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] recently obtained analytical expressions for the mean number of common sites WN (t) visited up to time t by N independent random walkers starting from the origin of a d-dimensional lattice. In this short note I show how the different regimes and the corresponding asymptotic power laws can be retrieved using the notion of fractal intersection.

In their recent work [1], Majumder and Tamm computed analytically the mean number of common sites W N (t) visited at time t by N independent random walkers starting from the origin of a d-dimensional lattice at t = 0. Three distinct regimes were obtained for the large-t behavior:

W N (t) ∼ t d/2 for d < 2 ∼ t N -d(N -1)/2 for 2 < d < d c (N ) ∼ const. for d > d c (N ) = 2N N -1 . (1) 
The exponent governing the asymptotic time-dependence of W N (t) is continuously varying with N and d between the lower critical dimension d ′ c = 2 and the upper critical dimension d c (N ). Logarithmic corrections appear exactly at the critical dimensions with

W N (t) ∼ t/[ln t] N in d = d ′ c = 2 and W N (t) ∼ ln t in d = d c (N ) (with N > 1).
In this note I show how the long-time power-law behavior of W N (t) given in Eq. ( 1) can be simply recovered using an heuristic argument based on the notion of fractal intersection.

In the problem at hand the common sites visited by the N random walkers belong to a fractal object which is the intersection of the N independent random walks. Let d f =2 denote the fractal dimension of a single random walk and d f = dd f ≥ 0 its fractal codimension. According to Mandlebrot [START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF] the codimension of the intersection of N independent random fractals is given by

d f (N ) = min d, N d f ≥ 0 . (2) 
Below the lower critical dimension

d ′ c = d f , d f and d f (N ) vanish, giving d f (N ) = d -d f (N ) = d , d < d ′ c = d f . (3) 
The upper critical dimension d c (N ) corresponds to the equality of the two terms on the right in Eq. ( 2) so that

d c (N ) = N d f N -1 . (4) 
Above this value d f (N ) = d, leading to

d f (N ) = 0 , d > d c (N ) . ( 5 
)
Between the two critical dimensions d f (N ) = N d f applies and one finds

d f (N ) = N d f -d(N -1) , d f < d < d c (N ) . (6)
The radius of a walk, R(t), typically grows as t 1/d f such that

W N (t) ∼ R(t) d f (N ) ∼ t d f (N )/d f . (7) 
Collecting these results, one finally obtains

W N (t) ∼ t d/d f for d < d f ∼ t N -(N -1)d/d f for d f < d < d c (N ) ∼ const. for d > d c (N ) = d f N N -1 , (8) 
in complete agreement with Eq. ( 1) for the random walks with d f = 2. Note that the logarithmic growth of W (t) at the upper critical dimension d c (N ) can be obtained by working with the fractal density of the intersection [START_REF] Turban | Mean number of encounters of N random walkers and intersection of strongly anisotropic fractals[END_REF] ρ

N (r) ∼ d[r d f (N ) ] d[r d ] ∼ r -d f (N ) , r ≤ R(t) . (9) 
Then:

W N (t) ∼ R(t) a ρ N (r)r d-1 dr ∼ R(t) a r d f (N )-1 dr . ( 10 
)
At the upper critical dimension d f (N ) vanishes so that:

W N (t) ∼ ln R(t) a ∼ ln t . (11) 
These results are expected to apply as well in the case of subdiffusive or superdiffusive diffusion processes [START_REF] Bouchaud | [END_REF] with the appropriate value for the fractal dimension of the N walks, d f = 2. For directed walks, an extension of the rules of fractal intersection to anisotropic fractals is needed.