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To execute a trade, participants in electronic equity markets may choose to submit limit orders or market

orders across various exchanges where a stock is traded. This decision is influenced by the characteristics

of the order flow and queue sizes in each limit order book, as well as the structure of transaction fees and

rebates across exchanges. We propose a quantitative framework for studying this order placement problem by

formulating it as a convex optimization problem. This formulation allows to study how the interplay between

the state of order books, the fee structure, order flow properties and preferences of a trader determine the

optimal placement decision. In the case of a single exchange, we derive an explicit solution for the optimal

split between limit and market orders. For the general problem of order placement across multiple exchanges,

we propose a stochastic algorithm for computing the optimal policy and study the sensitivity of the solution

to various parameters using a numerical implementation of the algorithm.

Key words : limit order markets, optimal order execution, execution risk, order routing, fragmented

markets, transaction costs, financial engineering, stochastic approximation, Robbins-Monro algorithm
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1. Introduction

In todays’ automated, electronic financial markets, the trading process is divided into several

stages, each taking place on a different time horizon: portfolio allocation decisions are usually

made on a monthly or daily basis and translate into trades that are executed over time intervals

of several minutes to several days. Existing studies on optimal trade execution (Bertsimas and Lo

1998, Almgren and Chriss 2000) have investigated how the execution cost of a large trade may be

reduced by splitting it into multiple orders spread in time. Once this order scheduling decision is

taken, one still needs to specify how each individual order should be placed: this order placement

decision involves the choice of an order type (limit order, market order), order size and destination,

when multiple trading venues are available. Orders are filled over short time intervals of a few

milliseconds to several minutes and the mechanism through which orders are filled in the limit

order book are relevant for such order placement decisions. Market participants need to make such

decisions thousands of times each day, and their outcomes have a large impact on each participant’s

transaction cost as well as on aggregate market dynamics.

Early work on optimal trade execution (Bertsimas and Lo 1998, Almgren and Chriss 2000) did

not explicitly model the process whereby each order is filled, but more recent formulations have

tried to incorporate some element in this direction. In one stream of literature (see Obizhaeva and

Wang (2005), Alfonsi et al. (2010), Predoiu et al. (2011)) a trader is restricted to using market

orders whose execution costs are given by an idealized order book shape function. Another approach

is to model the process through which an order is filled as a dynamic random process Cont (2011),

Cont and De Larrard (2011) and thus formulate the optimal execution problem as a stochastic

control problem: this formulation has been studied in various setting with limit orders (Bayraktar

and Ludkovski (2011), Gueant and Lehalle (2012)) or limit and market orders (Guilbaud and Pham

2012, Huitema 2012) but its complexity makes it intractable unless restrictive assumptions are

made on price and order book dynamics.

In the present work, we adopt a simpler, more tractable approach: assuming that the trade

execution schedule has been specified, we focus on the task of filling each order. Decoupling the

scheduling problems from the order placement problem leads to a more tractable approach which

is closer to market practice and allows us to incorporate some realistic features which matter for

order placement decisions, while conserving analytical tractability.

Individual order placement and order routing decisions play an important role in modern financial

markets. Brokers are commonly obliged by law to deliver the best execution quality to their clients

and empirical evidence confirms that a large percentage of market orders in the U.S. and Europe

is sent to trading venues providing lower execution costs or smaller delays (Boehmer and Jennings
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2007, Foucault and Menkveld 2008). Market orders gravitate towards exchanges with larger posted

quote sizes and low fees, while limit orders are submitted to exchanges with high rebates and lower

execution waiting times (see Moallemi et al. (2011)). These studies demonstrate how investors’

aggregate order routing decisions have a significant influence on market dynamics, but a systematic

study of the order routing problem from the investor’s perspective is lacking. A reduced-form model

for routing an infinitesimal limit order to a single destination is used by Moallemi et al. (2011),

while Ganchev et al. (2010) and Laruelle et al. (2009) propose numerical algorithms to optimize

order executions across multiple dark pools, where supply/demand is unobserved. To the best of

our knowledge this paper is the first to provide a detailed treatment of investor’s order placement

decision in a multi-exchange market, unified with the market/limit order choice.

Our key contribution is a quantitative formulation of the order placement problem which takes

into account multiple important factors - the size of an order to be executed, lengths of order

queues across exchanges, statistical properties of order flows in these exchanges, trader’s execution

preferences, and the stucture of liquidity rebates across trading venues. Our problem formulation is

tractable, intuitive and blends the aforementioned factors into an optimal allocation of limit orders

and market orders across available trading venues. Order routing heuristics employed in practice

commonly depend on past order fill rates at each exchange and are inherently backward-looking. In

contrast, our approach is forward-looking - the optimal order allocation depends on current queue

sizes and distributions of future trading volumes across exchanges. When only a single exchange is

available for execution, this order placement problem reduces to the problem of choosing an optimal

split between market orders and limit orders. We derive an explicit solution for this problem and

analyze its sensitivity to the order size, the trader’s urgency for filling the order and other factor.

Similar results are also established in a case of two trading venues under some assumptions on

order flow distributions. Finally, we propose a stochastic approximation method for solving the

order placement problem in the general case and demonstrate its efficiency through examples. Our

numerical examples demonstrate that the use of our optimal order placement method allows to

substantially decreases trading costs with respect to various ’naive’ order placement strategies.

An important aspect of our framework is to account for execution risk, through the incorporation

of a penalty for under- or over-filling an order. This penalty is high for time-sensitive executions

or when it is costly to catch up on the unfilled portion of the order. Although market orders are

executed at a less favorable price, it becomes optimal to use them when execution risk is a primary

concern. Optimal limit order sizes are strongly influenced by total quantities of orders queueing for

execution at each exchange and by distributions of order outflows from these queues. For example,

if at one of the exchanges the queue size is much smaller than the expected future order outflow,

it is optimal to place a larger limit order there. Finally, the total order size to be filled plays an
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important role - limit orders are used predominantly to execute small order sizes and market orders

are used for medium and large orders. The amount that can be realistically filled with a limit

order at each exchange is naturally constrained by the corresponding queue size and order outflow

distribution, so the share of market orders in the optimal allocation increases as the total order

size increases. We find that the optimal order allocation almost always splits the total quantity

among all available exchanges, suggesting that there is a benefit in having multiple markets.

Section 2 describes our formulation of the order placement problem and shows that it has a

global optimum. In Section 3 we derive an optimal split between market and limit orders for a

single exchange. Section 4 analyzes the general case of order placement on multiple trading venues.

Section 5 presents a numerical algorithm for solving the order placement problem in a general case

and our simulation results, and Section 6 concludes. All proofs are presented in the Appendix.

2. The order placement problem

Consider a trader who has a mandate to buy S shares of a stock within a (short) time interval [0, T ].

The deadline T may be a fixed horizon (e.g. 1 minute) or a stopping time (triggered by market

activity). To gain queue priority the trader may immediately submit K limit orders of sizes Lk to

various exchanges k= 1, . . . ,K or submit one market order of size M . The trader’s order placement

decision is thus summarized by a vector X
∆
= (M,L1, . . . ,LK)∈RK+1

+ whose components are non-

negative i.e. only buy orders are allowed. Our objective is to define a meaningful framework in

which the trader may choose the various possibilities for this order placement decision.

We focus on limit order placement and execution and assume that a market order of size M can

be filled immediately and with certainty1. Limit orders with quantities (L1, . . . ,LK) join queues of

(Q1, . . . ,QK) pre-existing limit orders at the best bids of K exchanges, where Qk ≥ 0. To simplify

the notation, we make an assumption that all K available bid queues are lined up at the best bid

price, but it is easily relaxed. Denote by (x)+
∆
= max(x,0). If Lk is constant within [0, T ], the amount

purchased with a limit order on exchange k by time T is equal to (ξk −Qk)+ − (ξk −Qk −Lk)+,

where ξk
∆
=Ck +Dk is an order outflow from the front of k-th bid queue, consisting of Ck ∈ [0,Qk]

cancelations of pre-existing orders from that queue and Dk trades with contra-side marketable

orders reaching that queue. We specifically note that limit order fill amounts are random, and we

allow for partial fills. The total amount A(X,ξ) bought by the trader by time T with all of his

orders is a function of the order allocation X and an overall bid queue outflow ξ = (ξ1, . . . , ξK):

1 This assumption is reasonable if S is small relative to the prevailing market depth. Under the assumption of
immediate and certain market order execution it is easy to show that sending market orders to exchanges with high
fees is always sub-optimal. We therefore consider a single exchange (with the smallest liquidity fee) for the purpose
of sending a single market order.
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A(X,ξ) =M +
K∑
k=1

((ξk−Qk)+− (ξk−Qk−Lk)+) (1)

The total price of this purchase is divided into a benchmark cost paid regardless of trader’s

decisions, which may be computed using mid-quote price levels, and an execution cost given by

(s+ f)M −
K∑
k=1

(s+ rk)((ξk−Qk)+− (ξk−Qk−Lk)+), (2)

where s is a half of the bid-ask spread at time 0, f is the lowest available liquidity fee and rk, k=

1, . . . ,K are liquidity rebates for all exchanges. The trader can reduce C(X,ξ) by sending more

limit orders, but this leads to a risk of underfulfilling the target S because their fills are random. To

capture this execution risk we include, in the objective function, a penalty for violations of target

quantity in both directions:

λu (S−A(X,ξ)))+ +λo (A(X,ξ)−S)+ , (3)

where λu, λo are marginal penalties for, respectively underfulfilling or overfulfilling the execution

target S. These penalties are motivated by a correlation that exists between limit order executions

and price movements (so-called adverse selection). If A(X,ξ) < S, the trader has to purchase

the remaining S − A(X,ξ) shares at time T with market orders. Adverse selection implies that

conditionally on the event {A(X,ξ) < S} prices have likely moved up and the transaction cost

of market orders at time T is higher than their cost at time 0, i.e. λu > s+ f . Alternatively, if

A(X,ξ)>S the trader experiences buyer’s remorse - conditionally on this event prices have likely

moved down and he could have achieved a better execution by being more patient. Besides adverse

selection, parameters λu, λo may reflect trader’s execution preferences. For example a trader with

a positive forecast of short-term returns may prefer to trade early with a market order and set a

larger value for λu.

Problem 1 (Optimal order placement problem) An optimal order placement is a vector

X∗ ∈RK+1
+ solution of

min
X∈RK+1

+

E[v(X,ξ)] (4)

where

v(X) := (s+f)M−
K∑
k=1

(s+rk)((ξk−Qk)+−(ξk−Qk−Lk)+)+λu (S−A(X,ξ)))+ +λo (A(X,ξ)−S)+

(5)

is the sum of the execution cost and penalty for execution risk.

We will denote V (X) =E[v(X,ξ)]. We begin by assuming certain economically reasonable restric-

tions on parameter values.
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Assumptions

A1 λu > 0, λo > 0: the trader is penalized for under- and over-fulfilling the target size

A2 λo > s+ max
k
{rk} and λo >−(s+ f): it is suboptimal to overfulfill the target size S regardless

of fees and rebates

A3 min
k
{rk}+s > 0: possibly negative rebates do not eliminate price improvement from limit order

execution

Proposition 1 below shows that it is not optimal to submit limit or market orders that are a priori

too large or too small (larger than the target size S or whose sum is less than S). Proposition 2

guarantees the existence of an optimal solution.

Proposition 1 Consider C - a compact convex subset of RK+1
+ defined by

C ∆
=

{
X ∈RK+1

+

∣∣∣ 0≤M ≤ S, 0≤Lk ≤ S−M,k= 1, . . . ,K, M +
K∑
k=1

Lk ≥ S

}
Under assumptions A1-A3 for any X̃ /∈ C, ∃X̃ ′ ∈ C with V (X̃ ′) ≤ V (X̃). Moreover, if

min
k
{P(ξk >Qk +S)}> 0, the inequality is strict: V (X̃ ′)<V (X̃).

The penalty function (3) implements a soft constraint for order sizes and effectively restricts a

search for an optimal order allocation to the set C. Specific economic or operational considerations

could also motivate hard constraints, e.g. M = 0 or
∑K

k=1Lk = S. Such constraints can be easily

included in our framework but absent aforementioned considerations we do not impose them here.

Proposition 2 Under assumptions A1-A3, V (X) is a convex function on RK+1
+ , it is bounded

below and has a global minimizer X? ∈ C.

3. Choice of order type: limit orders vs market orders

To highlight the tradeoff between limit and market order executions in our optimization setup, we

first consider a case when the asset is traded on a single exchange, and the trader has to choosean

optimal split between limit and market orders. Since K = 1, we suppress a subscript 1 throughout

this section.

Proposition 3 (Single exchange: optimal split between limit and market orders)

Assume that ξ has a continuous distribution and (A1-A3) hold. Denote

λu
∆
=

2s+ f + r

F (Q+S)
− (s+ r), and λu

∆
=

2s+ f + r

F (Q)
− (s+ r).

If λu ≤ λu, the optimal allocation is (M?,L?) = (0, S). If λu ≥ λu, the optimal allocation is

(M?,L?) = (S,0). If λu ∈ (λu, λu), the optimal allocation is:
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M? = S−F−1

(
2s+ f + r

λu + s+ r

)
+Q,

L? = F−1

(
2s+ f + r

λu + s+ r

)
−Q,

(6)

where F (·) is a cumulative distribution function of the bid queue outflow ξ.

In the case of a single exchange, Proposition 1 implies that M? + L? = S, therefore there is no

risk of overfullfilling the target size and λo does not affect the optimal solution. The trader is only

concerned with the risk of underfulfilling the target quantity, and balances this risk with the fee,

rebate and other market information. The parameter λu can be interpreted as trader’s urgency to

fill the orders, and higher values of λu lead to smaller limit order sizes, as illustrated on Figure 1.

In contrast, the optimal market order size increases with λu.

The optimal split between market and limit orders depends on the ratio 2s+f+r
λu+(s+r)

which balances

marginal costs and savings from a market order. It also depends on the distribution F and the queue

length Q - keeping all else constant, a trader would submit a larger limit order if its execution is

more likely and vice versa. The optimal limit order size decreases with λu as order underfulfillments

become more expensive and increases with f as market orders become more expensive. Another

interesting feature is that L? is fully determined by Q, F and pricing parameters s, r, f,λu, while

M? increases with S. As a consequence of this solution feature, as the order size S increases, a

larger fraction M?

S
of that order is executed with a market order. The solution (M?,L?) depends

on the entire distribution of ξ and not just on its mean, as illustrated on Figure 1 for a pair of

exponential and Pareto distributions with equal means.

4. Optimal routing of limit orders across multiple exchanges

When multiple trading venues are available, dividing the target quantity among them provides

better execution quality by reducing the risk of not filling the order. However, sending too many

orders leads to an undesireable possibility of overfulfilling the target size. Proposition 4 gives a

criterion for optimality of an order allocation X? = (M?,L?1, . . . ,L
?
K) that balances these risks.

Proposition 4 Assume (A1-A3), also assume that the distribution of ξ is continuous,

max
k
{Fk(Qk +S)}< 1 and λu <max

k

{
2s+ f + rk
Fk(Qk)

− (s+ rk)

}
. Then:

1. It is optimal to submit a market order M? > 0 if λu ≥
2s+f+max

k
{rk}

P

(⋂
k
{ξk≤Qk}

) − (s+ max
k
{rk}).

2. It is optimal to submit a limit order L?j > 0 if P
(⋂
k 6=j
{ξk ≤Qk}

∣∣∣∣ξj >Qj

)
>

λo−(s+rj)

λu+λo
.
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Figure 1 Optimal limit order size L? for one exchange. The parameters for this figure are: Q= 2000, S = 1000, s=

0.02, r = 0.002, f = 0.003. Colors correspond to different order outflow distributions - exponential with

means 2200 and 2500 and Pareto with mean 2200 and a tail index 5.

3. If 1 and 2 hold for all exchanges j = 1, . . . ,K, a necessary and sufficient condition for opti-

mality of an order allocation X? ∈ C is that it solves the following equations:

P

(
M? +

K∑
k=1

((ξk−Qk)+− (ξk−Qk−L?k)+)<S

)
=
s+ f +λo
λu +λo

(7)

P

(
M? +

K∑
k=1

((ξk−Qk)+− (ξk−Qk−L?k)+)<S

∣∣∣∣ξj >Qj +L?j

)
=
λo− (s+ rj)

λu +λo
,

j = 1, . . . ,K (8)

Equations (7,8) show that an order allocation is optimal as long as it sets the probabilities of

underfullfilling the target quantity equal to specific thresholds computed with pricing parameters.

When the number of exchanges K is large, the probabilities in (7,8) are difficult to compute in

closed-form. However, before turning to numerical procedures we investigate how these equations

can be solved in a tractable case of two exchanges.
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Corollary Assume that two exchanges are available for execution, ξ1 is independent of ξ2 and the

distribution of (ξ1, ξ2) is continuous. Also assume that:

1. max
k=1,2

{Fk(Qk +S)}< 1

2. λu <max
k=1,2

{
2s+ f + rk
Fk(Qk)

− (s+ rk)

}
, λu ≥

2s+ f + max
k=1,2
{rk}

F1(Q1)F2(Q2)
− (s+ max

k=1,2
{rk})

3. F1(Q1)< 1− s+ r2

λo
,F2(Q2)< 1− s+ r1

λo

Then an optimal order allocation X? = (M?,L?1,L
?
2)∈ int{C} and it solves:

L?1 =Q2 +S−M?−F−1
2

(
λo− (s+ r1)

λu +λo

)
(9a)

L?2 =Q1 +S−M?−F−1
1

(
λo− (s+ r2)

λu +λo

)
(9b)

F̄1(Q1 +L?1)F̄2(Q2 +S−M?−L?1) +

Q1+L
?
1∫

Q1+S−M?−L?
2

F̄2(Q1 +Q2 +S−M?−x1)dF1(x1) =
λu− (s+ f)

λu +λo
, (9c)

where F1(·),F2(·) are the cdf of ξ1, ξ2 respectively.

In this solution optimal limit order quantities L?1,L
?
2 are linear functions of an optimal market

order quantity M?. When (9a,9b) are substituted into (9c) we obtain a (non-linear) equation for

M?, which can be solved for a given distribution of (ξ1, ξ2).

Example If ξ1, ξ2 are exponentially distributed with means µ1, µ2 respectively, then an optimal

order allocation is given by: 

M? =Q1 +Q2 +S− z

L?1 = z−Q1 +µ2 log

(
λu + s+ r1

λu +λo

)
L?2 = z−Q2 +µ1 log

(
λu + s+ r2

λu +λo

)
,

(10)

where z is a solution of a transcedental equation:

1 + log

(
(λu + s+ r1)(λu + s+ r2)

(λu +λo)2

)
+
z

µ
=
λu− (s+ f)

λu +λo
e
z
µ , if µ1 = µ2 = µ (11)

or

µ1

µ1−µ2

e−
z
µ1

(
λu + s+ r1

λu +λo

)µ1−µ2
µ1

+
µ2

µ2−µ1

e−
z
µ2

(
λu + s+ r2

λu +λo

)µ2−µ1
µ2

=
λu− (s+ f)

λu +λo
, if µ1 6= µ2

(12)

Similarly to the case of one exchange, in this example an optimal market order size M? is an

increasing linear function of queue sizes Q1,Q2 and the target quantity S, while optimal limit order

sizes L?i are decreasing functions of the corresponding queue sizes Qi. In addition we note that each

L?i depends on the order flow distribution on both exchanges through µ1,2 and z.
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5. Numerical solution of the optimization problem

Computing the objective function in the order placement problem (4) or its gradient at any point

requires calculating an expectation (a multidimensional integral) which, aside from special exam-

ples, is generally not analytically tractable. Stochastic approximation methods, developed specif-

ically for problems where the objective function is an expectation, turn out to be very useful for

this problem. We propose a procedure for computing the optimal order placement which does not

require specifying an order outflow distribution.

Consider the objective function V (X)
∆
= E[v(X,ξ)] to be minimized and denote by g(X,ξ)

∆
=

∇v(X,ξ) where the gradient is taken with respect to X. The Robbins and Monro (1951) stochastic

approximation algorithm tackles the problem in the following way:

1: Choose X0 and a sequence of ’step sizes’ {γn};

2: for n= 1, . . . ,N do

3: Simulate an independent random variable ξn with distribution F

4: Set Xn =Xn−1− γng(Xn−1, ξ
n)

5: end

This algorithm produces an estimate X̂? ∆
=XN , which converges in probability to the optimum X?

as N →∞ when v is convex and differentiable in X,
∑
γn =∞ and sumγ2

n <∞ (see e.g. Kushner

and Yin (2003)). The conditions on the sequence {γn} leave a wide range of choices but the choice

determines the rate of convergence. This sensitivity can be overcome by using the robust stochastic

approximation of Nemirovski et al. (2009) which follows the same steps as above with a constant

step size γn = γ and uses an average of iterates X̂? ∆
= 1

N

∑N

n=1Xn instead of XN as an estimate

of the optimal point. Under some weak assumptions this method achieves a performance bound

V (X̂?)− V (X?)≤ DM√
N

for a finite N , where D = max
X,X′∈C

‖X −X ′‖2 and M =
√

max
X∈C

E [‖g(X,ξ)‖2]

with ‖ · ‖ denoting L2 norm2. Multiplying an optimal step size γ by a constant θ > 0 leads to a

performance bound of the same order of magnitude max{θ, θ−1}DM√
N

, i.e. the method is “robust”

to step size misspecifications. For our problem we can further bound

D≤
√
KS and M ≤

(
(s+ f +λu +λo)

2 +
K∑
k=1

(s+ rk +λu +λo)
2

)1/2

We assume that on each iteration Xn ∈ int{C} - this is enforced by rescaling Xn when needed and

does not affect the convergence - then the stochastic gradient in our problem is given by:

2 The method assumes that min
X∈X

{V (X)} is sought, where V (X) is a well-defined and finite-valued expectation for

every X ∈ X and X is a non-empty bounded closed convex set. Moreover V (X) needs to be continuous and convex
on X . The optimal step size is γ = D√

NM
.
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g(Xn, ξ) =


s+ f −λu1{A(Xn,ξ)<S}+λo1{A(Xn,ξ)>S}

−(s+ r1)1{ξ1>Q1+L1,n} −λu1{A(Xn,ξ)<S,ξ1>Q1+L1,n}+λo1{A(Xn,ξ)>S,ξ1>Q1+L1,n}
. . .

−(s+ rK)1{ξK>QK+LK,n} −λu1{A(Xn,ξ)<S,ξK>QK+LK,n}+λo1{A(Xn,ξ)>S,ξK>QK+LK,n}


Note that g(Xn, ξ) depends on random variables ξ only through indicator functions, which have

simple economic meaning. For example 1{A(Xn,ξ)<S} = 1 if the target quantity was underfulfilled on

the n-th step and 1{ξk>Qk+Lk,n} = 1 if there was an opportunity to execute a larger limit order at

exchange k on that step. This leads to a simple interpretation of numerical iterations - at each step

order sizes are increased or decreased depending on whether or not the target quantity was under-

or overfullfilled and whether or not a larger limit order could be filled at a given exchange. If a model

for ξ is available, one can use it to simulate ξ and compute a numerical solution that takes into

account specific order flow assumptions (e.g. forecasts of future trading volume). Alternatively, one

can use past order fill data to compute indicator functions in g(Xn, ξ) and obtain a non-parametric

numerical solution for the order placement problem (using the empirical distribution of past order

fills instead of assuming a functional form for F ).

We analyze the numerical stability and convergence of estimates X̂? by comparing them with an

analytical solution in the case of one exchange. For this computation we use Q= 2000 shares, ξ ∼

Pois(µT ), µ= 2200 shares per minute, T = 1 minute and S = 1000 shares. The pricing parameters

(in dollars per share) are s = 0.02, r = 0.002, f = 0.003 and fall in a typical value range for US

equities. Finally, the penalty costs (also in dollars per share) are set to λo = 0.024, λu = 0.026.

According to (6) the optimal allocation (M?,L?) = (728,272) shares. Numerical estimates X̂?

were computed for five initial points X0 and different number of iterates N in the stochastic

approximation, using a step size γ
∆
=
√
KS

(
N(s+ f +λu +λo)

2 +N
K∑
k=1

(s+ rk +λu +λo)
2

)−1/2

.

For each choice of X0 and N we simulated an additional L= 1000 observations of ξ to estimate

the objective values V (X) with sample averages W (X) =
1

L

L∑
i=1

v(X,ξi)). Figures 2 and 3 show

that estimates converge to X? regardless of X0. When X0 = X?, estimates remain close to that

point. Convergence is also quite fast - after as few as 50 samples the algorithm can be within 2%

of the optimal objective value. In the worst case of initial points on the boundary it can take a few

thousand samples to converge. It is also worth noting that convergence in terms of the objective

value occurs significantly faster than convergence in terms of the order allocation vector.
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Figure 2 Convergence of objective values to an optimal point for different inital points.

Figure 3 Convergence of order allocation vectors to an optimal point for different inital points.

We also estimated savings from optimal order placement and from dividing a limit order among

multiple exchanges. Denote a pure market order allocation by XM = (S,0, . . . ,0), a single limit order

allocation by XL = (0, S,0, . . . ,0) and an equal split allocation by XE = (
S

K + 1
,

S

K + 1
, . . . ,

S

K + 1
).
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K
(
M̂? L̂?1 L̂?2 L̂?3 L̂?4 L̂?5

)
/S W (XM ) W (XL) W (XE) W (X̂?)

S̄ = 500

1 0.481 0.519 11.50 3.36 2.79 2.76
2 0.034 0.601 0.615 11.50 3.48 -2.86 -6.00
3 0.003 0.438 0.433 0.421 11.50 3.39 -5.22 -10.56
4 0.002 0.280 0.277 0.273 0.264 11.50 3.52 -6.44 -10.84
5 0.001 0.198 0.215 0.224 0.206 0.214 11.50 3.35 -7.24 -10.91

S̄ = 1000

1 0.713 0.287 23.00 16.30 14.80 14.20
2 0.484 0.343 0.338 23.00 16.43 5.88 5.48
3 0.268 0.338 0.334 0.336 23.00 16.29 -3.16 -3.61
4 0.055 0.316 0.313 0.351 0.333 23.00 16.48 -9.27 -12.12
5 0.003 0.309 0.300 0.300 0.309 0.321 23.00 16.44 -12.88 -19.76

S̄ = 5000

1 0.839 0.161 115.00 120.33 112.83 107.76
2 0.747 0.192 0.192 115.00 120.44 105.86 99.65
3 0.693 0.189 0.189 0.189 115.00 120.40 97.35 90.71
4 0.650 0.186 0.186 0.186 0.186 115.00 120.37 88.64 81.89
5 0.614 0.167 0.167 0.167 0.167 0.167 115.00 120.40 79.63 72.93

Table 1 Savings from order splitting.

Table 1 presents outputs from the numerical algorithm with X0 = XE,N = 1000,L = 1000 for

different order sizes S and number of exchanges K = 1, . . . ,5. The parameters s, f, r,λu, λo are same

as in the previous simulation and exchanges are identical replicas of each other: rk = r,Qk =Q and

ξn,k ∼ Pois(µT ) are i.i.d. copies of each other, where k= 1, . . . ,K, n= 1, . . . ,N . Order allocations

produced by stochastic approximation clearly outperform the naive benchmarks, especially when

a target quantity S is relatively small and cost savings of limit orders can be fully captured.

Comparing W (XL) and W (XE) we also see that splitting a limit order across multiple exchanges

can be very advantageous when limit order fills are independent. Since multiple exchanges in this

example are copies of each other, the algorithm splits the total limit order amount equally among

them. This is not the same as the allocation XE because the latter sets a market order size to
S

K + 1
,

which may be too large or too small depending on S and the number of available exchanges. Another

interesting feature of the numerical solution X̂? is a tendency to oversize the total quantity of limit

orders, which is clearly observed for S = 1000,5000 and K = 4,5. This may be a consequence of

assumed independence between ξk - by submitting large orders to multiple exchanges the algorithm

reduces the probability of underfullfilling the target quanitity with a relatively low probability of

overfulfilling it.

To illustrate the structure of a numerical solution we performed a sensitivity analysis with K = 2

exchanges and parameters Q1 =Q2 = 2000, S = 1000, ξ1,2 ∼ Pois(µ1,2T ), µ1 = 2600, µ2 = 2200, T =

1, s= 0.02, r1 = r2 = 0.002, f = 0.003, λu = 0.26 and λo = 0.24. Varying some of these parameters

one at a time we plot the numerical solution X̂? after N = 1000 iterations, together with an

analytical solution for a single exchange. The results are presented on Figures 4 and 5. Similarly
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to the single exchange case, limit order sizes on two exchanges L1,L2 decrease and market order

size M increases as the penalty λu increases. Increasing the half-spread s, the rebate r1 or the fee

f makes a limit order on exchange number one more attractive, so L1 increases and M decreases.

Because the penalty λu is large in this example, execution risk is more important than fees and

rebates, therefore the queue size Q1 and the order outflow mean µ1 have a much stronger effect

on the optimal solution than r1. Both decreasing the Q1 and increasing µ1 make a limit order fill

more likely at exchange number one and L1 increases3. Finally, as in the case of a single exchange,

the target size S has a strong effect on the optimal order allocation. Only limit orders are used

while S is small, but as it becomes larger it is difficult to fill that amount solely with limit orders

and the optimal market order size begins to grow to limit the execution risk.

Figure 4 Sensitivity analysis for a numerical solution X̂? = (M,L1,L2) with two exchanges and an optimal

solution (Ma,La) with the first exchange only.

3 The observed drop in L1 for large µ1 and small Q1 is a feature of this example, we were not able to replicate it for
other distributions of ξ.
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Figure 5 Sensitivity analysis for a numerical solution X̂? = (M,L1,L2) with two exchanges and an optimal

solution (Ma,La) with the first exchange only.

6. Conclusion

We formulated and solved the problem of placing a small batch of orders on multiple trading

venues. In the case when there is a single exchange we derived an optimal split between a limit and

a market order sizes. For more general cases, we proposed and tested a stochastic approximation

algorithm that is shown to quickly converge to an optimal point. We explored the properties of an

optimal order allocation policy and showed that splitting an order across multiple exchanges can

lead to a substantial reduction in transaction costs.
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Appendix. Proofs

Proof of Proposition 1 Consider C - a compact convex subset of RK+1
+ defined by

C ∆
=

{
X ∈RK+1

+

∣∣∣ 0≤M ≤ S, 0≤Lk ≤ S−M,k= 1, . . . ,K, M +
K∑
k=1

Lk ≥ S

}
Under assumptions A1-A3 for any X̃ /∈ C, ∃X̃ ′ ∈ C with V (X̃ ′) ≤ V (X̃). Moreover, if

min
k
{P(ξk >Qk +S)}> 0, the inequality is strict: V (X̃ ′)<V (X̃).

Proof: First, for any allocation X̃ that has M̃ > S, we automatically have A(X̃)>S and we can

show that the (random) cost and penalty of X̃ is larger than those of Xnaive ∆
= (S,0, . . . ,0)∈ C:

v(X̃)− v(Xnaive) = (s+ f)(M̃ −S)−
K∑
k=1

(s+ rk)((ξk−Qk)+− (ξk−Qk−Lk)+)+

λo

(
M̃ −S+

K∑
k=1

((ξk−Qk)+− (ξk−Qk−Lk)+)

)
=

(λo + s+ f)(M̃ −S) +
K∑
k=1

(λo− s− rk)((ξk−Qk)+− (ξk−Qk−Lk)+)> 0,

which holds for all random ξ. Therefore, V (X̃)> V (Xnaive). Similarly, for any allocation X̃ with

L̃k > S − M̃ define a different allocation X̃ ′ by M̃ ′ = M̃ , L̃′j = L̃j,∀j 6= k and L̃′k = S − M̃ . Then

v(X̃)− v(X̃ ′) = 0 on the event B = {ω|ξk(ω)<Qk +S−M}. On its complementary event Bc,

v(X̃)− v(X̃ ′) =−(s+ rk)((ξk−Qk−S+ M̃)+− (ξk−Qk− L̃k)+)

+λo((ξk−Qk−S+ M̃)+− (ξk−Qk− L̃k)+).

Therefore

V (X̃)−V (X̃ ′) =E
[
v(X̃)− v(X̃ ′)|B

]
P(B) +E

[
v(X̃)− v(X̃ ′))|Bc

]
P(Bc) =

0 +E
[
(λo− (s+ rk))((ξk−Qk−S+ M̃)+− (ξk−Qk− L̃k)+)|Bc

]
P(Bc)≥ 0

with a strict inequality if P(Bc)> 0. If X̃ ′ /∈ C, we can continue truncating limit order sizes L̃′j >

S − M̃ ′ following the same argument. Each time the truncation does not increase the objective

function and finally we obtain X̃ ′′ ∈ C, such that V (X̃ ′′)≤ V (X̃).

Next, if X̃ is such that M̃−
∑K

k=1 L̃k <S define s= S−M̃−
∑K

k=1 L̃k, take M̃ ′ = M̃, L̃′k = L̃k, k=

1, . . . ,K − 1 and L̃′K = L̃k + s. Then, on the event B =
{
ω|ξK(ω)<QK + L̃K

}
the two solutions

have v(X̃)− v(X̃ ′) = 0. However, on the event Bc,

v(X̃)−v(X̃ ′) = (s+rK)((ξK−QK−L̃K)+−(ξk−Qk−L̃K−s)+)+λu((ξK−QK−L̃K)+−(ξk−Qk−L̃K−s)+),
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therefore

V (X̃)−V (X̃ ′) =E
[
v(X̃)− v(X̃ ′)|B

]
P(B) +E

[
v(X̃)− v(X̃ ′)|Bc

]
P(Bc) =

0 +E
[
(λu + (s+ rk))((ξK −QK − L̃K)+− (ξk−Qk− L̃K − s)+)|Bc

]
P(Bc)≥ 0

with a strict inequality if P(Bc)> 0. �

Proposition 2 Under assumptions A1-A3, V (X) is a convex function on RK+1
+ , bounded from

below and admits a global minimizer X? ∈ C.

Proof: First, note that (ξk−Qk)+−(ξk−Qk−Lk)+ are concave functions of Lk. Therefore, A(X,ξ)

is concave as a sum of concave functions. Similarly, the cost term C(X,ξ) is a sum of convex

functions, as long as rk ≥−s, k= 1, . . . ,K and is itself a convex function. Second, since S−A(X,ξ)

is a convex functon of X, and the function f(x) = λux1{x>0}−λox1{x≤0} is convex in x for positive

λu, λo, so the penalty term f (S−A(X,ξ))) is also convex.

If λo > s + max
k
{rk} the function V (X) is also bounded from below since v(X,ξ) ≥ −(s +

max
k
{rk})S.

Finally, since V (X) is convex, it is also continous and reaches a local minimum Vmin on the

compact set C at some point X? ∈ C. By convexity, Vmin is a global minimum of V (X) on C.
Moreover, since λo > s+ max

k
{rk}, Proposition 1 guarantees that Vmin < V (X̃) for any X̃ /∈ C, so

Vmin is also a global minimum of V (X) on RK+1
+ . �

Proposition 3 Assume that one exchange is available for execution, ξ has a continuous distribu-

tion, and also assume (A1-A3). Denote by λu
∆
=

2s+ f + r

F (Q+S)
− (s+ r) and λu

∆
=

2s+ f + r

F (Q)
− (s+ r).

If λu ≤ λu, the optimal allocation is (M?,L?) = (0, S). If λu ≥ λu, the optimal allocation is

(M?,L?) = (S,0). If λu ∈ (λu, λu), the optimal allocation is given by (6).

Proof: By Proposition 1 ∃(M?,L?)∈ C, moreover for K = 1 the set C reduces to a line M?+L? = S

so it is sufficient to find M?. Restricting L= S −M implies that {A(X,ξ)> S}= ∅, {A(X,ξ)<

S,ξ >Q+L}=∅, and we can rewrite the objective function as

V (M) =E
[
(s+ f)M − (s+ r)((ξ−Q)+− (ξ−Q−S+M)+) +

λu (S−M − ((ξ−Q)+− (ξ−Q−S+M)+))))+

]
. (13)

For M ∈ (0, S) the expression under the expectation in (13) is bounded for all ξ and differentiable

with respect to M for almost all ξ, so we can compute v(M)
∆
= dV (M)

dM
by interchanging the order

of differentiation and integration (see e.g. Aliprantis and Burkinshaw (1998), Theorem 24.5):
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v(M) =E
[
s+f+(s+r)1{ξ>Q+S−M}−λu1{ξ<Q+S−M}

]
= 2s+f+r−(s+r+λu)F (Q+S−M) (14)

Note that if λu ≤
2s+ f + r

F (Q+S)
− (s + r), then v(M) ≥ 0 for M ∈ (0, S) and therefore V (M)

is non-decreasing in these points. Checking that V (S) − V (0) ≥ (s + f − λu)S + (λu + s +

r)S(1 − F (Q + S)) ≥ 0 we conclude that M? = 0. Similarly, if λu ≥
2s+ f + r

F (Q)
− (s + r),

then v(M) ≤ 0 for all M ∈ (0, S) and V (M) is non-increasing in these points. Checking that

V (S) − V (0) ≤ (s + f − λu)S + (λu + s + r)S(1 − F (Q)) ≤ 0 we conclude that M? = S. Finally,

if λu is between these two values, ∃ε > 0, such that v(ε) < 0, v(S − ε) > 0 and by continuity of

v(M) there is a point where v(M?) = 0. This M? is optimal by convexity of V (M) and (6) solves

equations v(M?) = 0,L? = S−M?. �

Proposition 4 Assume (A1-A3), also assume that the distribution of ξ is continuous,

max
k
{Fk(Qk +S)}< 1 and λu <max

k

{
2s+ f + rk
Fk(Qk)

− (s+ rk)

}
. Then:

1. It is optimal to submit a market order if λu ≥
2s+f+max

k
{rk}

P

(⋂
k
{ξk≤Qk}

) − (s+ max
k
{rk}).

2. It is optimal to submit a limit order to exchange j if P
(⋂
k 6=j
{ξk ≤Qk}

∣∣∣∣ξj >Qj

)
>

λo−(s+rj)

λu+λo
.

3. If 1 and 2 hold for all exchanges j = 1, . . . ,K, a necessary and sufficient condition for opti-

mality of an order allocation X? ∈ C is that it solves equations (7,8).

Proof: Proposition 2 implies that ∃X? ∈ C. First, we define XM
∆
= (S,0, . . . ,0) and prove that

X? 6=XM by contradiction. If XM were optimal in the problem (4) it would also be optimal in the

same problem with a constraint Lk = 0, k 6= j, for any one j. In other words, the solution (S,0)

would be optimal for any one-exchange problem, defined by using only exchange j. But by our

assumption, ∃J such that λu <
2s+ f + rJ
FJ(QJ)

− (s+ rJ) and Proposition 3 implies that (S,0) is not

optimal for the J-th one-exchange subproblem, leading to a contradiction.

v(X,ξ) is bounded for X ∈ C and for all ξ, differentiable with respect to M and Lk, k= 1, . . . ,K

for X ∈ C\{XM} for almost all ξ. Applying the same theorem as in the proof of Proposition 3 we

conclude that V (X) is differentiable for X ∈ C\{XM}. The KKT conditions for problem (4) and

X ∈ C\{XM} are:

s+ f −λuP(A(X?, ξ)<S) +λoP(A(X?, ξ)>S)−µ0 = 0 (15)

−(s+ rk)P(ξk >Qk +L?k)−λuP(A(X?, ξ)<S,ξk >Qk +L?k)+

λoP(A(X?, ξ)>S,ξk >Qk +L?k)−µk = 0, k= 1, . . . ,K (16)

M ≥ 0, Lk ≥ 0, µ0 ≥ 0, µk ≥ 0, µ0M = 0, µkLk = 0, k= 1, . . . ,K (17)
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Since the objective function V (X) is convex, conditions (15-17) are both necessary and sufficient

for optimality. The first result of this proposition follows from considering any X̃ with M̃ = 0:

V (X̃)≥ λuSP
(⋂
k

{ξk ≤Qk}
)
− (s+max

k
rk)SP

(⋂
k

{ξk ≤Qk}
)
≥ (s+f)S = V (XM) and we already

argued that ∃X? with V (X?)<V (XM), so X? 6= X̃ and therefore M? > 0. Rearranging terms in a

j-th equality (16) we obtain

P(ξj >Qj +L?j )
[
λo− (s+ rj)− (λu +λo)P(A(X?, ξ)<S|ξj >Qj +L?j )

]
−µj = 0 (18)

The term in square brackets in (18) is negative for any X ∈ C\{XM} with Lj = 0, because

P(A(X,ξ)<S|ξj >Qj +Lj)> P
(⋂
k 6=j
{ξk ≤Qk}

∣∣∣∣ξj >Qj

)
>

λo−(s+rj)

λu+λo

by assumption and since µj ≥ 0 the condition (16) cannot be satisfied with L?j = 0. We showed

that M? > 0,L?j > 0 for all j = 1, . . . ,K and therefore, µ0 = µ1 = · · · = µK = 0 by complimentary

slackness. Then the KKT conditions (15-17) reduce to (7,8). �
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Corollary Assume that two exchanges are available for execution, ξ1 is independent of ξ2 and the

distribution of (ξ1, ξ2) is continuous. Also assume that:

1. max
k=1,2

{Fk(Qk +S)}< 1

2. λu <max
k=1,2

{
2s+ f + rk
Fk(Qk)

− (s+ rk)

}
, λu ≥

2s+ f + max
k=1,2
{rk}

F1(Q1)F2(Q2)
− (s+ max

k=1,2
{rk})

3. F1(Q1)< 1− s+ r2

λo
,F2(Q2)< 1− s+ r1

λo
Then an optimal order allocation X? = (M?,L?1,L

?
2)∈ int{C} and it solves the equations (9a-9c).

Proof: Solutions on the boundary of C are sub-optimal: M? = 0 and M? = S are ruled out by

assumption 2, L?1 = S −M and L?2 = S −M are ruled out by assumption 3 and (16). Solutions

with M? +
K∑
k=1

L?k = S are ruled out by directly checking (16). Finally, L?1 = 0 and L?2 = 0 are also

ruled out by (16). For example if L?1 = 0, then by Proposition 1 M? +L?2 = S and in (16) µ2 = 0 by

complimentary slackness, P(A(X?, ξ)< S,ξ2 >Q2 +L?2) = P(A(X?, ξ)> S,ξ2 >Q2 +L?2) = 0. But

then (16) cannot hold because P(ξ2 >Q2 +L?2)> 0.

For any X ∈ int{C}, A(X,ξ)>S if and only if all the following three inequalities are satisfied:

ξ1 >Q1 +S−M −L2 (19a)

ξ2 >Q2 +S−M −L1 (19b)

ξ1 + ξ2 >Q1 +Q2 +S−M (19c)

These inequalities give a simple characterization of the event {A(X,ξ)>S} and their equivalence

is directly verified by considering subsets of (ξ1, ξ2) forming a complete partition of R2
+.

Case 1: ξ1 >Q1 +L1, ξ2 >Q2 +L2. Since L1 +L2 +M >S, we have A(X,ξ) =L1 +L2 +M >S

and at the same time all of the inequalities (19a-19c) are satisfied, so they are trivially equivalent

in this case.

Case 2: ξ1 >Q1 +L1,Q2 ≤ ξ2 ≤Q2 +L2. Because of the condition ξ1 >Q1 +L1, (19a) is satisfied.

We have in this case that A(X,ξ) =L1 + ξ2−Q2 +M and thus A(X,ξ)>S if and only if (19b) is

satisfied. Finally, ξ1 >Q1 +L1 together with (19b) imply (19c), so A(X,ξ)> S and (19a-19c) are

equivalent in this case.

Case 3: ξ2 > Q2 + L2,Q1 ≤ ξ1 ≤ Q1 + L1. Similarly to Case 2 we can show that inequalities

(19a-19c) are satisfied if and only if A(X,ξ)>S.

Case 4: Q1 +S−M −L2 < ξ1 ≤Q1 +L1,Q2 +S−M −L1 < ξ2 ≤Q2 +L2. This set is non-empty

because 0<S−M −L1 <L2 and similarly for L1,L2 reversed. Inequalities (19a,19b) hold trivially,

only (19c) needs to be checked. We can write A(X,ξ) = ξ1 −Q1 + ξ2 −Q2 +M >S if and only if

(19c) holds, so A(X,ξ)>S is equivalent to (19a-19c).
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Case 5: Outside of Cases 1-4, either (19a) or (19b) is not satisfied. If ξ1 ≤Q1 +S−M −L2, ξ2 ≤

Q2 +L2, then A(X,ξ)≤ S−M −L2 +L2 +M = S. The case ξ2 ≤Q2 +S−M −L1, ξ1 ≤Q1 +L1 is

completely symmetric, and it shows that neither A(X,ξ)>S nor (19a-19c) hold in this case.

Next, we use inequalities (19a-19c) to characterize the set {A(X,ξ)>S} in the first-order conditions

(7,8). We observe that in the two-exchange case

{A(X,ξ)>S,ξ1 >Q1 +L1}= {ξ1 >Q1 +L1, ξ2 >Q2 +S−M −L1}

{A(X,ξ)>S,ξ2 >Q2 +L2}= {ξ2 >Q2 +L2, ξ1 >Q1 +S−M −L2},

and then use the independence of ξ1 and ξ2 to compute

P(A(X,ξ)>S|ξ1 >Q1 +L1) = F̄2(Q2 +S−M −L1)

P(A(X,ξ)>S|ξ2 >Q2 +L2) = F̄1(Q1 +S−M −L2)

Together with (7) and (8), this leads to a pair of equations for limit orders sizes:

F̄2(Q2 +S−M −L1) =
λu + s+ r1

λu +λo
F̄1(Q1 +S−M −L2) =

λu + s+ r2

λu +λo

whose solution is given by L?1,L
?
2 from (9a,9b). To obtain the equation (9c), we rewrite the first

equation in (7,8) using the inequalities (19a-19c). Then P (A(X,ξ)> S) may be computed as the

integral of the product measure F1⊗F2 over the region defined by

U(Q,S,M) = {(x1, x2)∈R2, x1 >Q1 +S−M−L2, x2 >Q2 +S−M−L1, x1 +x2 >Q1 +Q2 +S−M}.

This integral is given by

P (A(X,ξ)>S) = F1⊗F2 (U(Q,S,M))

= F̄1(Q1 +L1)F̄2(Q2 +S−M −L1) +

Q1+L1∫
Q1+S−M−L2

F̄2(Q1 +Q2 +S−M −x1)dF1(x1) =
λu− (s+ f)

λu +λo

�
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