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Abstract:

Current methods for detecting synteny work well for sets of genomes
with high degrees of inter- and intra-species chromosomal homology,
such as mammals. In this paper we define a new algorithm for synteny
computation. The main originality of this method is that it is well-
suited to genomes covering a large evolutionary span. It is based on
a three-step process: identification of initial microsyntenic homologous
regions, extension of homologous boundaries using a transitivity
relation, and reconstruction of syntenic blocks by identification of
groups of homologous genomic segments that are conserved in every
subject genome. Our method performs as well as GRIMM-Synteny
on mammalian genomes, and outperforms it for clades with much
greater evolutionary distances such as the Hemiascomycetous yeasts.
The analysis of the algorithms and computed results pinpoints the
fact that direct DNA alignments and anchor computation do not
provide a sufficient support for synteny recovery in clades covering
large evolutionary distances.
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1 Introduction

Comparative analysis of complete genomes has over the past ten years
provided increased understanding of the processes and mechanisms of evolution,
development, and gene regulation. One area where significant insight has been
obtained is genome rearrangements, where the mechanisms of chromosomal
dynamics have been explored through comparison of chromosomal maps within
and between species. A key prerequisite for such studies is the accurate
identification of genome synteny, since conserved gene order between related
species indicates chromosomal homology inherited from their common ancestor.
Once carefully identified, synteny information is used for computing rearrangement
distances (Hannenhalli and Pevzner, 1995) or scenarios (Tesler, 2002), inferring
the least common ancestor and rearrangement trees (Bourque and Pevzner, 2002).
The implications of the analysis of genomic synteny can reach even further,
providing insights into the manner by which evolution proceeds. This latter topic
has generated a quite lively debate on the differences between random breakage
and fragile breakage models of evolution (Pevzner and Tesler, 2003a,b; Trinh et al.,
2004).

Nadeau and Taylor (Nadeau and Taylor, 1984) were the first to define conserved
segments as segments having a preserved gene order with no rearrangements
between them. Synteny blocks are built of these conserved segments, smoothing
over the noise due to microrearrangements. These blocks constitute gene markers
that are the starting points for further analysis.

The focus of this paper is the computational identification of genome synteny in
complete sequences of distant genomes. A number of methods has been developed
in this area. They can be classified in two main categories: alignment-based and
profile-based methods.

The most commonly used methods are alignment-based, such as CHAINNET
(Kent et al., 2004) and GRIMM-Synteny (Pevzner and Tesler, 2003a; Bourque
et al., 2004, 2005). They determine synteny blocks from an initial signal provided
by BLASTZ alignments of nucleotide sequences (Schwartz et al., 2004). Since
many pairwise relations between DNA segments identified in this manner will
be spurious, for example due to domain conservation in protein coding genes,
alignment-based methods apply strict filtering policies to link related alignments
and remove the spurious ones. Such techniques have been applied with success
to sets of mammalian genomes and fly genomes, sets which have a high degree
of chromosomal homology,! and significant conservation in DNA sequences. Such
cases of closely related genomes are of course extremely interesting, particularly in
biomedical applications, but they are the ‘low-hanging fruit’ for synteny detection.

The profile-based i-ADHoRe routine (Simillion et al., 2004, 2008), extends the
pairwise ADHoRe method of (Vandepoele et al., 2002) by iteratively building
profiles of intervals of syntenic genes, that are used to search the same genome(s)
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again to determine “higher level” multiplicons. This method was originally
developed to identify multiple rounds of whole genome duplication in Arabidopsis
thaliana, events that leave overlapping signals of self-similarity as is also seen
in the genomes of Tetraodon nigroviridis (Jaillon et al., 2004) and Paramecium
tetraurelia (Aury et al., 2006). In this method the initial signal is provided by
Blastp alignments of predicted translation products, and genomes are represented
as lists of genes. The algorithm essentially looks for statistically significant pairs
of intervals in these lists with similar gene order and contents. These segments of
chromosomal homology are called multiplicons. Multiplicons of level n are used to
define profiles, lists of genes defining a consensus between the two intervals in the
multiplicon, that are used again in pairwise comparisons with each of the target
genomes. The result are multiplicons of level n + 1, and so on.

Both of these existing methods work well on the cases that they were
designed for, but perform poorly on the increasingly more common case of sets
of related species with highly divergent or extensively reshuffled genomes (see
section 3 for comparisons). Recent improvements to sequencing technology are
making it feasible to obtain complete sequences from a large number of species
of biotechnological interest, and global detection of synteny in such groups is of
great practical use for studying chromosome dynamics linked to, e.g. quantitative
traits. Despite their phylogenetic relations, such groups of species may by highly
divergent. The industrially useful Hemiascomycete yeasts, for example, despite
their small, compact genomes and similar ecological niches, are evolutionarily
distant. With GC contents ranging from 40% to 52% and an average amino-acid
identity of 20% (Dujon, 2006), alignment of DNA sequences is not informative.
While alignment of translation products does provide a recognizable signal for gene
homology, extensive map reshuffling leads to quite small syntenic segments of 10-15
genes, and iterated profile searching finds few segments conserved in many species
(see section 3).

In this paper we present a new method called SyDiG (Synteny in Distant
Genomes) that has the ability to handle species having a large evolutionary span.
It requires complete genome sequences and infers inter-species synteny in the
general case of N > 2 genomes. It follows a three-step process. First, we perform a
pre-processing step that consists in determining orthologous genes and, from those,
in computing multiplicons of level two. Second, using a novel graph encoding of
homology between genomic segments and overlaps of multiple segments on the
same chromosome, we extend certain homology relationships at the boundaries
of segments by transitivity. Finally, we use the initial orthology information
and the identified supplementary homologous elements in order to reconstruct
synteny blocks. In the rest of the paper, when speaking of homologous groups we
understands the subdivision of these groups in subgroups of orthologs by the SONS
method.

In what follows, we present in the first section a formal definition of the SyDiG
method and its algorithms. In the second section, we compare Grimm-Synteny
and SyDiG on both mammal and yeast genome sets. Finally, in the third section,
we present a practical application to Hemiascomycetous yeasts that leads to the
rearrangement analysis presented in (Jean et al., 2009).
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2 SyDiG algorithm

2.1 Pre-processing

The starting point for synteny identification is the definition of pairwise orthology
relationships between genomes. We use our consensus clustering algorithm from
(Nikolski and Sherman, 2007) on a mix of complementary partitions (see section
3.3), although raw clustering methods can be used such as (Enright et al.,
2002). Furthermore, within these homolgous groups, orthologous subgroups are
indentified by the SONS method (Dujon et al., 2009). While in principle sequence
similarity can generally detected either at the DNA level or by aligning the
translation products of coding sequences, in practice for distant genomes only
the latter recovers significant similarity. In this case, one essentially constructs
comparative genome maps and the study of gene order makes it possible to detect
homology even for highly divergent chromosomic regions. This is exactly the role
of the ADHoRe method briefly described above (Vandepoele et al., 2002; Simillion
et al., 2004, 2008).

Recall that a multiplicon is formed by one or several homologous genomic
segments and its level indicates the number of iterations used to obtain it. In
SyDiG we use i-ADHoRe to identify short (microsyntenic) segments as a starting
point, but restricted to pairwise computations and thus to computing only level
two multiplicons. We will call these segments simply ‘multiplicons’ in the rest of
the paper even though more than one genome is involved. The restriction to level
2 multiplicons comes from an empirical observation that use of profiles provides
little benefit and, by stringently requiring a synteny relation to have exactly the
same boundaries in many species, it retains few segments at every iteration.

Notice that i-ADHoRe determines the multiplicons based on gene order. Hence,
the coordinate system used is at gene level: each element of a genomic segment
is mapped to a gene and each chromosomic segment is delimited by two genes,
one on each side. Multiplicons obtained by i-ADHoRe correspond to homologies
between two genomic segments (belonging to the same genome or not). The goal
now is to refine these homologies into synteny blocks for the set of considered
genomes {G1q, .., Gy }. We do this by analyzing the composition of each multiplicon
and computing the synteny blocks using transitivity relations.

2.2 Synteny graph

The first step is to assemble all the information contained in the multiplicons into
a graph. This graph has to represent two types of information: first, homology
between genomic segments; second, possible overlaps between multiple segments of
the same chromosome. Let {G1,..,Gn} be the set of genomes for which we want
to compute synteny blocks and M be the set of multiplicons obtained by ADHoRe
for these genomes.

For the needs of the method, we propose a more formal definition of the notion
of multiplicon. Let M = (I1, 2, A) be a (level two) multiplicon where I; and I
denote the genomic segments that it contains, and A is the set of anchors within
it. We note a genomic segment I; as a sequence of genes I; = (g, .., g%) such that
g and g’ represent the gene boundaries of this segment. A gene g; of a genomic
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segment I; is a pair (pj, ¢;) such that p; is its relative position on the chromosome
¢;. If two genes g} € I and g3 € I form an anchor in M, then (g{,g7) € A.

Figure 1 shows an example of multiplicons for N =5 genomes. This same
example will be followed through the paper.

o L 91 9;
1 c1
. , 9 93 97

2 (&
G , g3 93 i 4} 9 93 98

3 (&1

gt ' 94 NG )
Gy o c
g%»"’ 4 g3

Gs & 3

Figure 1 Level 2 multiplicons for genomes {G1, .., Gs}. Each genome G; is shown on
a separate line with chromosomes denoted by ¢, cb,.., cb (k the total number
of chromosomes for G;). A genomic segment (g}, g%, 1,...,g1_1,9%) on G; is
represented by a bold line on the chromosome and is explicitly delimited by
its boundaries g; and g;.. Dots along chromosomes represent gene locations. A
grey (dark, respectively) line materializes an anchor formed by genes (gene
boundaries, respectively) at its extremities.

The synteny graph G is defined from the set M of multiplicons for the N
genomes under study.

Definition 2.1: A synteny graph G = (V, E) is a non-oriented edge-colored graph
such that

- V:{g;- | g§ €l € M e M} is the set of all genes participating in a
multiplicon,

- E is the edge set such that Ve = {g!,g),} € E either gi and gJ, form an
anchor in a multiplicon of M (dashed edge), or g, and g, are consecutive on
the same chromosome (black edge).

In this graph, we can distinguish three types of vertices: (1) boundary vertices
correspond to gene boundaries of genomic segments participating in a multiplicon,
(2) anchor vertices correspond to genes that form an anchor with some other gene
and are not boundaries of any genomic segments, (3) interleaving vertices are the
other vertices that are neither a boundary nor an element of an anchor.

Note that boundary vertices always form an anchor, since ADHoRe computes
multiplicons in such a way that extremities of genomic segments that define them
are determined by the leftmost and rightmost coordinates of their anchors. Thus,
a gene can be both a boundary of one or several genomic segments taking part in
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multiplicons and a simple anchors in other segments. An anchor vertex is a gene
that forms an anchor strictly inside one or several multiplicons.

Figure 2 shows the synteny graph obtained for the 5 genomes and their
multiplicons of figure 1.

3 : 3 3
91 93 94 g5 97 98 99
—o—4
N S <N \Y S
N So /'// N \\ \\\ N
N NP : N N N N
') - ’ PN \ 4 4 4
L7 AN AN 6 N 97 AN
’ s N
/ e N7
L RN
57/ 5 5 \
91, 92,7 93 -~ NS

Figure 2 Synteny graph obtained for the data shown on figure 1. Dashed edges
represent homologies while black ones represent gene adjacency. Boundary
vertices (anchor vertices, and gene vertices, respectively) are represented by
diamonds (white circles and full circles, respectively).

2.8 FEatension of homologous boundaries

The synteny graph represents gene relationships within and between genomes:
physical relationships are modeled by black edges, which represent gene
adjacencies, while dashed edges model homology information contained in
multiplicons. From synteny graph, we define two kinds of dependency between
elements.

2.3.1 FEatended segments

Genomic segments taking part in multiplicons can be physically dependent, since
some of them overlap. It is from this kind of dependency that we can infer new
homology relationships by combining the information contained in multiplicons
related by overlapping genomic segments. Thus, we isolate the set of genes that
are dependent only due to chromosomic overlaps. All of these genes will belong to
the same extended segment.

Definition 2.2: An extended segment for a given genome is a maximal genomic
segment Lmaz = (gb, -, ge) defined from the set of gemomic segments {I,.., I}
belonging to the same chromosome c such that

(i) go = (pv,,..,c) € I; with 1 <i <k such that py,,,, =min({p; | g; = (pi,c) €
I;,1 <i<k}),

(ii) ge = (Pe,,n.,C) € I; with 1 < i < k such that p,,,. = max({p; | ¢ = (pi,c) €
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(iii) 2 consecutive genes on the extended segment belong to the same genomic
segment: ¥g;, gi+1 € Imaz, 31 € {I1, .., I} such that g; € I and g;41 € I,

(iv) the extended segment satisfies the criterion of maximality: VI & {1y, .., I} and
Vj € [1,k], I and I; do not overlap.

The set of extended segments obtained for a given synteny graph G is computed
from the connected components of the subgraph of G induced by the black edges of
G. In fact, the resulting subgraph can be decomposed into paths that correspond
to extended segments.

The synteny graph of figure 2 contains 9 extended segments, namely:

- St = (g1, .., g%) belonging to Gy,

- 87 = (g%, .., 9?) belonging to Ga,

- 83 =(g3,..,g3) and S5 = (g3, .., g3) belonging to Gs,

- St =(g1,.,95), 82 = (g1, g5) and S5 = (g7, .. gg) belonging to Gy,

- 87 =(g3,..,95) and S5 = (g3, .., g2) belonging to Gs.

2.3.2 Groups of homologous genes and boundaries

The goal of our algorithm is to determine synteny blocks for N genomes under
study. We use transitivity of the relation defined by the multiplicons in order to
solve the missing homologies between genomic segments. Thus, if I; is homologous
to I that is itself homologous to I3, we consider that Iy and I3 are also
homologous. Not all homologies are that simple to solve. For example, in figure
1, the genomic segment I2 = (g3, .., g2) of genome Ga does not have a homolog
(direct or by transitivity) with any genomic segment of genome G;. However, 12
is included in I} = (g%, .., g2) that itself is homologous with I} = (¢1, .., g3) of G1.
This homology makes it possible to deduce a new boundary in G that “cuts” I}
into two distinct intervals such that one of them is homologous with I3.
Recovering homology relationships between genomic segments can then be
reduced to looking for specific genes that are boundaries, and reconstructing the
corresponding genomic segments. In order to do that we first partition genes
forming at least an anchor in groups of homologous genes and in parallel, by
considering only the set of gene boundaries, groups of homologous boundaries.

Definition 2.3: Groups of homologous genes are a partition of genes forming at
least one anchor such that a part of this partition is a set of genes that are either
directly homologous, or that share a gene with which they form an anchor.

Definition 2.4:

Groups of homologous boundaries are a partition of gene boundaries such that
a part of this partition is a set of boundaries that are either directly homologous, or
that share a gene with which they form an anchor.
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homologous boundaries || homologous genes

91, 97 91, 97

91, 9% 93 93,95

93,91, 9%, 93, 91, 53 93+ 98

93,93, 95, 93, 93 91,92, 98

93,96, 9%, 97 93,98, 93

93,95 9%, 91, 97, 62, 91, 92

93. 94,93, 93,93, 93

5 4 3 4
93,96, 9% 97

93, 94

Table 1 Groups of homologous boundaries and genes obtained from the synteny
graph of figure 2

Groups of homologous genes obtained for a given synteny graph G are
computed from the connected components of the subgraph of G induced by the
anchor and boundary vertices, and the dashed edges of G rather than groups of
homologous boundaries of G are computed from the connected components of the
subgraph of G restricted to boundary vertices and the dashed edges of G. The
group of homologous boundaries is obtained for a given synteny graph G, in an
analogous way, from the the subgraph of G induced by the boundary vertices, and
the dashed edges of G.

Starting from the synteny graph from figure 2, we obtain groups of homologous
genes and groups of homologous boundaries shown respectively in table 1.

2.8.8 Adding and positioning of new boundaries

The next step is to check each boundary to see whether it creates new boundaries
in other genomes. Each extended segment is a genomic segment defined by a
maximal set of overlapping genomic segments. Hence, in each extended segment
there exist boundaries of genomic segments that are included in others. For
example, boundary g2 of I7 is included in the interval I} of the extended segment
S?2. However, genomic segment I{ homologous to I3 does not contain any boundary
homologous to g3. This is precisely the situation where the need for adding new
boundaries arises. In order to do this we search in the groups of homologous genes
for a boundary homologous to g2 in I (see table 1). In this case, we find the gene
95-

The algorithm add_boundaries implements this operation. Function
extended_segment returns the extended segment to which a given genomic segment
belongs. In the case of the addition of a supplementary boundary, if the current
boundary has no homologous gene in the target genomic segment, then it is
necessary to pick a gene in this segment as the homologous one. This is done by
the routine locate: the homologous gene is the one that is proportionately located
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in the target segment at the same place than the current boundary in its genomic
segment.

Algorithm 1 add_boundaries(S)

Require: Set of extended segments S

Ensure: Set of extended segments S with new boundaries
1: Let B be the set of boundaries for S
2: while B # () do

3 b= shift(B)

4:  Let Z be the set of genomic segments in which b is included

5. forall I €7 do

6: for all I’ such that IM =(I,I', A) € M do

7: if A by € I’ such that b, and b are two homologous boundaries then
8: if 3 b, € I’ such that b, and b are two homologous genes then
9: S’ = extended_segment(I',S)

10: Mark b, as boundary in S’

11: Add b, in B

12: Add b, in the group of boundaries homologous to b

13: else

14: S’ = extended_segment(I',S)

15: locate(bpew, S")

16: Mark b, as boundary in S’

17: Add by in B

18: Add byey in the group of gene homologous to b

19: Add byeq in the group of boundaries homologous to b
20: end if
21: end if
22: end for

23:  end for
24: end while
25: return S

For the example of figure 1, six new boundaries are added. All the new
boundaries are shown in figure 3. The resulting groups of homologous boundaries
are shown in table 2.

2.4 Reconstructing synteny blocks

Once boundary homology is completely solved, we define the genomic segments
and their homology relations. In an extended segment, two boundaries form a
genomic segment that is necessarily homologous with at least one other genomic
segment. In order to obtain genomic segments that are disjoint for a given
chromosome, it is sufficient to go through each extended segment in order, where
two successive boundaries delimit a genomic segment. Then, from boundary
homology, we deduce homologies between segments delimited by these boundaries.
This implies finding the two corresponding boundaries in another genome. If the
boundaries are ordered in the same way for the two segments, then the mutual
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Final groups of homologous boundaries

91,93

g%aggyggybﬁ = gél

93,91, 93,92, 91,92, ,b2 = 91,ba = g3

93,9595, 93,93, b1 = g3

gg7ggag;7g’?ab3 = géab5 = gg

93,94

Table 2 Groups of homologous boundaries obtained from groups of table 1 after
add_boundaries routine.

91 b by b3 97
Gy o *

98 93 98 g3
G
N
N
N

N

AN 95
Gy

bs

G5

Figure 3 New gene boundaries {b1,..,bs} added for the example from figure 1.
Boundaries connected by edges represent homologous boundaries. The dashed
edges show the homology between the new boundaries and those originally
present.
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interval orientation is positive; if not, then it is negative. The result is the set of
groups of homologous genomic segments.

Finally, to obtain synteny blocks for the N genomes under study, these groups
are filtered in order to keep only those that contain at least one segment per
genome. Final synteny blocks for the example of figure 1 are shown in figure 4.

b1 b2 b3

Gl (’%

X 93 by bs
GQ 1

g 93 93 93
G3 (;‘13
RN e i\

4 Cq

Figure 4 Final syntenic blocks for the example from figure 1. Genomic segment
(g3, 92) is excluded in favour of (g3, g3) because the latter is larger. Genomic

segments (g1, 93), (97, 93), (95, 97), (98,97); (97,-+,95), (97, g3) are
also excluded, since they do not participate in synteny blocks for all of the
considered genomes (i.e there are no segments homologous to them in certain
genome(s)).

Moreover, additional filters make it possible to adapt obtained synteny blocks
as common markers used in the elaboration of signed permutations in order to
study rearrangement events.

2.4.1 Duplications

Generally, the permutation model does not allow duplication events, so the
SyDiG algorithm proposes to keep only the longest segment in a synteny block
where more than one segment belongs to one genome. The intuition behind
this filter parameter is that the longer the segment, the smaller the probability
that synteny was computed by chance. Nevertheless, other parameters to choose
between duplicate segments should be considered such as for example synteny
block neighboring. This is the subject of future work.

2.4.2 Concatenation

In the same permutation model, identifiers represent synteny blocks. Under the
parsimony criterion, two identifiers that are adjacent in all the considered genomes
cannot be separated to be joined again later. That is why, two modes are
implemented in SyDiG algorithm. The first one provides all the synteny blocks
and permits one to study their respective genomic segments. The second mode
consists in concatenating synteny blocks that appear consecutively in all the
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considered genomes. This leads to the construction of signed permutations with
fewer identifiers, but encoding exactly the same information as far as a study of
rearrangements is concerned.

2.5 Complexity

The SyDiG algorithm determines synteny blocks by constructing synteny graph
and performing operations on this graph. Synteny graph construction is linear in
the number of genes involved in genomic segments participating in multiplicons.
Moreover, computing extended segments in the particular subgraph of the synteny
graph induced by black edges can be computed in linear time in terms of the
number of vertices. Finding groups of homologous genes and groups of homologous
boundaries can be computed in both cases in linear time in terms of the number of
vertices and dashed edges. Boundaries addition is computed in O(n?) in the worst
case, where n denotes the number of vertices in the synteny graph. Finally, the
reconstruction of synteny blocks is realized by scanning the extended segments and
the groups of homologous boundaries: the complexity in time is thus O(n?). Thus,
SyDiG algorithm can be computed in a simple way in O(n?) where n denotes the
number of genes involved in genomic segments.

3 Applications

3.1 GRIMM-Synteny versus SyDiG algorithm

In order to realize this comparison, we re-implemented GRIMM-Synteny as the
software is not publicly available. Our reimplementation was validated using back-
to-back comparison with results available on the author’s webpage (Tesler, 2004).

The considerable challenge for comparing the behavior of these algorithms is
the judicious choice of data processing. Indeed, GRIMM-Synteny and SyDiG rely
on different data. The former proceeds by direct sequence alignment at DNA level
(cleaned up by RepeatMasker (Smit et al., 2004)). The latter relies on the existence
of pre-computed protein families. While DNA alignments such as BLASTZ are
reasonable for closely related genomes such as mammals, only alignments at
protein level can recover distant similarities for species such as yeasts (Dujon,
2006). The data presented below was retrieved from public databases on the 17th
of June 2008.

- Mammal genomes human, mouse and rat, for which two sets of data were
retrieved from Ensembl (release 49) and Uniprot (UniRef50, release 13.5, the
10th of june 2008) data.

- Yeast genomes Ashbya gossypii (Ergo), Kluyveromyces lactis (Klla),
Kluyveromyces thermotolerans (Klth), Zygosaccharomyces rouzxii (Zyro),
and Saccharomyces kluyveri (Sakl), data provided by the Génolevures
Consortium (Sherman et al., 2009).
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3.1.1 Yeast results

In order to apply Grimm-synteny to yeast data, we have computed 3 data sets
from TBLASTX alignments: (1) unrefined alignments (206191 alignments), (2) the
longest alignments when several ones overlap (51085 alignments), (3) the shortest
alignments when several ones overlap (59028 alignments).

Anchors were computed by GRIMM-Anchor for the levels from 2 to 5. Results
for levels 2 to 4 are shown for each data set in supplementary materials (see
supplementary tables S1, S2 and S3). No 5-level anchors are found for unrefined
and longest sets and only one 5-way anchor is found for the shortest set. Based
on these results it was not possible to run GRIMM-Synteny and uncover synteny
blocks, since the number of anchors is unsufficient.

From orthology and synteny relations identified using Génolevures protein
families (Nikolski and Sherman, 2007), SyDiG was used to compute synteny blocks
for the same species. Numbers of synteny blocks for respectively two, three and
four organisms are shown in supplementary materials (see supplementary tables
S1, S2 and S3). A total of 640 synteny blocks are defined for the set of the
5 genomes (without concatenation). As can be noted from figure 5 (A), the
number of anchors obtained for any dataset (unrefined, longest and shortest) goes
dramatically down as the number of genomes increases. The comparison between
multiplicons and synteny blocks on figure 5 (B) shows that the number of synteny
blocks obtained by SyDiG slightly grows with each added genome while it is not
the case for the multiplicons. The reason for this when going from n to n+1
genomes, is the splitting of certain synteny blocks.

We tried to determine weather results computed by the SyDiG algorithm
detect true synteny or not. In order to do this, we performed the synteny block
computation on random genome data. The data were generated as follows. Each
random genome set contains 5 genomes. Each of these genomes is generated
starting from the complete set of the loci from one of the yeast genomes, say
L € {Klla, Ergo, Zyro, Sakl, Klth}. First, a random number of chromosomes ¢
between 1 and 8 is generated. Second, the number n; of loci to belong to each of
the ¢ chromosomes is generated randomly so that > ;_, n; = n where n = |L|. Each
set of m; loci is then chosen randomly from L to be placed on the corresponding
chromosome. Finally, the orientation (positive or negative) of each locus is also
chosen randomly. In total we have generated 1000 random sets of 5 genomes. The
pre-processing step that consists in computing level 2 multiplicons by i-ADHoRE
and using exactly the same parameters as for the real yeast data, has yeilded no
synteny signal whatsoever.

3.1.2 Mammal results

Results for GRIMM-Synteny are available on the webpage ”Human-mouse-rat
alignments” (by Glenn Tesler, the 16th of March 2004) (Tesler, 2004). In order to
run SyDiG on the mammalian genome data, an approximation of protein families
is required. We have considered two different sets:

1. the Ensembl mcl clustering results (pairwise homology relationships and gene
ordered lists) (Hubbard et al., 2007),
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Figure 5 A. Mean and standard deviation of number of anchors in red (black, yellow,
respectively) for the unrefined (longest, shortest, respectively) dataset, of
multiplicons (blue) and of synteny blocks (cyan) as a function of number of
genomes. B. Zoom on mean and standard deviation of number of multiplicons
(blue) and synteny blocks (cyan) as a function of number of genomes.

2. the UniRef50 clusters (pairwise homology relationships and gene ordered
lists) (Consortium, 2008).

In order to be coherent with the results obtained in (Bourque and Pevzner,
2002), we have chosen the following i-ADHoRe parameters: a gap size of 15, a



SyDiG: Uncovering Synteny in Distant Genomes 15

cluster gap size of 20 and 9 as minimum number of anchor points. The number of
synteny blocks obtained by the SyDiG algorithm is shown in table 3 for each set
of data.

genomes Ensembl | UniRef50 || Grimm
Human-Mouse 144 380 280-394
Human-Rat 137 215 278-417
Mouse-Rat 147 244 105-162
Human-Mouse-Rat 230 465 289-391

Table 3 Synteny blocks for mammalian genomes obtained by SyDiG algorithm based
on two datasets (Esembl and UniRef50) compared to those obtained by
Grimm-Synteny (see (Bourque et al., 2004)) algorithm

3.1.8 Discussion

The two methods studied here identify very similar number of synteny blocks
for mammalian genomes. However, the number of anchors for yeast genomes
obtained by GRIMM-synteny is very low compared to the number of alignments,
and moreover the signal within genomes is lost bit by bit when the number of
considered genomes increases: with as few as five yeast genomes, no anchors are
found.

The main issue boils down to the observation that homologous genes
correspond neither to DNA alignments, nor to anchors of level 2. Indeed, two
anchors of level 2 cannot consist of the same nucleotide sequences from the same
genome. Quite to the contrary, one gene from one genome G; can be homologous
to 2 (or indeed many more) genes in another genome G; (see figure 6).

Analysis of these results shows that for mammalian genomes SyDiG performs
comparably to Grimm-Synteny. While the two data sets (UniRef50 and Ensembl)
generate slightly different results, they are both comparable (for appropriately-
chosen i-ADHoRe parameters) with the results published in (Bourque et al.,
2004). However, when dealing with distant species such as yeasts, GRIMM-Synteny
performs quite poorly. The only way to coax out any kind of signal was to perform
quite strong alignment pre-filtering of the TBLASTX result.

A particularly acute problem is that the GRIMM-Synteny procedure discards
n-ary homologies. Not only do these paralogous families contain biologically
pertinent information, they are often the best candidates for conserved markers
between genomes: in the yeasts, for example, half of the genes conserved
between species are members of paralogous families of up to 30 members,
and discarding these homologies can lead to drastic under-identification of
chromosomal homology.

3.2 I-ADHoRe versus SydiG algorithm

3.2.1 Yeast results

We compared the i-ADHoRe method and the SyDiG algorithm on the same five
species of yeasts previously presented in section 3.1. Multiplicons and synteny
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Figure 6 Difference between anchors and homologous genes. We have gene

homologies between (g1, g7), (92, g7), (93, 9s), (94, 99), (g5, g10), (g6, g11).-
However, (SI1,S517) and (SI2,SI7) can not correspond to any anchor since
S1I7 is common to two couples. Other couples (SIs,SIs), (S14,SIy),
(SIs,SIo), (SIs, SI11) represent anchors.

blocks from SyDiG were computed for the levels 2 to 5 (see supplementary tables
S1,S2, S3 for respectively two, three and four organisms). We found 136 of 5-level
multiplicons i-ADHoRe compared to 640 synteny blocks (without concatenation)
with SyDiG.

3.2.2 Discussion

Since our SyDiG algorithm starts with the ADHoRe multiplicons of level 2, the
number of multiplicons and synteny blocks obtained by the i-ADHoRe routine and
the SyDiG algorithm respectively are equivalent for the pairwise comparison of
species. However, profile integration for higher levels leads to a low number of
multiplicons for the majority of genome triplets and quadruplets, while SyDiG
uncovers homologies by considering all of the available the information. In fact, on
average i-ADHoRe obtains 26.4 multiplicons of level 3 (46.6 multiplicons of level
4, respectively) compared to 431.8 synteny blocks level 3 (551.2 synteny blocks
level 4, respectively) for SyDiG algorithm. For the case of 5 genomes, i-ADHoRe
finds 136 multiplicons. Profiles constructed from lower levels lead to an important
number of 5-level multiplicons compared to those of levels 3 and 4. However,
SyDiG finds more than 600 synteny blocks for all of the 5 genomes.

3.8 Application to yeast genomes

We have applied the SyDiG algorithm in the context of the Génolevures
project (Dujon et al., 2004) for the case of non-WGD Hemiascomycetous
yeasts. The data consists in 5 completely sequenced protoploid yeasts from the
Saccharomycetacae clades: Kluyveromyces lactis (Klla), Saccharomyces kluyveri
(Sakl), Zygosaccharomyces rouzii (Zyro), Ashbya (Eremothecium) gossypii (Ergo)
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and Kluyveromyces thermotolerans (Klth). These genomes have little genome
redundancy and a relatively high (for yeasts) conservation of synteny.

From orthology and synteny relations identified using Génolevures protein
families (Nikolski and Sherman, 2007), the SyDiG algorithm obtains 487 synteny
blocks for these genomes (mean size 51 genes). These syntenic blocks contain
8-200 genes and cover roughly 60% of each genome. Basing these permutations
only on protein-coding genes is sufficient, since yeast genomes are highly compact
(protein-coding genes cover approximately 80% of the genome), and gene relics are
quite rare (approximately 4%) (Dujon, 2006). For frequency distribution of synteny
blocks. please refer to (Dujon et al., 2009).

By combining pairwise syntenies, each genome was factored into a sequence
of ordered syntenic blocks, from which a set of distinct blocks common to all
genomes was determined. An arbitrary reference genome was chosen, and all
the blocks forming this genome were numbered by unique sequential identifiers
from 1 to n. By keeping the longest blocks, permutations of 120 identifiers are
constructed, that are representative of the pairwise evolutionary distances for these
genomes. We are able to place active and inactive centromeres in each genome
permutation by locating the flanking genes. Each of 9 centromeres is encoded by
two identifiers, resulting in 15 additional blocks. Thus, each genome is represented
as a signed permutation of 135 elements, in which chromosomal rearrangements
(fusion, fission, translocation, inversion) can be studied (see (Jean et al., 2009)).

A high degree of synteny, and a limited number of large-scale rearrangements,
is observed between K. thermotolerans and S. Kluyveri; they share many common
adjacencies and their rearrangement distance is half of that seen between other
pairs of genomes. Note that K. lactis presents two syntenic breaks in centromere
areas: the centromere of KllaOF is located between the flanking genes of
centromeres h and b, and the centromere of Klla0A is located between the flanking
genes of centromeres h and e. Moreover, S. kluyveri has an active centromere (the
centromere i), that was disabled in all the other studied genomes.

Acknowledgement

This work was done as part of the the Génolevures Consortium. The authors thank
all the members of the Consortium for numerous, friendly and creative discussions,
and in particular David Sherman for running the i-ADHoRe software. The funding
for this work was provided by the French National center for Scientific Research
(CNRS) (GDR 2354).

References

G. Jean, D. Sherman, and M. Nikolski. Super-blocks or mining the semantics of
ancestral genome architectures. JCB. accepted for publication.

Aury, J.M., Jaillon, O., Duret, L., Noel, B. et al.. Global trends of whole-genome
duplications revealed by the ciliate Paramecium tetraurelia. Nature, 444(7116),
171-8.



18 Géraldine Jean and Macha Nikolski

Bourque, G. and Pevzner, P. (2002). Genome-Scale Evolution: Reconstructing
Gene Orders in the Ancestral Species. Genome Research, 12, 26—-36.

Bourque, G., Pevzner, P., and Tesler, G. (2004). Reconstructing the genomic
architecture of ancestral mammals: Lessons from human, mouse and rat
genomes. Genome Research.

Bourque, G., Zdobnov, E., Bork, P., Pevzner, P., and Tesler, G. (2005).
Comparative architectures of mammalian and chicken genomes reveal highly
variable rates of genomic rearrangements across different lineages. Genome
Research, 15(1), 98-110.

Consortium, T. U. (2008). The Universal Protein Resource (UniProt). Nucleic
Acids Research Database Issue.

Dujon, B. (2006). Yeasts illustrate the molecular mechanisms of eukaryotic genome
evolution. Trends in Genetics, 22, 375-387.

Dujon, B., Sherman, D., et al. (2004). Genome evolution in yeasts. Nature,
430(6995), 35-44.

Enright, A., Dongen, S. V., and Ouzounis, C. (2002). An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res., 30, 1575—1584.

Hannenhalli, S. and Pevzner, P. (1995). Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by reversals). Proceedings
of twenty-Seventh Annual ACM Symposium on Theory of Computing, pages 178~
189.

Hubbard, T., Aken, B., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke,
L., Coates, G., Cunningham, F., Cutts, T., et al. (2007). Ensembl 2007. Nucleic
Acids Res., 35, Database issue, D610-D617.

Jaillon, O., Aury, J.M., Brunet, F. et al.. Genome duplication in the teleost fish
Tetraodon nigroviridis reveals the early vertebrate proto-karyotype.. Nature,
431(7011), 946—i57.

Kent, W., Baertsch, R., Hinrichs, A., Miller, W., and Haussler, D. (2004).
Evolution’s cauldron: Duplication, deletion and rearrangement in the mouse and
human genomes. Proc. Nat. Acad. Sci., 100(20), 11484-9.

Ma, J., Zhang, L., Suh, B., Raney, B., Burhans, R., Kent, W., and Blanchette, M.
(2006). Reconstructing Contiguous Regions of an Ancestral Genome. Genome
Research, 16(12), 1557-1565.

Nadeau, J. and Taylor, B. (1984). Lengths of Chromosomal Segments Conserved
since Divergence of Man and Mouse. Proceedings of the National Academy of
Sciences of the United States of America, Vol. 81, No. 3, [Part 1: Biological
Sciences], pages 814-818.

Nikolski, M. and Sherman, D. (2007). Family relationships: should consensus
reign? - consensus clustering for protein families. Bioinformatics, 23(2), 71-76.



SyDiG: Uncovering Synteny in Distant Genomes 19

Pevzner, P. and Tesler, G. (2003a). Genome rearrangements in mammalian
evolution: Lessons from human and mouse genomes. Genome Research.

Pevzner, P. and Tesler, G. (2003b). Human and mouse genomic sequences reveal
extensive breakpoint reuse in mammalian evolution. PNAS, 100(13), 7672
7677.

Schwartz, S., Kent, W., Smit, A., Zhang, Z., Baertsch, R., Hardison, R., Haussler,
D., and W, W. M. (2004). Human-mouse alignments with BLASTZ. Genome
Res., 14(4).

Simillion, C., Vandepoele, K., Saeys, Y., and Peer, Y. (2004). Building genomic
profiles for uncovering segmental homology in the twilight zone. Genome Res.,
14(6), 1095-106.

Simillion, C., Janssens, K., Sterck, L., and Van de Peer, Y. (2008). i-ADHoRe
2.0: An improved tool to detect degenerated genomic homology using genomic
profiles. Bioinformatics, 24, 127-8.

Smit, A., Hubley, R., and Green, P. (1996-2004). RepeatMasker open-3.0. http:
//www.repeatmasker.org.

Tesler, G. (2002). GRIMM: genome rearrangements web server. Bioinformatics,
18(3), 492-493.

Tesler, G. (2004). Human-mouse-rat alignments. http://nbcr.sdsc.edu/GRIMM/
HMR_Aug2003/.

Trinh, P., Mclysaght, A., and Sankoff, D. (2004). Genomic features in the
breakpoint regions between syntenic blocks. Bioinformatics, 20(1), 318-325.

Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., and Van de Peer, Y. (2002). The
Automatic Detection of Homologous Regions (ADHoRe) and Its Application
to Microcolinearity Between Arabidopsis and Rice. Genome Research, 12(11),
1792-1801.

Viacheslav N. Bolshakov, Pantelis Topalis, Claudia Blass, Elena Kokoza,
Alessandra della Torre, Fotis C. Kafatos, and Christos Louis. A comparative
genomic analysis of two distant diptera, the fruit fly, drosophila melanogaster,
and the malaria mosquito, anopheles gambiae. Genome Research, 12:57-66,
2002.

David Sherman, Tiphaine Martin, Macha Nikolski, Cyril Cayla, Jean-Luc Souciet,
and Pascal Durrens. Génolevures: protein families and synteny among complete
hemiascomycetous yeast proteomes and genomes. Nucleic Acids Research,
37(Database-Issue):550-554, 2009.

The Genolevures Consortium. Comparative genomics of protoploid
Saccharomycetaceae. Genome Research, 19:1967-1709, 2009.



20 Géraldine Jean and Macha Nikolski

genomes UNR | LON | SHO || SB | MULT
Ergo-Klth | 3659 | 3887 | 4629 || 278 274
Ergo-Sakl | 3383 | 3615 | 4288 || 248 245
Ergo-Zyro | 3578 | 3792 | 4353 || 338 327
Klla-Ergo | 3159 | 3333 | 3856 || 384 364
Klla-Klth | 3221 | 3407 | 3974 || 328 314
Klla-Sakl | 3028 | 3202 | 3716 || 303 288
Klla-Zyro | 2926 | 3107 | 3537 || 381 361
Sakl-Klth | 3152 | 3376 | 3961 || 93 93
Zyro-Klth | 3313 | 3567 | 4116 || 247 240
Zyro-Sakl | 3249 | 3508 | 4044 || 199 200

Table S1 Number of 2-level anchors (unrefined (UNR), longest (LON) and shortest
(SHO) datasets), synteny blocks (SB) and multiplicons (MULT') on
Hemiascomycete yeasts obtained by GRIMM-Synteny, SyDiG and i-ADHoRe,
respectively.

genomes UNR | LON | SHO || SB | MULT
Ergo-Sakl-Klth | 174 184 440 || 324 63
Ergo-Zyro-Klth | 214 202 441 439 )
Ergo-Zyro-Sakl | 104 103 262 405 17
Klla-Ergo-Klth | 320 181 353 || 490 8
Klla-Ergo-Sakl 348 211 387 || 484 8
Klla-Ergo-Zyro | 314 162 345 554 2
Klla-Sakl-Klth 47 82 156 || 386 61
Klla-Zyro-Klth 112 87 170 || 480 1
Klla-Zyro-Sakl 98 124 296 || 472 16
Zyro-Sakl-Klth 89 187 247 || 284 83

Table S2 Number of 3-level anchors (unrefined (UNR), longest (LON) and shortest
(SHO) datasets), synteny blocks (SB) and multiplicons (MULT') on
Hemiascomycete yeasts obtained by GRIMM-Synteny, SyDiG and i-ADHoRe,
respectively.
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genomes UNR O SHO || SB | MULT
Ergo-Zyro-Sakl-Klth 0 0 14 465 83
Klla-Ergo-Sakl-Klth 4 4 20 542 63
Klla-Ergo-Zyro-Klth 17 3 21 619 6
Klla-Ergo-Zyro-Sakl 11 1 24 604 10
Klla-Zyro-Sakl-Klth 1 3 12 526 71
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Table S3 Number of 4-level anchors (unrefined (UNR), longest (LON) and shortest

(SHO) datasets), synteny blocks (SB) and multiplicons (MULT') on

Hemiascomycete yeasts obtained by GRIMM-Synteny, SyDiG and i-ADHoRe,

respectively.



