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MINIMAX PROPERTIES OF FRÉCHET MEANS OF DISCRETELY

SAMPLED CURVES

By Jérémie Bigot1 and Xavier Gendre

DMIA–ISAE and Institut de Mathématiques de Toulouse

We study the problem of estimating a mean pattern from a set of
similar curves in the setting where the variability in the data is due
to random geometric deformations and additive noise. We propose
an estimator based on the notion of Fréchet mean that is a general-
ization of the standard notion of averaging to non-Euclidean spaces.
We derive a minimax rate for this estimation problem, and we show
that our estimator achieves this optimal rate under the asymptotics
where both the number of curves and the number of sampling points
go to infinity.

1. Introduction.

1.1. Fréchet means. The Fréchet mean [10] is an extension of the usual
Euclidean mean to nonlinear spaces endowed with non-Euclidean metrics.
If Y1, . . . ,YJ denote i.i.d. random variables with values in a metric space
M with metric dM, then the empirical Fréchet mean YM of the sample
Y1, . . . ,YJ is defined as a minimizer (not necessarily unique) of

YM ∈ argmin
y∈M

1

J

J
∑

j=1

d2M(y,Yj).

For random variables belonging to a nonlinear manifold, a well-known ex-
ample is the computation of the mean of a set of planar shapes in Kendall’s
shape space [18] that leads to the Procrustean means studied in [13]. A de-
tailed study of some properties of the Fréchet mean in finite dimensional
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2 J. BIGOT AND X. GENDRE

Riemannian manifolds (such as consistency and uniqueness) has been per-
formed in [1–3, 17]. However, there is not so much work on the properties
of the Fréchet mean in infinite dimensional and non-Euclidean spaces of
curves or images. In this paper, we are concerned with the nonparametric
estimation of a mean pattern (belonging to a nonlinear space) from a set
of similar curves in the setting where the variability in the data is due to
random geometric deformations and additive noise.

More precisely, let us consider noisy realizations of J curves f1, . . . , fJ :
[0,1]→R sampled at n equispaced points tℓ =

ℓ
n , ℓ= 1, . . . , n,

Yℓ,j = fj(tℓ) + εℓ,j , ℓ= 1, . . . , n and j = 1, . . . , J,(1)

where the εℓ,j ’s are independent and identically distributed (i.i.d.) Gaus-
sian variables with zero expectation and known variance σ2 > 0. In many
applications, the observed curves have a similar structure that may lead to
the assumption that the fj ’s are random elements varying around the same
mean pattern f : [0,1]→R (also called reference template). However, due to
additive noise and geometric variability in the data, this mean pattern is
typically unknown and has to be estimated. In this setting, a widely used
approach is Grenander’s pattern theory [14, 15, 28, 29] that models geomet-
ric variability by the action of a Lie group on an infinite dimensional space
of curves (or images).

When the curves fj in (1) exhibit a large source of geometric variation
in time, this may significantly complicates the construction of a consistent
estimator of a mean pattern. In what follows, we consider the simple model
of randomly shifted curves that is commonly used in many applied areas
such as neurosciences [27] or biology [25]. In such a framework, we have

fj(t) = f(t− θ∗j ) for all t ∈ [0,1] and j = 1, . . . , J,(2)

where f : [0,1]→R is an unknown curve that can be extended outside [0,1]
by 1-periodicity. In a similar way, we could consider a function f defined on
the circle R/Z. The shifts θ∗j ’s are supposed to be i.i.d. real random variables
(independent of the εℓ,j ’s) that are sampled from an unknown distribution
P∗ on R. In model (2), the shifts θ∗j represent a source of geometric variability
in time.

In functional data analysis, the problem of estimating a mean pattern from
a set of curves that differ by a time transformation is usually referred to as
the curve registration problem; see, for example, [24]. Registering functional
data has received a lot of attention in the literature over the two last decades;
see, for example, [4, 20, 24, 26, 32] and references therein. Nevertheless, in
these papers, constructing consistent estimators of the mean pattern f as
the number J of curves tends to infinity is generally not considered. Self-
modeling regression methods proposed in [19] are semiparametric models for
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curve registration that are similar to the shifted curves model, where each
observed curve is a parametric transformation of an unknown mean pattern.
Constructing a consistent estimator of the mean pattern in such models has
been investigated in [19] in an asymptotic framework where both the number
J of curves and the number n of design points grow toward infinity. However,
deriving optimal estimators in the minimax sense has not been considered
in [19]. Moreover, a novel contribution of this paper is to make a connection
between the curve registration problem and the notion of Fréchet mean in
non-Euclidean spaces which has not been investigated so far.

1.2. Model and objectives. The main goal of this paper is to construct
nonparametric estimators of the mean pattern f from the data

Yℓ,j = f(tℓ − θ∗j ) + εℓ,j , ℓ= 1, . . . , n and j = 1, . . . , J,(3)

in the setting where both the number J of curves and the number n of design
points are allowed to vary and to tend toward infinity.

In the sequel to this paper, it will be assumed that the random shifts are
sampled from an unknown density g with respect to the Lebesgue measure dθ
[namely dP∗(θ) = g(θ)dθ]. Note that since f is assumed to be 1-periodic, one
may restrict to the case where the density g has a compact support included
in the interval [−1

2 ,
1
2 ]. Under assumption (2), the (standard) Euclidean mean

Ȳℓ =
1
J

∑J
j=1Yℓ,j of the data is generally not a consistent estimator of the

mean pattern f at t= tℓ. Indeed, the law of large numbers implies that

lim
J→∞

Ȳ ℓ = lim
J→∞

1

J

J
∑

j=1

f(tℓ − θ∗j ) =

∫

R

f(tℓ − θ)g(θ)dθ a.s.

Thus, under mild assumptions on f and g, we have

lim
J→∞

Ȳ ℓ = f ⋆ g(tℓ) 6= f(tℓ) a.s.,

where f ⋆ g is the convolution product between f and g.
To build a consistent estimator of f in model (3), we propose to use a

notion of empirical Fréchet mean in an infinite dimensional space. Recently,
some properties of Fréchet means in randomly shifted curves models have
been investigated in [6] and [5]. However, studying the rate of convergence
and the minimax properties of such estimators in the double asymptotic
setting min(n,J)→+∞ has not been considered so far.

Note that model (3) is clearly not identifiable, as for any θ̃ ∈ [−1
2 ,

1
2 ], one

may replace f(·) by f̃(·) = f(· − θ̃) and θ∗j by θ̃j = θ∗j − θ̃ without changing
model (3). Therefore, estimation of f is only feasible up to a time shift.
Thus, we propose to consider the problem of estimating its equivalence class
[f ] (or orbit) under the action of shifts. More precisely, let L2

per([0,1]) be the
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space of squared integrable functions on [0,1] that can be extended outside
[0,1] by 1-periodicity. Let S1 be the one-dimensional torus. We recall that
any element τ = τ(θ) ∈ S1 can be identified with an element θ in the interval
[−1

2 ,
1
2 ]. For f ∈ L2

per([0,1]), we define its equivalence class by the action of
a time shift as

[f ] := {f τ , τ ∈ S1},
where for τ = τ(θ) ∈ S1 (with θ ∈ [−1

2 ,
1
2 ]), f

τ (t) = f(t− θ) for all t ∈ [0,1].
Let f,h∈ L2

per([0,1]), and we define the distance between [f ], [h] ∈L2
per([0,1])/

S1 as

d([f ], [h]) = inf
θ∈[−1/2,1/2]

(
∫ 1

0
|f(t− θ)− h(t)|2 dt

)1/2

.(4)

In the setting of Grenander’s pattern theory, (L2
per([0,1])/S1, d) represents

an infinite dimensional and nonlinear set of curves, and S1 is a Lie group
modeling geometric variability in the data.

1.3. Main contributions. Let us assume that F ⊂ L2
per([0,1]) represents

some smoothness class of functions (e.g., a Sobolev ball). Suppose also that
the unknown density g of the random shifts in (2) belongs to some set

G of probability density functions on [−1
2 ,

1
2 ]. Let f̂n,J be some estimator

of f based on the random variables Yℓ,j given by (3) taking its values in

L2
per([0,1]). For some f ∈F , the risk of the estimator f̂n,J is defined by

Rg(f̂n,J , f) = E
g(d2([f̂n,J ], [f ])),

where the above expectation E
g is taken with respect to the distribution

of the Yℓ,j’s in (3) and under the assumption that the shifts are i.i.d. ran-
dom variables sampled from the density g. We propose to investigate the
optimality of an estimator by introducing the following minimax risk:

Rn,J(F ,G) = inf
f̂n,J

sup
g∈G

sup
f∈F

Rg(f̂n,J , f),

where the above infimum is taken over the set of all possible estimators in
model (3).

For f ∈ L2
per([0,1]), let us denote its Fourier coefficients by

ck =

∫ 1

0
f(t)e−i2πkt dt, k ∈ Z.

Suppose that F = W̃s(A,c∗) is the following bounded set of nonconstant
functions with degree of smoothness s > 1/2:

W̃s(A,c∗) =

{

f ∈L2
per([0,1]);

∑

k∈Z

(1 + |k|2s)|ck|2 ≤A2 with |c1| ≥ c∗

}
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for some positive reals A and c∗. The introduction of the above set is moti-
vated by the definition of Sobolev balls. The additional assumption |c1| ≥ c∗
is needed to ensure identifiability of [f ] in model (3) with respect to the
distance (4).

Moreover, let Gκ be a set of probability densities having a compact sup-
port of size smaller than κ with 0< κ< 1/8 defined as

Gκ =

{

g :

[

−1

2
,
1

2

]

→R
+;

∫ 1/2

−1/2
g(θ)dθ = 1 and supp(g)⊆ [−κ/2, κ/2]

}

.

Suppose also that the following condition holds:

J ≍ nα for some 0< α< 1/6,

where the notation J ≍ nα means that there exist two positive constants
c2 ≥ c1 > 0 such that c1n

α ≤ J ≤ c2n
α for any choices of J and n.

Then, under such assumptions, the main contribution of the paper is to
show that one can construct an estimator f̂n,J based on a smoothed Fréchet
mean of discretely sampled curves that satisfies

lim sup
min(n,J)→+∞

r−1
n,J sup

g∈Gκ

sup
f∈W̃s(A,c∗)

Rg(f̂n,J , f)≤C0,

where C0 > 0 is a constant that only depends on A, s, κ, c∗ and σ2. The
rate of convergence rn,J is given by

rn,J = n−1 + (nJ)−2s/(2s+1).

The two terms in the rate rn,J have different interpretations. The second

term (nJ)−2s/(2s+1) is the usual nonparametric rate for estimating the func-
tion f (over a Sobolev ball) in model (3) that we would obtain if the true
shifts θ∗1, . . . , θ

∗
J were known. Moreover, under some additional assumptions,

we will show that this rate is optimal in the minimax sense and that our
estimator achieves it.

The first term n−1 in the rate rn,J can be interpreted as follows. As shown
later in the paper, the computation of a Fréchet mean of curves is a two-step
procedure. It consists of building estimators θ̂0j of the unknown shifts and

then aligning the observed curves. For θ = (θ1, . . . , θJ) ∈ R
J , let us define

the Euclidean norm ‖θ‖= (
∑J

j=1 |θj |2)1/2. One of the contributions of this
paper is to show that estimation of the vector

θ0 = (θ∗1 − θ̄J , . . . , θ
∗
J − θ̄J)

′ ∈R
J where θ̄J =

1

J

J
∑

j=1

θ∗j ,

is feasible at the rate n−1 for the normalized quadratic risk 1
JE‖θ̂0−θ0‖2 and

that this allows us to build a consistent Fréchet mean. If the number J of
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curves was fixed, n−1 would correspond to the usual semi-parametric rate for
estimating the shifts in model (3) in the setting where the θ∗j are nonrandom
parameters; see [7, 11, 31] for further details. Here, this rate of convergence
has been obtained in the double asymptotic setting min(n,J)→+∞. This
setting significantly complicates the estimation of the vector θ0 ∈ R

J since
its dimension J is increasing with the sample size nJ . Hence, in the case
of min(n,J)→+∞, estimating the shifts at the rate n−1 is not a standard
semi-parametric problem, and we have to impose the constraint J ≍ nα

(with 0 < α < 1/6) to obtain this result. The term n−1 in the rate rn,J is
thus the price to pay for not knowing the random shifts in (3) that need to
be estimated to compute a Fréchet mean.

1.4. Organization of the paper. In Section 2, we introduce a notion of
smoothed Fréchet means of curves. We also discuss the connection between
this approach and the well-known problems of curve registration and image
warping. In Section 3, we discuss the rate of convergence of the estimators
of the shifts. We also build a Fréchet mean using model selection techniques,
and we derive an upper bound on its rate of convergence. In Section 4, we
derive a lower bound on the minimax risk, and we give some sufficient con-
ditions to obtain a smoothed Fréchet mean converging at an optimal rate in
the minimax sense. In Section 5, we discuss the main results of the paper and
their connections with the nonparametric literature on deformable models.
Some numerical experiments on simulated data are presented in Section 6.
The proofs of the main results are gathered in a technical Appendix.

2. Smoothed Fréchet means of curves. Let f1, . . . , fJ be a set of functions
in L2

per([0,1]). We define the Fréchet mean [f̄ ] of [f1], . . . , [fJ ] as

[f̄ ] ∈ argmin
[f ]∈L2

per([0,1])/S1

1

J

J
∑

j=1

d2([f ], [fj]).

It can be easily checked that a representation f̄ ∈L2
per([0,1]) of the class [f̄ ]

is given by the following two-step procedure:

(1) Computation of shifts to align the curves

(θ̃1, . . . , θ̃J)
(5)

∈ argmin
(θ1,...,θJ)∈[−1/2,1/2]J

1

J

J
∑

j=1

∫ 1

0

∣

∣

∣

∣

∣

fj(t+ θj)−
1

J

J
∑

j′=1

fj′(t+ θj′)

∣

∣

∣

∣

∣

2

dt.

(2) Averaging after an alignment step: f̄(t) = 1
J

∑J
j=1 fj(t+ θ̃j), t ∈ [0,1].



MINIMAX PROPERTIES OF FRÉCHET MEANS 7

Let us now explain how the above two-step procedure can be used to
define an estimator of f in model (3). Let

{φk(t) = ei2πkt, t ∈ [0,1]}k∈Z
be the standard Fourier basis. For legibility, we assume that n= 2N ≥ 4 is
even, and we split the data into two samples as follows:

Y
(0)
q,j = Y2q,j and Y

(1)
q,j = Y2q−1,j, q = 1, . . . ,N

for j = 1, . . . , J , and

t(0)q = t2q and t(1)q = t2q−1, q = 1, . . . ,N.

For any z ∈ C, we denote by z its complex conjugate. Then we define the
following empirical Fourier coefficients, for any j ∈ {1, . . . , J}:

ĉ
(0)
k,j =

1

N

N
∑

q=1

Y
(0)
q,j φk(t

(0)
q ) = c̄

(0)
k,j +

1√
N

z
(0)
k,j , −N

2
≤ k <

N

2
,

ĉ
(1)
k,j =

1

N

N
∑

q=1

Y
(1)
q,j φk(t

(1)
q ) = c̄

(1)
k,j +

1√
N

z
(1)
k,j , −N

2
≤ k <

N

2
,

where

c̄
(p)
k,j =

1

N

N
∑

q=1

f(t(p)q − θ∗j )φk(t
(p)
q ), p ∈ {0,1},

and the z
(p)
k,j ’s are i.i.d. complex Gaussian variables with zero expectation

and variance σ2.
Then we define estimators of the unknown random shifts θ∗j as

(θ̂1, . . . , θ̂J) ∈ argmin
(θ1,...,θJ)∈[−1/2,1/2]J

Mn(θ1, . . . , θJ),(6)

where

Mn(θ1, . . . , θJ) =
1

J

J
∑

j=1

∑

|k|≤k0

∣

∣

∣

∣

∣

ĉ
(0)
k,je

i2πkθj − 1

J

J
∑

j′=1

ĉ
(0)
k,j′e

i2πkθj′

∣

∣

∣

∣

∣

2

,(7)

with some positive integer k0 that will be discussed later. The smoothed
Fréchet mean of f is then defined as

f̂
(m)
n,J (t) =

∑

|k|≤m

(

1

J

J
∑

j=1

ĉ
(1)
k,je

i2πkθ̂j

)

φk(t) =
1

J

J
∑

j=1

f̂
(m)
j (t+ θ̂j), t ∈ [0,1],

where the integer m ∈ {1, . . . ,N/2} is a frequency cut-off parameter that will

be discussed later and f̂
(m)
j (t) =

∑

|k|≤m ĉ
(1)
k,jφk(t). Note that the estimators
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θ̂j of the shifts have been computed using only half of the data and that

the curves f̂
(m)
j are calculated using the other half of the data. By splitting

the data in such a way, the random variables θ̂j and f̂
(m)
j are independent

conditionally to (θ∗1, . . . , θ
∗
J). The computation of the θ̂j ’s can be performed

by using a gradient descent algorithm to minimize the criterion (7); for
further details, see [6].

Note also that this two-step procedure does not require the use of a refer-
ence template to compute estimators θ̂1, . . . , θ̂J of the random shifts. Indeed,
one can interpret the term 1

J

∑J
j′=1 f̂j′(t+ θj′) in (5) as a template that is

automatically estimated. In statistics, estimating a mean pattern from set
of curves that differ by a time transformation is usually referred to as the
curve registration problem. It has received a lot of attention over the last
two decades; see, for example, [4, 25, 27] and references therein. Hence, there
exists a connection between our approach and the well-known problems of
curve registration and its generalization to higher dimensions (image warp-
ing); see, for example, [12]. However, studying the minimax properties of
an estimator of a mean pattern in curve registration models has not been
investigated so far.

3. Upper bound on the risk.

3.1. Consistent estimation of the unknown shifts. Note that, due to iden-
tifiability issues in model (3), the minimization (6) is not well defined. In-

deed, for any (θ̂1, . . . , θ̂J) that minimizes (7), one has that for any θ̃ such

that (θ̂1 + θ̃, . . . , θ̂J + θ̃) ∈ [−1
2 ,

1
2 ]

J , this vector is also a minimizer of Mn.
Choosing identifiability conditions amounts to imposing constraints on the
minimization of the criterion

M(θ1, . . . , θJ) =
1

J

J
∑

j=1

∑

|k|≤k0

∣

∣

∣

∣

∣

cke
i2πk(θj−θ∗j ) − 1

J

J
∑

j′=1

cke
i2πk(θj′−θ∗

j′
)

∣

∣

∣

∣

∣

2

,(8)

where ck, k ∈ Z, are the Fourier coefficients of the mean pattern f . Crite-
rion (8) can be interpreted as a version without noise criterion (7) when

replacing ĉ
(0)
k,j by cke

−i2πkθ∗j . Obviously, criterion (8) admits a minimum at

θ∗ = (θ∗1, . . . , θ
∗
J) such that M(θ∗) = 0. However, this minimizer over [−1

2 ,
1
2 ]

J

is clearly not unique. To impose uniqueness of some minimum of M over a
restricted set, let us introduce the following identifiability conditions:

Assumption 1. The distribution g of the random shifts has a compact
support included in [−κ/2, κ/2] for some 0< κ< 1/8.

Assumption 2. The mean pattern f in model (3) is such that c1 =
∫ 1
0 f(x)e−i2πx dx 6= 0.
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Assumption 1 means that the support of the density g of the random shifts
should be sufficiently small. This implies that the shifted curves f(t− θ∗j )
are somehow concentrated around the unknown mean pattern f . Such an
assumption of concentration of the data around a reference shape has been
used in various papers to prove the uniqueness and the consistency of Fréchet
means for random variables lying in a Riemannian manifold; see [1–3, 17].
Assumption 1 could certainly be weakened by dealing with a basis other
than the Fourier polynomials. However, this is not the main point of this
paper. Recent studies in this direction have been made to derive asymptotic
on the Fréchet mean of a distribution on the circle without restriction on its
support; see [8, 16] or [22], for instance. Assumption 2 is an identifiability
condition to avoid the case where the function f is constant over [0,1] which
would make impossible the estimation of the unobserved random shifts.

For 0< κ< 1/8, let us define the constrained set

Θκ =

{

(θ1, . . . , θJ) ∈ [−κ/2, κ/2]J ,

J
∑

j=1

θj = 0

}

.

Let

θ0j = θ∗j −
1

J

J
∑

j′=1

θ∗j′ , j = 1, . . . , J and θ0 = (θ01, . . . , θ
0
J).

Thanks to Proposition 4.1 in [5], we have:

Proposition 3.1. Suppose that Assumptions 1 and 2 hold. Then, for
any (θ1, . . . , θJ) ∈Θκ,

M(θ1, . . . , θJ)−M(θ01, . . . , θ
0
J)≥C(f,κ)

1

J

J
∑

j=1

|θj − θ0j |2,

where C(f,κ) = 4π2|c1|2 cos(4πκ)> 0.

Therefore, over the constrained set Θκ, criterion (8) has a unique mini-
mum at θ0 such that M(θ0) = 0. Let us now consider the estimators

θ̂0 = (θ̂01, . . . , θ̂
0
J) ∈ argmin

(θ1,...,θJ )∈Θκ

Mn(θ1, . . . , θJ).(9)

The following theorem shows that, under appropriate assumptions, the vec-
tor θ̂0 is a consistent estimator of θ0.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Let J ≥ 2 and
s≥ 2. Then there exists a constant C > 0 that only depends on A, s, κ, c∗
and σ2 such that, for any f ∈ W̃s(A,c∗), we have

1

J
E
g‖θ̂0 − θ0‖2 ≤ C

n

(

1 +
k50
n1/2

)(

1 +
k
3/2
0 J3

n1/2

)

.(10)
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The hypothesis s ≥ 2 in Theorem 3.1 is related to the need of handling
the Hessian matrix associated to the criterion Mn. Inequality (10) shows
that the quality of the estimation of the random shifts depends on the
ratio between n and J . In particular, it suggests that the quality of this
estimation should deteriorate if the number J of curves increases and n
remains fixed. This shows that estimating the vector θ̂0 ∈RJ is not a stan-
dard parametric problem, since the dimension J is is allowed to grow to
infinity in our setting. To the contrary, if J is not too large with respect to
n, then an estimation of the shifts is feasible at the usual parametric rate

n−1. More precisely, by Theorem 3.1, we immediately have the following
result:

Corollary 3.1. Suppose that the assumptions of Theorem 3.1 are sat-
isfied. If k0 ≥ 1 is a fixed integer and J ≍ nα for some 0 < α ≤ 1/6, then
there exists C1 > 0 that only depends on A, s, σ2, κ, c∗ and k0 such that

1

J
E
g‖θ̂0 − θ0‖2 ≤ C1

n
.

Therefore, under the additional assumption that J ≍ nα, for some 0 <
α ≤ 1/6, the vector θ̂0 converges to θ0 at the rate n−1 for the normalized
Euclidean norm. The assumption α≤ 1/6 illustrates the fact that the num-
ber J of curves should not be too large with respect to the size n of the
design. Such a condition appears to be sufficient, but we do not claim about
the existence of an optimal rate at which the number n of design points
should increase for a given increase in J .

3.2. Estimation of the mean pattern. For p ∈ {0,1}, let Y (p) be given

by (Y
(p)
q,j )1≤q≤N,1≤j≤J . Thanks to the estimator θ̂0 of the random shifts, we

can align the data Y (1) in order to estimate the mean pattern f in (3). Let
m1 <N/2 be some positive integer. For any m ∈ {1, . . . ,m1}, we recall that

the estimator f̂
(m)
n,J is given by

f̂
(m)
n,J (t) =

1

J

J
∑

j=1

f̂
(m)
j (t+ θ̂0j ), t ∈ [0,1].

To simplify the notation, we omit the dependency on k0, n and J of

the above estimators, and we write f̂ (m) = f̂
(m)
n,J . We denote by E

(1) the

expectation according to the distribution of Y (1). By construction, we recall
that Y (0) and Y (1) are independent. Thus, we obtain

E
(1)[f̂ (m)(t)] = f̄ (m)(t) =

1

J

J
∑

j=1

f̄
(m)
j (t+ θ̂0j ), t ∈ [0,1],
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where we have set

f̄
(m)
j (t) =

∑

|k|≤m

c̄
(1)
k,jφk(t), j ∈ {1, . . . , J}.

Therefore, f̂ (m) is a biased estimator of f with respect to E
(1). The idea

of the procedure is that if the estimators θ̂0j of the shifts behave well then

d2([f ], [f̄ (m1)]) is small and estimating f amounts to estimate f̄ (m1).

To choose an estimator of f̄ (m1) among the f̂ (m)’s, we take a model selec-
tion approach. Before describing the procedure, let us compute the quadratic
risk of an estimator f̂ (m),

E
(1)

[
∫ 1

0
|f̄ (m1)(t)− f̂ (m)(t)|2 dt

]

=

∫ 1

0
|f̄ (m1)(t)− f̄ (m)(t)|2 dt+ (2m+ 1)σ2

NJ
.

This risk is a sum of two nonnegative terms. The first one is a bias term
that is small when m is close to m1 while the second one is a variance term
that is small when m is close to zero. The aim is to find a trade-off between
these two terms thanks to the data only. More precisely, we choose some
m̂ ∈ {1, . . . ,m1} such that

m̂ ∈ argmin
m∈{1,...,m1}

{
∫ 1

0
|f̂ (m1)(t)− f̂ (m)(t)|2 dt+ η

(2m+1)σ2

NJ

}

,(11)

where η > 1 is some constant. In the sequel, the estimator that we finally
consider is f̂n,J = f̂ (m̂).

Such a procedure is well known, and we refer to Chapter 4 of [21] for more

details. In particular, the estimator f̂n,J satisfies the following inequality:

E
(1)

[
∫ 1

0
|f̄ (m1)(t)− f̂n,J(t)|2 dt

]

≤C(η)

{

min
m∈{1,...,m1}

E
(1)

[
∫ 1

0
|f̄ (m1)(t)− f̂ (m)(t)|2 dt

]

+
σ2

NJ

}

(12)

≤C(η) min
m∈{1,...,m1}

{
∫ 1

0
|f̄ (m1)(t)− f̄ (m)(t)|2 dt+ 2(m+1)σ2

NJ

}

,

where C(η)> 0 only depends on η. It is known that an optimal choice for η
is a difficult problem from a theoretical point of view. However, in practice,
taking some η slightly greater than 2 leads to a procedure that behaves well
as we discuss in Section 6. Moreover, for real data analysis, we often have
to estimate the variance σ2.
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3.3. Convergence rates over Sobolev balls. Let us denote by ⌊x⌋ the
largest integer smaller than x ∈ R. We now focus on the performances of
our estimation procedure from the minimax point of view and with respect
to the distance d defined in (4). Note that, in Section 3.2, we only use trun-

cated Fourier series expansions for building the estimators f̂ (m). In practice,
we could use other bases of L2

per([0,1]), and we would still have a result
like (12). In particular, the following theorem would remain true by com-
bining model selection techniques with bases like piecewise polynomials or
orthonormal wavelets to approximate a function.

Theorem 3.2. Assume that nJ ≥ max{21J, (4σ2)2s+1/c2s} where 0 <
c < 1 is such that J ≤ cnα for some α > 0. Take m1 = ⌊N/2⌋ − 1 and let

s > 3/2 and A > 0. Then the estimator f̂n,J defined by procedure (11) is
such that, for any g ∈ Gκ,

sup
f∈W̃s(A,c∗)

Rg(f̂n,J , f)

≤C

(

|m1|−2s +m1n
−2s+1 +

1

J
E
g(‖θ̂0 − θ0‖2) + (nJ)−2s/(2s+1)

)

for some C > 0 that only depends on A, s, σ2, κ, k0, η and c.

Therefore, using the results of Corollary 3.1 on the convergence rate of θ̂0

to θ0, we finally obtain the following result.

Corollary 3.2. Suppose that the assumptions of Theorems 3.1 and 3.2
are satisfied. If k0 ≥ 1 is a fixed integer and J ≍ nα for some 0 < α ≤ 1/6,
then there exists C ′ > 0 that only depends on A, s, σ2, κ, k0, η, c∗ and c
such that

sup
g∈Gκ

sup
f∈W̃s(A,c∗)

Rg(f̂n,J , f)≤C ′(n−1 + (nJ)−2s/(2s+1)).

4. A lower bound on the risk. The following theorem gives a lower bound
on the risk over the Sobolev ball W̃s(A,c∗).

Theorem 4.1. Let us recall that

Rn,J(W̃s(A,c∗),Gκ) = inf
f̂n,J

sup
g∈Gκ

sup
f∈W̃s(A,c∗)

Rg(f̂n,J , f).

There exists a constant C > 0 that only depends on A, s, c∗ and σ2 such
that

lim inf
min(n,J)→+∞

(nJ)2s/(2s+1)Rn,J(W̃s(A,c∗),Gκ)≥C.
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From the results of the previous sections, we also easily obtain the follow-
ing upperbound on the risk.

Corollary 4.1. Suppose that the assumptions of Corollary 3.2 hold,
and assume that 2αs ≤ 1. Then, there exists a constant C ′ > 0 that only
depends on A, s, σ2, κ, k0, η, c∗ and c such that

sup
g∈Gκ

sup
f∈W̃s(A,c∗)

E
g(d2([f̂n,J ], [f ]))≤C ′(nJ)−2s/(2s+1).(13)

Note that inequality (13) is a direct consequence of Corollary 3.2 and
the fact that n−1 = ((nJ)−2s/(2s+1)) in the settings 2αs ≤ 1 and J ≍ nα.
Therefore, under the assumption that 2αs≤ 1, the smoothed Fréchet mean
converges at the optimal rate (nJ)−2s/(2s+1).

5. Discussion. As explained previously, the rate of convergence rn,J =

n−1 + (nJ)−2s/(2s+1) of the estimator f̂n,J is the sum of two terms having

different interpretations. The term (nJ)−2s/(2s+1) is the usual nonparametric
rate that would be obtained if the random shifts θ∗1, . . . , θ

∗
J were known. To

interpret the second term n−1, let us mention the following result that has
been obtained in [5].

Proposition 5.1. Suppose that the function f is continuously differen-
tiable. Assume that the density g ∈ Gκ with g(−κ/2) = g(κ/2) = 0 and that

I2
g =

∫ 1/2
−1/2(

∂
∂θ log g(θ))

2g(θ)dθ <+∞. Let (θ̂1, . . . , θ̂J) denote any estimator

of the true shifts (θ∗1, . . . , θ
∗
J) computed from the Yℓ,j ’s in model (3). Then

E
g

(

1

J

J
∑

j=1

(θ̂j − θ∗j )
2

)

≥ σ2

n
∫ 1
0 |f ′(t)|2 dt+ σ2I2

g

.(14)

Proposition (5.1) shows that it is not possible to build consistent esti-
mators of the shifts by considering only the asymptotic setting where the
number of curves J tends toward infinity. Indeed inequality (14) implies

that lim infJ→+∞E
g( 1J

∑J
j=1(θ̂j − θ∗j )

2) > 0 for any estimators (θ̂1, . . . , θ̂J).
We recall that, under the assumptions of Corollary 3.1, one has

E
g

(

1

J

J
∑

j=1

|θ̂0j − θ0j |2
)

≤ C1

n
.

The above inequality shows that, in the setting where n and J are both al-
lowed to increase, the estimation of the unknown shifts θ̂0j = θ̂∗j − 1

J

∑J
m=1 θ̂

∗
m

is feasible at the rate n−1. By Proposition 5.1, this rate of convergence can-
not be improved. We thus interpret the term n−1 appearing in the rate
rn,J of the smoothed Fréchet mean [f̂n,J ] as the price to pay for having to
estimate the shifts to compute such estimators.
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To conclude this discussion, we would like to mention the results that
have been obtained in [6] in an asymptotic setting where only the number J
of curves is let going to infinity. Consider the following model of randomly
shifted curves with additive white noise:

dYj(t) = f(t− θ∗j )dt+ εdWj(t),
(15)

t ∈ [0,1], j = 1, . . . , J with θ∗j ∼i.i.d. g,

where the Wj ’s are independent Brownian motions with ε > 0 being the level
of additive noise. In model (15), the expectation of each observed curve dYj

is equal to the convolution of f by the density g since

E
g[f(t− θ∗j )] =

∫

f(t− θ)g(θ)dθ = f ⋆ g(t).

Therefore, in the ideal situation where g is assumed to be known, it has
been shown in [6] that estimating f in the asymptotic setting J → +∞
(with ε > 0 being fixed) is a deconvolution problem. Indeed, suppose that,
for some ν > 1/2,

γk =

∫ 1

0
g(θ)e−i2πkθ dθ ≍ |k|−ν , k ∈ Z,

with g being known. Then, one can construct an estimator f̂∗
J by a decon-

volution procedure such that

sup
f∈Ws(A)

E
g

∫ 1

0
|f̂∗

J(t)− f(t)|2 dt≤CJ−2s/(2s+ν+1)

for some C > 0 that only depends on A, s and ε and where Ws(A) is Sobolev
ball of degree s > 1/2. Moreover, this rate of convergence is optimal since
the results in [6] show that if s > 2ν +1, then there exists a constant C ′ > 0
that only depends on A, s and ε such that

lim inf
J→+∞

J2s/(2s+2ν+1) inf
f̂J

sup
f∈Ws(A)

R(f̂J , f)≥C ′,

where the above infimum is taken over the set of all estimators f̂J of f
in model (15). Hence, rJ = J−2s/(2s+2ν+1) is the minimax rate of conver-
gence over Sobolev balls in model (15) in the case of known g. This rate is
of polynomial order of the number of curves J , and it deteriorates as the
smoothness ν of the convolution kernel g increases. This phenomenon is a
well-known fact in deconvolution problems; see, for example, [9, 23]. Hence,
depending on g being known or not and the choice of the asymptotic set-
ting, there exists a significant difference in the rates of convergence that
can be achieved in a randomly shifted curves model. Our setting yields the
rate rn,J = n−1 + (nJ)−2s/(2s+1) (in the case where J ≍ nα with α < 1/6)
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that is clearly faster than the rate rJ = J−2s/(2s+2ν+1). Nevertheless, the
arguments in [6] also suggest that a smoothed Fréchet mean in (15) is not
a consistent estimator of f if one only lets J going to infinity. Therefore,
the number n of design points is clearly of primary importance to obtain
consistent estimators of a mean pattern when using Fréchet means of curves.

6. Numerical experiments. The goal of this section is to study the per-
formance of the estimator f̂n,J . The factors in the simulations are the number
J of curves and the number n of design points. As a mean pattern f to re-
cover, we consider the two test functions displayed in Figure 1. Then, for
each combination of n and J , we generate M = 100 repetitions of model
(3) of J curves with shifts sampled from the uniform distribution on [−κ,κ]
with κ= 1/16. The level of the additive Gaussian noise is measured as the
root of the signal-to-noise ratio (rsnr) defined as

rsnr =

(

1

σ2

∫ 1

0
(f(t)− f̄)2 dt

)1/2

where f̄ =

∫ 1

0
f(t)dt,

that is fixed to rsnr = 0.5 in all the simulations. Samples of noisy randomly
shifted curves are displayed in Figure 1. For each repetition p ∈ {1, . . . ,M},
we compute the estimator f̂n,J,p using a gradient descent algorithm to mini-
mize criterion (9) for estimating the shifts. For all values of n and J , we took
k0 = 5 in (7). The frequency cut-off m̂ is chosen using (11) with η = 2.5.

To analyze the numerical performance of this estimator, we have con-
sidered the following ideal estimator that uses the knowledge of the true
random shifts θ∗j,p (sampled from the pth replication):

f̃
(m)
n,J,p(t) =

∑

|k|≤m

(

1

J

J
∑

j=1

ĉ
(1)
k,j,pe

i2πkθ∗j,p

)

φk(t), t ∈ [0,1].

The frequency cut-off m̂∗ for the above ideal estimator is chosen using a
model selection procedure based on the knowledge of the true shifts, that is,

m̂∗ ∈ argmin
m∈{1,...,m1}

{
∫ 1

0
|f̃ (m1)

n,J,p(t)− f̃
(m)
n,J,p(t)|

2 dt+ η
(2m+1)σ2

NJ

}

with η = 2.5.
Then, we define the relative empirical error between the two estimators

as

R(n,J) =
1/M

∑M
p=1 d

2([f̂n,J,p], [f ])

1/M
∑M

p=1 d
2([f̃

(m̂∗)
n,J,p ], [f ])

.

In Figure 2, we display the ratio R(n,J) for various values of n and J and for
the two test functions displayed in Figure 1. It can be seen that the function
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Fig. 1. Two test functions f . (a) MixtGauss: a mixture of three Gaussians. (b) Heavi-
Sine: a piecewise smooth curve with a discontinuity. Sample of 5 noisy randomly shifted
curves with n= 300 for (c) MixtGauss and (d) HeaviSine.

J 7→ R(n,J) is increasing. This means that the numerical performance of

the estimator f̂n,J deteriorates as the number J of curves increases and the
number n remains fixed. This is clearly due to the fact that the estimation
of the shifts becomes less precise when the dimension J increases. These
numerical results are thus consistent with inequality (10) in Theorem 3.1

and our discussion on the rate of convergence of f̂n,J in Section 3. On the
other hand, the function n 7→R(n,J) is decreasing, and it confirms that the
number n of design points is a key parameter to obtain consistent estimators
of a mean pattern f with Fréchet means of curves.

APPENDIX: PROOF OF THE MAIN RESULTS

Throughout the proofs, we repeatedly use the following lemma which
follows immediately from Lemma 1.8 in [30].
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Fig. 2. Relative empirical error R(n,J) for various values of n (vertical axis) and J

(horizontal axis) over M = 100 replications: (a) MixtGauss, (b) HeaviSine.

Lemma A.1. If f ∈ W̃s(A,c∗), then there exists a constant A0 > 0 only
depending on A and s such that

max
−N/2≤k<N/2

|c̄(p)k,j − cke
−i2πkθ∗j | ≤A0N

−s+1/2, p ∈ {0,1}

for all 1≤ j ≤ J .

A.1. Proof of Theorem 3.1. For legibility, we will write E = E
g, that

is, we omit the dependency on g of the expectation. The proof is divided in
several lemmas. Let ‖·‖ denote the standard Euclidean norm in R

J . First, we

derive upper bounds on the second, fourth and sixth moments of ‖θ̂0 − θ0‖.
The following upper bound on the second moment is weaker than the result
that we plan to prove. It only gives the consistency of θ̂0, and we will need
some additional arguments to get the announced rate of convergence (10).

Lemma A.2. Let N ≥ 2, J ≥ 1 and 1≤ k0 ≤N/2. We assume that As-
sumptions 1 and 2 are satisfied, and we suppose that s > 3/2. Then, we have
the following upper bounds, for any f ∈ W̃s(A,c∗):

1

J
E(‖θ̂0 − θ0‖2)≤ C1

k
1/2
0

n1/2
,(16)

1

J
E(‖θ̂0 − θ0‖4)≤ C2

k0J

n
(17)

and

1

J
E(‖θ̂0 − θ0‖6)≤C3

k
3/2
0 J2

n3/2
,(18)
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where C1,C2 and C3 are positive constants that only depend on A,s, c∗, σ
2

and κ.

Proof. Let f ∈ W̃s(A,c∗). Since θ̂
0 = (θ̂01, . . . , θ̂

0
J) is a minimizer of Mn,

it follows that

M(θ̂0)−M(θ0)≤ 2 sup
θ∈Θκ

|Mn(θ)−M(θ)|.

Therefore, by Proposition 3.1, we get

1

J
E‖θ̂0 − θ0‖2 ≤ 2C−1(c∗, κ)E

(

sup
θ∈Θκ

|Mn(θ)−M(θ)|
)

,(19)

1

J
E‖θ̂0 − θ0‖4 ≤ 4C−2(c∗, κ)JE

(

sup
θ∈Θκ

|Mn(θ)−M(θ)|2
)

(20)

and

1

J
E‖θ̂0 − θ0‖6 ≤ 8C−3(c∗, κ)J

2
E

(

sup
θ∈Θκ

|Mn(θ)−M(θ)|3
)

,(21)

where we have set C(c∗, κ) = 4π2c2∗ cos(8πκ).
Let θ ∈Θκ and note that Mn(θ) can be decomposed as

Mn(θ) = M̄(θ) +Q(θ) +L(θ),(22)

where

M̄(θ) =
1

J

J
∑

j=1

∑

|k|≤k0

∣

∣

∣

∣

∣

c̄
(0)
k,je

2ikπθj − 1

J

J
∑

j′=1

c̄
(0)
k,j′e

2ikπθj′

∣

∣

∣

∣

∣

2

,

Q(θ) =
1

NJ

J
∑

j=1

∑

|k|≤k0

∣

∣

∣

∣

∣

z
(0)
k,je

2ikπθj − 1

J

J
∑

j′=1

z
(0)
k,j′e

2ikπθj′

∣

∣

∣

∣

∣

2

and

L(θ) =
2

J
√
N

J
∑

j=1

∑

|k|≤k0

ℜ
[(

c̄
(0)
k,je

2ikπθj − 1

J

J
∑

j′=1

c̄
(0)
k,j′e

2ikπθj′

)

×
(

z
(0)
k,je

2ikπθj − 1

J

J
∑

j′=1

z
(0)
k,j′e

2ikπθj′

)]

.

Using Lemma A.1, it follows that, for any θ ∈Θκ,

|M̄(θ)−M(θ)|

≤ 1

J

J
∑

j=1

∑

|k|≤k0

∣

∣

∣

∣

∣

|c̄(0)k,j|+
1

J

J
∑

j′=1

|c̄(0)k,j′|+ 2|ck|
∣

∣

∣

∣

∣
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×
∣

∣

∣

∣

∣

(c̄
(0)
k,j − cke

−2ikπθ∗j )e2ikπθj

− 1

J

J
∑

j′=1

(c̄
(0)
k,j′ − cke

−2ikπθ∗
j′ )e2ikπθj′

∣

∣

∣

∣

∣

≤ 2A0N
−s+1/2

∑

|k|≤k0

(4|ck|+2A0N
−s+1/2)

≤ 8A0N
−s+1/2(2k0 + 1)1/2

√

∑

|k|≤k0

|ck|2 +4A2
0(2k0 + 1)N−2s+1.

Hence, there exists a positive constant C that only depends on A and s such
that

sup
θ∈Θκ

|M̄(θ)−M(θ)| ≤Ck
1/2
0 N−s+1/2.(23)

Now, note that Q(θ) ≤ σ2

NJZ with Z =
∑

|k|≤k0

∑J
j=1 |z

(0)
k,j/σ|2 for any

θ ∈Θκ. Thus, it follows that

E sup
θ∈Θκ

|Q(θ)| ≤ σ2(2k0 +1)N−1(24)

and

E sup
θ∈Θκ

|Q(θ)|2 ≤ 2σ4(2k0 + 1)2N−2.(25)

By Jensen’s inequality, we get

EZ3/2 ≤ (EZ2)3/4,

and since EZ2 ≤ 2J2(2k0 + 1)2, we obtain

E sup
θ∈Θκ

|Q(θ)|3/2 ≤ 81/4
σ3

N3/2
(2k0 +1)3/2.(26)

Finally, using EZ3 ≤ 6J3(2k0 +1)3, we have

E sup
θ∈Θκ

|Q(θ)|3 ≤ 6
σ6

N3
(2k0 +1)3.(27)

By Cauchy–Schwarz’s inequality,

L(θ)≤ 2
√

M̄(θ)
√

Q(θ).(28)

Thanks to Lemma A.1, we get

M̄(θ)≤ 1

J

∑

|k|≤k0

J
∑

j=1

|c̄(0)k,j|
2 ≤

∑

|k|≤k0

|ck|2 +A2
0N

−2s+1(2k0 +1).
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Thus, it follows from (24), (25), (26) and (28) that there exists a positive
constant C ′, only depending on A, s and σ2, such that

E sup
θ∈Θκ

|L(θ)| ≤ C ′k
1/2
0 N−1/2,(29)

E sup
θ∈Θκ

|L(θ)|2 ≤ C ′2k0N
−1(30)

and

E sup
θ∈Θκ

|L(θ)|3 ≤C ′3k
3/2
0 N−3/2.(31)

Since s > 3/2, we obtain, by inequalities (23), (24) and (29),

E

(

sup
θ∈Θκ

|Mn(θ)−M(θ)|
)

≤C ′
1k

1/2
0 N−1/2,

by inequalities (23), (25) and (30),

E

(

sup
θ∈Θκ

|Mn(θ)−M(θ)|2
)

≤C ′
2k0N

−1,

and by inequalities (23), (27) and (31),

E

(

sup
θ∈Θκ

|Mn(θ)−M(θ)|3
)

≤C ′
3k

3/2
0 N−3/2,

where C ′
1,C

′
2 and C ′

3 are positive constants that only depend on A,s and σ2.
Combined with inequalities (19), (20) and (21), the announced result follows
from the above upper bounds. �

In order to prove Theorem 3.1, we divide the rest of the proof in the
three following steps. In the sequel of this section, we always assume that
the hypotheses of Theorem 3.1 are satisfied, and we use the decomposition
of Mn(θ) as defined in (22).

Step 1: there exists some positive constant C1 that only depends on c∗
such that

n

J
‖θ̂0 − θ0‖2

≤C1

(

nJ‖∇Mn(θ
0)‖2(32)

+ nJ sup
θ∈Uκ

‖∇2Mn(θ)−∇2M(θ0)‖2op‖θ̂0 − θ0‖2
)

,

where∇ and ∇2 denote the gradient and the Hessian operators, respectively,
and where we have set

Uκ = {θ ∈Θκ such that ‖θ− θ0‖ ≤ ‖θ̂0 − θ0‖}
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and, for any J × J matrix B, the operator norm ‖B‖op is defined by

‖B‖op = sup
θ∈RJ\{0}

‖Bθ‖
‖θ‖ .

Step 2: there exists some positive constant C2 that only depends on A,s
and σ2 such that

nJE‖∇Mn(θ
0)‖2 ≤C2

(

1 +
k30
n

)

.(33)

Step 3: there exists some positive constant C3 that only depends on A,s,κ,
c∗ and σ2 such that

nJE
(

sup
θ∈Uκ

‖∇2Mn(θ)−∇2M(θ0)‖2op‖θ̂0 − θ0‖2
)

(34)

≤C3

(

1 +
k50
n1/2

)

k
3/2
0 J3

n1/2
.

The result announced in Theorem 3.1 follows from inequalities (32), (33)
and (34).

A.1.1. Proof of Step 1. The gradients of M̄(θ),Q(θ) and L(θ) follow from
easy computations. We have, for any 1≤ ℓ≤ J ,

∂

∂θℓ
M̄(θ) =

4π

J2

∑

|k|≤k0

kℜ
[

ic̄
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1

c̄
(0)
k,je

2ikπθj

)]

,(35)

∂

∂θℓ
Q(θ) =

4π

NJ2

∑

|k|≤k0

kℜ
[

iz
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

z
(0)
k,je

2ikπθj

)]

(36)

and

∂

∂θℓ
L(θ) =− 4π

J2
√
N

∑

|k|≤k0

kℑ
[

z
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

c̄
(0)
k,je

2ikπθj

)

(37)

− c̄
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

z
(0)
k,je

2ikπθj

)]

.

Similarly, we can compute the Hessians of these functions as follows, for
1≤ ℓ, ℓ′ ≤ J , if ℓ 6= ℓ′,

∂2

∂θℓ′ ∂θℓ
M̄(θ) =−8π2

J2

∑

|k|≤k0

k2ℜ[c̄(0)k,ℓ c̄
(0)
k,ℓ′e

2ikπ(θℓ′−θℓ)],(38)
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∂2

∂θℓ′ ∂θℓ
Q(θ) =− 8π2

NJ2

∑

|k|≤k0

k2ℜ[z(0)k,ℓz
(0)
k,ℓ′e

2ikπ(θℓ′−θℓ)](39)

and

∂2

∂θℓ′ ∂θℓ
L(θ) =− 8π2

J2
√
N

∑

|k|≤k0

k2ℜ[c̄(0)k,ℓ′z
(0)
k,ℓe

2ikπ(θℓ′−θℓ)

(40)

+ c̄
(0)
k,ℓz

(0)
k,ℓ′e

2ikπ(θℓ−θℓ′)],

and if ℓ= ℓ′,

∂2

∂θℓ ∂θℓ
M̄(θ) =

8π2

J2

∑

|k|≤k0

k2ℜ
[

c̄
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

c̄
(0)
k,je

2ikπθj

)]

,(41)

∂2

∂θℓ ∂θℓ
Q(θ) =

8π2

NJ2

∑

|k|≤k0

k2ℜ
[

z
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

z
(0)
k,je

2ikπθj

)]

(42)

and

∂2

∂θℓ ∂θℓ
L(θ) =

8π2

J2
√
N

∑

|k|≤k0

k2ℜ
[

c̄
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

z
(0)
k,je

2ikπθj

)

(43)

+ z
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1,j 6=ℓ

c̄
(0)
k,je

2ikπθj

)]

.

Using the fact that θ̂0 ∈ Θκ is a minimizer of Mn, so ∇Mn(θ̂
0) = 0, a

Taylor expansion of θ 7→ ∇Mn(θ) with an integral form of the remainder
term leads to

0 =∇Mn(θ
0) +

∫ 1

0
∇2Mn(θ̄(t))(θ̂

0 − θ0)dt,(44)

where, for any t ∈ [0,1], we have set

θ̄(t) = θ0 + t(θ̂0 − θ0) ∈ Uκ.

Thus, we have

∇2M(θ0)(θ̂0 − θ0)
(45)

=−∇Mn(θ
0)−

∫ 1

0
(∇2Mn(θ̄(t))−∇2M(θ0))(θ̂0 − θ0)dt.
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It follows from similar computations as we did for M̄ that

∇2M(θ0) =
8π2

J

∑

|k|≤k0

k2|ck|2
(

IJ − 1

J
1J

)

,

where IJ is the J × J identity matrix and 1J denotes the J × J matrix with
all entries equal to one. Therefore, using the fact that

∑J
j=1(θ̂

0
j − θ0j ) = 0,

we obtain

‖∇2M(θ0)(θ̂0 − θ0)‖2 = 64π4

J2

(

∑

|k|≤k0

k2|ck|2
)2

‖θ̂0 − θ0‖2,

and it shows that there exists a constant C > 0 that only depends on c∗ such
that

‖∇2M(θ0)(θ̂0 − θ0)‖2 ≥C
1

J2
‖θ̂0 − θ0‖2.(46)

Then, inequality (32) follows from (45) and (46).

A.1.2. Proof of Step 2. By using Lemma A.1, for any 1 ≤ k ≤ k0 and
1≤ ℓ≤ J , we can expand

c̄
(0)
k,ℓe

2ikπθ0
ℓ = cke

2ikπ(θ0
ℓ
−θ∗

ℓ
) +αk,ℓe

2ikπθ0
ℓ

with |αk,ℓ| ≤A0N
−s+1/2. Because, for any j, θ0j − θ∗j = θ̄J does not depend

on j, we have
∣

∣

∣

∣

∣

ℜ
[

ic̄
(0)
k,ℓe

2ikπθℓ

(

J
∑

j=1

c̄
(0)
k,je

2ikπθj

)]
∣

∣

∣

∣

∣

≤A0JN
−s+1/2(2|ck|+A0N

−s+1/2).

Thus, by equation (35) and using Cauchy–Schwarz’s inequality, we obtain
∣

∣

∣

∣

∂

∂θℓ
M̄(θ0)

∣

∣

∣

∣

2

≤ 32π2

J2
(2k0 +1)A2

0N
−2s+1

∑

|k|≤k0

k2(4|ck|2 +A2
0N

−2s+1)

≤ 64π2

J2
(2k0 +1)A2

0N
−2s+1(A2 +A2

0k
3
0N

−2s+1).

Thus, there exists a positive constant C that only depends on A and s such
that

nJ‖∇M̄(θ0)‖2 ≤Ck0(1 + k30n
−2s+1)n−2s+2.(47)

We now focus on ∇Q and, by (36), we can obtain

J
∑

ℓ=1

E

∣

∣

∣

∣

∂

∂θℓ
Q(θ0)

∣

∣

∣

∣

2

≤ 16π2(J − 1)2

N2J4

J
∑

ℓ=1

∑

|k|≤k0

k2
1

J − 1

J
∑

j=1,j 6=ℓ

E|z(0)k,ℓ |
2|z(0)k,j |

2

≤ 32π2σ4k30
N2J

.
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Hence, we get

nJE‖∇Q(θ0)‖2 ≤ 128π2σ4k30
n

.(48)

Finally, we deal with ∇L. Equation (37) and Lemma A.1 imply

E

∣

∣

∣

∣

∂

∂θℓ
L(θ)

∣

∣

∣

∣

2

≤ 16π2σ2

J4N

∑

|k|≤k0

k2

(
∣

∣

∣

∣

∣

J
∑

j=1,j 6=ℓ

c̄
(0)
k,je

2ikπθj

∣

∣

∣

∣

∣

2

+ J |c̄(0)k,ℓ|
2

)

≤ 16π2σ2

J4N

∑

|k|≤k0

k2

(

(J − 1)

J
∑

j=1,j 6=ℓ

|c̄(0)k,j|
2 + J |c̄(0)k,ℓ|

2

)

≤ 16π2σ2

J2N

∑

|k|≤k0

k2

(

1

J

J
∑

j=1

|c̄(0)k,j|
2

)

≤ 32π2σ2

J2N

∑

|k|≤k0

k2(|ck|2 +A2
0N

−2s+1).

This last inequality leads to

nJE‖∇L(θ0)‖2 ≤ 64π2σ2(A2 + 2A2
0)(1 + k30n

−2s+1).(49)

By combining inequalities (47), (48) and (49), we then obtain inequality (33).

A.1.3. Proof of Step 3. We introduce the Frobenius norm ‖B‖F defined,
for any J × J matrix B = [Bℓ,ℓ′ ]1≤ℓ,ℓ′≤J , as

‖B‖F =

√

√

√

√

J
∑

ℓ,ℓ′=1

B2
ℓ,ℓ′.

Moreover, for a self-adjoint matrix B, we will use the classical inequalities

‖B‖op ≤ ‖B‖F and ‖B‖op ≤ max
1≤ℓ′≤J

J
∑

ℓ=1

|Bℓ,ℓ′ |.(50)

In order to prove inequality (34), we use the following decomposition:

‖∇2Mn(θ)−∇2M(θ0)‖2op ≤ 4(‖∇2M̄(θ)−∇2M(θ)‖2F
+ ‖∇2M(θ)−∇2M(θ0)‖2op(51)

+ ‖∇2Q(θ)‖2F + ‖∇2L(θ)‖2F ).
We now deal with each term in the above inequality. Hereafter, ℓ and ℓ′

always denote two integers in {1, . . . , J}.
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First, let us consider ℓ 6= ℓ′, by (38) and Lemma A.1, we get

∣

∣

∣

∣

∂2

∂θℓ′ ∂θℓ
M̄(θ)− ∂2

∂θℓ′ ∂θℓ
M(θ)

∣

∣

∣

∣

2

=
64π4

J4

(

∑

|k|≤k0

k2ℜ[(c̄(0)k,ℓ c̄
(0)
k,ℓ′ − |ck|2e2ikπ(θ

∗
ℓ′
−θ∗

ℓ
))ei2πk(θℓ−θℓ′)]

)2

≤ 64π4

J4

(

∑

|k|≤k0

k2|c̄(0)k,ℓ c̄
(0)
k,ℓ′ − |ck|2e2ikπ(θ

∗
ℓ′
−θ∗

ℓ
)|
)2

≤ 256π4

J4

(

∑

|k|≤k0

k2(A0|ck|N−s+1/2 +A2
0N

−2s+1)

)2

.

In the case of ℓ= ℓ′, (41) and Lemma A.1 lead to

∣

∣

∣

∣

∂2

∂θℓ ∂θℓ
M̄(θ)− ∂2

∂θℓ ∂θℓ
M(θ)

∣

∣

∣

∣

2

≤ 64π4

J4

(

∑

|k|≤k0

k2
J
∑

j=1,j 6=ℓ

|c̄(0)k,ℓ c̄
(0)
k,j − |ck|2e2ikπ(θ

∗
j−θ∗

ℓ
)|
)2

≤ 256π4

J2

(

∑

|k|≤k0

k2(A0|ck|N−s+1/2 +A2
0N

−2s+1)

)2

.

Therefore, the above inequalities and (16) imply that there exists some pos-
itive constant CM that only depends on A, s, κ and σ2 such that

nJE
(

sup
θ∈Uκ

‖∇2M̄(θ)−∇2M(θ)‖2F ‖θ̂0 − θ0‖2
)

≤CM
k
6+1/2
0 J

n2s−3/2
.(52)

Second, using the fact that 2(1− cos(t))≤ t2 for any t ∈R, if ℓ 6= ℓ′, then
we have

∣

∣

∣

∣

∂2

∂θℓ′ ∂θℓ
M(θ)− ∂2

∂θℓ′ ∂θℓ
M(θ0)

∣

∣

∣

∣

=
8π2

J2

∣

∣

∣

∣

∑

|k|≤k0

k2|ck|2ℜ[e2ikπ(θℓ−θ0
ℓ
+θ0

ℓ′
−θℓ′) − 1]

∣

∣

∣

∣

≤ 16π4

J2

(

∑

|k|≤k0

k4|ck|2
)

|θℓ − θ0ℓ + θ0ℓ′ − θℓ′ |2,
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and if ℓ= ℓ′ then we obtain
∣

∣

∣

∣

∂2

∂θℓ ∂θℓ
M(θ)− ∂2

∂θℓ ∂θℓ
M(θ0)

∣

∣

∣

∣

=
8π2

J2

∣

∣

∣

∣

∣

∑

|k|≤k0

k2|ck|2ℜ
[(

J
∑

j=1,j 6=ℓ

(e2ikπ(θℓ−θ0
ℓ
−θj+θ0j ) − 1)

)]
∣

∣

∣

∣

∣

≤ 16π4

J2

(

∑

|k|≤k0

k4|ck|2
) J
∑

j=1,j 6=ℓ

|θℓ − θ0ℓ − θj + θ0j |2.

Therefore, by (50) and under the condition s≥ 2, we get

‖∇2M(θ)−∇2M(θ0)‖op ≤
32π4A2

J2
max
1≤ℓ≤J

J
∑

j=1,j 6=ℓ

|θℓ − θ0ℓ − θj + θ0j |2

≤ 64π4A2

J
‖θ− θ0‖2.

Thus, by definition of Uκ and by (18), we know that there exists some C ′
M > 0

that only depends on A, s, σ2 and κ such that

nJE
(

sup
θ∈Uκ

‖∇2M(θ)−∇2M(θ0)‖2op‖θ̂0 − θ0‖2
)

≤ n(64π4A2)2

J
E(‖θ̂0 − θ0‖6)(53)

≤C ′
M

k
3/2
0 J2

n1/2
.

Next, we deal with the term relative to ‖∇2Q(θ)‖2F . Let us begin by noting

that ‖θ̂0 − θ0‖2 ≤ 4Jκ2. Thus, we have

E

(

sup
θ∈Uκ

‖∇2Q(θ)‖2F‖θ̂0 − θ0‖2
)

≤ 4Jκ2E
(

sup
θ∈Uκ

‖∇2Q(θ)‖2F
)

.(54)

If we take ℓ 6= ℓ′, then using (39), we get
∣

∣

∣

∣

∂2

∂θℓ′ ∂θℓ
Q(θ)

∣

∣

∣

∣

2

≤ 64π4

N2J4

(

∑

|k|≤k0

k2|z(0)k,ℓ ||z
(0)
k,ℓ′ |
)2

and if ℓ= ℓ′, then by (42), we have

| ∂
2

∂θ2ℓ
Q(θ)

∣

∣

∣

∣

2

≤ 64π4

N2J4

(

∑

|k|≤k0

k2|z(0)k,ℓ |
∣

∣

∣

∣

∣

J
∑

j=1,j 6=ℓ

z
(0)
k,je

i2πkθj

∣

∣

∣

∣

∣

)2

≤ 64π4

N2J3

J
∑

j=1,j 6=ℓ

(

∑

|k|≤k0

k2|z(0)k,ℓ ||z
(0)
k,j |
)2

.
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Hence, the Cauchy–Schwarz inequality leads to the following upper bound:

E

(

sup
θ∈Uκ

‖∇2Q(θ)‖2F
)

≤ 128π4

N2J3
E

J
∑

ℓ=1

J
∑

ℓ′=1,ℓ′ 6=ℓ

(

∑

|k|≤k0

k2|z(0)k,ℓ ||z
(0)
k,ℓ′ |
)2

≤ 128π4

N2J3

J
∑

ℓ=1

J
∑

ℓ′=1,ℓ′ 6=ℓ

E

(

∑

|k|≤k0

k2|z(0)k,ℓ |
2

)

E

(

∑

|k|≤k0

k2|z(0)k,ℓ′|
2

)

≤ 512π4σ4k60
N2J

.

Combining this bound with (54) gives us some CQ > 0 that only depends
on κ and σ2 such that

nJE
(

sup
θ∈Uκ

‖∇2Q(θ)‖2F ‖θ̂0 − θ0‖2
)

≤CQ
k60J

n
.(55)

Finally, we focus on the term concerning ‖∇2L(θ)‖2F . By the Cauchy–
Schwarz inequality and (17), we have

E

(

sup
θ∈Uκ

‖∇2L(θ)‖2F‖θ̂0 − θ0‖2
)

≤
√

E

(

sup
θ∈Uκ

‖∇2L(θ)‖4F
)

√

E(‖θ̂0 − θ0‖4)(56)

≤
√

E

(

sup
θ∈Uκ

‖∇2L(θ)‖4F
)

√

C2
k0J2

n
.

Using Lemma A.1 and (40), if ℓ 6= ℓ′, we obtain
∣

∣

∣

∣

∂2

∂θℓ′ ∂θℓ
L(θ)

∣

∣

∣

∣

2

≤ 64π4

J4N

(

∑

|k|≤k0

k2(|c̄(0)k,ℓz
(0)
k,ℓ′ |+ |c̄(0)k,ℓ′z

(0)
k,ℓ |)

)2

≤ 64π4

J4N

(

∑

|k|≤k0

k2(|ck|+A0N
−s+1/2)(|z(0)k,ℓ |+ |z(0)k,ℓ′ |)

)2

and, by (43), if ℓ= ℓ′, we get
∣

∣

∣

∣

∂2

∂θℓ ∂θℓ
L(θ)

∣

∣

∣

∣

2

≤ 64π4

J4N

(

∑

|k|≤k0

k2

(

|c̄(0)k,ℓ|
(

J
∑

j=1,j 6=ℓ

|z(0)k,j |
)

+ |z(0)k,ℓ |
(

J
∑

j=1,j 6=ℓ

|c̄(0)k,j |
)))2
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≤ 64π4

J4N

(

∑

|k|≤k0

k2

(

(|ck|+A0N
−s+1/2)

(

J |z(0)k,ℓ |+
J
∑

j=1,j 6=ℓ

|z(0)k,j |
)))2

.

Hence, we bound the expectation in (56) from above,

E

(

sup
θ∈Uκ

‖∇2L(θ)‖4F
)

≤ 4096π8

J4N2
E

([

J

(

∑

|k|≤k0

k2(|ck|+A0N
−s+1/2)

J
∑

j=1

|z(0)k,j |
)2

+
4

J

J
∑

ℓ=1

(

∑

|k|≤k0

k2(|ck|+A0N
−s+1/2)|z(0)k,ℓ |

)2
]2)

≤ 4× 4096π8

J2N2
E

((

∑

|k|≤k0

k2(|ck|+A0N
−s+1/2)

J
∑

j=1

|z(0)k,j |
)4)

≤ 4× 4096π8

N2

(

∑

|k|≤k0

k4(|ck|+A0N
−s+1/2)2

)2

E

((

∑

|k|≤k0

J
∑

j=1

|z(0)k,j |
2

)2)

≤ 168× 4096π8σ4J2k20
N2

(

∑

|k|≤k0

k4(|ck|+A0N
−s+1/2)2

)2

.

Therefore, there exists some constant C ′
L > 0 that only depends on A, s and

σ2 such that

E

(

sup
θ∈Uκ

‖∇2L(θ)‖4F
)

≤C ′
L

k20J
2

n2

(

1 +
k50

n2s−1

)2

.(57)

Using (56) and (57), we know that there exists some constant CL > 0 that
only depends on c∗, κ, A, s and σ2 such that

nJE
(

sup
θ∈Uκ

‖∇2L(θ)‖2F ‖θ̂0 − θ0‖2
)

≤CL
k
3/2
0 J3

√
n

(

1 +
k50

n2s−1

)

.(58)

Finally, we use (52), (53), (55) and (58) with (51) to get (34).

A.2. Proof of Theorem 3.2. Let us assume that f ∈ W̃s(A,c∗). We bound

the distance between f and f̂n,J from above,

d2([f ], [f̂n,J ]) = inf
θ∈[−1/2,1/2]

∫ 1

0
|f(t− θ)− f̂n,J(t)|2 dt

≤ 2d2([f ], [f̄ (m1)]) + 2

∫ 1

0
|f̄ (m1)(t)− f̂n,J(t)|2 dt.
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Taking the expectation according to the distribution of Y (1) on both sides
and using (12) leads to

E
(1)[d2([f ], [f̂n,J ])]

≤ 2d2([f ], [f̄ (m1)])

+ 2C(η) min
m∈{1,...,m1}

{
∫ 1

0
|f̄ (m1)(t)− f̄ (m)(t)|2 dt+ 2(m+1)σ2

NJ

}

(59)

≤ 2d2([f ], [f̄ (m1)])

+ 2C(η) min
m∈{1,...,m1}

{

∑

m<|k|≤m1

∣

∣

∣

∣

∣

1

J

J
∑

j=1

c̄
(1)
k,je

i2πkθ̂0j

∣

∣

∣

∣

∣

2

+
2(m+1)σ2

NJ

}

.

Let θ̄J = (θ∗1 + · · ·+ θ∗J)/J , we recall that θ
0 = θ∗− θ̄J . We begin by upper

bounding the first term. Thanks to Jensen’s inequality, we obtain

d2([f ], [f̄ (m1)])≤
∫ 1

0
|f(t− θ̄J)− f̄ (m1)(t)|2 dt

≤
∑

|k|>m1

|ck|2 +
∑

|k|≤m1

∣

∣

∣

∣

∣

cke
−i2πkθ̄J − 1

J

J
∑

j=1

c̄
(1)
k,je

i2πkθ̂0j

∣

∣

∣

∣

∣

2

(60)

≤
∑

|k|>m1

|ck|2 +
∑

|k|≤m1

1

J

J
∑

j=1

|cke−i2πkθ̄J − c̄
(1)
k,je

i2πkθ̂0j |2.

Since f ∈ W̃s(A,c∗), we easily upper bound the bias part
∑

|k|>m1

|ck|2 ≤A|m1|−2s.(61)

To deal with the other part, we split it into two sums,

1

J

J
∑

j=1

|cke−i2πkθ̄J − c̄
(1)
k,je

i2πkθ̂0j |2

≤ 2

J

J
∑

j=1

|cke−i2πkθ̄J − cke
i2πk(θ̂0j−θ∗j )|2

+
2

J

J
∑

j=1

|ckei2πk(θ̂
0
j−θ∗j ) − c̄

(1)
k,je

i2πkθ̂0j |2(62)

≤ 2|ck|2
J

J
∑

j=1

|1− ei2πk(θ̂
0
j−θ0j )|2 + 2

J

J
∑

j=1

|c̄(1)k,j − cke
−i2πkθ∗j |2
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≤ 8π2k2|ck|2
J

J
∑

j=1

(θ̂0j − θ0j )
2 +2A2

0N
−2s+1,

where the last inequality follows from Lemma A.1 and from 2(1− cos t)≤ t2,
t ∈R. Combining (60), (61) and (62), we get, for any g ∈ Gκ,

E
g[d2([f ], [f̄ (m1)])]≤A|m1|−2s +2A2

0(2m1 +1)N−2s+1

(63)

+ 8π2

(

∑

|k|≤m1

k2|ck|2
)

E
g

[

1

J

J
∑

j=1

(θ̂0j − θ0j )
2

]

.

We now focus on the second term in (59). Let αk,j = cke
−i2πkθ∗j − c̄

(1)
k,j ,

using Jensen’s inequality and Lemma A.1, for any m ∈ {1, . . . ,m1}, we have

∑

m<|k|≤m1

∣

∣

∣

∣

∣

1

J

J
∑

j=1

c̄
(1)
k,je

i2πkθ̂0j

∣

∣

∣

∣

∣

2

≤
∑

m<|k|≤m1

1

J

J
∑

j=1

|cke−i2πkθ∗j + αk,j|2

≤ 2
∑

|k|>m

|ck|2 +
2

J

∑

m<|k|≤m1

J
∑

j=1

|αk,j|2

≤ 2Am−2s +4A2
0m1N

−2s+1.

Let us consider m∗ such that

m∗ =

⌊(

nJ

c

)1/(2s+1)⌋

,

where c is the constant such that J ≤ cnα. Note that such a choice is allowed
because it is such that m∗ ∈ {1, . . . ,m1} since n ≥ 21, s > 3/2, α ∈ (0,1/6]
and c ∈ (0,1). In particular, such a choice leads to the following upper bound:

min
m∈{1,...,m1}

{

∑

m<|k|≤m1

∣

∣

∣

∣

∣

1

J

J
∑

j=1

c̄
(1)
k,je

i2πkθ̂0j

∣

∣

∣

∣

∣

2

+
2(m+1)σ2

NJ

}

≤ 4A2
0m1N

−2s+1 +
2σ2

NJ
+ 2 min

m∈{1,...,m1}

{

Am−2s +
mσ2

NJ

}

≤ 4A2
0m1N

−2s+1 +
2σ2

NJ
(64)

+ 2

(

A

2
c2s/(2s+1) + 2σ2c2s/(2s+1)

)

(nJ)−2s/(2s+1)

≤ 4A2
0m1N

−2s+1 + (1+ (A+4σ2)c2s/(2s+1))(nJ)−2s/(2s+1).
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Putting (63) and (64) in (59) leads to, for any g ∈ Gκ,

Rg(f̂n,J , f)≤A|m1|−2s + 4A2
0((1 +C(η))m1 +1)N−2s+1

+ 8π2

(

∑

|k|≤m1

k2|ck|2
)

E
g

[

1

J

J
∑

j=1

(θ̂0j − θ0j )
2

]

+C(η)(1 + (A+ 4σ2)c2s/(2s+1))(nJ)−2s/(2s+1),

that completes the proof using the fact that m1 = ⌊N/2⌋ − 1.

A.3. Proof of Theorem 4.1. The arguments that we use to derive this
result are based on Assouad’s cube lemma; see, for example, [30]. This lemma
is classically used in nonparametric statistics to derive lower bounds on a
risk. We will show that one can construct a set of functions F0 ⊂ W̃s(A,c∗)
such that there exists a constant C > 0 (only depending on A, s, c∗ and σ2)
such that, for any large enough n and J ,

Rn,J(W̃s(A,c∗),Gκ)≥ inf
f̂n,J

sup
g∈Gκ

sup
f∈F0

Rg(f̂n,J , f)≥C(nJ)−2s/(2s+1),(65)

where f̂n,J denote some estimator of f . For the sake of legibility, we assume
in the sequel that c∗ = 1. Let

F0 =

{

fw : t ∈ [0,1] 7→√
µn,J

∑

k∈Kn,J

wkφk(t),wk ∈ {−1,1},w−k =wk

}

,

where Kn,J = {k ∈ Z,0< |k| ≤Dn,J}, µn,J is a positive real and Dn,J is a
positive integer that will be specified below. Let us introduce the notation
Ω = {−1,1}Dn,J and note that any function fw ∈ F0 is parametrized by a
unique element w ∈Ω. Under the condition

µn,J = cD−2s−1
n,J with c≤A,(66)

it can easily be checked that F0 ⊂ W̃s(A,c∗). In what follows, Dn,J is chosen

as the largest integer smaller that (nJ)1/(2s+1). Hereafter, Eg
w will denote

the expectation with respect to the distribution P
g
w of the random vector

(Yℓ,j)1≤ℓ≤n,1≤j≤J ∈R
nJ in model (3) under the hypothesis that f = fw and

the assumption that the shifts are i.i.d. random variables with density g ∈ Gκ.
Note that for any g ∈ Gκ

sup
f∈F0

Rg(f̂n,J , f) = sup
f∈F0

E

[

inf
θ∈[0,1]

(
∫ 1

0
|f̂n,J(t− θ)− f(t)|2 dt

)]

≥ 1

|Ω|
∑

w∈Ω

E
g
w

[

inf
θ∈[0,1]

(
∫ 1

0
|f̂n,J(t− θ)− fw(t)|2 dt

)]
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≥ 1

|Ω|
∑

w∈Ω

E
g
w

[

inf
θ∈[0,1]

∑

k∈Kn,J

|ĉke−2ikπθ −√
µn,Jwk|2

]

,

where ĉk =
∫ 1
0 f̂n,J(t)φk(t)dt is the kth Fourier coefficient of f̂n,J . Now, we

consider, for k ∈Kn,J and θ ∈ [0,1],

ŵk,θ ∈ argmin
v∈{−1,1}

|ĉke−2ikπθ −√
µn,Jv|.

We have the inequality

|√µn,Jŵk,θ −
√
µn,Jwk| ≤ |ĉke−2ikπθ −√

µn,Jŵk,θ|

+ |ĉke−2ikπθ −√
µn,Jwk|

≤ 2|ĉke−2ikπθ −√
µn,Jwk|

that implies

sup
f∈F0

Rg(f̂n,J , f)≥
µn,J

4|Ω|
∑

k∈Kn,J

∑

w∈Ω

E
g
w

[

inf
θ∈[0,1]

(|ŵk,θ −wk|2)
]

.

For w ∈Ω and k ∈Kn,J , we define w(k) ∈Ω such that, for any ℓ 6= k, w
(k)
ℓ =

wℓ and w
(k)
k =−wk. Then it follows that

sup
f∈F0

Rg(f̂n,J , f)≥
µn,J

4|Ω|
∑

k∈Kn,J

∑

w∈Ω|wk=1

Rk,(67)

where we have set

Rk = E
g
w

[

inf
θ∈[0,1]

(|ŵk,θ −wk|2)
]

+E
g

w(k)

[

inf
θ∈[0,1]

(|ŵk,θ +wk|2)
]

.

Let θ∗ = (θ∗1, . . . , θ
∗
J), we introduce the notation E

θ∗
w to denote expectation

with respect to the distribution P
θ∗
w of the random vector (Yℓ,j)1≤ℓ≤n,1≤j≤J ∈

R
nJ in model (1) conditionally to θ∗1, . . . , θ

∗
J . Hence, using this notation, we

have

Rk =

∫

[−1/2,1/2]J
Rk(θ

∗)g(θ∗1) · · ·g(θ∗J)dθ∗1 · · · dθ∗J ,(68)

where

Rk(θ
∗) = E

θ∗
w

[

inf
θ∈[0,1]

(|ŵk,θ −wk|2)
]

+E
θ∗

w(k)

[

inf
θ∈[0,1]

(|ŵk,θ +wk|2)
]

.

Now, note that for any 0< δ < 1,

Rk(θ
∗) = E

θ∗
w

[

inf
θ∈[0,1]

(|ŵk,θ −wk|2) + inf
θ∈[0,1]

(|ŵk,θ +wk|2)
dPθ∗

w(k)

dPθ∗
w

(Y )

]

(69)

≥ 4Eg
wmin

(

1,
dPθ∗

w(k)

dPθ∗
w

(Y )

)

≥ 4δPθ∗

w

(

dPθ∗

w(k)

dPθ∗
w

(Y )≥ δ

)

,
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where Y ∈R
nJ is the random vector obtained from the concatenation of the

observations from model (3) under the hypothesis f = fw and conditionally
to θ∗1, . . . , θ

∗
J . Because wk = 1, we know that

log
dPθ∗

w(k)

dPθ∗
w

(Y ) =− 2

σ2

J
∑

j=1

n
∑

ℓ=1

µn,J |φk(tℓ − θ∗j )|2 +
√
µn,Jεℓ,jφk(tℓ − θ∗j ).

Therefore, log
dPθ∗

w(k)

dPθ∗
w

(Y ) is a random variable that is normally distributed

with mean − 2
σ2nJµn,J and variance 4

σ2nJµn,J . Now, since DnJ is the largest

integer smaller than (nJ)1/(2s+1), it follows from equation (66) that, for any
n and J large enough,

0≤ nJµn,J ≤ 2A.

Thus, there exists 0< δ < 1 and a constant cδ > 0 (only depending on A, σ2

and δ) such that

P
θ∗
w

(

dPθ∗

w(k)

dPθ∗
w

(Y )≥ δ

)

≥ cδ.

Combining this inequality with (67), (68) and (69) leads to

sup
f∈F0

Rg(f̂n,J , f)≥
4δµn,J

|Ω|
∑

k∈Kn,J

∑

w∈Ω|wk=1

cδ ≥ δcδµn,JDn,J .(70)

Since µn,J = cD−2s−1
n,J and Dn,J ≤ (nJ)1/(2s+1), it follows that

µn,JDn,J = cD−2s
n,J ≥ c(nJ)−2s/(2s+1),

which combined with (70) proves inequality (65) and completes the proof of
Theorem 4.1.
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