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All that glitters is not gold is one of those universal truths that also applies to 

hydrology, and particularly to the issue of model calibration, where a glittering 

mathematical optimum is too often mistaken for a hydrological optimum. This 

commentary aims at underlining the fact that calibration difficulties have not 

disappeared with the advent of the latest search algorithms. While it is true that 

progress on the numerical front has allowed us to quasi-eradicate miscalibration 

issues, we still too often underestimate the remaining hydrological task: screening 

mathematical optima in order to identify those parameter sets which will also work 

sufficiently outside the calibration period. 
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Model calibration and gold mining: an analogy 

The calibration process can be looked at as a task of sorting potential parameter 

sets, just as gold mining can be looked at as one of sorting minerals. To implement 

this sorting, calibration requires a method (often a search algorithm) and a specific 

objective function. Similarly, gold miners search river sediments for gold flakes: they 

use a shovel to dig sand, a classifier to separate stones from gold-bearing sand, and 

a pan to separate heavy minerals from the sand. 

In the search for gold, the miner may be lured by fool's gold, i.e. pyrite crystals which 

glitter like gold but are not by any means of the same worth. Similarly, the hydrologist 

may be lured by parameter sets which shine over a short calibration period, but prove 

dull when judged either over a longer so-called calibration period, or a different 

validation period. These parameter sets can be considered analogous to fool's gold. 

A hydrological-optimum is what we as hydrologists wish to identify through 

calibration. It is not simply a parameter set which allows maximizing one or more 

objective functions over the calibration period: it is one that ideally would permit 

representing the catchment under all possible calibration periods encompassing 

climate forcings of interest, i.e. one allowing extrapolation. However, search 

algorithms only provide numerical optima at best, and their level of optimality is, by 

definition, only guaranteed for the calibration period.  
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Numerical MIScalibration and hydrological OVERcalibration 

Let us now detail the distinction between the two main types of calibration problems. 

Calibration consists of sorting alternative parameter sets, to maximize one 

(sometimes several) numerical criteria (sometimes qualitative criteria and/or the 

expert opinion of the modeller are also used). Two distinct reasons can explain that a 

promising parameter set (i.e. one showing a good fit over the calibration period) 

proves disappointing in the validation phase: miscalibration and overcalibration. 

 miscalibration occurs where the search algorithm has failed to localize the exact 

mathematical optimum. This problem is often referred to as 'being trapped around 

a secondary optima'. In our mining example, this is analogous to mistaking sand 

for gold. 

 overcalibration occurs when one has indeed identified the mathematically 

optimum parameter set over the calibration period, but it is one which does not 

remain mathematically optimum over different periods. In our mining example, 

this is analogous to mistaking fool's gold for true gold. 

Classical examples of mis- and over- calibration are widespread in the hydrological 

literature. Already in their famous study, Johnston and Pilgrim (1973) related the 

numerous disappointments caused by an extensive search for the optimum values of 

the parameters of Boughton's model. They listed all the problems which have since 

been recognized as the major impediments to the calibration of hydrological models 

(discontinuities of the response surface, multiplicity of equifinal solutions, 

unidentifiability, lack of robustness of calibrated parameter values…). More recently, 

Berthet et al. (2010) have showed how a small number of large events can have a 
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major impact on the criterion value and therefore on the identification of the optimum 

parameter set. 

 

Causes of overcalibration 

While miscalibration is essentially a numerical problem, overcalibration is a purely 

hydrological one, which manifests itself for several reasons (see e.g. Bergström, 

1991; Sorooshian and Gupta, 1995; Sorooshian et al., 1983; Sorooshian and Gupta, 

1983): 

 Because of the presence of noise: 

During the calibration process, the model may not only digest the time-invariant 

specificities of catchment behaviour but also some of the time-varying noise existing 

in the observed time series. As a consequence, the parameter set identified by 

calibration may also be representative of the characteristics of the noise and thus 

lack robustness.  

 Because of lack of information: 

We never observe the catchment over the whole range of possible climatic situations. 

Our calibration time-period is always shorter than we wished it were. Some of the 

functions of the catchment and hence the model may thus not be significantly 

activated during this period. As an extreme example, consider the parameters of a 

snow routine, part of a generic hydrological model. For many catchments in the 

warmer part of the world, a significant snow cover will not occur every year. Thus, if 

calibrated on a time period lacking sufficient snowfall, the parameters of the snow 
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routine will take erratic values, and be poorly representative of the long-term 

behaviour of the catchment. In the systems theory literature, this situation is referred 

to as an 'insufficient excitation of the system's modes', which is known to disturb the 

model identification process (Ljung, 1998). 

 Because of structural problems: 

The structure of the hydrological model has an impact on the above-mentioned 

problems. A model of a complex non-engineered system is always an imperfect 

representation, and there is no alternative to the structure containing a certain level 

of aggregation of physical processes as well as of time and space scales. Thus, it 

would be unrealistic to expect to escape parameter identification problems entirely. 

At the limit, however, if provided with a sufficiently long time series that allows the 

activation of all of its processes, the ideal model should have optimal parameters 

independent from the calibration period. 

Although none of our models is 'ideal' in that sense, we know that some are less 

ideal than others: the fact that structural problems are widespread does not mean 

that we cannot avoid them in large part by choosing a sound model structure (Michel 

et al., 2006)! A particular attention should be given to the number of parameters 

(Perrin et al. 2003). Jakeman and Hornberger (1993) suggested that the maximum 

number of parameters that can usually be identified is much lower (4-6) than what is 

found in most hydrological models. 
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Possible solutions to avoid overcalibration: screening 

mathematical optima to retain hydrological optima 

Hydrologists have long been looking for ways to avoid overcalibration and identify 

those mathematical optima that are also hydrologically optimal. The proposed 

measures, which we will now discuss, can roughly be grouped in four classes (Figure 

1). Remember that we purposely exclude approaches seeking to fight secondary 

optima, because they are not strictly speaking a way to deal with overcalibration, but 

rather a way to address miscalibration. 

1. Changing the objective function used in calibration  

Some authors have proposed addressing the overcalibration problem by changing 

the objective (or cost) function on which optimization is conducted. Although from a 

rigorous statistical point of view model calibration should include an analysis of the 

structure of model errors, most modellers trust standard criteria based on squared 

errors (typically the RMSE). Different objective functions have been proposed in the 

search for robustness (Schoups and Vrugt, 2010; Sorooshian et al., 1983; Thyer et 

al., 2009; Yang et al., 2007). Oudin et al. (2006) discussed the merit of the Nash-

Sutcliffe criterion computed on a square root transformation of flows, which they 

compared with a multi-objective calibration scheme, while Gupta et al. (2009) 

discussed a decomposition of the Nash-Sutcliffe criterion, proposing an alternative 

that should give more robust parameter estimates. Several authors also advocated 

multi-objective strategies, about which a large literature now exists (see e.g. 

Efstratiadis and Koutsoyiannis, 2010; Vrugt et al., 2003), or empirical objective 
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functions aimed at reproducing human expertise (Ehret and Zehe, 2011; Ewen, 

2011). 

2. Ensemble approaches: replacing the estimation of an optimum value by 

the estimation of a statistical distribution 

As an alternative approach to the difficulties of model parameterisation, several 

hydrologists have suggested abandoning the concept of optimal value, and 

estimating either a family of parameter sets (Bardossy and Singh, 2008; Beven, 

1993) or a statistical distribution of possible parameter values (see e.g. Thiemann et 

al., 2001; Thyer et al., 1999). This approach considers parameter sets as random 

variables that can be characterised by a distribution, which makes sense from a 

statistical point of view. Note however that this approach, often Bayesian, will not 

solve all problems: equifinal parameter sets will not disappear… they will just 

transmute into a characterisation of the parameters as multi-modal distributions! 

3. Guided calibration approaches: looking outside of the rainfall-runoff time 

series for complementary constraints 

Quite surprisingly, promoters of guided calibration approaches have been coming 

from two apparently opposite directions:  

 on one side, experimentalists (see e.g. Seibert and McDonnell, 2002) initially 

argued that model parameterisation should only be based on physical field 

measurements. Facing the disappointingly low efficiency of no-calibration 

strategies, they advocated the use of 'soft data' (qualitative information that 

could not be used directly in quantitative terms) to at least guide the calibration; 



 

Hydrol. Process. 26, 2206–2210 (2012) 

Published online 20 March 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.9264 

 

8

 on the other side, one finds the operationally-focused hydrologists interested in 

making the calibration task more robust, and in better extracting the information 

found in the calibration data. Among them, Koren et al. (2003) and Leavesley et 

al. (2003) argued that a good means to avoid overcalibration with distributed 

models was to force some a priori level of spatial and physical consistency into 

parameter estimates (for a lumped model, this is somewhat equivalent to the 

concept of regional calibration, see e.g. Fernandez et al., 2000; Parajka et al., 

2007). Kuzmin et al. (2008) took a position against global optimization 

algorithms and suggested a local calibration approach, starting from physically-

relevant a priori parameter guesses. Perrin et al. (2008) proposed a quite similar 

approach, with a parameter search restricted to a library of previously obtained 

parameter sets. 

Note that guided calibration approaches can naturally be given a Bayesian 

interpretation, with the prior parameter distribution being seen as the main guide. 

4. Questioning of the model structure 

Approaches consisting of questioning the structure of a model are more difficult to 

find in the literature: this is something mostly done in the initial stages of model 

development and modellers thus rarely write about it. It is, however, sometimes 

mentioned en passant, i.e. for example by Johnston and Pilgrim (1973) who, at the 

very end of their calibration study, mentioned that one of the solutions to the 

numerous problems they had listed could be to 'review the structure of the model' (p. 

135). Jakeman and Hornberger (1993) insisted on our unavoidably limited capacity to 

identify parameters, suggesting that it could be impossible to identify more than 4 to 



 

Hydrol. Process. 26, 2206–2210 (2012) 

Published online 20 March 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.9264 

 

9

6 parameters in a rainfall-runoff model. More recently, some hydrologists have been 

raising the question of the responsibility of model structures for the existence of 

secondary optima (Kavetski and Clark, 2010; Kavetski and Kuczera, 2007), 

suggesting that before casting the stone on the optimization algorithm, modellers 

should improve the numerical representation of their model, while others have 

argued for adapting the model structure to each new catchment on which a model on 

which a model is to be applied to (Fenicia et al., 2008). 

A softer way to question model structure consists in discussing its strengths and 

weaknesses, and looking for an explicit characterization of the conditions under 

which a model performs adequately and poorly. Wagener et al. (2003) have tried it 

with their 'dynamic identifiability analysis' method that depicts parameter variations 

through time as an aid to model improvement. Young (2011) has stressed the virtues 

of recursive time series methods for indicating model parameter variation and hence 

model structure inadequacy. It seems, however, that one can go a long way by first 

identifying what a model is good at and what it is not so good at. This would involve 

not only assessing which parts of the hydrograph are predicted well but also how the 

model performs under different types of conditions (an interesting package to help in 

this aim is presented by (Andrews et al., 2011): it allows separation of a hydrologic or 

rainfall time series into events and establishing model performance for different types 

of events. 
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Figure 1: Possible solutions to miscalibration and overcalibration problems in 
hydrological modelling 

 

Perspectives 

This commentary has attempted to highlight the difference existing between 

miscalibration and overcalibration in hydrological modelling. It has reviewed some of 

the major solutions, successively proposed over the last few decades. For many 

years, hydrologists have been focusing on the miscalibration issue, and research has 

focused mostly on numerical methods. One could say that secondary optima have 

sometimes been the trees for which many hydrologists have been unable to see the 

forest. Today, miscalibration has been solved for most models, and the effect of 

overcalibration is more apparent. Research is still needed on the solutions listed 

above, either separately or in combination, in order to ensure that our 

mathematically-optimal parameter sets are also hydrologically-optimal. 
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