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Context and Motivations

Traffic congestions
Environmental damages
Economical losses

Monitoring road traffic
Dedicated sensors
High deployment and maintenance costs
Incomplete data about the state of the road network
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Context and Motivations

Widespread of location-aware devices (GPS, smartphones,
PDAs, etc.)

Store and shareMO trajectories (vehicles, pedestrians, etc.)

Mine and analyze trajectory data to gain a better
understanding of flow dynamics in the road network?
Objective: cluster trajectory data in order to

Discover groups of trajectories that moved along the same
parts of the network
Regroup roads that where visited by the same trajectories
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Existing Approaches

Trajectory similarity
Free movement in Euclidean space: DTW, LCSS, EDR, ERP, ...
Under network constraints [Hwang et al., 2005,
Hwang et al., 2006, Zhao et al., 2009, Xia et al., 2010].

Trajectory clustering
TraClus [Lee et al., 2007];
Moving clusters [Kalnis et al., 2005];
Flock patterns [Benkert et al., 2006, Vieira et al., 2009];
Convoy patterns [Jeung et al., 2008] ;
Under network constraints: NetScan, NNCluster, ...
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"Limitations" of Existing Approaches

Focus on unconstrained trajectory clustering
Use of density based clustering

no optimization of a quality criterion
very sensitive to the parameters
inefficient in cas of heterogeneous density

Flat clustering→ large number of clusters
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Network-Constrained Trajectories Data Model1

Road network : directed graph G = (V, E)
vertices: intersections and terminal points of roads
edges: road segments (with travel direction)

Trajectory : ordered sequence of visited segments
T =< id , {e1, e2, ..., ei , ..., el} >
∀1 ≤ i ≤ l − 1, ei and ei+1 are connected

1[Brakatsoulas et al., 2005, Kharrat et al., 2008, Kharrat et al., 2009, Lou et al., 2009,
Roh and Hwang, 2010]
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Problem n◦1: The Trajectory Clustering Problem

Given a set of trajectories T = {T1,T2, ...,Tn}
Partition T into a set of clusters C = {C1,C2, ...,Ck}, such
as:

trajectories in a same cluster Ci share as much road
segments as possible;
trajectories in to different clusters Ci and Cj share as few
segments as possible.
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Problem n◦2: The Road Segment Clustering Problem

Given a set of trajectories T = {T1,T2, ...,Tn}
Given the set of edges (segments) E travelled by T
Partition E into a set of clusters C′ = {C ′

1,C
′
2, ...,C

′
k ′}, such

as:
segments in the same cluster are travelled by the same
trajectories;
segments in two different clusters C ′

i and C ′
j are visited by

different trajectories.
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Solving the Trajectory Clustering Problem

Data model?→ Network-constrained trajectory model
(symbolic)

Distance/similarity measure?

Clustering algorithm?
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Trajectory similarity

Trajectories are regarded as "bags of segments"

Use a cosine similarity between trajectories

Similarity(Ti ,Tj) =

∑
e∈E ωe,Ti · ωe,Tj√∑

e∈E ω
2
e,Ti
·
√∑

e∈E ω
2
e,Tj

With modified tf-idf2 weighting

ωe,T =
ne,T · length(e)∑

e′∈T ne′,T · length(e ′)
· log

|T |
|{Ti : e ∈ Ti}|

2tf-idf: term frequency - inverse document frequency
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Clustering algorithm

Key idea: transpose the trajectory clustering algorithm into
a graph clustering one

Similarity graph

Ti

Tj
Similarity(Ti , Tj )

Cluster the graph using a hierarchical modularity-based
community detection algorithm [Noack and Rotta, 2009]
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The Modularity-Based Clustering Algorithm

The algorithm finds the best partitionning of the graph
(the one maximizing the modularity measure)
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The Modularity-Based Clustering Algorithm

Each community is isolated and clustered individually
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The Modularity-Based Clustering Algorithm

The recursion stops when the clustering does not yield a
"significant" partition
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Solving the Segment Clustering Problem

Proceed by analogy to trajectory clustering

Segments as bags-of-trajectories

Again, use a cosine similarity with modified tf-idf
Similarity graph

vertices: road segments
edges: similarity between the road segments

Use the same community detection algorithm to discover
segment clusters
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Data Description

Synthetic datasets
The Oldenburg road network

6105 vertices (road intersections)
7035 undirected edges

Two types
Datasets with random trajectories generated using the
Brinkhoff generator
Datasets generated with labeled trajectories
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Trajectory Clustering: Results

Comparison to classic hierarchical agglomerative
clustering and the NNCluster baseline

Quality indexes: intra-cluster overlaps, ARI, purity and
entropy

Dataset Discovered Adj. Rand Index Purity Entropy
(clusters) clusters NNCluster(B) Mod. NNCluster(B) Mod. NNCluster(B) Mod.

1 (9) 9 0.902 1 0.924 1 0.062 0
2 (10) 10 0.881 1 0.902 1 0.059 0
3 (11) 11 0.764 0.872 0.823 0.915 0.113 0.064
4 (6) 6 1 1 1 1 0 0
5 (6) 6 1 1 1 1 0 0
6 (6) 6 1 1 1 1 0 0
7 (12) 14 0.618 0.960 0.712 1 0.185 0
8 (11) 12 0.921 0.971 0.942 1 0.038 0
9 (12) 10 0.752 0.889 0.778 0.872 0.136 0.075
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Segment Clustering: Results

How to evaluate the discovered clusters?→ not so subtle!

Still looking for meaningful quality indexes

"Explain" the segment clusters using the trajectory clusters
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Segment Clustering: Results

(a) 14 segments (b) 12 trajectories (c) 19 trajectories

(d) 7 trajectories (e) 3 trajectories (f) 4 trajectories

Figure: Example of a segment cluster (a) and the trajectory clusters that crossed it (b-f) detected in

a small dataset (85 trajectories).
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Conclusion

New framework to clustering trajectory data
Advantages:

integration of road network constraints
well defined quality criterion
non parametric
hierarchical clustering suitable for multi-level exploration

Drawbacks:
sensitivity to noise
high complexity (O(n3) in theory, O(n2) in practice)
segment clusters are difficult to interpret and evaluate
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Future Work

Experiment on real datasets
availability?
map matching?

Bi-clustering of trajectories and segments simultaneously

Comparison to unconstrained clustering approaches
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