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On particle filters applied to electricity load forecasting

Tristan Launay1,2 Anne Philippe1 Sophie Lamarche2

October 2, 2012

Abstract

In this paper, we are interested in the online prediction of the electricity load, within the
Bayesian framework of dynamic models. We offer a review of sequential Monte Carlo methods,
and provide the calculations needed for the derivation of so-called particles filters. We also
discuss the practical issues arising from their use, and some of the variants proposed in the
literature to deal with them, giving detailed algorithms whenever possible for an easy implemen-
tation. We propose an additional step to help make basic particle filters more robust with regard
to outlying observations. Finally we use such a particle filter to estimate a state-space model
that includes exogenous variables in order to forecast the electricity load for the customers of
the French electricity company Électricité de France and discuss the various results obtained.

Keywords: dynamic model, particle filter, sequential Monte Carlo, electricity load forecasting

1 Introduction

Let {Xn}n≥0 and {Yn}n≥0 be X ⊂ Rnx and Y ⊂ Rny -valued stochastic processes defined on
a measurable space. The observations {Yn}n≥0 are assumed conditionally independent given
the hidden Markov process {Xn}n≥0 most often referred to as the states of the model, and are
characterised by the conditional density gθ

n(yn|xn). We denote the initial density of the state as
µθ(x0) and the Markov transition density from time n− 1 to time n as f θ

n(xn|xn−1). The superscript
θ on these densities is the parameter of the model, that belongs to an open set Θ ⊂ Rnθ . The model
can be summarised (using practical and common if not exactly rigorous notations) as

X0 ∼ µθ(·), Xn|(Xn−1 = xn−1) ∼ f θ
n(·|xn−1) (1.1)

Yn|(Xn = xn) ∼ gθ
n(·|xn). (1.2)

Within the Bayesian framework, equations (1.1) specify the prior on the states of the model whose
likelihood is defined via (1.2).

Notice here that we restrict ourselves to models with independent observations, but that the
framework can easily be extended to include dependent observations if need be. The class of
dynamic models we consider, known as general state-space models or hidden Markov models
(HMM) in the literature and whose typical representation is given in Figure 1, includes many non
linear and non Gaussian time series models such as

Xn+1 = Fn(Xn, Vn+1) (1.3)

Yn = Gn(Xn, Wn) (1.4)
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where {Vn}n≥1 and {Wn}n≥0 are independent sequences of independent random variables and
{Fn}n≥1 and {Gn}n≥1 are sequences of (possibly non linear) functions. Such models find applica-
tions in many fields including time-series forecasting (Dordonnat, 2009), biostatistics (Rossi, 2004;
Vavoulis et al., 2012), econometrics (Liu and West, 2001; Johansen et al., 2008; Chopin et al., 2012),
telecommunications (Lee et al., 2010), object tracking (Rui and Chen, 2001; Gilks and Berzuini,
2001; Gustafsson et al., 2002; Karlsson, 2005), etc.

Xn−2 Xn−1 Xn Xn+1 Xn+2

Yn−2 Yn−1 Yn Yn+1 Yn+2

f θ
n−1 f θ

n f θ
n+1 f θ

n+2

gθ
n−2 gθ

n−1 gθ
n gθ

n+1 gθ
n+2

Figure 1: A generic hidden Markov Model (HMM).

When the parameter θ is known, on-line inference about the state process given the observations
is a so-called optimal filtering problem. For simple models such as the linear Gaussian state-space
model the problem can be solved exactly using the standard Kalman filter (see for example Durbin
and Koopman, 2001), and the case of a finite state-space also allows for explicit calculations. For
non linear models, the Extended Kalman filter is often used and relies on the approximation of
the first derivative of Fn, although good performances are not guaranteed theoretically. Another
technique is the so-called Unscented Kalman filter (see Wan and van der Merwe, 2000, for the
comprehensive details) which makes use of the unscented transformation to deal with the non
linearity of the system.

For our application, we are interested in the on-line prediction of the french electricity load
through the estimation (and prediction) of a dynamic model and choose to consider Sequential
Monte Carlo (SMC) methods also known as particle methods instead. SMC methods are a class of
sequential simulation-based algorithms which aim at approximating the posterior distributions of
interest. They represent a popular alternative to Kalman filters (Kantas et al., 2009) since they are
often easy to implement, apply to non linear non Gaussian models, and have been demonstrated
to yield accurate estimates (Doucet et al., 2001; Liu, 2008).

In Section 2 we introduce the key concepts behind sequential Monte Carlo methods. In Section
3 we first derive the algorithm for a basic particle filter and discuss common practical issues.
We then review the main techniques appearing in the literature to deal with these issues and
we also propose a new additional step to help make particle filters more robust with regard to
outlying observations. Finally, we propose a new nonlinear dynamic model for the electricity
load in Section 4 and use a particle filter to estimate this model. We compare the predictions we
obtain to operational predictions and show that our model remains competitive, even though its
definition is simpler than that of the model studied in Dordonnat et al. (2008).

2 Inference in hidden Markov models

Let us first assume that the parameter θ is known: the model with θ unknown will be discussed
later in Section 3.7. Given equations (1.1) and (1.2), the posterior distribution of the states given
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the observations is

πθ(x0:n|y0:n) ∝
n

∏
k=1

gθ
k(yk|xk)︸ ︷︷ ︸

n likelihoods

·
n

∏
k=1

f θ
k (xk|xk−1)︸ ︷︷ ︸

n transition densities

· µθ(x0)︸ ︷︷ ︸
initial density

. (2.1)

From equation (2.1), three distinct goals might be pursued (see for example Chen, 2003; Cappé
et al., 2010)

Filtering: the aim of filtering is to estimate the distribution of the state Xn conditionally to the
observations up to time n, i.e. y0:n.

Smoothing: the aim of smoothing is to estimate the distribution of the state Xn conditionally to
the observations up to time n′ (with n′ ≥ n), i.e. y0:n′ . Note that πθ(xn|y0:n) is both a filtered
and a smoothed distribution.

Predicting: the aim of predicting is to estimate the distribution of the state Xn+τ (with an horizon
τ > 0) conditionally to the observations up to time n, i.e. y0:n. From there, using (1.2), it is
easy to forecast the upcoming observation Yn+τ which is usually the real target. When not
explicitly mentioned, the horizon considered for prediction will be τ = 1.

To summarise, given the available observations, filtering focuses on the current state, smoothing
focuses on the past states, and predicting focuses on the future states. Our goal being the online
prediction of the electricity load, we chose to focus on predicting and filtering, since the filtered
distribution of the state at time n is needed to produce forecasts for time n + τ: ultimately,
smoothing only refines the estimation of past states over time, without influencing the quality of
the online prediction, and is therefore not needed to achieve our goal.

Markov Chains Monte Carlo

MCMC methods (see for example Robert, 1996; Robert and Casella, 2004; Marin and Robert,
2007) certainly represent a viable estimation procedure: most of the time, nothing really prevents
the exploration via MCMC of the posterior distribution derived in (2.1) from the prior and the
likelihood given in (1.1) and (1.2). From a practical point of view however, MCMC methods
are most likely not the optimal tool: the addition of a new observation yn+1 from the model
forces the overall re-estimation of the smoothed distribution of the states πθ(x0:n+1|y0:n+1) even
when we are interested only in the last marginal of this distribution i.e. the filtered distribution
πθ(xn+1|y0:n+1). The MCMC estimation is thus not recursive (with regard to the time index) in
the sense that the filtered distribution πθ(xn+1|y0:n+1) at time n + 1 cannot be computed from
the previous filtered distribution πθ(xn|y0:n) at time n using MCMC methods, which is a major
drawback given the computationally expensive nature of these methods.

Notice also that even though designing the MCMC algorithm can be simple in some cases, the
dimension of the space explored grows linearly with the time index making the assessment of the
convergence of the produced Markov chains all the more complicated.

Sequential Monte Carlo

SMC methods provide a viable and popular alternative to MCMC methods for the Bayesian online
estimation of dynamic models. Particle methods are recursive by nature (thus computationally
cheaper than MCMC) and similar in some ways to the Kalman filter approach. Particle methods
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essentially draw their strength from the immediate calculations that we show below

πθ(x0:n|y0:n) =
πθ(y0:n|x0:n)π

θ(x0:n)

πθ(y0:n)
=

πθ(yn, y0:n−1|x0:n)π
θ(x0:n)

πθ(yn, y0:n−1)

=
πθ(yn|y0:n−1, x0:n)π

θ(y0:n−1|x0:n)π
θ(x0:n)

πθ(yn|y0:n−1)πθ(y0:n−1)

=
πθ(yn|y0:n−1, x0:n)π

θ(x0:n|y0:n−1)π
θ(y0:n−1)π

θ(x0:n)

πθ(yn|y0:n−1)πθ(y0:n−1)πθ(x0:n)

=
πθ(yn|x0:n)π

θ(xn|x0:n−1, y0:n−1)

πθ(yn|y0:n−1)
· πθ(x0:n−1|y0:n−1)

i.e. with the notations we introduced earlier:

πθ(x0:n|y0:n) =
gθ

n(yn|xn) f θ
n(xn|xn−1)

πθ(yn|y0:n−1)
· πθ(x0:n−1|y0:n−1) (2.2)

∝ gθ
n(yn|xn) f θ

n(xn|xn−1) · πθ(x0:n−1|y0:n−1).

The recursive equation (2.2) plays a central role in the definition of all particle methods. An
integrated version of this equation is most often presented to emphasise the direct connection
between two consecutive filtered distributions:

πθ(xn|y0:n) =
∫

πθ(x0:n|y0:n)dx0:n−1 (2.3)

∝ gθ
n(yn|xn)

∫
f θ
n(xn|xn−1) · πθ(xn−1|y0:n−1)dxn−1.

The main idea behind particle filters is to make extensive use of equation (2.2) to compute
sequential Monte Carlo approximations of the posterior distributions of interest, in our case,
the sequence of filtered distributions. The general procedure is simple enough and mimics the
iterative prediction-correction structure of any Kalman filter. A each time n the filtered density
πθ(xn|y0:n) can be approximated by the empirical distribution of a large sample of M (M >> 1)
weighted random samples termed particles. The weighted particles evolve over time: they follow
the prior dynamic distribution of the model and get re-adjusted as soon as observations become
available. At time n, the two basic steps (a lot of refinements are possible that we will discuss later
on) of particle filters are the following:

Prediction: given particles distributed along density πθ(xn−1|y0:n−1), we simulate new particles
distributed along density πθ(xn|y0:n−1) with the help of the transition density f θ

n(xn|xn−1).

Correction: we re-weight these particles distributed along density πθ(xn|y0:n−1) depending on
the observation yn with the help of (2.2) to approximate the distribution π(xn|y0:n).

Particle filters essentially combine Monte Carlo integration and importance sampling. We
describe the application of self-normalised importance sampling to estimate a sequence of integrals
that involve the posterior distribution (2.1) and that are of the form

In =
∫

h(xn)π
θ(x0:n|y0:n)dx0:n

=
∫

h(xn)π
θ(xn|y0:n)dxn.

We use the self-normalised importance sampling estimator (see Geweke, 1989, for the theoreti-
cal details, including proof of the consistency of the estimator) defined with instrumental density
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q(x0:n|y0:n). Given M particles X1
0:n, . . . , XM

0:n, i.i.d. with probability density qθ(x0:n|y0:n), we will
approximate In by

ÎPF
n,M =

M

∑
j=1

wj
nh(X j

n),

where we define

wj
n =

w̃j
n

∑M
k=1 w̃k

n
, (2.4)

with

w̃j
n =

πθ(X j
0:n|y0:n)

qθ(X j
0:n|y0:n)

. (2.5)

Note that to alleviate the notational burden, we voluntarily omit the dependence of the importance
weights on the parameter θ, and will do so for the remainder of the chapter when no confusion is
possible.

A convenient form of importance density

Let us consider an importance density q that can be factorised as follows:

qθ(x0:n|y0:n) = qθ(xn|y0:n−1, x0:n)qθ(x0:n−1|y0:n−1)

= qθ(x0|y0)
n

∏
k=1

qθ(xk|y0:k−1, y0:k). (2.6)

It is now easy to see, using (2.2), that the weights w̃θ
n(X j

0:n) can be updated recursively via

w̃j
n =

πθ(X j
0:n|y0:n)

qθ(X j
0:n|y0:n)

=
gθ

n(yn|X j
n) f θ

n(X j
n|X

j
n−1)π

θ(X j
0:n−1|y0:n−1)

πθ(yn|y0:n−1)qθ(X j
n|X

j
0:n−1, y0:n)qθ(X j

0:n−1|y0:n−1)

= w̃j
n−1

gθ
n(yn|X j

n) f θ
n(X j

n|X
j
n−1)

πθ(yn|y0:n−1)qθ(X j
n|X

j
0:n−1, y0:n)

. (2.7)

where πθ(yn|y0:n−1) does not depend on the index j, and need not be computed at all since
the weights wj

n featured in the estimator are the self-normalised version of the weights w̃j
n (the

constant vanishes after the self-normalisation). Note that wj
n−1 can be substituted to w̃j

n−1 in the
recursive update (2.7) for the very same reason.

Equation (2.7) lies at the very core of all the particle filters in general, some variants of which
we describe in the next section. It summarises, by itself, the edge that SMC methods have over
MCMC methods in general in the context of dynamic models: it allows for sequential recursive
estimations and predictions. At each time step, two things only are required to estimate the
quantity of interest: simulations from the importance density qθ (the choice of which shall be
discussed) and the update of the particles’ weights via the computation of (2.7).

3 Particle filters

From this point on, we adopt the convention that whenever the index j is used, we mean “for
all j = 1, . . . , M“. We present SMC methods designed to approximate the sequence of filtered
distributions πθ(xn|y0:n): at the end of each time step n, the particle filters discussed hereafter
return M particles X j

n with weights wj
n that can be used to approximate for instance
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• the filtered distribution πθ(xn|y0:n) by the finite mixture of weighted Dirac masses

π̂(dxn|y0:n) =
M

∑
j=1

wj
nδ(X j

n, dxn),

• integrals such as In =
∫

h(xn)π(xn|y0:n)dxn, with h ∈ L1(π(·|y0:n)), by

În,M =
M

∑
j=1

wj
nh(X j

n).

3.1 Sequential Importance Sampling (SIS)

Conception

The SIS filter (sometimes also called Bayesian Importance Sampling) is a direct application of
the calculations shown in the previous section: it relies solely upon the sequential use of the
self-normalised importance sampling technique. The details are given in Algorithm 3.1.

Algorithm 3.1 (Sequential Importance Sampling (SIS) for filtering).

At time n = 0

1. Sample X j
0 ∼ qθ(x0|y0).

2. Compute w̃j
0 =

gθ
0(y0|X

j
0)µ

θ(X j
0)

qθ(X j
0|y0)

and set wj
0 ←

w̃j
0

∑M
k=1 w̃k

0
.

At time n ≥ 1

1. Sample X j
n ∼ qθ(xn|x0:n−1, y0:n).

2. Compute w̃j
n = wj

n−1
gθ

n(yn|X j
n) f θ

n(X j
n|X

j
n−1)

qθ(X j
n|X

j
0:n−1, y0:n)

and set wj
n ←

w̃j
n

∑M
k=1 w̃k

n
.

At each time step, new particles are first simulated conditionally to the old ones to represent
the predictive distribution of the upcoming state and, as the observation becomes available, their
weights then get readjusted to represent the filtered distribution.

Prediction

The estimation of the predicted distribution πθ(xn+τ |y0:n) (τ ≥ 1) can also be computed from
the estimation of the filtered distribution up to time n. The principle, described for instance in
Doucet (1998), is identical in essence to that developed in Durbin and Koopman (2001) for Kalman
filters. Since the observations at times n + 1, . . . , n + τ are not yet available, no correction may
take place after the predictions of the state that involve the transition densities f θ

n+τ , . . . , f θ
n+1 :

formally, the terms gθ
n+τ , . . . , gθ

n+1 vanish. The details are given in Algorithm 3.2. Observe that in
this case, the importance density qθ(xn+τ |x0:n+τ−1, y0:n) needs to be chosen so as not to involve
the yet unknown values of the upcoming observations yn+1:n+τ .
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Algorithm 3.2 (Sequential Importance Sampling (SIS) for predicting).

At time n ≥ 0, for τ = 1, . . .

1. Sample X j
n+τ ∼ qθ(xn+τ |x0:n+τ−1, y0:n).

2. Compute w̃j
n+τ = wj

n+τ−1
f θ
n+τ(X j

n+τ |X
j
n+τ−1)

qθ(X j
n+τ |X

j
0:n+τ−1, y0:n)

and set wj
n+τ ←

w̃j
n+τ

∑M
k=1 w̃k

n+τ

.

Missing observations

When dealing with a missing observation, the SIS filter requires little modification: when observa-
tion Yn is missing, the corresponding state Xn is predicted using Algorithm 3.2 since πθ(xn|y0:n−1)
is the only accessible density under such circumstances. This leads to Algorithm 3.3.

Algorithm 3.3 (Sequential Importance Sampling (SIS) for filtering with missing observations).

At time n ≥ 0, if observation Yn is missing

1. Sample X j
n ∼ qθ(xn|x0:n−1, y0:n−1).

2. Compute w̃j
n = wj

n−1
f θ
n(X j

n|X
j
n−1)

qθ(X j
n|X

j
0:n−1, y0:n−1)

and set wj
n ←

w̃j
n

∑M
k=1 w̃k

n
.

Comments

The major drawback of the SIS filter comes from the fact that the distribution of the weights
degenerates, with the variance of the importance weights increasing over time (see Doucet
et al., 2000) meaning that the estimated distributions become less and less unreliable: after a few
iterations, all but one of the normalised importance weights are close to zero. An important fraction
of the calculations involved in the algorithm is thus dedicated to particles whose contributions to
the estimation are almost null, making the SIS particle filter an impractical estimation procedure
at best.

3.2 Monitoring the degeneracy

To alleviate the degeneracy problem that we outlined, additional steps are traditionally imple-
mented into Algorithm 3.1. Since adding these new steps comes at a non negligible computational
cost, it is important to somehow monitor how badly the weight distribution degenerates at a given
time step, because it is usually interesting to ignore the degeneracy problem unless it reaches a
given threshold.

A popular rule of thumb, first introduced in Kong et al. (1994) and later copiously reprised
in the literature (see for instance Doucet et al., 2000; Chen, 2003; Liu, 2008), is to consider the
so-called effective sample size based on the normalised weights wj

n at time step n and defined by

M

1 + Varqθ(·|y0:n)[w1
n]

.
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This quantity is usually numerically approximated by the following estimate

ESS(n) =
1

∑M
k=1(wk

n)
2

. (3.1)

It ranges from M (reached when all the particles share equal weights of value 1) to 1/M (reached
when a single particle is given the whole probability mass of the sample, with a weight of 1).

A related degeneracy measure is the coefficient of variation (found in Kong et al., 1994; Liu
and Chen, 1995), ranging from 0 to

√
M− 1, that is given by

CV(n) =

√√√√ 1
M

M

∑
k=1

(Mwk
n − 1)2, (3.2)

and satisfies to

ESS(n) =
M

1 + CV(n)2 . (3.3)

The Shannon entropy of the importance weights, ranging from log M to 0, is sometimes also
mentionned. It is defined by

E(n) = −
M

∑
k=1

wk
n log wk

n. (3.4)

Cornebise (2009) recently proved that the criteria (3.2) and (3.4) are estimators of the χ2-divergence
and the Kullback-Leibler divergence between two distributions which are associated with the
importance and target densities of the particle filter.

The evaluation of one (or more) of these criteria is introduced at each time step, with the
additional procedures that we discuss next taking place if and only if the criterion reaches a certain
fixed threshold so as to reduce the additional computational burden. The most common threshold
found in the literature is ESS(n) < 0.5M. Examples illustrating the behaviours of these criteria are
given later in Figures 3, 4 and 5.

3.3 Resample step

A resampling step is most often introduced into Algorithm 3.2 to help and fight the degeneracy
problem. The aim of this resampling step is to favour the living of the interesting particles (the
ones with more important weights, that are more representative of the targeted distribution) and
encourage the dying of the not so interesting particles so as to focus the computational effort upon
particles that matter most for the estimation. The resampling method has to be carefully chosen, in
particular it should not introduce any bias in the final estimate as mentioned in Doucet et al. (2000)

During this new step, particles are resampled according to their weights: a particle with an
important weight is more likely to appear (and ”survive”) in the new sample generated, possibly
more than once, whereas a particle the weight of which is close to zero is more likely not to be
drawn at all (and “die“) from a given time step to the next.

Chen (2003) mentions that there are a few resampling schemes available in the literature. It is
important to note that even though resampling might alleviate the degeneracy problem, it also
brings extra random variation to the samples of particles. As a consequence, the filtered quantities
of interest should preferably be computed before resampling and not after. We only present the
details of the multinomial and residual resampling schemes.
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Multinomial resampling

Multinomial resampling is the most popular resampling scheme, most likely because it is the
easiest to both understand and implement: at a given time step, it suffices to simulate a discrete
random variable which takes values Xk

n with probability wk
n. The details of multinomial resampling

are given in Algorithm 3.4 where only the new step is described.

Algorithm 3.4 (Multinomial resampling step).

At time n ≥ 0

3. Sample Zj
n ∼

M

∑
k=1

wk
nδ(Xk

n, dx).

Replace X j
n ← Zj

n and wj
n ← 1/M.

Used as is, it leads to the well-known Sampling Importance Resampling (SIR) filter, sometimes
also called Bootstrap filter, that can be found in Gordon et al. (1993). A straightforward imple-
mentation of the multinomial resampling has complexity O(M log M): it is indeed equivalent to
simulating M draws from a discrete random variable Zn such that P(Zn = k) = wk

n.
A trivial implementation for such simulations requires first to draw U1

n, . . . , UM
n i.i.d. with

uniform distribution and then to find the indexes ij
n for which U j

n ∈]∑i−1
k=1 wk

n, ∑i
k=1 wk

n]. Finding

the indexes ij
n has only complexity O(M) when the random variables are U j

n are ordered, but
ordering these random variables has complexity O(M log M) at least, using for instance the
quicksort algorithm (see Hoare, 1962).

A practical implementation of the multinomial resampling is proposed in Doucet (1998) which
circumvents the naive need of sorting M i.i.d. random variables with uniform distribution and
relies upon a direct simulation trick instead. The complexity of the SIR filter can hence be reduced
from O(M log M) (naive implementation using quicksort) to only O(M) which saves a significant
amount of computational resources.

Residual-multinomial resampling

Residual-multinomial resampling is proposed in Liu and Chen (1998) to reduce the extra variance
introduced by the resamping step. It is partially deterministic as opposed to the multinomial
resampling and is formulated below. Let bxc designate the integer part of a real number x and
define for any n ≥ 0:

Rn =
M

∑
k=1
bM · wk

nc, wj
n =

M · wj
n − bM · w

j
nc

M− Rn
.

Algorithm 3.5 (Residual-multinomial resampling step).

At time n ≥ 0

3. Copy bM · ŵj
nc particles X̂ j

n. (Rn particles are thus allocated, say Z1
n, . . . , ZRn

n ).

Sample the remaining particles ZRn+1
n , . . . , ZM

n ∼
M

∑
k=1

wk
nδ(Xk

n, dx).

Replace X j
n ← Zj

n and wj
n ← 1/M.

9



The details of residual-multinomial resampling are given in Algorithm 3.5 where only the new
step is described. In essence, particles with weights greater than 1/M are forced into the new
sample, and the rest is allocated at random, depending on the remaining probability mass available.
Note that the last part of a residual resampling step is basically a multinomial resampling step on
the residual probability mass, hence the name.

It is shown to be computationally cheaper than the multinomial resampling, due to the fact
that only a fraction of the M particles are randomly allocated. It does not introduce any bias for the
estimation and has the added advantage of having a lower variance than that of the multinomial
resampling (see Douc and Cappe, 2005, for the proofs).

Other resampling techniques

Stratified and systematic resampling also offer an alternative to the multinomial resampling
scheme (see Kitagawa (1996) and Carpenter et al. (1999) or Chen (2003) for a more general
overviews). Systematic resampling appears to be another popular choice in the literature for
computational reasons even though its variance is not guaranteed to be smaller than that of the
multinomial resampling as stated in Douc and Cappe (2005). A short study of these techniques and
a numerical comparison of their performance on an example are offered in Cornebise (2009). Note
that residual versions of these techniques also exist, where they are substituted to the multinomial
sampling used in the second half of Algorithm 3.5.

Limitations of the resampling procedure

The resampling procedure alleviates the degeneracy problem but also introduces practical and
theoretical issues (as mentioned in Doucet et al., 2000, for example). From a practical point of
view, resampling very obviously limits the opportunity of parallelisation of the algorithm. From
a theoretical point of view, simple convergence results are lost due to the fact that after one
resampling step the particles are not independent anymore. Moreover, resampling causes the
particles with high importance weights to be statistically selected many times: the algorithm thus
suffers from the so-called loss of diversity.

3.4 Move step

The loss of diversity among the particles following the resample step is usually addressed in the
literature with the introduction of yet another additional move step into the algorithm: the idea
behind it is to rejuvenate the diversity after the particles have been resampled.

Using MCMC

Gilks and Berzuini (2001); Doucet et al. (2001) present the so-called Resample-Move algorithm
in which an MCMC step is used after resampling. This new step relies upon the use of Markov
transition kernels with appropriate invariant distributions. Moving the particles according to such
kernels formally guarantees the particles still target the distribution of interest but also give them
an additional chance to move towards an interesting region of the state space while increasing the
diversity of the sample at the cost of an increased computational burden. Doucet and Johansen
(2011) underline the possibility of using even non ergodic MCMC kernels for this purpose and
also propose to go a step further and rejuvenate not only the current state but also some of the
(immediate) past states with the so-called Block Sampling (the computational cost of which is thus
even greater).
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Using regularisation

Another approach to deal with the loss of diversity is based upon regularisation techniques. Let
us define for x, x∗ ∈ X ⊂ Rnx

Kh(x, x∗) = h−nx · (det Σn)
−1/2 · K

(
Σ−1/2

n · x− x∗

h

)
where K is usually a smooth symmetric unimodal positive kernel of unit mass (hence a probability
measure), h is the bandwidth of the kernel, and Σn designates the empirical covariance matrix of
the sample (see Silverman, 1986, for the idea of whitening the sample via Σn).

Algorithm 3.6 (Regularisation step).

At time n ≥ 0

4. Sample ε
j
n ∼ K(x), and set Zj

n ← X j
n + h · Σ1/2

n · εj
n.

Replace X j
n ← Zj

n and keep wj
n ← wj

n.

Gordon et al. (1993) originally referred to that step as ”jittering“ since it adds a small amount of
noise to each resampled particle. Note that, when used together with the multinomial resampling
scheme described in Algorithm 3.4, the resulting combination of the two steps can be reformulated
as described in Algorithm 3.7: it is then equivalent to resampling new particles from the smoothed
estimated target distribution (using kernel density K).

Algorithm 3.7 (Alternate formulation for the combination of Algorithms 3.4 and 3.6).

At time n ≥ 0

3+4. Sample Zj
n ∼

M

∑
k=1

wk
nKh(Xk

n, x).

Replace X j
n ← Zj

n and wj
n ← 1/M.

The choice of both the kernel smoothing density K and the bandwidth h obviously has a big
impact on the algorithm. The idea is to resample from a density estimated from the particles at
time step n that best approximates the true target density. Picking K(·) = δ(·, 0) the Dirac mass at
the origin turns the regularised SMC filter back into a simple SMC filter. From a general point
of view, we would like the estimated density to converge as fast as possible towards the true
target density as M goes to +∞, since the number of particles will necessarily be limited by the
computational resources.

For the Gaussian kernel (among others), Silverman (1986) shows it is possible to compute the
optimal bandwidth to use, i.e. the bandwidth that minimises the variance of the density estimate.
Although it could be argued that selecting a proper bandwidth is a difficult task, this optimal
bandwidth yields good results in practise and at least provides a rough idea about the scaling of h.
As is the case with kernel density estimates, the choice of h directly influences the trade-off made
between variance and bias of the estimate: if h is chosen too small, the loss of diversity will still be
severe, and if h is chosen too large, the filtered density will roughly be estimated as a single kernel,
hence introducing a severe bias into the estimation.
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The use of the Epanechnikov kernel, proportional to 1− ‖x‖2 on the unit ball of the state space,
is recommended in Silverman (1986) because it is asymptotically the most efficient, and Doucet
(1998) claims it can be difficult to choose a ”good” kernel. However, we advocate the use of the
Gaussian kernel whenever possible for computational reasons: simulations from the Gaussian
kernel are readily available on most machines and come at a computationally cheaper price than
simulations from the Epanechnikov kernel. But the non optimality of Gaussian kernel does not
outbalance its ease of use, since the choice of the kernel neither affects the order of the bandwidth
nor the rate of convergence as stated in DasGupta (2008).

From a general point of view it is also possible to choose a nx-dimensional kernel under the
form of a product of nx 1-dimensional (possibly distinct) kernels. Such a choice is preferable when
some coordinates of the state are bounded. It allows for easier simulations on these coordinates
using dedicated truncated kernels whereas a straightforward accept-reject algorithm could turn
out to be highly inefficient (with a low acceptance rate) depending on the boundaries of the state
space.

Finally, the regularisation can also be done before resampling thus resulting in the so-called
pre-regularised particle filter (pre-PRF) as opposed to the post-regularised particle filter presented
here. Theoretical convergence results about these regularised filters are available in Oudjane (2000)
and Rossi (2004)

3.5 Detection and removal of outliers

In order to deal with the sensitivity of the particle filters to outliers, we propose a new additional
rule at the end of step 2 of Algorithm 3.1. Its role is to make sure that outliers do not lead to a
fully degenerated situation, that the algorithm would not recover from. The rule applies only to
situations where the degeneracy of the sample is critical: when the importance density chosen is
the prior density, it triggers only when the current observation is not predicted efficiently. In that
case, we proceed as if the observation was missing. In practise the degeneracy problem is deemed
critical when a criterion such as ESS(n) < ε ·M is met, with ε > 0 very small. If there is no outlier,
there is no modification to the algorithm whatsoever and we proceed as normal. If an outlier is
detected at a given time step, we rewind back and treat the observation as missing, to ignore the
data that would cause the particle filter to degenerate instantly.

Algorithm 3.8 (Online detection and removal of outliers.).

At time n ≥ 0, at the end of step 2 of Algorithm 3.1

If the degeneracy problem is critical, consider the observation yn as missing (see Algo-
rithm 3.3) and rewind back to step 1.

Observations that do not agree with the model are thus detected online and ignored to prevent
immediate degeneracy. This trick is in a way similar to the one introduced in Hu et al. (2008, 2011)
where a resample step is iterated until the likelihood of the current observation with regard to the
resampled particles is above a given threshold. While both techniques ensure that the particles do
not collapse when an outlier is met, the cost paid is different for each. The alteration proposed
in Hu et al. (2008, 2011) can be computationally expensive (with an unbounded runtime) but the
observation ends up being taken into account, while our own modification is definitively cheaper
(with a guaranteed fixed runtime) but discards the observation at hand when it strongly disagrees
with the current state of the model. A significant change of state will still be detected in the long
run, because considering the observation yn as missing automatically implies the variance of the
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state grows larger (which means that, if it were to be repeated, the outlying observation, would
seem more likely at the next time step, with regard to the new state).

3.6 Choice of the importance density

As previously stated the particle filters rely on the introduction of an importance density that was
chosen of the form given in (2.6) i.e.

qθ(x0:n|y0:n) = qθ(x0|y0)
n

∏
k=1

qθ(xk|y0:k−1, y0:k).

Choosing carefully the importance density qθ can help reduce the variance of the importance
weights and thus alleviate the degeneracy problem. As the choice is abundantly discussed in the
literature, we only selected three representative alternative among the many that are available.

Prior density

A default choice consists of taking qθ(x0|y0) = µθ(x0) and qθ(xn|x0:n−1, y0:n) = f θ
n(xn|xn−1), i.e.

taking the prior density (1.1) of the model as the importance function. This choice works even
with missing data (as it does not depend on yn) and leads to much simpler calculations for the
update of the importance weights as can be seen directly in the formulae given in Algorithm 3.9.

Algorithm 3.9 (Sequential Importance Sampling (SIS) for filtering, using the prior density as the
importance density).

At time n = 0

1. Sample X j
0 ∼ µθ(x0).

2. Compute w̃j
0 = gθ

0(y0|X
j
0) and set wj

0 ←
w̃j

0

∑M
k=1 w̃k

0
.

At time n ≥ 1

1. Sample X j
n ∼ f θ

n(xn|X j
n−1).

2. Compute w̃j
n = wj

n−1gθ
n(yn|X j

n) and set wj
n ←

w̃j
n

∑M
k=1 w̃k

n
.

Note that using the prior density as the importance density makes the algorithm propose new
particles in a blind way: the new particles are simulated around the current state, not around
the upcoming targeted state. With such a choice of importance density, the algorithm becomes
especially sensitive to outliers. An annealed version of the prior distribution is proposed in Chen
(2003) to help deal with some situations where prior and likelihood do not agree.

Optimal density

Although popular, the choice of the prior density is not optimal: the optimal choice is given by
qθ(x0|y0) = πθ(x1|y1) and qθ(xn|x0:n−1, y0:n) = πθ(xn|yn, xn−1) in the sense that it minimises the
variance of the importance weights conditional upon the past states and the past observations
as can be seen in Doucet et al. (2000). The idea underlying this choice is to take into account the
upcoming observation so that particles are not blind to the upcoming state anymore. Most of
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the time sampling from these optimal distributions is not an option however, and it is usually
recommended to approximate them if possible: for example Pitt and Shephard (1999) propose the
so-called Auxiliary Particle Filter, Doucet et al. (2000) use the Extended Kalman filter to derive a
Gaussian approximation (relying on a local linearisation of the state space model) and van der
Merwe et al. (2001) discuss the use of the Unscented Kalman Filter to obtain such approximations
(see Wan and van der Merwe, 2000, for the details about implementing the UKF).

Independent density

Let us mention that it is also possible to use an independent importance density (independent
with regard to the states and observations) but it is strongly recommended to avoid such a choice
because it ”ignores” both the current and the upcoming states (see Doucet et al., 2000)

3.7 Parameter estimation

Thus far, state estimation was discussed conditionally to the fact that the parameter θ was known.
However, θ is often unknown and has to be estimated together with the state of the dynamic model.
Kantas et al. (2009) offers a comparative review of the possible choices available for parameter
estimation, presenting maximum likelihood and Bayesian parameter estimation in the context of
an offline or online procedure. We provide here only a brief overview of the Bayesian parameter
estimation and direct the interested reader to the original paper for the complete discussion.

One of the first approach considered in the literature for parameter estimation is to extend
the state Xn at time n into a new state Zn = (Xn, θn) with initial distribution µθ0(x0)π(θ0) and
transition density f θn(xn|xn−1) · δ(θn, θn−1) and then estimate this new extended model with a
standard SMC filter as in Kitagawa (1996). Even though the approach is theoretically sound as
claimed in Rossi (2004); Kantas et al. (2009), it can lead to a strong loss of diversity problem on
the coordinate θ when no move step is implemented as the parameter space is only explored at
the initialisation of the algorithm, making such an approach often unusable. The addition of a
move step into the algorithm provides a satisfying solution to this problem as can be seen in Rossi
(2004) who successfully applied the kernel regularisation technique, or in Andrieu et al. (1999)
who makes use of MCMC techniques in a move step to update the parameter value. Another
option is to force a fictitious small dynamic upon the parameter as described in Kitagawa (1998);
Liu and West (2001); Higuchi (2001) so that it is artificially allowed to evolve over time, even
though Kantas et al. (2009) rightly remarks that modifying the model in such a way makes it hard
to quantify how much bias is introduced in the resulting estimates.

A more recent way of estimating the parameter together with the state relies upon the use of
so-called Particle Markov Chain Monte Carlo (PMCMC) methods found in Andrieu et al. (2010).
These methods are computationally expensive both in term of storage and calculations, because
their computational cost typically grows with time as underlined in Chopin et al. (2012), and thus
are less fit for online estimation than some standard SMC filter: the most basic PMCMC method,
known as the Particle Marginal Metropolis-Hastings (PMMH) sampler and described in Kantas
et al. (2009), involves running an SMC filter for each step of a Metropolis-Hastings algorithm used
to propose a new value of the parameter θ.

3.8 Summary

In the end, keeping in mind that the original aim is the online estimation and prediction, we
implemented an algorithm not too computationally expensive. We chose the importance density
to be the prior density of the model and included a residual resample step coupled with a Gaussian
kernel regularisation move step, that triggered whenever ESS(n) < 0.5M unless ESS(n) < 0.001M,
in which case the current observation was instead considered an outlier and thus treated as missing.
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As for the parameter estimation problem, we opted for the solution of extending the state-space
and introduced no artificial dynamic on the parameter θ, which results in the disappearance of
the θ superscript on densities µ, fn and gn in the description of Algorithm 3.10. We did however
test the introduction of an artificial dynamic on the parameters but observed no changes in the
measured overall performance.

Algorithm 3.10 (Particle filter used for our application).

At time n = 0

1. Sample X̂ j
0 ∼ µ(x0).

2. Compute w̃j
0 = g0(y0|X

j
0) and set ŵj

0 ←
w̃j

0

∑M
k=1 w̃k

0
.

• if ÊSS(0) < 0.001M, set X j
0 ← X̂ j

0 and wj
0 ← 1/M.

• if 0.001M ≤ ÊSS(0) < 0.5M, use residual-multinomial resample (see Algorithm
3.5) and regularisation move (see Algorithm 3.6) steps to set X j

0 and wj
0.

• if 0.5M ≤ ÊSS(0), set X j
0 ← X̂ j

0 and wj
0 ← ŵj

0.

At time n ≥ 1

1. Sample X̂ j
n ∼ fn(xn|X j

n−1).

2. Compute w̃j
n = wj

n−1gn(yn|X j
n) and set ŵj

n ←
w̃j

n

∑M
k=1 w̃k

n
.

• if ÊSS(n) < 0.001M, set X j
n ← X̂ j

n and wj
n ← wj

n−1.

• if 0.001M ≤ ÊSS(n) < 0.5M, use residual-multinomial resample (see Algorithm
3.5) and regularisation move (see Algorithm 3.6) steps to set X j

n and wj
n.

• if 0.5M ≤ ÊSS(n), set X j
n ← X̂ j

n and wj
n ← ŵj

n.

4 Application

In this Section we describe an application of particle filters for electricity load forecasting. We
quickly describe the data used for our experimentation and the two similar models that were
estimated using Algorithm 3.10, deal with the problem of initialising the particle filter and discuss
the results obtained.

4.1 Data

Time range

The data chosen for the application contain the consolidated half-hourly electricity load at the
”EDF” perimeter over the period ranging from 04/01/2006 to 03/31/2011 which represents five
years worth of measurements, with 48 points per day. Note that only an estimation of the load is
available in real time. The consolidated data correspond to the true (not estimated) signal that is
available only three weeks later.
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Daytypes

The calendar used for the application provides nine distinct daytypes, the list of which is given in
Table 1. In essence, this is a very basic calendar that models a single bank-holidays effect where
more detailed calendars would model multiple different ones. Although such a basic calendar
arguably does not reflect the whole variety of daytypes, it is detailed enough for our purpose and
helps keep the dimension of the model we propose as low as possible.

# day
0 mon.
1 tue.-wed.-thu.
2 fri.

# day
3 sat.
4 sun.
5 before BH

# day
6 BH
7 after BH
8 between BH and a weekend

Table 1: Daytypes provided by the basic calendar used in the application. BH stands for a bank
holiday.

Note that the operational model used by EDF also require the precise specification of daytypes
and so-called offsets, the latter being used to model breakpoints (see Bruhns et al., 2005, for the
details).

From here on, we will call bank-holidays, the instants in the calendar where specific information
is needed for the operational model to be correctly estimated and predicted. These instants
essentially correspond to bank-holidays (daytypes from 5 to 8, hence the name), or the summer
and winter holiday breaks and are signalled on Figure 2.
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Figure 2: Repartition of the bank holidays amidst the calendar from 04/01/2007 to 03/31/2011.
Each column represents a month.

4.2 Dynamic model

The formulation of the model that we consider was inspired by the works of Bruhns et al. (2005);
Dordonnat (2009); Launay et al. (2012b). It features three parts (seasonality, heating, cooling)
similarly to what was done in Launay et al. (2012b) and includes a two layers dynamic on the
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two most relevant parts with regard to the French electricity load for each of the 48 half-hours
(or instants) within a day. The 48 corresponding independent model is estimated and predicted
in parallel, using the calendar and temperature information described above, the results being
aggregated back together at the end of the process. The dimensions of the parameter and state
spaces were voluntarily kept small: the goal is ultimately to provide competitive one-day-ahead
predictions for the electricity load based on a model as parsimonious as possible within a rather
general framework.

We denote N (µ, Σ) the Gaussian distribution with mean µ and variance Σ, and N (µ, Σ,S) the
corresponding truncated Gaussian distribution the support of which is S . For each half-hour, and
removing the now superfluous i subscript, the model that we consider is defined by

yn = xn + νn, (4.1)

where νn ∼ N (0, σ2) and where the state xn is made of three parts

xn = xseason
n + xheat

n + xcool
n ,

that are defined by

xseason
n = sn · κdaytypen

xheat
n = gheat

n (Theat
n − uheat)1]Theat

n ,+∞[(u
heat)

xcool
n = gcool∆cool

n .

The various components obey the following prior dynamic

sn = sn−1 + εs
n, εs

n ∼ N
(

0, σ2
s,n, ]− sn−1, +∞[

)
gheat

n = gheat
n−1 + ε

g
n, ε

g
n ∼ N

(
0, σ2

g,n, ]−∞, −gheat
n−1[

)
σs,n = σs,n−1 + ηs

n, ηs
n ∼ N

(
0, σ2

s , ]− σs,n−1, +∞[
)

σg,n = σg,n−1 + η
g
n, η

g
n ∼ N

(
0, σ2

g , ]− σg,n−1, +∞[
)

where daytypen, Theat
n and ∆cool

n correspond to the exogenous variables that we already discussed:

• denoting Ndaytype the number of different daytypes featured in the calendar provided,
daytypen ∈ N takes a finite number of values between 0 and Ndaytype − 1 and represents
the class to which the day n belongs with regard to the calendar ;

• Theat
n ∈ R is the temperature used to compute the heating part of the model, which is

precomputed at EDF as a mixture of exponentially smoothed signals ;

• ∆cool
n ∈ R+ provides the cooling degrees needed to compute the cooling part of the model.

Using the definitions and notations introduced in Section 1, the parameter of the model is
given by θ = (σs, σg, gcool, uheat, κ, σ), these quantities are assumed constant over time in the model.
At time n, the state of the model is given by xn whose components (sn, gn, σs,n, σg,n) ∈ R4 are
the quantities that vary over time according to the dynamic specified. All these quantities are
unknown and are to be estimated.

The model (4.1) includes a seasonal part xseason
n that is essentially made of a signal sn, the

dynamic prior of which is a random-walk process whose standard deviation σs,n itself evolves as a
random-walk. sn is multiplied by a coefficient κdaytypen

that depends on the daytype of the current
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observation to model the difference in behaviour between the electricity load on weekdays and
weekends or holidays. For identifiability reason, the sum of the coefficients κj is fixed so that

1
Ndaytype

Ndaytype

∑
j=1

κj = 1.

Note that sn essentially replaces the truncated Fourier series featured in Launay et al. (2012b).
The model (4.1) also includes two weather-related parts to account for the influence of low

(heating part) and high temperatures (cooling part) upon the electricity load : the heating part
xheat

n is based upon a truncated difference between the temperature Theat
n and a heating threshold

uheat, as studied in Launay et al. (2012a). This difference is multiplied by a gradient gheat
n whose

dynamic is similar to that of sn: the prior is a random-walk whose standard deviation σg,n itself
evolves as a random-walk. Because the cooling effect in France is of a lesser magnitude than the
heating effect, the corresponding model for the cooling part xcool

n is simpler: the precomputed
truncated difference ∆cool

n is given to the model and multiplied by a cooling gradient gcool.
Notice that to ensure the different quantities involved kept consistent signs throughout time,

we specifically used truncated Gaussian distributions. In particular, this means that the random-
walks featured in the dynamic are not symmetric and hence that the mean of the state is a priori
expected to slightly evolve over time. The constraint on εs

n and ε
g
n can of course easily be lifted if

need be, and does not affect the overall predictive performance of the model in any way.

4.3 Initialisation of the particle filter

As was already discussed, the degeneracy of the particles sample over time is a serious matter.
The choice of the initial distribution of the state is thus of the utmost importance because a strong
disagreement between this distribution and the first filtered distribution could lead to sample
degeneracy after only a single time step. Two solutions are theoretically viable to choose the initial
prior distribution: one may choose either a vague or an informative distribution.

1. on one hand, a vague prior has the advantage of not biasing the dynamic model before the
first observations. However, the variance of the initial distribution of the state being very
large, the sequence of posterior variances of the filtered distributions of the state tend to
decrease very quickly at first. From an SMC filter point of view, one has to use a very large
sample of particles to cover at the same time the regions of the state space with prior highest
probability and with posterior highest probability: a vague initialisation thus requires the
use of a massive number of particles.

2. on the other hand, designing an informative distribution is a totally different task, but still
not a trivial one: one has to keep in mind that a “bad“ choice of initial distribution may lead
to immediate degeneracy. Intuitively, the ideal solution would be to dispose at time n = −1
of a filtered distribution πθ(x−1|y−1, . . . , y−m) to use it as a the initial distribution at time
n = 0. Such a choice is of course not possible because observations are only available for
time n = 0, . . . , N.

Note that the trick of ignoring outliers introduced into the particle filter (see Algorithm 3.8) does
not alleviate the problem of initialisation, since it can only increase the variance if it is used.

We thus opted for a more general procedure that allows for an automated initialisation of
the particles sample to a fitting state space region from time n = n0, and that combines the two
approaches mentioned above to retrieve the benefits of both:

1. we use a vague distribution to estimate the smoothed distribution up to time n = n0 − 1
using open-source MCMC generic software such as BUGS (Lunn et al., 2000) or JAGS
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(Plummer, 2003): we typically chose n0 = 365 so that the variance of the filtered distribution
at time n = n0 − 1 is already small enough not to require the use of a massive amount of
particles ;

2. after this first MCMC initialisation phase, we retrieve particles (approximately) distributed
along the filtered distribution of the state at time n = n0 − 1: this distribution is the one used
(through these particles) to initialise the SMC filter at time n0.

There is however a price to pay for solving the initialisation problem in such a way. First we have
to use MCMC to initialise the particle filter and second it makes it hard to use the particle filter on
a time series with few observations. Note that the first issue raised is but rhetorical: MCMC, even
if expensive, has to be run only once, and not at each time step.

Initial distribution for the MCMC estimation

The initial distribution envisioned for the dynamic model (4.1) is vague and specified by:

s0, gcool ∼ N (0, 108, R+)

gheat
0 ∼ N (0, 108, R−)

uheat ∼ N (14, 1)

κ/Ndaytype ∼ DNdaytype(1, . . . , 1)

σ2, σ2
s,0, σ2

g,0, σ2
s , σ2

g ∼ IG(10−2, 10−2)

whereDd(α1, . . . , αd) is the Dirichlet distribution in Rd
+ with parameter α (in particularDd(1, . . . , 1)

is the uniform distribution over the simplex of Rd
+ defined by ∑d

i=1 xi = 1).

Practical issue

We faced some technical issues running the MCMC estimation up until time n0 = 365 since the
Markov Chain outputs were not usable: even with a large burn-in period, the sample returned
would not pass the diagnostic tests for the convergence of the empirical distribution towards the
true target (see Gelman and Rubin, 1992, for example). For the initialisation via MCMC we thus
separated the initial distribution into two parts, essentially isolating the dynamic on the variance
of the random-walks, and proceeded as follows.

First we estimated the model as defined in (4.1) up until time n0 = 365, using MCMC generic
software such as described in Lunn et al. (2000); Plummer (2003), with the following modification

σs,n = σs,n−1 = σs,∗

σg,n = σg,n−1 = σg,∗

with initialisation

σ2
s,∗, σ2

g,∗ ∼ IG(10−2, 10−2),

in essence removing the second layer in the dynamic from the model (since σs,n and σs,n are not
allowed to vary with time anymore). This led to a posterior distribution on a diminished state,
that we denote π̃1(x̃n0−1|y0:n0−1). From there we completed this posterior distribution with an
additional prior π̃2 on σs and σg to serve as an initialisation at for the full model at time n0.

The initial distribution of the particle filter for the full model at time n0 was thus of the form

π(xn0−1|y0:n0−1) ∝ π̃1(x̃n0−1|y0:n0−1)× π̃2(σs,n0−1, σg,n0−1)
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with

σ2
s ∼ N (ms, s2

s , R∗+)

σ2
g ∼ N (mg, s2

g, R∗+)

where ms, mg, s2
s , s2

g were values chosen empirically based on π̃1 : for example, we chose ms and mg
to be the standard deviations of the posterior MCMC estimated samples (E[εs

1|y0:n0 ], . . . , E[εs
n0
|y0:n0 ])

and (E[ε
g
1 |y0:n0 ], . . . , E[ε

g
n0 |y0:n0 ]) respectively.

4.4 Predictions

Quality criterion

To assess the quality of the models we propose, we will mainly look at their respective predictive
performances measured by Mean Absolute Percentage Error (MAPE). As a matter of fact, we
are working with half-hourly data and we will model each half-hour independently from one
another, a common choice given the type of data, thus leading to 48 separate daily model (see
Section 4.2). Indexing the respective MAPE criteria of these models by the instant i = 0, . . . , 47
to which they are associated, and given their respective observations y1,i, . . . , yn,i, these models
return 48 τ-day-ahead predictions defined as the expectations of the predictive distributions i.e.
for i = 0, . . . , 47

ŷn+τ,i = E[xn+τ |y0:n,i]. (4.2)

The corresponding predictive (with prediction horizon τ) MAPE criterion that we consider for
these 48 models is defined, for i = 0, . . . , 47, by

MAPEi(τ) =
1

n− τ

n−τ

∑
k=1

∣∣∣∣ ŷk+τ,i − yk+τ,i

yk+τ,i

∣∣∣∣
and we will most often aggregate the results as

MAPE(τ) =
1
48

47

∑
i=0

MAPEi(τ)

=
1

48(n− τ)

47

∑
i=0

n−τ

∑
k=1

∣∣∣∣ ŷk+τ,i − yk+τ,i

yk+τ,i

∣∣∣∣ .

Operational predictions

We will also compare these models to the so-called operational prediction (available from 01/01/09
only, i.e. for the second half of our dataset only) i.e. the final prediction that was actually used
by EDF. Note that the operational prediction PredOP cannot be written as a prediction coming
from a statistical model (even though we will sometimes abusively refer to it as the prediction
from the operational model) : it combines manual adjustments and statistical models. PredOP is
computed as a 50%–50% mixture between the two predictions PredDOAAT and PredDCo that we
briefly describe below.

The prediction PredDOAAT is obtained as follows. A model similar to the one described in
Bruhns et al. (2005), with an ARIMA part, is first used on a real-time estimated signal corre-
sponding to the ”France” perimeter. An estimated loss is then substracted from it, accounting
for the customers within this perimeter that are not affiliated with EDF. A manual adjustment is
finally applied in real-time. It is a “top-down” prediction in the sense that the “EDF“ perimeter
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is approximated as a difference between the “France“ perimeter and a ”France but not EDF”
perimeter.

The prediction PredDCo is obtained as follows. Multiple models from Bruhns et al. (2005)
are used upon consolidated signals (not available in real-time, only three weeks later) for sub-
perimeters, the reunion of which is the “EDF“ perimeter. The corresponding predictions are then
added together before a manual adjustment is finally applied in real-time. It is a ”bottom-up“
prediction in the sense that the ”EDF“ perimeter is approximated as the sum of all its parts.

There are a number of differences between the dynamic predictions and the operational
predictions. First of all, the operational predictions are computed using predicted temperatures
(since the sequence of observed temperatures at the time of prediction is clearly not available)
whereas the models that we consider (see Section 4.2) are based on the realised temperatures. The
operational predictions make use of a calendar that includes more daytypes and also benefit from
high level expertise through the manual adjustments mentioned. But the biggest difference in
nature between these predictions lies somewhere else: the dynamic predictions are made from
one day to the next (with no intraday correction whatsoever, since we are basically considering
48 independent models), while the operational predictions are made from one half-hour to the
next. Essentially the horizon of prediction for the dynamic models is τ = 1 day = 48 half-hours
whereas it is much smaller for PredDOAAT, since the new data get incorporated approximately
every 8 half-hours (the computation of PredDOAAT is based upon a real-time signal of lesser quality
though, not consolidated data as in our situation).

4.5 Results

Running the filter

For the estimation and prediction of the model, we used the Algorithm 3.10 with a total number of
M = 105 particles. One time step (filtering and predicting the state with horizon τ = 1, including
90% credible intervals) took approximately 1 second on a single core Intel(R) Xeon(R) E5410
(2.33GHz) for one of the 48 independent models, which is compatible with the goal of being able to
predict the electricity load in an online manner. The execution time grew a bit larger and reached
3 seconds per iteration when the predictive horizon was set to τ = 5. Note that providing credible
intervals requires the use of a sorting algorithm, for example quicksort (see Hoare, 1962) with
complexity O(M log M) whereas Algorithm 3.10 has only complexity O(M). Quicker runtimes
are thus obviously achievable if the computation of credible intervals is not needed.

Degeneracy

Before looking at the filtered or predicted distributions that we are most interested in, we actually
have to assess whether the numerical results obtained are actually usable or not. If the degeneracy
problem proved too strong along the estimation process, the estimated values indeed become
questionable.

Figures 3, 4 and 5 show the evolution of the various criteria discussed in Section 3.2 throughout
time for the model (4.1) at the instant 12:00. These criteria exhibit a seasonal behaviour (with a
1 year period), as the time series itself, showing that the particle filter is subject to a little more
degeneracy during winter than during summer (the electricity load is indeed harder to predict,
due to the influence of the temperature). Although the coefficient of variation CV(n) is only a
rescaling of the effective sample size ESS(n) (see (3.3)), the outliers detected by the Algorithm 3.10
used are much easier to spot on Figure 5 than on Figure 3. Also observe that even if the entropy
and the coefficient of variation approximate two different divergences (see Cornebise, 2009, for the
details), the outliers are as easily spotted on Figures 4 and 5 and the behaviours of the two criteria
are very similar : hence, using the entropy instead of the effective sample size (or the coefficient
of variation, since they are interchangeable) to detect outliers in Algorithm 3.10 could be doable
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(after having developed a basic intuition of its scaling, in order to decide of a threshold) but would
not change the results obtained in any major way.
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Figure 3: Relative effective sample size ESS(n)
M for the dynamic model (4.1) at 12:00 as a function of

the day in the calendar. The saturation of the colour used increases with each year. Data detected
as outliers are marked with a circle.

Outliers

We show in Figure 6 the number of data that were automatically detected as outliers by the model
for each instant (half-hour) of the day. Recall that, according to Algorithm 3.10, an outlier is
detected whenever the effective sample size would have dropped below 0.1% of the actual sample
size. The amount of outliers varies from one half-hour to the next because an observation flagged
as an outlier at a given instant does not necessarily imply that the observation at the next instant
will also be flagged. In particular, we observe that more outliers are detected during the day than
during the night, which suggests that nighttime is slightly easier to predict than daytime (recall
that outliers are essentially data that are badly predicted).

Figure 7 shows the number of outliers depending on the calendar. It allows us to pinpoint the
times of the year at which these outliers are actually detected. The summer and winter holiday
breaks, and the daylight saving time adjustments are easily spotted. Note that for these events, no
prior information was available to the dynamic models whereas EDF operational models currently
make use of such information. Some days before or after bank holidays are also flagged as outliers
(05/02, 05/02, 11/10), even though the dynamic model benefits from some calendar information.
This should not come as a surprise however: the daytype specification that we chose is rather poor
compared to the calendar used for the operational predictions. A more refined calendar, involving
specific daytypes, is likely to help turning these few outliers back into regular data, provided the
initialisation of the particle filter is correctly done.

Table 2 summarises what is already guessable from Figures 2 and 7, i.e. that most of the (few)
instants detected as outliers by the dynamic model are indeed bank-holidays.
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Figure 4: Relative entropy E(n)
− log M for the dynamic model (4.1) at 12:00 as a function of the day in

the calendar. The saturation of the colour used increases with each year. Data detected as outliers
are marked with a circle.
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Figure 5: Coefficient of variation CV(n) for the dynamic model (4.1) at 12:00 as a function of the
day in the calendar. The saturation of the colour used increases with each year. Data detected as
outliers are marked with a circle. The ordinate axis is in log-scale.

instant outlier not outlier
bank-holiday 269 [5.60] 16627 [346.40]

not bank-holiday 38 [0.79] 53194 [1108.21]

Table 2: Classification of the instants for the dynamic model (4.1). The number given between
square brackets is an equivalent of the number of instants in days (i.e. divided by 48).
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Figure 6: Number of outliers detected for each instant of the day by the dynamic model (4.1).
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Figure 7: Number of outliers detected by the dynamic model (4.1) depending on the calendar
from 04/01/2007 to 03/31/2011. Each column represents a month. The size of the point and the
saturation of the colour used grow with the number of outliers, as indicated in the legend beneath.
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Performance and instants

We show the overall predictive (horizon τ = 1) performance of the dynamic model (4.1) against
the operational model (OP) in Table 3, depending on whether bank-holidays were included in the
calculations or not. The results shown in both cases aggregate the 48 models that were estimated
independently from one another. Over the whole period of study, the operational predictions are
better than the predictions provided by the dynamic models, but they also do benefit from more
specific calendar information being used to compute them. When bank-holidays are removed
from the calculations, the overall predictive quality of the dynamic models improves considerably
as demonstrated by the results in Table 3.

dynamic model operational model
with bank-holidays 1.4342 1.2344

without bank-holidays 1.1712 1.2185

Table 3: Overall predictive (horizon τ = 1) and MAPE (in %) for the dynamic model (4.1) and
the operational model. The top row results include bank-holidays in the calculations, while the
bottom row results do not.

In fact, looking at Figure 8 that represents the predictive MAPE of the dynamic model (dyn)
and operational model (OP) averaged by instant, we are able to see that the dynamic model
predicts the electricity load quite well when bank-holidays are not considered, challenging the
operational model throughout the day, except during the morning ascent. The good predictive
performance of the dynamic model on these days is somewhat surprising because the dynamic
predictions, coming from 48 independent models, are made from one day to the next whereas the
operational predictions include an ARIMA adjustment phase to take advantage of the most recent
observations, and also benefit from manual adjustments.

Performance and horizon

Since the operational predictions are sometimes required up to τ = 3 days, we now investigate
the predictive quality of our dynamic model as the horizon for prediction grows larger. Figure
9, given hereafter, displays the predictive MAPE for horizon τ = 1, . . . , 5, whether including
bank-holidays in the calculations or not. It is clear that the predictive errors of the dynamic model
increase with the horizon τ considered for the prediction, confirming that it is primarily meant for
short-term forecasts and not long-term forecasts.

Another consequence of increasing the prediction’s horizon is that the credible intervals
obtained around the predictions also tend to grow larger on average as can be observed in Table
4. An illustration of the credible intervals returned by the dynamic models is given in Figure 10
where the electricity load is predicted over 48 consecutive instants via the dynamic model (4.1).
The predictions clearly improve over time as the model takes more and more recent information
into account: the one-day-ahead predictions about 12/30/2010 provided on 12/29/2010 are much
more accurate than the five-days-ahead predictions (of the same day) that were computed on
12/25/2010. Figure 10 also makes it clear that the credible intervals obtained for a predictive
horizon τ = 1 are narrower compared to those obtained for a predictive horizon τ = 5 (but note
that their lengths vary over time).

The empirical coverages of the symmetric 90% credible intervals around the predicted states
and observations are given in Table 5. These values were computed as the ratio between the
number of instants for which the observations fell inside the interval, and the total number of
instants. Note that if the observations were mutually independent outcomes of the same random
variable (which they are not in our situation because of the exogenous variables temperature and
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Figure 8: Predictive (horizon τ = 1) and MAPE (in %) for the dynamic model (dyn) and the
operational model (OP) for each of the 48 half-hours, including bank-holidays in the calculations
(leftmost figure) and not including bank-holidays in the calculations (rightmost figure). The
difference between the two models is coloured depending on its sign: green when the dynamic
model is better than the operational model and red when not.
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Figure 9: Predictive MAPE of the dynamic model (4.1) for τ = 1, . . . , 5, including bank-holidays
in the calculations (leftmost bars) and not including bank-holidays in the calculations (rightmost
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observations on 12/30/2010 (48 half-hours) with τ = 1, . . . , 5. The horizontal black line marks the
true load (no predictive error), and crosses mark the various predictive errors with their respective
credible intervals in solid lines. The more recent the predictions are (i.e. the smaller τ is), the
more saturated the colour used is: D+1 Prediction is the most recent prediction (it was made 1 day
before) while D+5 is the oldest prediction (it was made 5 days before).

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
λ̂90%(xn+τ) 2746.3 3721.1 4505.6 5191.6 5815.3
λ̂90%(yn+τ) 3036.1 3947.7 4696.5 5358.6 5964.9

Table 4: Mean length (in MW) of the symmetric 90% credible intervals (CI) around the predicted
states x̂n+τ and around the predicted observations ŷn+τ of the dynamic model (4.1), for τ =
1, . . . , 5.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
χ̂90%(x̂n+τ) 89.569 90.442 92.385 93.479 94.168
χ̂90%(ŷn+τ) 92.531 92.501 93.773 94.472 94.882

Table 5: Empirical coverage (in %) of the symmetric 90% credible intervals (CI) around the
predicted states x̂n+τ and around the predicted observations ŷn+τ of the dynamic model (4.1), for
τ = 1, . . . , 5.
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calendar), this ratio would theoretically approximate the true rate of coverage i.e. 90%. Even so,
the empirical coverage computed seems, somewhat reassuringly, to agree with the expected rate.

Filtered weather parts

The Figure 11 shows the filtered heating and cooling parts of the dynamic model (4.1). It seems
to be piecewise linear with regard to the temperature variables upon which it depends, with a
threshold that depends on the instant considered. The heating part however is not modelled as
such since the heating gradient is chosen non constant in the dynamic model. It is thus a bit of a
surprise to find this familiar piecewise linear shape for the heating part, even though it is quite
common for non dynamic models (see Bruhns et al., 2005, for example).

As in Dordonnat et al. (2008), the heating gradient of the dynamic model appeared to be
stronger in winter and slightly weaker over mid-seasons (note that the behaviour of the heating
gradient over summer is of little practical importance: while it is true that it cannot be observed
accurately at that time, it also has no direct impact on the quality of the model since this is precisely
the period over which the heating part of the model vanishes). Note that, with no information
available, the variance of the heating gradient appeared to be larger during summer than during
winter.

Filtered seasonal part

Even though we do not display it here, let us mention that the filtered seasonal part xseason
n of the

dynamic model exhibits a 1-year period with weekly cycles. Around the main periodic pattern,
variations occur : more so over the winter period, for which the seasonal part is obviously not so
well defined, than over the summer period. Indeed, during summer the seasonal part is the only
active dynamic part of the model, while during winter the heating part also plays an important
role : the estimated values of both parts over winter are thus to be interpreted with caution. Still,
the filtered seasonal part seems to react correctly to the summer and winter holiday breaks (as we
will outline in the next Section), although no particular information was used to flag these time
windows for the model.

Because EDF customers now represents a fraction only of the French customers population
(instead of the whole), the perimeter of the data varies over time. As a matter of fact, the filtered
seasonal part also shows successive yearly drops from 2008 and onwards, which correspond to the
financial crisis that arose in late 2008 (and that impacted the French electricity load), or planned
customers’ departures.

Summer break

Since holiday breaks are among the most toughest times of the year for predictions, we investigate
the behaviour of the dynamic models over the summer break to show how the models cope with
the difficulty.

Evolution of the dynamics The Figure 12 shows the filtered mean of both the seasonality sn and
σs,n, that rules the dynamic of sn within the dynamic model (4.1). As can be seen on the Figure
12, the model is able to filter out the summer break effectively : to allow for the sharp drop of sn
during August, the standard deviation of its dynamic σs,n suddenly grows (becoming twice as
large as usual), reflecting the brusque increase of variability of the signal over a short period of
time. The model also deals with the winter break in a similar manner.

We have already discussed the behaviour of the heating gradient over summer : during
summer the model logically loses track of anything related to the heating part, which leads to
artificially increased values of σg,n.
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Figure 11: Estimated filtered heating part of the dynamic model (4.1) against the smoothed
temperature Theat

n given to the model. 48 distinct colours are used, one for each of the 48 half-
hours. The estimation was done via the loess function in R considering the filtered mean of the
heating part against both temperatures. Only the relative heating part is shown here, i.e. the
heating part divided by the maximum load observed over the whole period.
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The reasons behind the increased values of σs,n and σg,n during the summer break are hence
entirely different. Whereas σs,n grows to allow the model to fit data that do not match the current
state, the growth of σg,n merely reflects the lack of cold temperatures that would help estimate any
of the coefficients related to the heating part of the dynamic model.

Predictive errors Though no information is provided about the summer break (a succession of
breaks mostly occurring on Mondays), we already saw that the dynamic model is able to estimate
the electricity load rather correctly given the peculiar circumstances.

A possible way to improve the quality of the forecasts for the days where breaks occur would
be to taylor the transition density of one state to the next specifically for them. This requires much
expertise in practise because the way the load is affected by the summer break also depends on
the calendar configuration: one could for instance introduce adequately modified specifications
(interventions) such as

sn∗ = sn∗−1 − µn∗ + εs
n∗

into the model where µn∗ ∈ R+ is the drop in load expected to happen at time n∗.

Comparison with a linear Gaussian state space model

A dynamic model was proposed and studied by Dordonnat et al. (2008) to model a similar
electricity load series (at the French national perimeter). Their model fit in the multivariate
linear Gaussian state space models framework which allowed for the use of Kalman filtering and
associated techniques (see Durbin and Koopman, 2001). It is actually quite a complex and rich
model, compared to our own, and includes multiple regressions, some coefficients of which are
allowed to vary over time : a truncated Fourier series is used to model the seasonality of the signal
as in Bruhns et al. (2005) in conjunction with a stochastic trend. Local trends are also included to
model the holiday breaks, and a calendar with various specific daytypes is used. Heating and
cooling parts are defined as well, using fixed threshold values (15◦C and 18◦C) as well as fixed
smoothing parameters (fixed to ϑ = 0.98), and are thus very similar to the ones we use, although
the heating part relied upon the use of two heating gradients (the first corresponding to the raw
temperature, the other to the difference between smoothed and raw temperatures). The model
was estimated using national data from 09/01/1995 to 08/30/2004, and its predictive quality was
assessed from 09/01/2003 to 08/30/2004 only.

Let us first mention that the performances reported by Dordonnat et al. (2008) for their model
are in accord with ours, with a one-day-ahead predictive MAPE varying around 1.30% across the
24 hours considered, and larger errors during the weekends or holiday breaks. They also found
the quality of the forecasts obtained to be degrading with the predictive horizon, just as we did,
and at a similar rate. Finally, the behaviour of the heating gradient that we reported corroborates
the behaviour of the heating gradients found in Dordonnat et al. (2008) (with this difference that
they used a smoothing approach for the signal extraction, whereas we used a filtering approach).

Still, the dynamic model (4.1) that we propose is much simpler, most notably where the
seasonality part is concerned: our model only includes 9 daytypes and at most 2 temperatures,
i.e. 10 random effects whereas the model described in Dordonnat et al. (2008) made use of more
than 30 random effects. Arguably, the estimation time of our model via a particle filter takes
more time than running a Kalman filter, but particle filters naturally allows for more flexibility
in the definition of the model (including non-linear non-Gaussian model). Most importantly,
the Algorithm 3.10 that we implemented for the estimation of our models automatically treats
bank-holidays instants as missing data when Dordonnat et al. (2008) explicitly and manually had
to declare which data had to be considered as missing data, so as not to throw the model off.
Also note that even though the model studied in Dordonnat et al. (2008) was more complex, the
predictive MAPE they obtained for non regular daytypes exceeded 5% at 09:00AM and 12:00PM
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the two instants they focused on while the dynamic model (4.1) had an averaged predictive MAPE
of 3.34% for non regular daytypes (but once again keep in mind that the datasets used for their
experiments and ours were different which may possibly explain part of the observed difference).
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