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Polyak type equations for virtual arrow diagram invariants in the annulus

) for virtual knot diagrams in the annulus R × S 1 as the kernel of a linear map, inspired from a conjecture due to M. Polyak. As a main application, we slightly improve Grishanov-Vassiliev's theorem for planar chain invariants ([6]).

Introduction

Gauss diagrams were introduced in knot theory for the purpose of extracting new combinatorial data from the widely studied knot diagrams. On one hand it gave rise to a generalization of knot theory, known as virtual knot theory [START_REF] Kauffman | Virtual Knot Theory[END_REF]. On 1 another hand, it allowed a new point of view on Vassiliev's finite type invariants (see [START_REF] Polyak | Gauss diagram formulas for Vassiliev invariants[END_REF], [START_REF] Goussarov | Finite-type invariants are presented by gauss diagram formulas[END_REF], [START_REF] Fiedler | Gauss diagram invariants for knots and links[END_REF]). Several approaches have been used in order to define finite type invariants for virtual knots. Vassiliev-Kauffman's invariants [START_REF] Kauffman | Virtual Knot Theory[END_REF] are directly inspired from the axiomatic definition of Vassiliev invariants given by J.Birman and X.-S.Lin [START_REF] Birman | Knot polynomials and Vassiliev's invariants[END_REF], while the approach of M.Goussarov, M.Polyak and O.Viro (GPV, [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF]) is inspired from the representation of Vassiliev invariants due to Goussarov [START_REF] Goussarov | Finite-type invariants are presented by gauss diagram formulas[END_REF].

Another direction of investigation is the approach of T.Fiedler, who decorates Gauss diagrams with homological information when the knot diagrams live in a surface that is more complicated than the sphere or the plane.

Here we focus on homogeneous GPV's invariants for virtual knot diagrams in the annulus.

• The annulus, because it has an abelian fundamental group. This property allows one to prove that Fiedler's decorated Gauss diagrams encode the knot diagrams faithfullyi.e. with no loss of information [START_REF] Mortier | Gauss diagrams of real and virtual knots in the solid torus[END_REF].

• Homogeneous GPV invariants, because as we will show it is the good framework to consider a conjecture of M.Polyak, who predicts the existence of a linear map whose kernel consists of Gauss diagram invariants.

Every result in this paper can be actually extended to the case of an arbitrary surface replacing the annulus (except for Theorem 3.6 where the surface needs to be orientable) but it requires more complicated combinatorial tools. It will be done in a forthcoming paper.

Algebraic structures in Gauss diagram invariants theory

Warning. Though every Gauss or arrow diagram in this article comes with homological markings due to the solid torus framework, we will often refer to works where this is not the case, since many notions do not depend on this. Though it is not always explicitly mentioned, everything depends on the value of a fixed integer K which is the global marking of every diagram (see section 2.1 below).

Gauss diagram spaces

Following T. Fiedler ( [START_REF] Fiedler | Gauss diagram invariants for knots and links[END_REF], [START_REF] Fiedler | Gauss diagram invariants for knots which are not closed braids[END_REF]) we define a (decorated) Gauss diagram (of degree n) as an oriented circle marked with an integer, and n oriented chords (the arrows, which are abstract, i.e. only the endpoints matter), each one equipped with a sign (also writhe) and an integer (its marking), up to oriented homeomorphisms of the circle. It is to be understood that the 2n endpoints of the arrows are distinct. It is proved in [START_REF] Mortier | Gauss diagrams of real and virtual knots in the solid torus[END_REF] that such Gauss diagrams are in 1-1 correspondence with virtual knot diagrams in the annulus, up to usual and virtual Reidemeister moves. We denote by G n (resp. G ≤n ) the Q-vector space freely generated by Gauss diagrams of degree n (resp. ≤ n), and set G = lim -→ G ≤n . To the well-known Reidemeister moves for knot diagrams correspond Rmoves for Gauss diagrams (see Fig. 1 -as usual, the unseen parts must be the same for all of the diagrams that belong to a given equation.). Beware that these moves depend on the homology class K of the considered knot diagrams. 

, is a complete invariant for virtual knots with homology class K.

There is a linear isomorphism I : G ≤n → G ≤n that associates to a Gauss diagram the formal sum of its subdiagrams (see [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF]). A Gauss diagram formula is a knot invariant of the form

G → w(G, I(G)), (1) 
where G ∈ G, G is the Gauss diagram associated with a knot projection and w is an orthogonal scalar product with respect to the basis of G given by Gauss diagrams. Since this theory was born, mainly two scalar products have been used, namely:

• The orthonormal scalar product, which we shall denote by (, ). It is used notably in [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF] and [START_REF] Fiedler | Gauss diagram invariants for knots and links[END_REF].

• Its normalized version , , defined by

G, G ′ := |Aut(G)| • (G, G ′ ), (2) 
where Aut(G) is the set of symmetries of G, i.e. rotations that keep it unchanged (it is a subgroup of Z/2n).

Roughly speaking, , counts parametrized configurations of arrows, while (, ) counts unordered sets of arrows. Notice that , is still symmetric (hence a scalar product). Obviously, the two definitions coincide when one deals with long knots (and thus based Gauss diagrams).

The second version was already defined in [START_REF] Polyak | Gauss diagram formulas for Vassiliev invariants[END_REF] (though their Theorem 2 is stated in terms of (, )), but it was O.P. Östlund who first formally stated that , is more convenient to get nice properties when dealing with Gauss diagrams with symmetries ([9], sections 2.2 and 2.4). The results that we present here confirm this fact. The pairing , is also used in [START_REF] Grishanov | Fiedler type combinatorial formulas for generalized Fiedler type invariants of knots in M 2 ×R 1[END_REF], and implicitly in [START_REF] Vassiliev | Combinatorial formulas for cohomology of spaces of knots[END_REF].

Arrow diagram spaces

Take a Gauss diagram G and forget the signs associated with the arrows. We call what remains an arrow diagram (see [START_REF] Polyak | On the algebra of arrow diagrams[END_REF]; beware that the terminology in [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF] is different: arrows in arrow diagrams are signed). Arrow diagram spaces A n , A ≤n and A, and the pairings (, ), , are defined similarly to the previous section.

The raison d'être of this notion lies in the following map: take an arrow diagram A ∈ A n and number its arrows from 1 to n. Then any map σ : {1, . . . , n} → {±1} defines a Gauss diagram A σ . Let sign(σ) be the product of all the σ(i)'s. We put:

S(A) def = σ∈{±1} n sign(σ) • A σ . (3) 
S extends linearly into a map A n → G n . A Gauss diagram formula that lies in the image of this map is called an arrow diagram formula. A lot of the explicit formulas that have been found so far are actually arrow diagram formulas -as well in the framework of knots in S 3 . Considering this map is relevant only in the context of the , pairing (2). Indeed, one may define (as most authors do) brackets ((A, G)) and A, G , with A ∈ A and G ∈ G in the following way: for every subdiagram (i.e. unordered set of arrows) of G that becomes A after one forgets its signs, form the product of these signs. Sum up all these products, and call the result ((A, G)). only the second one holds true, while the first one needs the assumption that A has no symmetries (see Lemma 4.1).

A special interest arises in arrow diagram formulas in the case of virtual knot theory, as we shall see in the next subsection.

Virtual knot invariants

Virtual knot theory arises as the natural "completion" of classical knot theory with respect to Gauss diagrams. Indeed, while a knot diagram may be represented by a Gauss diagram (with corresponding Reidemeister moves on Gauss diagrams), a virtual knot diagram actually is a Gauss diagram. New ("virtual") crossings are used as an artefact to draw planar representations of them, and the additional virtual Reidemeister moves are precisely those planar moves that do not affect the underlying Gauss diagram (see [START_REF] Kauffman | Virtual Knot Theory[END_REF]).

Classical vs virtual invariants

One should be extremely cautious about the fact that the so-called "real" (or classical) Reidemeister moves for Gauss diagrams may not always be actually performed: for instance, two arrows may be added by Reidemeister II in the real settings only if the corresponding arcs of the knot diagram face each other -which seems not easy to check on the Gauss diagram.

As a consequence, the framework introduced previously seems mostly comfortable to look for virtual knot invariants.

A natural related question is whether a given Gauss diagram formula for classical knots always defines an invariant for virtual knots by the same equation ( 1). The answer is negative, the simplest example is the formula for the invariant v 3 given by [START_REF] Polyak | Gauss diagram formulas for Vassiliev invariants[END_REF] (Theorem 2), which we reproduce with an example of non invariance on Fig. 2.

v 3 v 3 v 3 , < > = 0 + + = 1/3 + 1/2 , < > + + + = 1/2 = Figure 2: Polyak-Viro's formula for v 3 is not a virtual invariant

Homogenous virtual invariants

Definition 2.2. For each n ∈ N, there is an orthogonal projection π n : G → G n with respect to the scalar product (, ). For G ∈ G, there is some integer

n such that G ∈ G ≤n \ G ≤n-1 . The principal part of G is defined by π n (G). G is called homogeneous if it is equal to its principal part.
Lemma 2.3. Let G ∈ G be a Gauss diagram formula for virtual knots. Then its principal part lies in the image of the map S defined by [START_REF] Fiedler | Gauss diagram invariants for knots which are not closed braids[END_REF], i.e. can be represented by a (homogeneous) arrow polynomial.

Corollary 2.4. Any homogeneous Gauss diagram formula for virtual knots is an arrow diagram formula.

The above result in the context of knot theory in the sphere is contained in the lines [5, section 3.1], and the proof in our context contains no new ideas. What is new is that the converse is also true, in some sense: Theorem 2.5. Let IA ≤n be the space of arrow diagram formulas for virtual knots of degree no greater than n. Then:

IA ≤n = k≤n (IA ≤n ∩ A k ) .

The Polyak algebra

A Gauss sum G ∈ G defines a virtual knot invariant if and only if the function G, I(.) is well defined on the quotient of G by Reidemeister moves on Gauss diagrams. Hence it is interesting to understand the image of that subspace under the map I with a simple family of generators. This is the idea that led the construction of the Polyak algebra ( [START_REF] Polyak | On the algebra of arrow diagrams[END_REF][START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF]) in the classical case. We adapt this construction and define P as the quotient of G by the set of relations shown in Fig. 3, which we call P 1 , P 2 and P 3 (also 8T ) relations for Gauss diagrams.

The following theorem repeats Theorem 2.D from [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF] -the proof is similar.

Theorem 2.6. The map I induces an isomorphism G \R → G \P def = P, where R stands for the Reidemeister relations on Gauss diagrams. More precisely, I induces an isomorphism between Span(R i ) and Span(P i ), for i = 1, 2, 3. When the arc was bounded by the two endpoints of one and the same arrow, the degenerate diagram is decorated with the datum of which endpoint was before the other. In this way, there is a natural 1-1 correspondence between based and degenerate diagrams. The spaces of degenerate diagrams are called DG and DA respectively. The latter is meant to be quotiented by the so-called triangle relations, shown in Fig. 4. The quotient space is denoted by DA /∇ . This notion in the context of S 3 is due to M. Polyak, and is part of his conjecture which we discuss in the next section. 

Based and degenerate diagrams

Polyak's conjecture

During Swiss Knots conference in 2011, Michael Polyak gave a talk in which he conjectured that Gauss diagram formulas for knots in S 3 were the space of solutions to an equation of type d(•) = 0 with d valued in DA /∇ . We shall not give a formal statement of this here, since it was never written by its author, but there is a video of the talk available online ( [START_REF] Polyak | Talk at Swiss Knots 2011 -"3 stories about[END_REF]). The map d from that conjecture has the property of being homogeneous:

∀G ∈ G, [d(G) = 0 ⇐⇒ ∀n ∈ N, d • π n (G) = 0] .
It follows from 2.3.2 that, in the virtual setting, the best that we may expect from such a map is to detect arrow diagram formulas. For this reason, from now on we mostly restrict our attention to this kind of invariants. We construct a map d in that framework, that differs from M.Polyak's one by the signs in front of the contributing diagrams. Then we prove that its kernel encodes Reidemeister III invariance, while Reidemeister I and II are already very easy to check.

Remark 2.7. Based on our understanding of the conjecture, Polyak-Viro's formula for v 3 (Fig. 2) is a counterexample in the "classical" settings: it defines an invariant of usual knots, but it does not have a trivial boundary, no matter how the signs are chosen to compute it. Hence the present result seems to be the best one can hope for.

3 Main results

A set of equations for virtual arrow diagram formulas

In this section we define a map d that will fit in some version of Polyak's conjecture for virtual knots in the solid torus.

Homogenous Polyak relations

Let G ∈ G n . Then G satisfies the P i relations (i.e. G, P i = 0)) if and only if it satisfies the homogeneous relations G, π k (P i ) = 0) for all k. These are denoted by P 1 , P

(n-1),1 2, P

(n-2),2 2, P

(n-2),2 3

(or G6T ) and P Homogenous relations are also defined for arrow diagram spaces. This time one should pay attention to signs, so we make a full list (Fig. 6). We denote them by AP 1 , AP

(n-2),2 2 , AP (n-2),2 3
(or A6T ) and AP (n-3), 3 3 (or A2T ). The above lemma explains why AP (n-1), 1 2 is useless (it writes 0 = 0).

Let us mention here the following two crucial points in the proofs of Theorems 2.5 and 3.6. Lemma 3.2. For all n ≥ 3:

Span(AP (n-3),3 3 ) ⊆ Span(AP (n-2),2 3 ) ∪ Span(AP (n-2),2 2 
).

Lemma 3.3. Let A ∈ A and let X be a name among P 1 , P (n-2),2 2, P (n-2), 2 3 , P (n-3), 3 3 . Then

A ∈ Span ⊥ (AX) ⇐⇒ S(A) ∈ Span ⊥ (X).

Defining the map d

Applying Theorem 2.6, Lemma 3.1 and Lemma 3.3, gives immediately:

Lemma 3.4. Let A ∈ A. Then the function S(A), I(•) defines an invariant under Reidemeister I and II moves for virtual knots with homology class K if and only if

A satisfies all the relations A, AP 1 = 0 and A, AP

(n-2),2 2 = 0.
This condition is easy to check with our naked eye, so we will be happy with a map d which can only detect invariance under Reidemeister III.

Let A be an arrow diagram. We denote by •(A) ∈ A • the sum of all based diagrams that one can form by choosing a base arc in A. The map d is first going to be defined on based diagrams. 

ǫ(B • ) = η(B • ) • (-1) ↑(B•) .
The map d is extended linearly to A • . Finally, define:

d(A) = d(•(A)) ∈ DA \∇ . ( 4 
)
An example is shown on Fig. 7. 2. d(A) = 0 modulo the triangle relations.

A ∈ Span ⊥ (A6T ).

This theorem gives a formal proof to the fact that the , pairing enables a uniformization of the formulas that depend on parameters: we shall see for instance that the degenerate cases of Grishanov-Vassiliev's invariants need not be treated separately. See also Proposition 2 from [START_REF] Fiedler | Gauss diagram invariants for knots which are not closed braids[END_REF], where points (i) and (ii) are actually the same formula, or the special case 2a = K in Theorem 3.10 below. Note that the requirement of R 2 invariance is necessary with the present settings -see Fig. 8. Remark 3.7. It is possible to give a simplicial interpretation of the above map d, that makes it the first step towards a cohomology theory "à la Vassiliev" [START_REF] Vassiliev | Cohomology of knot spaces[END_REF][START_REF] Vassiliev | Combinatorial formulas for cohomology of spaces of knots[END_REF]. It will be done in a forthcoming paper.

Application to Grishanov-Vassiliev's planar chain invariants

In A chain presentation of such a diagram with n arrows is a way to number its n + 1 internal regions from 1 to n + 1, in such a way that the numbering increases when one goes from the left to the right of an arrow.

Let U n be the sum of all planar isotopy equivalence classes of chain presentations of naked arrow diagrams with n arrows. U n is called the universal degree n planar chain ([6], Definition 1).

For i = 1, . . . , n + 1, let γ i ∈ Z \ {0}. Given a chain presentation of a naked planar arrow diagram, and given such an ordered collection Γ, we construct an arrow diagram by decorating each arrow with the sum of the γ i 's whose index i is located to the left of that arrow. The global decoration of the circle is set to be the sum of all γ i 's.

The element of A n constructed that way from U n and Γ is denoted by Φ Γ ([6], Definition 2). Note that some of the summands in U n may lead to the same element of A n if some of the γ i 's are equal; unlike Vassiliev-Grishanov, we do not forbid that.

The arrow polynomial at the top of Fig. 7 is the generic example for n = 2, with Γ = (a, b -a, K -b). Theorem 3.9. For any ordered collection of non-zero homology classes Γ = (γ 1 , . . . , γ n+1 ), the sum Φ Γ defined above enjoys the hypotheses of Theorem 3.6 and thus defines an arrow diagram formula for virtual knots. This is an improvement of Theorem 1 from [START_REF] Grishanov | Fiedler type combinatorial formulas for generalized Fiedler type invariants of knots in M 2 ×R 1[END_REF], since we remove the assumption that Γ is unambiguous (i.e. here any of the γ i 's may coincide), and we show that Φ Γ is an invariant for virtual knots.

Some more computations

In practice, Theorem 3.6 gives a very easy means of checking that an arrow polynomial defines a virtual invariant. On another hand, finding virtual invariants when one has no clue of a potential formula demands to solve the system of equations A6T .

We wrote a program to do this, and only a few results came, including the generalized Grishanov-Vassiliev's planar chain invariants, and the following: Theorem 3.10. Let K ∈ Z. The arrow polynomial of Fig. 9 defines an invariant of virtual knots with homology class K for any parameter a ∈ Z \ {0}.

This seems to give a positive answer to T. Fiedler's question about the existence of N -invariants not contained in those from [START_REF] Fiedler | Gauss diagram invariants for knots which are not closed braids[END_REF], Proposition 2.

On the other hand, the sparse landscape of results leads to think that most arrow diagram invariants might have infinite lengthi.e. live in the algebraic completion of A, just like Fiedler's N -invariants. Notice that in case a = K, the formula has only 3 terms -but still defines an invariant. We compute it for the family of knots K 2i+1 drawn in Fig. 10:

I 5 (K 2i+1 ) = i(i + 1).
It proves that there is no general algebraic formula expressing I 5 in terms of the only invariants of degree 2 and finite length previously known (at least to the author), namely Grishanov-Vassiliev's length 3 invariant (Fig. 7) -note that this invariant is already present in [START_REF] Fiedler | Gauss diagram invariants for knots and links[END_REF] for nullhomologous knots (K = 0). 

K 3 + 1 + + 1 0 + 1 1 1 0 0 + + + + K 5

The equality ((A, G)) = (S(A), I(G))

holds for all G if and only if A has no symmetries other than the identity.

Proof. Number the n arrows of A and fix a map σ 0 : {1, . . . , n} → {±1}. The group of symmetries of A σ0 , Aut(A σ0 ), identifies with a subgroup of Aut(A). Also, the (abelian) group Aut(A) naturally acts on the set {±1} n . The orbit of σ 0 is the set of maps σ such that A σ is equivalent to A σ0 under planar isotopies, and the cardinality of this orbit is the coefficient of A σ in the linear combination S(A). By definition, the stabilizer of σ 0 is the image of the injective map Aut(A σ0 ) ֒→ Aut(A), whence, if we set O to be the set of orbits:

S(A) = [σ]∈O |Aut(A)| |Aut(A σ )| A σ .
It follows that for any G,

S(A), I(G) = |Aut(A)| [σ]∈O sign(σ)(A σ , I(G)) = |Aut(A)|((A, G)) = A, G .
This proves the first equality as well as the "if" part of the last statement. For the "only if" part, set G to be A σ0 . Then: ).

(S(A), I(G)) = [σ]∈O sign(σ) |Aut(A)| |Aut(A σ )| (A σ , I(G)) = sign(σ 0 ) |Aut(A)| |Aut(A σ 0 )| ,
On the other hand, let G satisfy the P (n-1), 1 2 equations. Define

A = (G, A + ) • A,
where the sum runs over all arrow diagrams, and the + operator decorates every arrow with a + sign. It is easy to check that G = S(A). 

S(A d-1 ), P (d-2),1 2 = 0 (5) S(A d ), P (d-1),1 2 = 0. (6) 
The equations S(A), P 2 = 0 together with 5 imply that

S(A d ), P (d-2),2 2 = 0. (7) 
Together with 6, we get: S(A d ), P 2 = 0.

3. The last and crucial point:

S(A), P 3 = 0 =⇒ S(A d ), P (d-2),2 3 = 0 7 + Lemma 3.3 =⇒ A d , AP (d-2),2 3 = 0 and A d , AP (d-2),2 2 = 0 Lemma 3.2 =⇒ A d , AP (d-2),2 3 = 0 and A d , AP (d-3),3 3 = 0 Lemma 3.3 =⇒ S(A d ), P (d-2),2 3 
0 and S(A d ), P

(d-3),3 3 = 0 =⇒ S(A d ), P 3 = 0.
Proof of Theorem 3.6. The proof will consist in defining and explaining the following chain of equivalences.

d(A) = 0 ⇔ (•(A), A6T • ) = 0 ⇔ A, A6T = 0 ⇔ S(A), I(R 3 ) = 0
Notice that both extremities of this chain are homogeneous conditions (for the right one, it follows from the proof of Theorem 2.5). So we may assume that A is homogeneous. where A ′ • is the based diagram obtained from A ′ by choosing any arc as a base arc. We have to show that this is a definition. If A = A ′ , then the right hand side is unambiguously zero. If A = A ′ , then there are exactly |Aut(A ′ )| summands in •(A) that coincide with any fixed choice of base point in A ′ . So the pairing [, ] is well-defined, and moreover it coincides with , .

3. A, A6T = 0 ⇔ S(A), I(R 3 ) = 0 By Theorem 2.6, S(A), I(.) being invariant under R 3 moves is equivalent to S(A), P 3 = 0 for any Polyak's 8T relation P 3 . Since by hypothesis A is homogeneous (say of degree n), this is equivalent to S(A) actually satisfying separately the P (n-3), 3 3 and the P (n-2), 2 3 relations. Now apply successively Lemmas 3.3 and 3.2 to terminate the proof.

Proof of Theorem 3.9. The fact that no γ i may be trivial gives immediately the condition from 3.4. It is convenient here to check condition 3 of Theorem 3.6. In any A6T relation, only three diagrams may have pairwise non intersecting arrows, and either all of these have, either no one has. The subsequent reduced relations are shown on Fig. 15 (the usual relations between the markings of the arrows have a natural equivalent in terms of Grishanov-Vassiliev's region markings). We say that a diagram with its regions marked is consistent if its markings satisfy the chain presentation rule from Definition 3.8 -in other words, a diagram is consistent if it appears in Φ Γ . Consider the top relation of Fig. 15, which can be written A 1 -A 2 -A 3 . We see that:

1. A 2 is consistent if and only if A 1 is consistent and i < j.

2. A 3 is consistent if and only if A 1 is consistent and i > j.

It follows that Φ Γ satisfies the A6T 1 relations. The proof for A6T 2 is similar. 
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 4 while ((A, G)) = sign(σ 0 ). So one must have |Aut(A)| = |Aut(A σ )| for all σ, which can be true only if |Aut(A)| = 1. Indeed, if ρ ∈ Aut(A) \ {Id}, pick an arrow α of A such that ρ(α) = α and choose any σ such that σ(α) = 1 while σ(ρ(α)) = -1. Necessarily ρ / ∈ Aut(A σ ), so that |Aut(A σ )| < |Aut(A)|. Proof of Lemma 3.2. Figs.11 and 12 show eight A6T relations, where it is assumed that the unseen parts are identical in all 48 diagrams (the dashed arrows are dashed only for the sake of clarity). Up to P -(5) -(6) -(7) -(8)] gives the top A2T relation shown on Fig.6. To get the other half of Span(A2T ), just reverse the arrows in the previous equation, and change their markings from x to K -x. Proof of Lemma 2.3. Let G d be the principal part of G. Since G is a Gauss diagram formula it must satisfy the P 2 relations (Theorem 2.6). Since G does not have summands of degree higher than d, G d must satisfy the P (n-1),1 2 relations. Lemma 3.1 concludes the proof. Proof of Lemma 3.1. Let A be an arrow diagram, and set G = S(A). By definition of S, any couple of Gauss diagrams that differ only by the sign of one arrow happen in G with opposite coefficients. S being linear, this implies:
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 114 Figure 14: The based 6-term relation associated with a degenerate diagram 2. (•(A), A6T • ) = 0 ⇔ A, A6T = 0. Let A and A ′ denote two arrow diagrams. We set: [A, A ′ ] def = (•(A), A ′ • )
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 15 Figure 15: The two kinds of reduced 6-term relations for planar diagrams
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