 
In order to avoid incorrect longest prefix matching, no IP 
lookups are allowed to be injected into the pipeline until all the 
write bubbles belonging to a single route update are applied. 
Hence, route updates may lead to disruption to the IP lookup 
process and zero impact on the lookup process can no longer be 
guaranteed. This explains why we are not using the multi-bit 
trie to represent the overlapping prefix set.  
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VI. CONCLUSIONS 

In this paper, we mainly focus on the FIB update challenge 
for high-speed routers. An efficient trie partitioning scheme is 
proposed to convert a 1-bit trie into a large disjoint leaf prefix 
set and a small overlapping trie. This partitioning is motivated 
by the observation that more than 90% of prefixes in the 1-bit 
trie are naturally disjoint leaf prefixes and can be easily 
mapped into external TCAM-based lookup engine. Thus, entry 
movements can be totally avoided and no prefix is duplicated, 
which results in one single write access for each update of a 
leaf prefix. Additionally, the memory management of TCAMs 
can be significantly simplified since a prefix in a disjoint prefix 
set can be stored in any TCAM available location. Therefore, 
we do not need to reserve empty space in each TCAM at 
special locations, and thus achieve a utilization ratio of TCAMs 
close to 100%. In other words, we only need to reserve some 
empty space in the last TCAM for further updating, and the 
remaining TCAMs can be fully utilized. 

After removing the leaf nodes, the remaining trie can be 
further trimmed resulting in an overlapping trie that contains 
only about 12% of the nodes in the original trie. This 
significantly reduces the memory requirement of on-chip 
SRAM-based pipeline. In the context of virtual routers, 
multiple such small remaining tries can be accommodated in 
on-chip SRAMs of an existing FPGA. Moreover, we exploit 
the dual port feature in Xilinx FPGA to devise a SRAM-based 
pipeline with separate lookup and update paths. Lookups and 
updates can be performed simultaneously without any collision. 
Therefore, route updates have zero impact on our dual-path 
SRAM-based pipeline.    

The fast incremental updating algorithms show that, in any 
case, one route update in the original 1-bit trie leads to at most 
one write access in our TCAM-based lookup engine, and at 
most one write bubble in our SRAM-based lookup pipeline (we 
can ignore the update overhead in our SRAM-based lookup 
pipeline since updates have zero impact on lookups). Therefore, 
we only need to lock the TCAMs for the time of at most one 
write access during each updating. This update overhead is 
significantly lower than that of previous work.  

In the context of virtual routers, a virtual router ID is 
assigned to each FIB and a simple merging scheme is applied. 
Then, the hybrid architecture can be well scaled to support 
virtual routers. Meanwhile, the update overhead of each route 
update keeps the same as that in a single router. 

The performance evaluation shows that the throughput is 
sufficient for 100Gbps high-speed routers, the update overhead 
is significantly lower than that of previous work, and the 
utilization ratio of most external high-capacity memories can 
be up to 100%. While the memory consumption of our 
proposed scheme is reasonable, we will study, as future work, 
compact data structures that can be applied to improve memory 
efficiency in both engines, while retaining the fast update 
property of the architecture. Another direction of further 
research is relative to the fact that elements in leaf prefix set are 
disjoint. This property can be exploited to design efficient 
hash-based approaches on the disjoint leaf prefix set and 
replace costly and power-hungry TCAMs. 
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