
HAL Id: hal-00737828
https://hal.science/hal-00737828

Submitted on 2 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid IP Lookup Architecture with Fast Updates
Layong Luo, Gaogang Xie, Yingke Xie, Laurent Mathy, Kavé Salamatian

To cite this version:
Layong Luo, Gaogang Xie, Yingke Xie, Laurent Mathy, Kavé Salamatian. A Hybrid IP Lookup
Architecture with Fast Updates. 2012 Proceedings IEEE INFOCOM (INFOCOM’2012), Mar 2012,
Orlando, Florida, United States. pp.2435-2443, �10.1109/INFCOM.2012.6195633�. �hal-00737828�

https://hal.science/hal-00737828
https://hal.archives-ouvertes.fr

A Hybrid IP Lookup Architecture with Fast Updates

Layong Luo1,2, Gaogang Xie1, Yingke Xie1, Laurent Mathy3, Kavé Salamatian4

1Institute of Computing Technology, Chinese Academy of Sciences, China
2Graduate University of Chinese Academy of Sciences, China

3Lancaster University, United Kingdom
4University of Savoie, France

1{luolayong, xie, ykxie}@ict.ac.cn, 3laurent@comp.lancs.ac.uk, 4kave.salamatian@gmail.com

Abstract—As network link rates are being pushed beyond
40Gbps, IP lookup in high-speed routers is moving to hardware.
The TCAM (Ternary Content Addressable Memory)-based IP
lookup engine and the SRAM (Static Random Access Memory)-
based IP lookup pipeline are the two most common way to
achieve high throughput. However, route updates in both engines
degrade lookup performance and may lead to packet drops.
Moreover, with the growing importance of virtual IP routers
where more frequent updates happen, finding solutions that both
achieve fast lookup and low update overhead becomes urgent. In
this paper, we propose a hybrid IP lookup architecture with fast
updates. The architecture is based on an efficient trie partitioning
scheme that divides the Forwarding Information Base (FIB) into
two prefix sets: a large disjoint leaf prefix set and a small
overlapping prefix set. Then, the large disjoint set is mapped into
an external TCAM-based lookup engine and the small
overlapping set is mapped into an on-chip SRAM-based lookup
pipeline. Critical optimizations are developed on both IP lookup
engines to reduce the update overhead. We show how to extend
the proposed hybrid architecture to support virtual routers. Our
implementation shows a throughput of 250 million lookups per
second (MLPS). The update overhead is significantly lower than
that of previous work and the utilization ratio of most external
TCAMs is up to 100%.

I. INTRODUCTION

IP lookup is a critical function of Internet routers. Since the
introduction of CIDR (Classless Inter-Domain Routing) in
1993, finding the next hop for a destination IP address has
become a longest prefix matching (LPM) problem. Indeed,
given a destination address, multiple IP address prefixes of
different lengths may exist, in the Forwarding Information
Base (FIB) of the router, that match (i.e. contain) the given
address and the longest such prefix must be used to determine
the next hop for the corresponding packet to ensure correct
forwarding operation.

The longest prefix-match problem lends itself to a
hierarchical data structure for which a trie is an efficient
representation (see Fig. 1(a)). In the context of IP lookup, a trie
contains two types of nodes: 1) nodes (which we call prefix
nodes and are shown as dark nodes in Fig. 1(a)) that represent
predefined prefixes for which valid next hop information exists;
and 2) nodes (which we call non-prefix nodes and are drawn
clear) that do not contain next hop information. The longest-
prefix matching a destination address is then determined by
following a single path from the trie root, with the longest-

prefix match corresponding to the last prefix node encountered
before the end of the path. Note that any encountered leaf node
will contain a longest-prefix match. Moreover, the address
space represented by the prefix stored at a node is always
contained within the address space represented by the prefix
stored at its ancestor nodes. Nonetheless, as there is only one
leaf node per trie-path, prefixes stored at different leaf nodes
are disjoint, i.e., the corresponding address spaces of two
leaves have no address in common.

As network link rates are being pushed beyond 40Gbps, IP
lookup with LPM becomes a major bottleneck in high-speed
routers. For example, to achieve a throughput of 40Gbps, the IP
lookup for a 40-byte packet must be performed within 8 ns.
These short processing time is not achievable in software [1]
and two major hardware implementation techniques have been
used to achieve such high performance: TCAM (Ternary
Content Addressable Memory)-based and SRAM (Static
Random Access Memory)-based solutions.

A TCAM implements a high-speed associative memory,
where in a single clock cycle a search key is compared
simultaneously with all the entries, i.e. keys, stored in the
TCAM to determine a match and output the address of it. As
TCAM entries can be specified using three states (0, 1, and ‘X’
meaning don’t care), this type of memory is particularly well
suited to storing IP prefixes where masked bits are given ‘X’
states. Indeed, because of the ‘X’ bits, several TCAM entries
could match a given IP address, so TCAMs are designed to
always return the first matching entry encountered (TCAM
entries have an intrinsic order represented by an address).
Therefore, in order to provide correct LPM operations, prefixes
are stored in the TCAM with reverse order in overlap, i.e.,
longest prefix should be stored first. These order constraints
lead sometimes to a large number of TCAM entry movements
on routing updates, with impact on the lookup performance and
possible packet drops[2].

Because of the interest of the TCAM and the importance of
the problems solved by it, several research efforts have led to
new algorithms to solve the issue of TCAM updates. For
example, in [3] two approaches named PLO_OPT and
CAO_OPT have been proposed. PLO_OPT maintains the
prefix-length order by putting all the prefixes in order of
decreasing prefix lengths and keeping the unused space in the
center of a TCAM. CAO_OPT relaxes the constraint to only
overlapping prefixes in the same chain (a single path from the

1

trie root). Both the algorithms can decrease the number of entry
movements per update. However, multiple entry movements
are still needed for one route update in the worst cases[3]. In
another approach, order constraints can be completely avoided
in a TCAM, by converting the whole prefix set into an
equivalent minimum independent prefix set (MIPS) [4] using
the leaf pushing technique [5]. However, leaf pushing may lead
to prefix duplication. When a prefix is updated, all of its
duplicates should also be modified. Therefore, multiple write
accesses may still be needed during a single route update.

The other major hardware implementation technique is the
SRAM-based lookup pipeline[6], which corresponds to a
straightforward mapping of each trie level onto a corresponding
pipeline stage with its own SRAM memory, in order to achieve
a throughput of one lookup per clock cycle through the pipeline.
In such solutions, the number of pipeline stages depends on the
stride used (that is, the number of bits used to determine which
branch to take at each stage -- in Fig. 1 and in the rest of this
paper we use 1-bit strides). Therefore, the lookup pipeline will
require a rather high number of separate SRAMs (up to 32 in
the case of IPv4). The Field Programmable Gate Array (FPGA)
is a natural hardware choice for implementation of the SRAM-
based pipeline, as it contains hundreds of separate SRAMs.
Nevertheless, the on-chip SRAM is generally a scarce resource
which should be allocated efficiently, or otherwise be
complemented by external SRAMs[7]. One major issue here is
that assigning the right size of the SRAM to each stage of the
pipeline is complicated by the fact that it intimately depends on
the shape of the trie. While much work has been devoted to this
last issue[8-10], the fact remains that on-chip SRAM is still
unable to accommodate the typically large inter-domain FIB
(about 360K prefixes to date). For example, in [10] it is
reported that OLP(Optimized Linear Pipeline) can support 30K
IPv4 prefixes using 3.456 Mb of on-chip SRAMs. Hence,
given a state-of-the-art large Virtex-6 FPGA (e.g.
XC6VHX565T) with 32 Mb of on-chip SRAMs, about 277K
IPv4 prefixes can be stored using OLP. There is no reason to
believe that even the adoption of IPv6 would change the
current inflation trend of FIB to reverse. This means that the
memory size challenge in the SRAM-based lookup pipeline
will still have to be solved.

Route updates are handled in the SRAM-based lookup
pipeline by using a technique known as write bubbles[11],
which essentially encode and encapsulate the updates into write
bubbles to be performed at each stage of the pipeline.
Nevertheless, the SRAM modules used in building lookup

pipelines in the past[11-12] only had a single port for read and
write. This means that write bubbles may lead to disruption to
the IP lookup process. Much work[11-12] has targeted the
reduction of the number of write bubbles resulting from route
updates. Fortunately, state-of-the-art FPGAs now integrate dual
port SRAMs, capable of concurrent reading and writing (with
the possibility to do a write after a read has been completed).
This removes the problem of disruption caused by updates.

In a virtual router context, several router instances, and thus
multiple FIBs, must be accommodated. This clearly
exacerbates the memory requirement issues of hardware lookup
solutions. Recent researches [13-14] have concentrated on
techniques to merge different virtual routers FIBs into a single,
“compressed” trie structure, with a view to reduce the total
memory requirement of the lookup engine. Nevertheless, route
updates in the current Internet are known to occur at rates of
several hundred updates per second, with peak update rates
affecting over 10,000 prefixes per second [15]. In the presence
of virtual routers, a same network event could trigger
simultaneous updates to multiple FIBs, thus increasing the rate
of updates to the hardware lookup engine. Unfortunately,
merging several FIBs together results in complex data
structures whose update mechanisms become very
challenging[16].

In this paper, we propose a different view to the problem of
hardware lookup engine design for virtual routers. Rather than
using only one type of hardware solution: TCAM or SRAM-
based, we mix these two in order to benefit from the positive
points of each architecture without being hindered by the
weaknesses of each. Our aim is to design a very fast lookup
architecture that enables fast updates. The core idea of our
solution is to exploit an empirically observed structure in 1-bit
tries build from real FIBs (see TABLE I for more details). This
observed structure is as follow:

1) About 90% of all prefixes are stored in trie leaves, and
are thus disjoint from each other.

2) When the original leaf nodes are removed from the trie,
non-prefix internal nodes that only led to those leaf nodes can
also be removed, and we are left with a much smaller trimmed
trie, which contains, on average, only about 12% of the nodes
of the original trie.

The large disjoint prefix set, resulting from property 1
above, makes a TCAM the ideal component to look these up,
as naturally disjoint prefixes do not impose any order
constraints within the TCAM, making updates trivial (no entry
movements are required and one write access is sufficient for
each update since no prefix duplication is introduced). On the
other hand, the small trimmed trie resulting from the removal
of the leaf prefixes from the original trie, which represents the
set of prefixes that overlap with the above mentioned disjoint
prefix set, need much less memory space and can be stored in
an SRAM-based lookup pipeline. We will refer to this small
trimmed trie as “the overlapping trie”. In fact, several such
trimmed tries can easily be accommodated in SRAMs of an
existing FPGA. Updating this SRAM-based pipeline is also
trivial, by exploiting the dual port capabilities of SRAMs
mentioned earlier.

Figure 1. (a) A sample trie, (b) the corresponding disjoint prefix set, and
(c) the corresponding overlapping prefix set (a small trie).

2

In this paper, we mainly target fast FIB updates in high-
speed routers. For this purpose, we propose a hybrid lookup
architecture, composed of a TCAM-based lookup engine and
an SRAM-based pipeline operating in parallel. The TCAM
contains the disjoint prefixes and the SRAM-based pipeline
contains the overlapping tries. We show that this hybrid
approach results in fast lookup combined with easy and fast
updates. We also show how our approach can be applied in the
context of virtual routers, by simply prefixing IP addresses with
a virtual router ID (VID), and performing the lookup on those
“extended addresses”.

We implemented the proposed hybrid architecture on our
PEARL hardware platform[17], and achieved a maximum
throughput of 250 Millions Lookups Per Second (MLPS),
which surpasses the throughput requirement of 100G Ethernet
(about 148 MLPS for 64-byte small packets). Comparative
results show that the update overhead is significantly lower
than that of previous works. Moreover, our TCAM memory
can easily be dimensioned to achieve memory space utilization
close to 100%.

The rest of the paper is organized as follows. In section II,
we introduce our hybrid architecture and describe the
optimizations for fast updates. In section III, we expand our
approaches to support virtual routers. In section IV, we
describe the architecture implementation on our PEARL
platform and compare its performance with other techniques.
We discuss some extensions in section V and conclude the
paper in section VI.

II. ARCHITECTURE

In this section, we will describe our hybrid IP lookup
architecture with fast updates in the context of a single router.
We use 1-bit tries to illustrate the concepts. First, a trie
partitioning scheme will be proposed that partitions the trie into
a large disjoint leaf prefix set and a small trimmed overlapping
trie (we will use the terms an overlapping trie and an
overlapping prefix set interchangeably through the paper). The
large disjoint leaf prefix set is mapped into an external TCAM-
based IP lookup engine, while the small trimmed overlapping
trie is mapped into an on-chip SRAM-based IP lookup pipeline
in FPGA.

A. Trie Partitioning Scheme

The trie partitioning scheme is based on the key observation
that about 90% of prefixes in real FIBs are disjoint leaf
prefixes[18].

We collect fourteen real routing tables from RIPE RIS
Project[19] on 05/20/2011 and show in TABLE I that if one
removes the disjoint leaf prefixes from the 1-bit trie built from
a real routing table, and moreover removes non-prefix leaf
nodes in the remaining trie recursively until all the leaf nodes
in the final trie are prefix nodes, the size of the final trimmed
trie becomes only about 12% of that of the original trie.

Based on that observation, an efficient trie partitioning
scheme is proposed. All the leaf prefixes in the trie are
collected to form a large disjoint prefix set, and all the leaf
nodes are removed from the trie. Then, we can further trim the
remaining trie by removing non-prefix leaf nodes recursively
until all the leaf nodes in the final trimmed trie are prefix nodes.

Fig. 1 illustrates the trie partitioning scheme. A 1-bit trie
built from a sample FIB is shown in Fig. 1(a). In the trie,
prefix P2, P4, P5, and P6 are leaf prefixes. All these leaf
prefixes are moved to a disjoint prefix set (see Fig. 1(b)), and
the leaf nodes 4, 7, 8, and 9 are deleted from the trie. Then the
remaining trie can be further trimmed, e.g., node 5 becomes a
leaf node but it doesn’t contain any prefix so it can be removed.
The final trimmed trie is shown in Fig. 1(c) and represents the
small overlapping prefix set (a small overlapping trie).

B. Overall Architecture

The hybrid IP lookup architecture is depicted in Fig. 2. It’s
composed of two IP lookup engines operating in parallel. The
large disjoint leaf prefix set (for example, see Fig. 1(b)) is
stored in the TCAM-based lookup engine, while the small
overlapping trie (for example, see Fig. 1(c)) is mapped into the
on-chip SRAM-based pipeline. The destination IP address of
an incoming packet is extracted in the header parser module
and sent to the two lookup engines to search in parallel.
Meanwhile, the packet is stored in a buffer waiting for the next
hop information. Since the length of the prefix matched in the
disjoint prefix set is by design longer than that in the
overlapping prefix set, the search result of the TCAM-based
lookup engine has a higher priority than that of the SRAM-
based lookup engine. Note, however, that a match does not
necessarily exist in either lookup engine. The priority arbiter
module resolves the priority and determines the final next hop
information. Thereafter the packet is read from the buffer and
modifications are conducted based on the next hop information.
Finally, the packet becomes ready to be scheduled to the
corresponding output interface.

TABLE I. ANALYSIS OF REAL ROUTING TABLES
FIB # prefixes # nodes of

the trie
leaf prefixes # nodes of the

trimmed trie
rrc00 368057 905941 332409 (90.31%) 110109 (12.15%)
rrc01 358925 880946 325667 (90.73%) 103326 (11.73%)
rrc03 355603 873608 322419 (90.67%) 102984 (11.80%)
rrc04 366656 903163 332962 (90.81%) 104169 (11.53%)
rrc05 358355 879902 324594 (90.58%) 104457 (11.87%)
rrc06 351919 863114 319654 (90.83%) 100819 (11.68%)
rrc07 361881 888468 327781 (90.58%) 106517 (11.99%)
rrc10 355106 871466 321995 (90.68%) 102833 (11.80%)
rrc11 361708 888394 327742 (90.61%) 105552 (11.88%)
rrc12 363761 895781 329377 (90.55%) 106584 (11.90%)
rrc13 363057 894876 328942 (90.60%) 106024 (11.85%)
rrc14 361232 885979 327160 (90.57%) 105475 (11.90%)
rrc15 359326 880902 325154 (90.49%) 104536 (11.87%)
rrc16 366711 903062 331674 (90.45%) 108509 (12.02%)

Figure 2. The hybrid IP lookup architecture

3

C. Optimizations for Fast Updates

Efforts are made in both lookup engines to optimize the
update process.To achieve fast updates, In the TCAM-based IP
lookup engine, only the large disjoint prefix set is
accommodated. In such a disjoint prefix set, a given IP address
can match at most one prefix. Hence, the prefixes can be stored
in the TCAM without any order constraints and a new prefix
can be directly inserted at any available location. Therefore,
route updates do not need any entry movement. Moreover, the
leaf prefix set is naturally disjoint and no prefix is duplicated.
Hence, at most one write access is sufficient for one route
update in the worst case.

As explained in introduction, in the first generation of
SRAM-based pipelines[11-12], write bubbles may lead to
disruption to the IP lookup process since a write operation and
a read operation could not be performed simultaneously on the
same port of a SRAM. In this paper, we use new generation of
FPGAs, like the Xilinx FPGAs, that have dual port on-chip
SRAMs[20]. These SRAMs can be configured into a simple
dual port (SDP) mode where the SRAM has separate read and
write ports (see Fig. 3(b)). In this mode read and write can be
performed simultaneously without any collision. Using this
mode we design a pipeline with separate lookup and update
paths in order to totally eliminate the disruption (see Fig. 3(a)).
In this pipeline lookups are performed by only accessing the
read port of the SRAM in each stage, while write bubbles are
performed by only accessing the write port. In this way, IP
lookups and write bubbles can be performed simultaneously in
separate paths without collision.

Before a write bubble is injected into the pipeline, the data
to be written to each stage of the pipeline are previously stored
into a write bubble FIFO relative to each stage (see Fig. 3(b)).
When the write bubble enters into the pipeline it visits each
stage for one clock cycle, and goes to the next stage. When a
write bubble visits a stage, the data stored in the associated
write bubble FIFO are written into the corresponding address
when the valid flag is true. Through this scheme, the write
bubble doesn’t need to wait for the data and it can update all
stage in just one clock cycle (that means it can go through the
pipeline at the same speed as the lookup).

As a write bubble and an IP lookup can run at the same
speed, and one write bubble is sufficient for a worst-case route
update when using the 1-bit trie-based data structure for
pipelining[12], an IP lookup never traverses the trie in an
inconsistent state. More precisely even when a lookup and a
write bubble access the same node of the same stage
simultaneously, the lookup still reads the old node before
modification (thanks to the READ_FIRST feature of the SDP
SRAM in Xilinx FPGA[20]), and this read-write order is kept
when they both move to the next stage. Therefore, an IP lookup
always accesses the trie in a consistent state during updating.

In summary, in our proposed architecture one write access
is sufficient for a worst-case route update in our TCAM-based
lookup engine, and route updates have zero impact on the
lookup process in our SRAM-based lookup pipeline.

D. Fast Incremental Updating Algorithms

We need to describe how an incremental routing update is
translated into updates in the TCAM-based lookup engine and
the SRAM-based lookup pipeline. A route update can be
classified into three main categories [18]: (1) insertion of a new
prefix, (2) deletion of an existing prefix, and (3) modification
of an existing prefix. The third type of the route update can
easily be performed since it doesn’t change the shape of the trie.
However, the first two types are more complicated. Insertion of
a new prefix or deletion of an existing prefix may lead to prefix
changes in both the disjoint prefix set and the overlapping trie.

For this purpose we maintain, an auxiliary 1-bit trie built
from the FIB in the control plane of the router that keeps track
of prefixes stored in our hybrid architecture. One update
operation consists of two phases. In the first phase, the route
update is performed on the 1-bit trie and changes in the disjoint
prefix set and the overlapping trie are found. In the second
phase, optimized write accesses describe in previous section
are applied to the hybrid architecture. In order to illustrate the

Figure 4. A pipeline stage
Figure 4. (a) Insertion of a new prefix, (b) its corresponding disjoint

prefix set, and (c) its corresponding overlapping trie

(a) The n-stage IP lookup pipeline

write bubble
wr_en

Simple
Dual Port RAM

addr &din

lookup
rd_addr dout

vld address content

Write Bubble
FIFO

(b) A single stage of the pipeline

Figure 3. The SRAM-based IP lookup pipeline

Figure 5. (a) Deletion of a new prefix, (b) its corresponding disjoint

prefix set, and (c) its corresponding overlapping trie

4

incremental update process in our hybrid architecture, two
complex update scenarios are shown in Fig. 4 and Fig. 5.

Fig. 4 illustrates the insertion of a new leaf prefix P7 (000*).
After the insertion, prefix P2 turns into a non-leaf prefix and a
new leaf prefix P7 appears. This results into three changes in
the corresponding disjoint prefix set and overlapping trie: (1)
prefix P2 should be inserted into the overlapping trie, (2) prefix
P2 should be deleted from the disjoint prefix set, and (3) prefix
P7 should be inserted into the disjoint prefix set. After these
changes are found in the control plane, P2 will be inserted into
the SRAM-based pipeline, and then P7 will be inserted into the
TCAM at the location where P2 was previously stored. The
TCAM location where the leaf prefix is stored is recorded in
the node data structure of the 1-bit trie.

Fig. 5 illustrates the deletion of an existing leaf prefix P2
(00*). After the deletion, prefix P1 turns into a new leaf prefix.
It leads to three changes in the corresponding disjoint prefix set
and overlapping trie: (1) prefix P2 should be deleted from the
disjoint prefix set, (2) prefix P1 should be inserted into the
disjoint prefix set, and (3) prefix P1 should be deleted from the
overlapping trie. After detecting these changes in the control
plane, P1 is stored in the TCAM at the same location where P2

was previously stored, and thereafter P1 should be deleted from
the overlapping trie.

Due to space limitation in this paper, we only illustrate two
complex update scenarios but all scenarios are as easy to
update. The complete insertion and deletion algorithms are
presented in Fig. 6 and Fig. 7. Both of these algorithms are
performed in software with a time complexity O(l) where l is
the prefix length of prefix P to update. In both algorithms, one
route update generates at most one write operation to each
lookup engine. It is noteworthy that the order between the two
write operations should be maintained to avoid incorrect
longest prefix matching during updating. For example, deleting
prefix Q and inserting prefix P in the TCAM (statement 10 in
Fig. 6) can be combined by just overwriting prefix Q with P.
The execution of statement 9 and 10 also should be kept in the
order shown in Fig. 6. Otherwise, prefix Q will disappear in
both lookup engines temporarily, which may lead to incorrect
longest prefix matching.

III. LOOKUP FOR VIRTUAL ROUTERS

We described in previous section the hybrid IP lookup
architecture for a single router. Nonetheless, our lookup
architecture can be extended to support virtual routers naturally.

A virtual router platform contains multiple FIBs; each FIB
has the same feature as the FIB of a traditional non-virtual
router. Therefore, the trie partitioning scheme proposed above
is still suitable for each individual FIB in the virtual router
platform. However, when each FIB is partitioned separately,
multiple large disjoint prefix sets and relatively small
overlapping tries are generated. We have therefore to merge
these disjoint prefix sets into a single one, and merge the
overlapping tries into a single trie.

Several approaches have been proposed for merging prefix
sets for virtual routers, e.g., common prefix set[13] and virtual
prefix technique [18]. For our purpose we have chosen the

Input: Trie T, and Prefix P which is to be deleted from T.
Output: Changes in the disjoint prefix set S1 and the
overlapping prefix set S2.
1 Delete prefix P from trie T, the new trimmed trie is T’
2 Find the longest prefix of P in T: Prefix Q
3 if P is a non-leaf node in T
4 Del P from S2;
5 else if P is a leaf node in T
6 if Q is a non-leaf prefix in T’
7 Del P from S1;
8 else if Q is a leaf prefix in T’
9 Del P from S1, and add Q into S1;
10 Del Q from S2;
11 end if
12 end if

Figure 7. Algorithm: Deletion of a prefix

Figure 8. (a) Another sample trie, (b) the corresponding disjoint prefix
set, and (c) the corresponding overlapping prefix set.

Figure 9. (a) The merged disjoint prefix set, and (b) the merged
overlapping prefix set.

Input: Trie T, and Prefix P which is to be inserted to T.
Output: Changes in the disjoint prefix set S1 and the
overlapping prefix set S2.
1 Insert prefix P into trie T, the new trie is T’
2 Find the longest prefix of P in T’ : Prefix Q
3 if P is a non-leaf node in T’
4 Add P into S2;
5 else if P is a leaf node in T’
6 if Q is a non-leaf prefix in T
7 Add P into S1;
8 else if Q is a leaf prefix in T
9 Add Q into S2;
10 Del Q from S1, and add P into S1;
11 end if
12 end if

Figure 6. Algorithm: Insertion of a prefix

5

virtual prefix technique since it is simple and has a fast
execution time[18]. In this scheme, by appending a unique
virtual router ID (VID) before the prefix we form a virtual
prefix. This ensures that the virtual prefix sets of all virtual
routers are not overlapping. Hence, we can directly merge the
virtual prefix sets of all virtual routers together to form a large
prefix set. Taking two simple FIBs as an example, if we assign
a VID 0 to the FIB shown in Fig. 1(a) and a VID 1 to the FIB
shown in Fig. 8(a), their corresponding prefix sets can be
merged into two new prefix sets (see Fig. 9(a) and Fig. 9(b)).

Using the VID, all FIBs of virtual routers can be merged
into a large disjoint prefix set and a relatively small
overlapping trie (for example, see Fig. 9(a) and 9(b)). These
two sets have the same feature as that in a single router.
Therefore, the merged disjoint prefix set can be mapped into
the external TCAM-based IP lookup engine, and the merged
overlapping trie can be mapped into the on-chip SRAM-based
IP lookup pipeline. This makes the architecture depicted in Fig.
2 suitable for virtual routers with a slight modification. The IP
address used to search both lookup engines should be changed
to a virtual IP address (VIP) by appending a VID to IP
addresses. This is done in the header parser module shown in
Fig. 2.

From this point, the update process in virtual routers is
similar to that in a single router. When a route update is to be
performed on one FIB of virtual routers, the same fast
incremental updating algorithm described before is applied on
the corresponding 1-bit trie to detect the changes in its disjoint
prefix set and overlapping trie, with the difference that now the
new prefix to update must be constructed by concatenating the
prefix with the VID. Taking the insertion in Fig. 4 as an
example, and assuming that they are relative to a virtual router
instance with a VID 0, the changes in the final merged sets are
as follows: (1) virtual prefix P02 (000*) should be inserted into
the overlapping trie, (2) virtual prefix P02 (000*) should be
deleted from the disjoint prefix set, and (3) virtual prefix P07
(0000*) should be inserted into the disjoint prefix set.

As mentioned before, one route update causes at most one
write operation to each lookup engine for a single router. This
remains valid for virtual routers; any route update in a FIB of
virtual routers need at most one write operation on each lookup
engine.

IV. PERFORMANCE EVALUATION

A. Analysis of Real Routing Tables

Fourteen real ipv4 routing tables have been collected from
RIPE RIS Project[19] on 05/20/2011. Analysis is performed on
these real routing tables to validate the advantage of the trie
partitioning scheme. The analysis results are shown in TABLE
I.

The number of prefixes and leaf prefixes in each FIB are
shown respectively in column # prefixes and # leaf prefixes.
We can see that for all the fourteen FIBs, more than 90% of the
prefixes are leaf prefixes. We applied the partitioning scheme.
The number of nodes in the original trie is represented in
column # nodes of the trie. After moving the leaf prefixes into
a disjoint leaf prefix set and trimming the trie further, the

number of nodes remaining in the final trimmed trie is shown
in column # nodes of the trimmed trie. The results show that
after trimming, the number of remaining nodes is about 12% of
that in the original trie. These observations confirm the initial
empirical finding which is the base of the trie partitioning.

 Based on the above analysis, the following conclusions can
be drawn.

1) Using the proposed partitioning and merging schemes,
most of the prefixes are moved to external TCAMs. Meanwhile,
all of them are naturally disjoint and they can be stored without
any order constraints. This feature can be used to guarantee fast
updates in a TCAM.

2) After removing the leaf nodes, the amount of memory
needed in the SRAM-based pipeline is reduced significantly.
Hence, the memory size issue of on-chip SRAM-based
pipelines in FPGA can be well addressed.

The above conclusions still hold for virtual routers as each
router will have a FIB that will validate the above properties.

B. Throughput

We have implemented the hybrid architecture on our
PEARL [17] hardware platform, which is equipped with a
Xilinx Virtex-5 XC5VLX110T-1 FPGA and an IDT
IDT75K72100 TCAM. The post place and route result in
FPGA shows a maximum clock frequency of 297 MHz and the
TCAM has a maximum throughput of 250 MLPS. Hence, the
implementation enables a maximum throughput of 250 MLPS,
which exceeds largely the throughput requirement of 100G
Ethernet that is about 148 MLPS at 64-byte packets. However,
the PEARL platform has only four Gigabit Ethernet interfaces
needing at most a maximum lookup rate of about 5.95 MLPS.
We show in Fig. 10, the measured and theoretical throughput
obtained over the PEARL platform with the proposed hybrid IP
lookup scheme.

It is noteworthy, that it’s hard to make a fair comparison
with throughput measured in previous work, since the device
types and optimization parameters of implementation tools
were very different. However, the throughput of our
implementation is clearly adequate for practical virtual routers.

C. Update Overhead

The number of TCAM write accesses per update is used as
the metric to estimate the update overhead of TCAM-based
engines. For the SRAM-based pipeline we use the number of
disrupted lookup cycles per write bubble as the metric of

Figure 10. The throughput of the hybrid architecture

6

comparison. We have chosen PLO_OPT/CAO_OPT[3],
MIPS[4] and write bubbles in [11-12] as comparison basis.

Theoretical comparison. In the best case, only one TCAM
write access is required for each route update in both
PLO_OPT and CAO_OPT[3], and zero TCAM write access is
required for each update in both MIPS[4] and our architecture.
However, the results in the worst case are quite different. In
PLO_OPT[3], the prefix-length order should be kept and the
empty space is arranged in the center of a TCAM. Therefore, a
route update requires at most W/2 write accesses to the TCAM,
where W is the maximum length of the prefixes (32 for IPv4).
In CAO_OPT[3], the chain-ancestor order should be kept and
the empty space is still arranged in the center. Therefore, a
route update requires at most D/2 write access to the TCAM,
where D is the maximum length of the chain. Theoretically, D
may be up to W. MIPS[4] utilizes leaf pushing to convert the
prefix set into an independent (disjoint) prefix set. However,
leaf pushing may duplicate a prefix many times. In the
theoretical worst case, a prefix could be duplicated to 2W-1
prefixes. Therefore, the maximum number of TCAM accesses
for one route update is 2W-1. In our hybrid architecture, the
prefix set stored in the TCAM is naturally disjoint and prefix
duplication is not required. One route update leads to at most
one write access to the TCAM in any case. The theoretical
comparison between the different schemes is summarized in
TABLE II.

Empirical comparison. We get from the RIPE RIS project
[19] one of the publicly available routing tables rrc00 (see
TABLE I) and one-hour update traces on it. The update traces
contain 165,721 updates. Fig. 11 shows the running average of
the number of TCAM accesses per update required for all the
four compared TCAM update schemes as a function of the
number of updates. The average in our proposed hybrid
architecture remains persistently under one TCAM access
(about 0.91) per update. This is expected since only one TCAM
access is required for a leaf prefix update and zero TCAM
access for a non-leaf prefix update. It can be seen that the
average number of update in the hybrid scheme is much lower
than that of all other three competing solutions. More
importantly, the maximum number of TCAM accesses per
update that directly determines the size of the packet buffer
required in a lookup engine to avoid packet drops during
updating, is precisely equal to one and significantly lower than
that of competitor schemes (see TABLE III).

Obviously, the number of TCAM accesses per update in
our proposed architecture can be proved to be optimal as at
most a single write access per update to the TCAM is
mandatory. This means that we can guarantee a minimum
worst-case update overhead in TCAM-based lookup engine.
The summary of comparison results on routing table rrc00 is
shown in TABLE III. Last but not least, even if MIPS is able to
achieve a performance relative to an average number of write
accesses per update that is close to 1, the worst-case overhead
for a single update is very high (see TABLE II and TABLE III).

In [11-12], write bubbles are used for route updates in
SRAM-based pipelines. Each write bubble may disrupt the IP
lookup process for one cycle in the worst case and minimizing
the number of write bubbles reduces the update overhead. In
our approach we have addressed this challenge by devising a
pipeline with separate lookup and update paths in order to
totally eliminate the disruption to IP lookup process caused by
write bubbles.

In summary, each route update leads to at most one write
access in the TCAM-based IP lookup engine and has zero
impact on the SRAM-based pipeline. Therefore, The update
overhead is significantly lower than that of previous work[3-4,
11-12].

D. Memory Utilization

As explained before if the entire routing table was going to
be managed by a SRAM-based pipeline, external memories
would have been mandatory to support the large routing tables
in practice. However, due to the limited number of available
I/O pins in FPGA, only a few external memories can be used.
Hence, the utilization ratio of external memories becomes very
important.

When external SRAMs are used for trie-based pipelines, a
few large levels are moved into external SRAMs[7]. However,
the size of those levels is variable and controlling the memory
distribution among these stages is hard to achieve[7]. Therefore,
the external SRAMs should be over-provisioned and memory
waste can rarely be avoided. In the 2-3 tree-based routers[18],
the last few stages of the SRAM-based pipeline are moved to

TABLE III. THE COMPARISION RESULTS ON RCC00 ROUTING TABLE
TCAM-based Engines Maximum Average Minimum

PLO_OPT 16 6.42 1
CAO_OPT 4 1.55 1

MIPS 247 1.15 0
Our architecture 1 0.91 0

Figure 11. The running average of the number of TCAM accesses per update
on rrc00 routing table.

TABLE II. THEORETICAL COMPARISON OF THE NUMBER OF TCAM

WRITE ACCESSES PER UPDATE
TCAM-based Engines Maximum Minimum

PLO_OPT W/2 (16) 1
CAO_OPT D/2 (16) 1

MIPS 2W-1 (231) 0
Our Architecture 1 0

7

external SRAMs. In these routers a balanced tree named 2-3
tree is build such that the size of needed memory in level i+1 is
about twice of that in level i. However, it is impractical to find
in the market external SRAMs with exact needed sizes. Due to
this fact, it is hard to avoid memory waste when using 2-3 tree-
based routers and the memory utilization ratio is usually low.

In our proposed architecture, the disjoint prefix set can be
stored in external TCAMs without any order constraints. As a
result, a disjoint prefix set can be mapped into a TCAM until it
becomes full. Multiple external TCAMs can be cascaded to
store more prefixes and each of those TCAMs can achieve a
memory utilization ratio of 100% except the last TCAM. We
should reserve enough empty space in the last one for further
updating. Therefore, memory waste can be avoided.
Additionally, the memory utilization among on-chip SRAMs in
FPGA can be well balanced using the scheme proposed in [10].

V. DISCUSSIONS

A. Dual Pipelines

The SRAMs in Xilinx FPGA[20] are dual port. A read or
write operation can be performed on each port alternatively. In
this paper, one port of the SRAM is dedicated to read
operations (lookups) and the other port is dedicated to write
operations (updates). In such a pipeline with separate lookup
and update paths, IP lookups and route updates can run
simultaneously without any collision. Therefore, route updates
have zero impact on lookups. However, by using each port of
the SRAM both for lookups and updates, one can build true
dual pipelines[18]. In dual pipelines even though route update
may disrupt the lookup process in the same pipeline, it has no
impact on the lookup process in the other pipeline. Therefore,
the final forwarding performance of dual pipelines is much
higher than the performance of a pipeline with separate lookup
and update paths. However, we still choose the pipeline with
separate lookup and update paths in our hybrid architecture for
two reasons:

First, the forwarding performance of the pipeline with
separate lookup and update paths is sufficient in our hybrid
architecture. Generally, the clock frequency of a SRAM is
higher than that of a TCAM. Given a typical SRAM with a
clock frequency of 400 MHz and a typical TCAM with a clock
frequency of 200 MHz, a SRAM-based pipeline can achieve a
maximum throughput of 400 MLPS and a TCAM-based engine
can achieve up to 200 MLPS. Obviously, in a hybrid
architecture composed of a TCAM-based lookup engine and a
SRAM-based pipeline operating in parallel, the final lookup
performance is determined by the TCAM-based engine and it’s
not necessary to devise dual pipelines in the SRAM part.

Second, the implementation of dual pipelines is more
complicated than that of the pipeline with two separate paths.
In dual pipelines, each pipeline should be switched for lookups
or updates. However, in the pipeline with two separate paths,
the lookups and the updates run separately without any
collision. Obviously, the two-path pipeline is simpler.

B. Memory Footprint

Although external TCAMs can be fully utilized and only
90% of the prefixes of the FIBs should be stored in TCAMs,
compact data structures should be further developed in order to
achieve a small memory footprint in a TCAM. For example, an
existing large TCAM can accommodate up to 1024K 40-bit
entries[21]. However, there are about 300K leaf prefixes in a
single FIB (see TABLE I), which means that only leaf prefixes
of about three FIBs can be accommodated in such a large
TCAM. Therefore, the leaf prefixes stored in the TCAM should
be compacted to support more FIBs in the context of virtual
routers.

The compactions can be performed in two ways. First, leaf
prefixes within a single FIB can be compacted. For example, if
two leaf prefixes have the same parent node in a trie, and they
have the same next hop, they can be replaced by their parent
prefix. Second, leaf prefixes of different FIBs can be
compacted. For example, if a prefix 110* with a VID 0 and a
prefix 110* with a VID 1 coexist in the TCAM, and they have
the same next hop, they can be merged to a single entry *110*.
Indeed this issue exists for all TCAM management techniques.

Memory balancing[8-10] and compact data structure like
trie merging[13-14] can also be applied to the memory of on-
chip SRAMs in FPGA to achieve a small memory footprint.

It’s noteworthy that a good balance between memory
footprint and update overhead during compacting is mandatory,
since in the extreme, a very compact data structure may
drastically increases the update overhead.

As mentioned before, external SRAMs can also be used to
extend the total memory size of on-chip SRAM-based pipelines.
Each external SRAM should be over-provisioned and memory
waste couldn’t be avoided. However, a SRAM usually has a
higher density than a TCAM. We will aim into studying which
kind of external memories can support more FIBs after
compaction in the near future.

C. Multi-bit Trie

In this paper, we use a 1-bit trie for partitioning a FIB into
the disjoint leaf prefix set and the overlapping prefix set.
However, a multi-bit trie can be chosen to represent the final
small overlapping trie before mapping it into the on-chip
SRAM-based pipeline. However, the use of a multi-bit trie
brings new problems.

In order to transform the FIB to an equivalent set with the
allowed prefix length, prefix expansion is needed when using a
multi-bit trie. However, prefix expansion may lead to node
duplication [22]. Therefore, a single route update may need
more than one write access on a single pipeline stage and for a
complete route update, multiple write bubbles may be required.
In order to avoid incorrect longest prefix matching, no IP
lookups are allowed to be injected into the pipeline until all the
write bubbles belonging to a single route update are applied.
Hence, route updates may lead to disruption to the IP lookup
process and zero impact on the lookup process can no longer be
guaranteed. This explains why we are not using the multi-bit
trie to represent the overlapping prefix set.

8

VI. CONCLUSIONS

In this paper, we mainly focus on the FIB update challenge
for high-speed routers. An efficient trie partitioning scheme is
proposed to convert a 1-bit trie into a large disjoint leaf prefix
set and a small overlapping trie. This partitioning is motivated
by the observation that more than 90% of prefixes in the 1-bit
trie are naturally disjoint leaf prefixes and can be easily
mapped into external TCAM-based lookup engine. Thus, entry
movements can be totally avoided and no prefix is duplicated,
which results in one single write access for each update of a
leaf prefix. Additionally, the memory management of TCAMs
can be significantly simplified since a prefix in a disjoint prefix
set can be stored in any TCAM available location. Therefore,
we do not need to reserve empty space in each TCAM at
special locations, and thus achieve a utilization ratio of TCAMs
close to 100%. In other words, we only need to reserve some
empty space in the last TCAM for further updating, and the
remaining TCAMs can be fully utilized.

After removing the leaf nodes, the remaining trie can be
further trimmed resulting in an overlapping trie that contains
only about 12% of the nodes in the original trie. This
significantly reduces the memory requirement of on-chip
SRAM-based pipeline. In the context of virtual routers,
multiple such small remaining tries can be accommodated in
on-chip SRAMs of an existing FPGA. Moreover, we exploit
the dual port feature in Xilinx FPGA to devise a SRAM-based
pipeline with separate lookup and update paths. Lookups and
updates can be performed simultaneously without any collision.
Therefore, route updates have zero impact on our dual-path
SRAM-based pipeline.

The fast incremental updating algorithms show that, in any
case, one route update in the original 1-bit trie leads to at most
one write access in our TCAM-based lookup engine, and at
most one write bubble in our SRAM-based lookup pipeline (we
can ignore the update overhead in our SRAM-based lookup
pipeline since updates have zero impact on lookups). Therefore,
we only need to lock the TCAMs for the time of at most one
write access during each updating. This update overhead is
significantly lower than that of previous work.

In the context of virtual routers, a virtual router ID is
assigned to each FIB and a simple merging scheme is applied.
Then, the hybrid architecture can be well scaled to support
virtual routers. Meanwhile, the update overhead of each route
update keeps the same as that in a single router.

The performance evaluation shows that the throughput is
sufficient for 100Gbps high-speed routers, the update overhead
is significantly lower than that of previous work, and the
utilization ratio of most external high-capacity memories can
be up to 100%. While the memory consumption of our
proposed scheme is reasonable, we will study, as future work,
compact data structures that can be applied to improve memory
efficiency in both engines, while retaining the fast update
property of the architecture. Another direction of further
research is relative to the fact that elements in leaf prefix set are
disjoint. This property can be exploited to design efficient
hash-based approaches on the disjoint leaf prefix set and
replace costly and power-hungry TCAMs.

REFERENCES

[1] W. R. Jiang, Q. B. Wang, and V. K. Prasanna, "Beyond TCAMs:
An SRAM-based parallel multi-pipeline architecture for terabit IP
lookup," 27th Ieee Conference on Computer Communications
(Infocom), Vols 1-5, pp. 2458-2466, 2008.

[2] Z. J. Wang, H. Che, M. Kumar, and S. K. Das, "CoPTUA:
Consistent policy table update algorithm for TCAM without
locking," Ieee Transactions on Computers, vol. 53, pp. 1602-1614,
Dec 2004.

[3] D. Shah and P. Gupta, "Fast updating algorithms for TCAMs,"
IEEE Micro, vol. 21, pp. 36-47, 2001.

[4] G. Wang and N. F. Tzeng, "TCAM-based forwarding engine with
minimum independent prefix set (MIPS) for fast updating," in
ICC'06: 2006 IEEE International Conference on Communications,
Vols 1-12, pp. 103-109, 2006.

[5] V. Srinivasan and G. Varghese, "Fast address lookups using
controlled prefix expansion," Acm Transactions on Computer
Systems, vol. 17, pp. 1-40, Feb 1999.

[6] S. Sikka and G. Varghese, "Memory-efficient state lookups with
fast updates," Computer Communication Review, vol. 30, pp. 335-
347, Oct 2000.

[7] W. Jiang and V. K. Prasanna, "Towards practical architectures for
SRAM-based pipelined lookup engines," in INFOCOM IEEE
Conference on Computer Communications Workshops, pp. 1-5,
2010.

[8] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, "A tree based
router search engine architecture with single port memories," in
ISCA'05: Proceedings of the 32nd International Symposium on
Computer Architecture, pp. 123-133, 2005.

[9] S. Kumar, M. Becchi, P. Crowley, and J. Turner, "CAMP: fast and
efficient IP lookup architecture," in ANCS'06: Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking and
communications systems, San Jose, California, USA, pp. 51-60,
2006.

[10] W. Jiang and V. K. Prasanna, "A memory-balanced linear pipeline
architecture for trie-based IP lookup," 15th Annual IEEE
Symposium on High-Performance Interconnects, Proceedings, pp.
83-90, 2007.

[11] A. Basu and G. Narlikar, "Fast incremental updates for pipelined
forwarding engines," in IEEE INFOCOM 2003, pp. 64-74.

[12] J. Hasan and T. N. Vijaykumar, "Dynamic pipelining: Making IP-
lookup truly scalable," in Proc. ACM SIGCOMM 2005, pp. 205-216.

[13] J. Fu and J. Rexford, "Efficient IP-address lookup with a shared
forwarding table for multiple virtual routers," in CoNEXT'08:
Proceedings of the 2008 ACM CoNEXT Conference, Madrid, Spain,
pp. 1-12, 2008.

[14] H. Y. Song, M. Kodialam, F. Hao, and T. V. Lakshman, "Building
scalable virtual routers with trie braiding," in INFOCOM'10:
Proceedings of the 29th conference on Information communications,
pp. 1-9, 2010.

[15] The BGP Instability Report. Available:
http://bgpupdates.potaroo.net/instability/bgpupd.html

[16] H. Kun, X. Gaogang, L. Yanbiao, and A. X. Liu, "Offset addressing
approach to memory-efficient IP address lookup," in IEEE
INFOCOM Mini-Conference, pp. 306-310, 2011.

[17] G. Xie, et al. PEARL: A programmable virtual router platform.
IEEE Comm. Magazine, Special Issue on Future Internet
Architectures: Design and Deployment Perspectives, 2011.

[18] H. Le, T. Ganegedara, and V. K. Prasanna, "Memory-efficient and
scalable virtual routers using FPGA," in FPGA'11: Proceedings of
the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, Monterey, CA, USA, pp. 257-266, 2011.

[19] RIS Raw Data. Available: http://www.ripe.net/data-
tools/stats/ris/ris-raw-data

[20] Xilinx FPGA. Available: http://www.xilinx.com/
[21] NetLogic, "NL9000 RA knowledge-based processors," 2009.
[22] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, "Survey and

taxonomy of IP address lookup algorithms," Ieee Network, vol. 15,
pp. 8-23, Mar-Apr 2001.

