
HAL Id: hal-00737684
https://hal.science/hal-00737684v2

Submitted on 2 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polyak type equations for virtual arrow diagram
formulas in the annulus

Arnaud Mortier

To cite this version:
Arnaud Mortier. Polyak type equations for virtual arrow diagram formulas in the annulus. Journal of
Knot Theory and Its Ramifications, 2013, vol. 22 (7), pp.1350034, 21. �10.1142/S021821651350034X�.
�hal-00737684v2�

https://hal.science/hal-00737684v2
https://hal.archives-ouvertes.fr


Polyak type equations for virtual arrow diagram

invariants in the annulus

Arnaud Mortier

mortier@math.ups-tlse.fr

May 2, 2013

Abstract

We describe the space of arrow diagram formulas (defined in [13]) for virtual
knot diagrams in the annulus R × S1 as the kernel of a linear map, inspired
from a conjecture due to M. Polyak. As a main application, we slightly improve
Grishanov-Vassiliev’s theorem for planar chain invariants ([6]).
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1 Introduction

Gauss diagrams were introduced in knot theory for the purpose of extracting
new combinatorial data from the widely studied knot diagrams. On one hand it
gave rise to a generalization of knot theory, known as virtual knot theory [7]. On
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another hand, it allowed a new point of view on Vassiliev’s finite type invariants
(see [13], [4], [2]). Several approaches have been used in order to define finite
type invariants for virtual knots. Vassiliev-Kauffman’s invariants [7] are directly
inspired from the axiomatic definition of Vassiliev invariants given by J.Birman
and X.-S.Lin [1], while the approach of M.Goussarov, M.Polyak and O.Viro
(GPV, [5]) is inspired from the representation of Vassiliev invariants due to
Goussarov [4].

Another direction of investigation is the approach of T.Fiedler, who deco-
rates Gauss diagrams with homological information when the knot diagrams
live in a surface that is more complicated than the sphere or the plane.

Here we focus on homogeneous GPV’s invariants for virtual knot diagrams
in the annulus.

• The annulus, because it has an abelian fundamental group. This property
allows one to prove that Fiedler’s decorated Gauss diagrams encode the
knot diagrams faithfully – i.e. with no loss of information [8].

• Homogeneous GPV invariants, because as we will show it is the good
framework to consider a conjecture of M.Polyak, who predicts the exis-
tence of a linear map whose kernel consists of Gauss diagram invariants.

Every result in this paper can be actually extended to the case of an arbitrary
surface replacing the annulus (except for Theorem 3.6 where the surface needs
to be orientable) but it requires more complicated combinatorial tools. It will
be done in a forthcoming paper.

Acknowledgements

The author thanks Thomas Fiedler for introducing him to the subject of Gauss
diagram invariants, and for useful remarks on the presentation. He also ac-
knowledges useful corrections from Victoria Lebed, and thanks the referee for
careful reading and lucid remarks.

2 Algebraic structures in Gauss diagram invari-

ants theory

Warning. Though every Gauss or arrow diagram in this article comes with
homological markings due to the solid torus framework, we will often refer to
works where this is not the case, since many notions do not depend on this.
Though it is not always explicitly mentioned, everything depends on the value
of a fixed integerK which is the global marking of every diagram (see section 2.1
below).

2.1 Gauss diagram spaces

Following T. Fiedler ([2], [3]) we define a (decorated) Gauss diagram (of degree n)
as an oriented circle marked with an integer, and n oriented chords (the arrows,
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which are abstract, i.e. only the endpoints matter), each one equipped with a
sign (also writhe) and an integer (its marking), up to oriented homeomorphisms
of the circle. It is to be understood that the 2n endpoints of the arrows are
distinct. It is proved in [8] that such Gauss diagrams are in 1-1 correspondence
with virtual knot diagrams in the annulus, up to usual and virtual Reidemeister
moves. We denote by Gn (resp. G≤n) the Q-vector space freely generated by
Gauss diagrams of degree n (resp. ≤ n), and set G = lim

−→
G≤n.

To the well-known Reidemeister moves for knot diagrams correspond R-
moves for Gauss diagrams (see Fig.1 – as usual, the unseen parts must be the
same for all of the diagrams that belong to a given equation.). Beware that
these moves depend on the homology class K of the considered knot diagrams.
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Figure 1: R-moves for decorated Gauss diagrams with global marking K

We prove the following:

Theorem 2.1. The equivalence class of a Gauss diagram associated with a knot
diagram, modulo the R-relations of Fig.1, is a complete invariant for virtual
knots with homology class K.

There is a linear isomorphism I : G≤n → G≤n that associates to a Gauss
diagram the formal sum of its subdiagrams (see [5]). A Gauss diagram formula
is a knot invariant of the form

G 7→ w(G, I(G)), (1)

where G ∈ G, G is the Gauss diagram associated with a knot projection and w
is an orthogonal scalar product with respect to the basis of G given by Gauss
diagrams. Since this theory was born, mainly two scalar products have been
used, namely:

• The orthonormal scalar product, which we shall denote by (, ). It is used
notably in [5] and [2].
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• Its normalized version 〈, 〉, defined by

〈G,G′〉 := |Aut(G)| · (G,G′), (2)

where Aut(G) is the set of symmetries of G, i.e. rotations that keep it
unchanged (it is a subgroup of Z/2n).

Roughly speaking, 〈, 〉 counts parametrized configurations of arrows, while (, )
counts unordered sets of arrows. Notice that 〈, 〉 is still symmetric (hence a
scalar product). Obviously, the two definitions coincide when one deals with
long knots (and thus based Gauss diagrams).

The second version was already defined in [13] (though their Theorem 2 is
stated in terms of (, )), but it was O.P.Östlund who first formally stated that
〈, 〉 is more convenient to get nice properties when dealing with Gauss diagrams
with symmetries ([9], sections 2.2 and 2.4). The results that we present here
confirm this fact.

The pairing 〈, 〉 is also used in [6], and implicitly in [15].

2.2 Arrow diagram spaces

Take a Gauss diagram G and forget the signs associated with the arrows. We
call what remains an arrow diagram (see [11]; beware that the terminology in
[5] is different: arrows in arrow diagrams are signed). Arrow diagram spaces
An, A≤n and A, and the pairings (, ), 〈, 〉 are defined similarly to the previous
section.

The raison d’être of this notion lies in the following map: take an ar-
row diagram A ∈ An and number its arrows from 1 to n. Then any map
σ : {1, . . . , n} → {±1} defines a Gauss diagram Aσ. Let sign(σ) be the product
of all the σ(i)’s. We put:

S(A)
def
=

∑

σ∈{±1}n

sign(σ) ·Aσ. (3)

S extends linearly into a map An → Gn. A Gauss diagram formula that lies in
the image of this map is called an arrow diagram formula. A lot of the explicit
formulas that have been found so far are actually arrow diagram formulas – as
well in the framework of knots in S3.

Considering this map is relevant only in the context of the 〈, 〉 pairing (2).
Indeed, one may define (as most authors do) brackets ((A,G)) and 〈〈A,G〉〉, with
A ∈ A and G ∈ G in the following way: for every subdiagram (i.e. unordered
set of arrows) of G that becomes A after one forgets its signs, form the product
of these signs. Sum up all these products, and call the result ((A,G)). On the
other hand, put 〈〈A,G〉〉 := |Aut(A)| · ((A,G)). Then, of the naturally expected
relations

((A,G))
?
= (S(A), I(G)) and

〈〈A,G〉〉
?
= 〈S(A), I(G)〉 ,
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only the second one holds true, while the first one needs the assumption that A
has no symmetries (see Lemma 4.1).

A special interest arises in arrow diagram formulas in the case of virtual knot
theory, as we shall see in the next subsection.

2.3 Virtual knot invariants

Virtual knot theory arises as the natural “completion” of classical knot theory
with respect to Gauss diagrams. Indeed, while a knot diagram may be repre-
sented by a Gauss diagram (with corresponding Reidemeister moves on Gauss
diagrams), a virtual knot diagram actually is a Gauss diagram. New (“virtual”)
crossings are used as an artefact to draw planar representations of them, and
the additional virtual Reidemeister moves are precisely those planar moves that
do not affect the underlying Gauss diagram (see [7]).

2.3.1 Classical vs virtual invariants

One should be extremely cautious about the fact that the so-called “real” (or
classical) Reidemeister moves for Gauss diagrams may not always be actually
performed: for instance, two arrows may be added by Reidemeister II in the
real settings only if the corresponding arcs of the knot diagram face each other
– which seems not easy to check on the Gauss diagram.

As a consequence, the framework introduced previously seems mostly com-
fortable to look for virtual knot invariants.

A natural related question is whether a given Gauss diagram formula for clas-
sical knots always defines an invariant for virtual knots by the same equation (1).
The answer is negative, the simplest example is the formula for the invariant
v3 given by [13] (Theorem 2), which we reproduce with an example of non
invariance on Fig.2.
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Figure 2: Polyak-Viro’s formula for v3 is not a virtual invariant
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2.3.2 Homogenous virtual invariants

Definition 2.2. For each n ∈ N, there is an orthogonal projection πn : G → Gn

with respect to the scalar product (, ). For G ∈ G, there is some integer n such
that G ∈ G≤n \ G≤n−1. The principal part of G is defined by πn(G). G is called
homogeneous if it is equal to its principal part.

Lemma 2.3. Let G ∈ G be a Gauss diagram formula for virtual knots. Then
its principal part lies in the image of the map S defined by (3), i.e. can be
represented by a (homogeneous) arrow polynomial.

Corollary 2.4. Any homogeneous Gauss diagram formula for virtual knots is
an arrow diagram formula.

The above result in the context of knot theory in the sphere is contained in
the lines [5, section 3.1], and the proof in our context contains no new ideas.
What is new is that the converse is also true, in some sense:

Theorem 2.5. Let IA≤n be the space of arrow diagram formulas for virtual
knots of degree no greater than n. Then:

IA≤n =
⊕

k≤n

(IA≤n ∩ Ak) .

2.4 The Polyak algebra

A Gauss sum G ∈ G defines a virtual knot invariant if and only if the function
〈G, I(.)〉 is well defined on the quotient of G by Reidemeister moves on Gauss
diagrams. Hence it is interesting to understand the image of that subspace
under the map I with a simple family of generators. This is the idea that led
the construction of the Polyak algebra ([11, 5]) in the classical case. We adapt
this construction and define P as the quotient of G by the set of relations shown
in Fig.3, which we call P1, P2 and P3 (also 8T ) relations for Gauss diagrams.

The following theorem repeats Theorem 2.D from [5] – the proof is similar.

Theorem 2.6. The map I induces an isomorphism G \R → G \P
def
= P, where

R stands for the Reidemeister relations on Gauss diagrams. More precisely, I
induces an isomorphism between Span(Ri) and Span(Pi), for i = 1, 2, 3.

2.5 Based and degenerate diagrams

A based Gauss diagram is a Gauss diagram together with a distinguished (base)
arc on the circle, i.e. a region between two consecutive ends of arrows. Based
arrow diagrams are defined similarly. The corresponding spaces are denoted
by G• and A•, in reference to the dot that we use in practice to pinpoint the
distinguished arc.

A degenerate Gauss diagram (with one degeneracy) is a classical Gauss dia-
gram in which one of the 2n arcs of the base circle has been shrunk to a point.
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Figure 3: Relations defining the Polyak algebra in the solid torus framework

When the arc was bounded by the two endpoints of one and the same arrow, the
degenerate diagram is decorated with the datum of which endpoint was before
the other. In this way, there is a natural 1-1 correspondence between based
and degenerate diagrams. The spaces of degenerate diagrams are called DG and
DA respectively. The latter is meant to be quotiented by the so-called triangle
relations, shown in Fig.4. The quotient space is denoted by DA/∇.

This notion in the context of S3 is due to M. Polyak, and is part of his
conjecture which we discuss in the next section.
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2.6 Polyak’s conjecture

During Swiss Knots conference in 2011, Michael Polyak gave a talk in which
he conjectured that Gauss diagram formulas for knots in S3 were the space of
solutions to an equation of type d(·) = 0 with d valued in DA/∇. We shall not
give a formal statement of this here, since it was never written by its author,
but there is a video of the talk available online ([10]). The map d from that
conjecture has the property of being homogeneous:

∀G ∈ G, [d(G) = 0 ⇐⇒ ∀n ∈ N, d ◦ πn(G) = 0] .

It follows from 2.3.2 that, in the virtual setting, the best that we may expect
from such a map is to detect arrow diagram formulas. For this reason, from now
on we mostly restrict our attention to this kind of invariants. We construct a
map d in that framework, that differs fromM.Polyak’s one by the signs in front of
the contributing diagrams. Then we prove that its kernel encodes Reidemeister
III invariance, while Reidemeister I and II are already very easy to check.

Remark 2.7. Based on our understanding of the conjecture, Polyak-Viro’s for-
mula for v3 (Fig.2) is a counterexample in the “classical” settings: it defines an
invariant of usual knots, but it does not have a trivial boundary, no matter how
the signs are chosen to compute it. Hence the present result seems to be the
best one can hope for.

3 Main results

3.1 A set of equations for virtual arrow diagram formulas

In this section we define a map d that will fit in some version of Polyak’s con-
jecture for virtual knots in the solid torus.
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Homogenous Polyak relations

Let G ∈ Gn. Then G satisfies the Pi relations (i.e. 〈G,Pi〉 = 0)) if and only
if it satisfies the homogeneous relations 〈G, πk(Pi)〉 = 0) for all k. These are

denoted by P1, P
(n−1),1
2 , P

(n−2),2
2 , P

(n−2),2
3 (or G6T ) and P

(n−3),3
3 (or G2T ) –

some examples are shown on Fig.5. The parenthesized numbers indicate in each
case how many arrows are unseen.
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Figure 5: Some homogeneous Polyak relations

Lemma 3.1. Let G ∈ G. Then G lies in the image of the map S if and only if

G satisfies all the homogeneous relations
〈

G,P
(n−1),1
2

〉

= 0.

Homogenous relations are also defined for arrow diagram spaces. This time
one should pay attention to signs, so we make a full list (Fig.6). We denote

them by AP1, AP
(n−2),2
2 , AP

(n−2),2
3 (or A6T ) and AP

(n−3),3
3 (or A2T ). The

above lemma explains why AP
(n−1),1
2 is useless (it writes 0 = 0).
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Let us mention here the following two crucial points in the proofs of Theo-
rems 2.5 and 3.6.

Lemma 3.2. For all n ≥ 3:

Span(AP
(n−3),3
3 ) ⊆ Span(AP

(n−2),2
3 ) ∪ Span(AP

(n−2),2
2 ).

Lemma 3.3. Let A ∈ A and let X be a name among P1, P
(n−2),2
2 , P

(n−2),2
3 ,

P
(n−3),3
3 . Then

A ∈ Span⊥(AX) ⇐⇒ S(A) ∈ Span⊥(X).

Defining the map d

Applying Theorem 2.6, Lemma 3.1 and Lemma 3.3, gives immediately:

Lemma 3.4. Let A ∈ A. Then the function 〈S(A), I(·)〉 defines an invariant
under Reidemeister I and II moves for virtual knots with homology class K if

and only if A satisfies all the relations 〈A,AP1〉 = 0 and
〈

A,AP
(n−2),2
2

〉

= 0.

This condition is easy to check with our naked eye, so we will be happy with
a map d which can only detect invariance under Reidemeister III.

Let A be an arrow diagram. We denote by •(A) ∈ A• the sum of all based
diagrams that one can form by choosing a base arc in A. The map d is first
going to be defined on based diagrams.

Definition 3.5. We say that a based diagram B• is nice if the endpoints of its
base arc belong to two different arrows.

If B• is not nice, then we set d(B•) = 0.
If B• is nice, then d(B•) is the degenerate diagram obtained from B• by

shrinking the base to a point, multiplied by a sign ǫ(B•) defined as follows. Put

η(B•) =

{

+1 if the arrows that bound the base arc cross each other
−1 otherwise

,

and let ↑ (B•) be the number of arrowheads at the boundary of the base arc.
Then

ǫ(B•) = η(B•) · (−1)↑(B•).

The map d is extended linearly to A•.
Finally, define:

d(A) = d(•(A)) ∈ DA \∇. (4)

An example is shown on Fig.7.
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Figure 6: The homogeneous arrow relations

Theorem 3.6 (Main Theorem). Let A ∈ A satisfy the conditions of Lemma 3.4.
Then the following are equivalent:

1. A is an arrow diagram formula for invariants of virtual knots.

2. d(A) = 0 modulo the triangle relations.

3. A ∈ Span⊥(A6T ).

This theorem gives a formal proof to the fact that the 〈, 〉 pairing enables
a uniformization of the formulas that depend on parameters: we shall see for
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instance that the degenerate cases of Grishanov-Vassiliev’s invariants need not
be treated separately. See also Proposition 2 from [3], where points (i) and (ii)
are actually the same formula, or the special case 2a = K in Theorem 3.10
below. Note that the requirement of R2 invariance is necessary with the present
settings – see Fig.8.

Remark 3.7. It is possible to give a simplicial interpretation of the above map
d, that makes it the first step towards a cohomology theory “à la Vassiliev”
[14, 15]. It will be done in a forthcoming paper.

3.2 Application to Grishanov-Vassiliev’s planar chain in-

variants

In [6], Grishanov-Vassiliev define an infinite family of arrow diagram formulas
for classical knots in M2 × R. Let us recall their construction.

Definition 3.8. A naked arrow diagram is an arrow diagram with every deco-
ration forgotten – as usual, up to oriented homeomorphism of the circle.

A naked arrow diagram is called planar if no two of its arrows intersect.
A chain presentation of such a diagram with n arrows is a way to number

its n + 1 internal regions from 1 to n + 1, in such a way that the numbering
increases when one goes from the left to the right of an arrow.

Let Un be the sum of all planar isotopy equivalence classes of chain presen-
tations of naked arrow diagrams with n arrows. Un is called the universal degree
n planar chain ([6], Definition 1).
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For i = 1, . . . , n+ 1, let γi ∈ Z \ {0}. Given a chain presentation of a naked
planar arrow diagram, and given such an ordered collection Γ, we construct an
arrow diagram by decorating each arrow with the sum of the γi’s whose index i
is located to the left of that arrow. The global decoration of the circle is set to
be the sum of all γi’s.

The element of An constructed that way from Un and Γ is denoted by ΦΓ

([6], Definition 2). Note that some of the summands in Un may lead to the same
element of An if some of the γi’s are equal; unlike Vassiliev-Grishanov, we do
not forbid that.

The arrow polynomial at the top of Fig.7 is the generic example for n = 2,
with Γ = (a, b − a,K − b).

Theorem 3.9. For any ordered collection of non-zero homology classes Γ =
(γ1, . . . , γn+1), the sum ΦΓ defined above enjoys the hypotheses of Theorem 3.6
and thus defines an arrow diagram formula for virtual knots.

This is an improvement of Theorem 1 from [6], since we remove the assump-
tion that Γ is unambiguous (i.e. here any of the γi’s may coincide), and we
show that ΦΓ is an invariant for virtual knots.

3.3 Some more computations

In practice, Theorem 3.6 gives a very easy means of checking that an arrow
polynomial defines a virtual invariant. On another hand, finding virtual invari-
ants when one has no clue of a potential formula demands to solve the system
of equations A6T .

We wrote a program to do this, and only a few results came, including the
generalized Grishanov-Vassiliev’s planar chain invariants, and the following:

Theorem 3.10. Let K ∈ Z. The arrow polynomial of Fig.9 defines an invariant
of virtual knots with homology class K for any parameter a ∈ Z \ {0}.

This seems to give a positive answer to T. Fiedler’s question about the
existence of N -invariants not contained in those from [3], Proposition 2.

On the other hand, the sparse landscape of results leads to think that most
arrow diagram invariants might have infinite length – i.e. live in the algebraic
completion of A, just like Fiedler’s N -invariants.

a 0

+

K−a

a

0 a

+

0a

+

a

0

Figure 9: An invariant of length 5 identically zero for closed braids

Notice that in case a = K, the formula has only 3 terms – but still defines
an invariant. We compute it for the family of knots K2i+1 drawn in Fig.10:

I5(K2i+1) = i(i+ 1).
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It proves that there is no general algebraic formula expressing I5 in terms of
the only invariants of degree 2 and finite length previously known (at least to
the author), namely Grishanov-Vassiliev’s length 3 invariant (Fig.7) – note that
this invariant is already present in [2] for nullhomologous knots (K = 0).

K
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+
+ 10

+
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1

10

0
+

+
+

+

K
5

Figure 10: K3 and K5

4 Proofs

Recall the notations from section 2.2.

Lemma 4.1. For all A ∈ A and G ∈ G, the following equality holds:

〈〈A,G〉〉 = 〈S(A), I(G)〉 .

The equality
((A,G)) = (S(A), I(G))

holds for all G if and only if A has no symmetries other than the identity.

Proof. Number the n arrows of A and fix a map σ0 : {1, . . . , n} → {±1}. The
group of symmetries of Aσ0 , Aut(Aσ0 ), identifies with a subgroup of Aut(A).
Also, the (abelian) group Aut(A) naturally acts on the set {±1}n. The orbit
of σ0 is the set of maps σ such that Aσ is equivalent to Aσ0 under planar
isotopies, and the cardinality of this orbit is the coefficient of Aσ in the linear
combination S(A). By definition, the stabilizer of σ0 is the image of the injective
map Aut(Aσ0) →֒ Aut(A), whence, if we set O to be the set of orbits:

S(A) =
∑

[σ]∈O

|Aut(A)|

|Aut(Aσ)|
Aσ.

It follows that for any G,

〈S(A), I(G)〉 = |Aut(A)|
∑

[σ]∈O sign(σ)(Aσ , I(G))

= |Aut(A)|((A,G))

= 〈〈A,G〉〉 .
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This proves the first equality as well as the “if” part of the last statement. For
the “only if” part, set G to be Aσ0 . Then:

(S(A), I(G)) =
∑

[σ]∈O sign(σ) |Aut(A)|
|Aut(Aσ)| (A

σ, I(G))

= sign(σ0)
|Aut(A)|

|Aut(Aσ0)| ,

while
((A,G)) = sign(σ0).

So one must have |Aut(A)| = |Aut(Aσ)| for all σ, which can be true only if
|Aut(A)| = 1. Indeed, if ρ ∈ Aut(A) \ {Id}, pick an arrow α of A such that
ρ(α) 6= α and choose any σ such that σ(α) = 1 while σ(ρ(α)) = −1. Necessarily
ρ /∈ Aut(Aσ), so that |Aut(Aσ)| < |Aut(A)|.

Proof of Lemma 3.2. Figs.11 and 12 show eight A6T relations, where it is as-
sumed that the unseen parts are identical in all 48 diagrams (the dashed arrows

are dashed only for the sake of clarity). Up to P
(n−2),2
2 , the combination

(1) + (2) +
1

2
[(3) + (4)− (5)− (6)− (7)− (8)]

gives the top A2T relation shown on Fig.6. To get the other half of Span(A2T ),
just reverse the arrows in the previous equation, and change their markings from
x to K − x.

Proof of Lemma 2.3. Let Gd be the principal part of G. Since G is a Gauss
diagram formula it must satisfy the P2 relations (Theorem 2.6). SinceG does not

have summands of degree higher than d, Gd must satisfy the P
(n−1),1
2 relations.

Lemma 3.1 concludes the proof.

Proof of Lemma 3.1. Let A be an arrow diagram, and set G = S(A). By def-
inition of S, any couple of Gauss diagrams that differ only by the sign of one
arrow happen in G with opposite coefficients. S being linear, this implies:

S(A) ⊂
⊕

n≥1

Span⊥(P
(n−1),1
2 ).

On the other hand, let G satisfy the P
(n−1),1
2 equations. Define

A =
∑

(G, A+) · A,

where the sum runs over all arrow diagrams, and the + operator decorates every
arrow with a + sign. It is easy to check that G = S(A).
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Figure 11: Proof of Lemma 3.2 – part 1

Proof of Theorem 2.1. By Theorem 2.4 from [8], a virtual knot diagram may
be recovered from its Gauss diagram. It remains to see the correspondence
between classical Reidemeister moves and R-moves. It relies on the easy fact
that an R-move truly corresponds to a Reidemeister move picture if and only if
the little loops shown in Fig.13 are nullhomologous. We use Theorem 1.1 from
[12] to conclude: the R3 moves from Fig.1 are the only Gauss pictures that can
match Ω3a. Since M. Polyak’s proof is local, it works in our framework as well.
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Figure 12: Proof of Lemma 3.2 – part 2

Proof of Theorem 2.5. Let A ∈ A be an arrow diagram formula. It suffices to
prove that the principal part of A, say Ad, is an arrow diagram formula. By
Theorem 2.6, 〈S(A),Pi〉 = 0 for i = 1, 2, 3. Let us show that the same goes for
Ad:

1. P1 and S are homogeneous, so 〈S(Ad),P1〉 = 0.

17



R  
3

1
R  R  

2

Figure 13: Homological obstruction to R-moves

2. By Lemma 3.1:
〈

S(Ad−1), P
(d−2),1
2

〉

= 0 (5)
〈

S(Ad), P
(d−1),1
2

〉

= 0. (6)

The equations 〈S(A),P2〉 = 0 together with 5 imply that
〈

S(Ad),P
(d−2),2
2

〉

= 0. (7)

Together with 6, we get: 〈S(Ad),P2〉 = 0.

3. The last and crucial point:

〈S(A),P3〉 = 0 =⇒
〈

S(Ad),P
(d−2),2
3

〉

= 0

7 + Lemma 3.3
=⇒

〈

Ad,AP
(d−2),2
3

〉

= 0 and
〈

Ad,AP
(d−2),2
2

〉

= 0

Lemma 3.2
=⇒

〈

Ad,AP
(d−2),2
3

〉

= 0 and
〈

Ad,AP
(d−3),3
3

〉

= 0

Lemma 3.3
=⇒

〈

S(Ad),P
(d−2),2
3

〉

0 and
〈

S(Ad),P
(d−3),3
3

〉

= 0

=⇒ 〈S(Ad),P3〉 = 0.

Proof of Theorem 3.6. The proof will consist in defining and explaining the fol-
lowing chain of equivalences.

d(A) = 0 ⇔ (•(A), A6T•) = 0 ⇔ 〈A,A6T 〉 = 0 ⇔ 〈S(A), I(R3)〉 = 0

Notice that both extremities of this chain are homogeneous conditions (for
the right one, it follows from the proof of Theorem 2.5). So we may assume that
A is homogeneous.
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1. d(A) = 0 ⇔ (•(A), A6T•) = 0.
Let us call a degenerate diagram (with one degeneracy) monotonic if an ar-
rowhead and an arrowtail meet at the degenerate point. The set of monotonic
diagrams forms a basis of DA/∇. It is clearly a generating set thanks to the
∇ relations, and it is free because every non monotonic diagram happens in
exactly one relation, and every relation contains exactly one of them.

We introduce the orthonormal scalar product (, ) with respect to this basis.
Let D be a monotonic degenerate diagram and B• a based diagram. It is

easy to check that the coordinate of d(B•) along D is given by

(d(B•), D) = (B•, A6T•(D)),

where A6T•(D) is what we call the based 6-term relation associated with D (see
an example on Fig.14).

b

a

A6T (D)
b

a

b

a+b

b

a

a

+

+

a+b

a+b

a+b

a

b

D

Figure 14: The based 6-term relation associated with a degenerate diagram

2. (•(A), A6T•) = 0 ⇔ 〈A,A6T 〉 = 0.
Let A and A′ denote two arrow diagrams. We set:

[A,A′]
def
= (•(A), A′

•)

where A′
• is the based diagram obtained from A′ by choosing any arc as a base

arc. We have to show that this is a definition. If A 6= A′, then the right hand
side is unambiguously zero. If A = A′, then there are exactly |Aut(A′)| sum-
mands in •(A) that coincide with any fixed choice of base point in A′. So the
pairing [, ] is well-defined, and moreover it coincides with 〈, 〉.

3. 〈A,A6T 〉 = 0 ⇔ 〈S(A), I(R3)〉 = 0
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By Theorem 2.6, 〈S(A), I(.)〉 being invariant under R3 moves is equivalent
to 〈S(A),P3〉 = 0 for any Polyak’s 8T relation P3. Since by hypothesis A is
homogeneous (say of degree n), this is equivalent to S(A) actually satisfying

separately the P
(n−3),3
3 and the P

(n−2),2
3 relations. Now apply successively Lem-

mas 3.3 and 3.2 to terminate the proof.

Proof of Theorem 3.9. The fact that no γi may be trivial gives immediately the
condition from 3.4. It is convenient here to check condition 3 of Theorem 3.6.
In any A6T relation, only three diagrams may have pairwise non intersecting
arrows, and either all of these have, either no one has. The subsequent reduced
relations are shown on Fig.15 (the usual relations between the markings of
the arrows have a natural equivalent in terms of Grishanov-Vassiliev’s region
markings). We say that a diagram with its regions marked is consistent if its
markings satisfy the chain presentation rule from Definition 3.8 – in other words,
a diagram is consistent if it appears in ΦΓ. Consider the top relation of Fig.15,
which can be written A1 −A2 −A3. We see that:

1. A2 is consistent if and only if A1 is consistent and i < j.

2. A3 is consistent if and only if A1 is consistent and i > j.

It follows that ΦΓ satisfies the A6T1 relations. The proof for A6T2 is similar.

0
k

k

i

i

k

j j

j

i

A6T
2

A6T
1

0 kj i

j

i

i

j

kk

Figure 15: The two kinds of reduced 6-term relations for planar diagrams
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