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Abstract

We consider the Laplacian operator H0 = −∆ perturbed by a non-positive potential V , which

is periodic in two directions, and decays in the remaining one. We are interested in the charac-

terization and decay properties of the guided states, defined as the eigenfunctions of the reduced

operators in the Bloch-Floquet-Gelfand transform of H0 + V in the periodic variables. If V is suf-

ficiently small and decreases fast enough in the infinite direction, we prove that, generically, these

guided states are characterized by quasi-momenta belonging to some one-dimensional compact real

analytic submanifold of the Brillouin zone. Moreover they decay faster than any polynomial func-

tion in the infinite direction.

AMS 2000 Mathematics Subject Classification: 35J10, 35Q40, 81Q10.

Keywords: Schrödinger operator, Periodic potential, Guided state, Limiting absorption principle.

1 Introduction

A better understanding of the mechanisms of radio wave propagation in complex environments is
required for the development of efficient wireless communication systems. This can be achieved by
investigating the corresponding Maxwell equations where the source is a time periodic current density
localized in the wires feeding the antenna, i(t, x) = e−iωti0(x) , with frequency ω > 0. Of course
these equations can not be solved explicitely in a rich scattering environment but they are the source
of interesting mathematical problems. However there is only a very few number of theoretical results
available describing radio waves in “realistic” propagation media. In the particular case of a periodic
environment (for simplicity the medium is assumed to be periodic in, say, two out of the three directions,
in order to model an idealized infinitely extended building) the problem is to determine the steady-
state solutions u(x, t) = e−iωtu0(x) associated to the solution u0 to the equation (H − k20)u0 = i0.
Here H denotes the selfadjoint Maxwell operator under study and k0 = ω/c, where c is the celerity of
the propagation medium. If i0 is nonzero and k20 is a nonnegative number, it turns out that there is
no u0 satisfying the above equation in L2(R3) in the general case. A potential outgoing solution can
nevertheless be defined from the limit of the resolvent operator (H − k20 ∓ iε)−1i0 as ε ↓ 0. Similar
problems have been studied in various contexts, in [20] for both acoustic and electromagnetic waves, in
[9], [10], [11]-[12] and [14] for the Schrödinger equation, and in [13] for the Maxwell equations.
The study carried out this article has some connection with [3], [4] and [5]. Actually, the model we had
in mind when starting this work was inspired from [6], where numerous numerical simulations of the
scattering of electromagnetic waves in an infinitely extended and periodic building in two orthogonal
directions are performed. However, in order to avoid numerous technical difficulties appearing in the
treatment of the Maxwell operator, we consider in this paper the Schrödinger equation rather than the
Maxwell equations.
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The method used in [9], [10], [11]-[12], [13], [14] and [20] takes advantage of the periodicity of the system
to decompose the corresponding partial differential operatorH into a direct integral

∫
BH(kℓ)dkℓ, where

B is the Brillouin zone and kℓ denotes the quasi-momentum associated to the Bloch-Floquet-Gelfand
transform. In all the above mentioned papers, a Limiting Absorption Principle (LAP for short) for either
H or H(kℓ), kℓ ∈ B, is established in order to derive absolutely continuous properties of the spectrum.
Convenient assumptions made on the periodic potential function V describing the physical properties of
the model under study then guarantee that the operator Γ(kℓ, E±iε) = V (H(kℓ)−E∓iε)−1 is compact
for all kℓ ∈ B and ε > 0. Here E is k20 in the case of the Maxwell equation while E denotes the energy
of the system for the Schrödinger equation. The next step of the proof involves relating the LAP to the

existence of limε↓0

∫
B

f(E±iε,kℓ)
h(E±iε,kℓ)

dkℓ for suitable functions f , where h(E ± iε,kℓ) denotes the Fredholm

determinant of Γ(kℓ, E± iε). This indicates that the derivation of a LAP for these models is intricately
tied to the characterization of C(E) = {kℓ ∈ B, h(kℓ, E) = 0} (the so-called Fermi variety in [17], by
analogy to a similar -but slightly different- quantity in solid state physics) which is generally a rather
non trivial problem. The alternative to investigating the structure of C(E) in the process of establishing
a LAP, is to assume exponential decay for V in the transversal (i.e. non periodic) direction, see [11]-[12],
[13], [14]. Furthermore the resolvent can be extended to a meromorphic function on the half lower or
upper planes in this framework. In this paper we develop a completely different approach based on the
actual characterization of C(E), which turns out to be a real analytic manifold. The key advantage is
that C(E) is thus parametrizable. Based on standard computations, involving an appropriate change
of variables in the above mentioned integrals when kℓ is in a neighborhood of C(E), this would allow us
to derive a LAP for external potentials decreasing polynomially fast in the transversal direction. For
the sake of brevity we shall nevertheless not mention the details of the related proof here.
Another benefit of determining the underlying structure of C(E) is a better characterization of guided
states occuring in this system, i.e. of the eigenfunctions of H(kℓ) with energy E, for some kℓ ∈ B.
Indeed we prove in this framework that guided states correspond to quasi-momenta kℓ satisfying either
kℓ ∈ C(E) or |kℓ| = E1/2. The terminology used here is justified by the fact that these eigenfunctions
exhibit decay properties in the transversal direction. This will be made precise for both kℓ ∈ C(E)
and |kℓ| = E1/2, although the existence of guided states is only guaranteed for kℓ ∈ C(E) in the
general framework examined in this article. Nevertheless, the non existence of guided states associated
to |kℓ| = E1/2 can be proven for a wide class of suitable periodic potential functions V we shall
fully describe. In this specific case, the guided states of the corresponding Hamiltonian are therefore
characterized by quasi-momenta kℓ ∈ C(E). Notice that the terminology used in both mathematics and
physics literature to classify waves depends quite strongly on the authors and the scientific communities
they belong to. As a matter of fact the term “surface state” is employed in [3], [5] and [20], while “guided
wave” is used in [21], and [2] refers to both “surface” and “guided” waves, depending upon the context.

1.1 Settings and notations

Let a2, a3 be two independent vectors in R2 generating a lattice L :=
∑

j=2,3 Zaj . We define the basic
period cell (or Seitz zone) as

S := R2/L =




xℓ ∈ R2, xℓ =
∑

j=2,3

sjaj , −1/2 < sj ≤ 1/2




 . (1.1)

Similarly, the dual basis b2, b3 being defined by

〈bi, aj〉 = (2π)δi,j , i, j = 2, 3, (1.2)
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where 〈., .〉 stands for the usual Euclidian scalar product in R2, the basic period cell for the dual basis
{b1,b2} (or Brillouin zone) is

B :=




kℓ ∈ R2, kℓ =
∑

j=2,3

tjbj , −1/2 < tj ≤ 1/2




 . (1.3)

Evidently B = R2/L⊥ where L⊥ :=
∑

j=2,3 Zbj is the reciprocal lattice.
For the sake of simplicity we assume in what follows that

〈a2, a3〉 = 0,

and hence
bj = 2π

aj

|aj |2
, j = 2, 3. (1.4)

Let V be a real-valued function on R3 obeying

V (x1,xℓ + aj) = V (x1,xℓ), x1 ∈ R, xℓ = (x2, x3) ∈ R2, j = 2, 3, (1.5)

plus some technical additional conditions that will be mentioned further. We are interested in the
spectral properties of the self-adjoint realization of the operator −∆+ V acting in L2(R3).
For all kℓ ∈ B we consider the operatorH0(kℓ) := −∆ in H := L2(R×S), with the boundary conditions

ϕ(x1,xℓ + aj) = ei〈kℓ,aj〉ϕ(x1,xℓ), ∂jϕ(x1,xℓ + aj) = ei〈kℓ,aj〉∂jϕ(x1,xℓ), j = 2, 3, (1.6)

for all x1 ∈ R and xℓ, with xℓ and xℓ + aj in ∂S, the notation ∂j being understood as the derivative
w.r.t. the coordinate sj such that xℓ =

∑
j=2,3 sjaj . Its domain is

dom H0(kℓ) = {ϕ ∈ H2(R× S) fulfilling (1.6)} (1.7)

where H2(R× S) denotes the usual second order Sobolev space.

Let us now consider the Bloch-Floquet-Gelfand transform U : L2(R3) →
∫ ⊕

B
Hdkℓ, defined on C∞

0 (R3)
by

(Uϕ)(kℓ, x1,xℓ) := |B|−1/2
∑

Rℓ∈L

e−i〈kℓ,Rℓ〉ϕ(x1,xℓ +Rℓ) (1.8)

and extended as a unitary operator on L2(R3).

In light of (1.8) and the identity UL2(R3) =
∫ ⊕

B
Hdkℓ, it turns out that

U(−∆+ V )U−1 =

∫ ⊕

B

H(kℓ)dkℓ, (1.9)

where H(kℓ) := H0(kℓ) + V acts in H.
Let ρ(H0(kℓ)) be the resolvent set of H0(kℓ), and σ(H0(kℓ)) denote its spectrum. For all kℓ ∈ B,
let R0(kℓ, z) := (H0(kℓ) − z)−1, z ∈ ρ(H0(kℓ)) := C\σ(H0(kℓ)), and R(kℓ, z) := (H(kℓ) − z)−1,
z ∈ ρ(H(kℓ)), be the resolvent operators associated to H0(kℓ) and H(kℓ) respectively. For all z ∈
ρ(H0(kℓ)) ∩ ρ(H(kℓ)) we have

|V |1/2R0(kℓ, z) = (1 + ǫ|V |1/2R0(kℓ, z)|V |1/2)|V |1/2R(kℓ, z), (1.10)

by combining the first resolvent equation R(kℓ, z) = R0(kℓ, z)− R0(kℓ, z)V R(kℓ, z), with the obvious
decomposition V = ǫ|V |1/2|V |1/2, ǫ(x) being the sign of V (x), x := (x1,xℓ) ∈ R× S. Henceforth

R(kℓ, z) = R0(kℓ, z)−R0(kℓ, z)ǫ|V |1/2(1 + ǫ|V |1/2R0(kℓ, z)|V |1/2)−1|V |1/2R0(kℓ, z), (1.11)
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provided 1 + ǫ|V |1/2R0(kℓ, z)|V |1/2 is boundedly invertible.
For the sake of simplicity we assume that V (x) := −gW (x)2 for x ∈ R × S, some coupling constant
g ∈ (0,+∞) and some potential W (x) ≥ 0. Hence we have

Rg(kℓ, z) := R(kℓ, z) = R0(kℓ, z) + gR0(kℓ, z)W (1− gΓkℓ
(z))−1WR0(kℓ, z), (1.12)

from (1.11), where
Γkℓ

(z) :=WR0(kℓ, z)W, (1.13)

is the integral operator in H with kernel (see [14])

γkℓ
(x,y, z) := iβW (x)W (y)

∑

Kℓ∈L⊥

ei
√

z−|Kℓ+kℓ|2|x1−y1|

√
z − |Kℓ + kℓ|2

ei〈Kℓ+kℓ,xℓ−yℓ〉, (1.14)

with

β :=
|B|
16π2

, (1.15)

the sign of the imaginary part of the square root of any complex number being chosen nonnegative.
In (1.14) and in what follows, |kℓ| denotes the Euclidian norm of kℓ ∈ R2, i.e. |kℓ|2 =

∑
j=2,3 k

2
j for

kℓ = (k2, k3).

1.2 Statement of the main results

In this paper we essentially aim for examining the existence of guided states generated by a perturbation
of the form −gW 2 for g > 0. Borrowing the usual definition from [21], a guided state for the energy
E is any nonzero function u ∈ H satisfying the identity H(kℓ)u = Eu for some kℓ ∈ B. As follows
from (1.12), the problem of the existence of guided states in this system is thus tied to the one of the
invertibility of the family of operators {1− gΓkℓ

(E)}kℓ∈B in B(L2(R× S)).
As a matter of fact, we shall consider in this framework energies E ∈ (0, Eδ), δ ≥ 0, where

Eδ :=
π2

1 + δ
min
j=2,3

|aj |−2 =
1

4(1 + δ)
min
j=2,3

|bj |2. (1.16)

The main result of this article is the following actual characterization of the subset

Cg(E) := {kℓ ∈ B, |kℓ|2 6= E and 1− gΓkℓ
(E) is singular},

for g sufficiently small.

Theorem 1.1. Let δ > 0, E ∈ (0, Eδ) , and let W ∈ L∞(R× S) satisfy

W (x1,xℓ) = O

(
1

(1 + |x1|)(3+ǫ)/2

)
for some ǫ > 0. (1.17)

Then there exists g0 = g0(δ,W ) > 0 such that for all g ∈ (0, g0), the set Cg(E) is a one-dimensional
compact real analytic manifold contained in an annulus Ωg(E) centered at the origin, with smaller and
bigger radius of size E1/2 + c±g

2, the two constants c± > 0 being independent of g. Namely, Cg(E) is
a closed and simple (i.e. with no double point) curve which is not homotopic to a point in Ωg(E).

Theorem 1.1 allows for a better characterization of guided states occuring in this system. This can be
seen from the coming result, which, first, establishes a link between Cg(E) and potential guided states,
and, second, describes their rate of decay in the orthogonal direction to the periodic “longitudinal”
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plane carrying xℓ. Its statement actually involves the following family of “weighted” subspaces of
H = L2(R× S) :

Hτ := {v ∈ H, (1 + x21)
τ/2v ∈ H}, τ ≥ 0.

Although these functional spaces are not the sharpest ones required for the following claim to hold,
their use in this framework is justified by the fact that they allow for a more simple derivation of the
result.

Theorem 1.2. Let E, g0 and W be the same as in Theorem 1.1. Then for every g ∈ (0, g0), any
guided state with energy E belongs to ∩m∈NHm, and is associated to a quasi-momentum kℓ verifying
either kℓ ∈ Cg(E) or |kℓ| = E1/2. Moreover, for each kℓ ∈ Cg(E), there exists at least one guided state
with energy E associated to kℓ.

Although the existence of guided states associated to quasi-momenta kℓ satisfying |kℓ| = E1/2 cannot
be ruled out in the general situation examined in Theorem 1.2, this is no longer the case when the
potential function W is sufficiently smooth w.r.t. xℓ, and vanishes in a half-space parallel to the
longitudinal direction. This and Theorem 1.2 entails the following:

Corollary 1.1. Let E and W be as in Theorem 1.1, and assume moreover that :

(i) xℓ 7→W (x1,xℓ) ∈ C4(S) for a.e. x1 ∈ R, and vanishes in a neighborhood of the boundary ∂S;
(ii) W (x1,xℓ) = 0 for a.e. (x1,xℓ) ∈ I × S, where I is any unbounded subinterval of R.

Then there exists g̃0 > 0 such that for all g ∈ (0, g̃0), the quasi-momentum kℓ of any guided state with
energy E, belongs to Cg(E).

Actually, this result can be generalized, at the expense of greater technical difficulties, to a wider class
of potentials W than the one considered in this statement.
Notice that the generality of the results of Theorems 1.1-1.2 and Corollary 1.1 is not substantially
restricted by the assumption E ∈ (0, Eδ). Indeed this purely technical hypothesis allows for a clearer
statement (see Remark 2.1) and it can be checked from the following sections of this paper that these
claims, subject to slight modifications, remain essentially true when dealing with E outside (0, Eδ).

1.3 Outline

The contents of this paper is as follows. In Section 2, we collect basic properties of the Hilbert-Schmidt
operators Γkℓ

(E+iε), for kℓ ∈ B\{|kℓ|2 = E} and ε ∈ R, needed in the proofs of the following sections,
and explain the link between Ωg(E) and the problem of the invertibility of 1 − gΓkℓ

(E). Section 3 is
devoted to the study of the invertibility of 1−gΓkℓ

(E) for sufficiently small g > 0, and contains the proof
of Theorem 1.1. Section 4 deals with the characterization of guided states occuring in this framework,
and their decay properties in the direction orthogonal to xℓ. It provides the proofs of Theorem 1.2 and
Corollary 1.1. The paper concludes with two appendices in Section 4.3. The first appendix, Appendix
A, contains the proof of the Hilbert-Schmidt properties of the operators Γkℓ

(E ± iε), stated in Lemma
2.2. The second appendix, Appendix B, is dedicated to the derivation of a LAP for H0(kℓ, E ± iε),
ε > 0 and kℓ ∈ B, needed in the proof of Theorem 1.2.

2 Basic properties of Γkℓ(E + iε), kℓ ∈ B±
E, ε ∈ R

We set
B±
E := {kℓ ∈ B, ±(|kℓ|2 − E) > 0}, BE := B−

E ∪ B+
E , (2.1)

and we assume in the foregoing, without restricting the generality of this text, that

‖W‖H = 1. (2.2)
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2.1 Notations and summability result

For all kℓ =
∑

j=2,3 tjbj ∈ B and Kℓ =
∑

j=2,3 njbj ∈ L⊥, (1.3)-(1.4) entails

|kℓ +Kℓ|2 =
∑

j=2,3

(nj + tj)
2|bj |2, tj ∈ (−1/2, 1/2], nj ∈ Z, j = 2, 3. (2.3)

Thus for all δ ≥ 0 and E ∈ (0, Eδ) we have

E − |kℓ +Kℓ|2 < −δEδ, kℓ ∈ B, Kℓ ∈ L⊥\{0}, (2.4)

according to (1.16). Further, in light of (1.14) we define for all kℓ ∈ B±
E , Kℓ ∈ L⊥ and ε ∈ R,

p(kℓ +Kℓ, E + iε) := (E − |kℓ +Kℓ|2 + iε)1/2

= pR(kℓ +Kℓ, E + iε) + ipI(kℓ +Kℓ, E + iε), (2.5)

where
(pR(kℓ +Kℓ, E + iε), pI(kℓ +Kℓ, E + iε)) ∈ R× R+, (2.6)

in such a way that

γkℓ
(x,y, E + iε)

= βW (x)W (y)
∑

Kℓ∈L⊥

e−pI (kℓ+Kℓ,E+iε)|x1−y1|

−ip(kℓ +Kℓ, E + iε)
eipR(kℓ+Kℓ,E+iε)|x1−y1|ei〈kℓ+Kℓ,xℓ−yℓ〉. (2.7)

Actually (pR(kℓ + Kℓ, E + iε), pI(kℓ + Kℓ, E + iε)) is uniquely defined from (2.5)-(2.6) for every
(kℓ,Kℓ, ε) /∈ B−

E×{0}×{0}. Indeed, since arg√z is taken in [0, π) for any complex number z = |z|eiarg z

with arg z ∈ [0, 2π), we get, from (2.4)-(2.5),

pI(kℓ +Kℓ, E + iε) =

(
((E − |kℓ +Kℓ|2)2 + ε2)1/2 − (E − |kℓ +Kℓ|2)

2

)1/2

, (2.8)

for every (kℓ,Kℓ, ε) ∈ B±
E × L⊥ × R. This and (2.4) yields pI(kℓ + Kℓ, E + iε) > 0 for (kℓ,Kℓ, ε) /∈

B−
E × {0} × {0}, and hence

pR(kℓ +Kℓ, E + iε) =
ε

2pI(kℓ +Kℓ, E + iε)
, (kℓ,Kℓ, ε) ∈ (B±

E × L⊥ × R)\(B−
E × {0} × {0}). (2.9)

However, if (kℓ,Kℓ, ε) ∈ B−
E ×{0}×{0}, we have pI(kℓ, E) = 0 from (2.8), which shows that pR(kℓ, E)

cannot be defined by (2.9). In this case we set

p(kℓ, E) = pR(kℓ, E) := (E − |kℓ|2)1/2 > 0, kℓ ∈ B−
E . (2.10)

Notice from (2.8)-(2.10) that we have:
{

limε↓0 p(kℓ +Kℓ, E ± iε) = p(kℓ +Kℓ, E) if (kℓ,Kℓ) ∈ (B+
E × L⊥) ∪ (B−

E × L⊥\{0})
limε↓0 p(kℓ, E ± iε) = ±p(kℓ, E) if kℓ ∈ B−

E .
(2.11)

Remark 2.1. The condition E ∈ (0, Eδ) ensuring (2.4) for every kℓ ∈ B and Kℓ ∈ L⊥\{0}, we have
pI(kℓ +Kℓ, E) > 0 except for Kℓ = 0 according to (2.8).The picture is quite similar for E ≥ Eδ in the
sense that there exists only a finite set KE of “singular” values Kt ∈ L⊥ such that E − |kℓ +Kℓ|2 ≥ 0
for some kℓ ∈ B. This can be seen directly from (1.3) and the identity L⊥ =

∑
j=2,3 Zbj through

elementary computations. Therefore, the case E ≥ Eδ can actually be handled in the same way as
E ∈ (0, Eδ), at the expense of inessential greater technical difficulties, upon substituting KE for {0} in
the following computations1.

1Such as the occurence of several connex components in Cg(E).
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For further reference we now establish the following

Lemma 2.1. Let E ∈ (0, Eδ) for δ ≥ 0. Then for every µ > 2 there exists a constant αµ(δ) ∈ R∗
+,

depending only on δ and µ, such that we have

∑

Kℓ∈L⊥\{0}

1

pI(kℓ +Kℓ, E + iε)µ
≤

∑

Kℓ∈L⊥\{0}

1

pI(kℓ +Kℓ, E)µ
≤ αµ(δ),

for all kℓ ∈ BE, E ∈ (0, Eδ) and ε ∈ R.

Proof. For every Kℓ =
∑

j=2,3 njbj ∈ L⊥\{0} we get from (2.3)-(2.4) and (2.8) that

pI(kℓ +Kℓ, E)2 = −(E − |kℓ +Kℓ|2) ≥
∑

j=2,3 s.t. nj 6=0

(|nj | − 1/2)2|bj |2 − E.

Henceforth we have

pI(kℓ +Kℓ, E) ≥



(1 + δ)
∑

j=2,3 s.t. nj 6=0

(2|nj| − 1)2 − 1




1/2

E
1/2
δ , Kℓ ∈ L⊥\{0}, (2.12)

by (1.16), since E ∈ (0, Eδ). This, combined with the estimate

pI(kℓ +Kℓ, E + iε) ≥ pI(kℓ +Kℓ, E), (kℓ,Kℓ, ε) ∈ B±
E × L⊥ × R, (2.13)

which immediately follows from (2.8) and (2.10), proves the result.

2.2 Hilbert-Schmidt properties

In view of collecting some Hilbert-Schmidt properties of the operators Γkℓ
(E+ iε), kℓ ∈ BE and ε ∈ R,

needed in the proofs of the following sections, let

Pkℓ
:= 〈., ϕkℓ

〉Hϕkℓ
,kℓ ∈ B, (2.14)

denote the projection operator onto the linear space spanned by the normalized function (we use (2.2))

ϕkℓ
(x) :=W (x)ei〈kℓ,xℓ〉, x ∈ R× S. (2.15)

From (2.5)-(2.7) and (2.14)-(2.15) then follows for every kℓ ∈ B±
E that

Γkℓ
(E + iε) = Λkℓ

(E + iε)Pkℓ
+ Ckℓ

(E + iε), (2.16)

where

Λkℓ
(E + iε) :=

iβ

p(kℓ, E + iε)
, (2.17)

and Ckℓ
(E + iε) is the integral operator with kernel

ckℓ
(x,y, E + iε) := γkℓ

(x,y, E + iε)− βW (x)W (y)
ei〈kℓ,xℓ−yℓ〉

−ip(kℓ, E + iε)
. (2.18)

Lemma 2.2. Assume (1.17). Then for every E ∈ (0, Eδ), with δ ≥ 0, it holds true that:

(a) Ckℓ
(E + iε) and Γkℓ

(E + iε) are Hilbert-Schmidt operators for every kℓ ∈ BE and ε ∈ R;

(b) Ckℓ
(E + iε)∗ = Ckℓ

(E − iε) and Γkℓ
(E + iε)∗ = Γkℓ

(E − iε) for all (kℓ, ε) ∈ (B−
E ×R∗)∪ (B+

E ×R);
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(c) There exists a constant c > 0 depending only on δ and W satisfying

‖Ckℓ
(E + iε)‖HS ≤ c, (kℓ, ε) ∈ BE × R,

where ‖.‖HS stands for the Hilbert-Schmidt norm in R× S.

(d) limε↓0 Γkℓ
(E ± iε) = Γkℓ

(E) if kℓ ∈ B+
E and limε↓0 Γkℓ

(E + iε) = Γkℓ
(E) if kℓ ∈ B−

E ;

(e) limε↓0 Γkℓ
(E − iε) = Γkℓ

(E) − 2C
(0)
kℓ

(E) if kℓ ∈ B−
E , where C

(0)
kℓ

(E) denotes the integral operator
with kernel

c
(0)
kℓ

(E,x,y) := βW (x)W (y)
eip(kℓ ,E)|x1−y1|

−ip(kℓ, E)
ei〈kℓ,xℓ−yℓ〉,

the limits in (d) and (e) being taken in the Hilbert-Schmidt norm sense.

The proof of this lemma being quite tedious, it is postponed to Appendix A in Section A.
The operator Λkℓ

(E + iε)Pkℓ
being normal from (2.14)-(2.15) and (2.17), with spectrum equal to

{0,Λkℓ
(E + iε)}, it 2follows readily from (2.16) and Lemma 2.2(c) that:

σ(Γkℓ
(E + iε)) ⊂ 3B(0, c) ∪B(Λkℓ

(E + iε), c), kℓ ∈ BE , E ∈ (0, Eδ), ε ∈ R. (2.19)

Moreover Γkℓ
(E) being selfadjoint for kℓ ∈ B+

E by Lemma 2.2(b), then (2.19) yields:

σ(Γkℓ
(E)) ⊂ [−c,+c] ∪ [Λkℓ

(E)− c,Λkℓ
(E) + c], kℓ ∈ B+

E , E ∈ (0, Eδ). (2.20)

2.3 Spectral properties

Since Γkℓ
(E + iε) is compact for every kℓ ∈ BE by Lemma 2.2(a), its spectrum σ(Γkℓ

(E + iε)) consists
of at most a countable number of eigenvalues with finite multiplicity possibly excepting zero. In
what follows we denote by λ1(kℓ, E + iε), λ2(kℓ, E + iε), . . . these nonzero eigenvalues arranged in non
increasing order of magnitude

|λ1(kℓ, E + iε)| ≥ |λ2(kℓ, E + iε)| ≥ . . . ,

and call P1(kℓ, E + iε), P2(kℓ, E + iε), . . . the associated eigenprojections.
Fix s > s0, where s0 := 3 +

√
5. For all g ∈ (0, s−1c−1), we then introduce Ωg(E), the layer invariant

by rotation cited in Theorem 1.1, that is defined by

Ωg(E) :=
{
kℓ ∈ B+

E , pI(kℓ, E) ∈ (q−g, q+g)
}
, (2.21)

with

q− = q−(s) :=
s− 1

s
β and q+ = q+(s) :=

s− 1

s− 2
β, (2.22)

and then state the following

Proposition 2.1. Let E and W be as in Theorem 1.1 and let g ∈ (0, s−1c−1) where s > s0 is fixed.
Then there exists ε0 = ε0(g) > 0 such that for all ε ∈ (−ε0, ε0), we have:

(a) If kℓ ∈ BE\Ωg(E) then 1 ∈ ρ(gΓkℓ
(E + iε)) and ‖(1− gΓkℓ

(E + iε))−1‖ ≤ 2s(s− 1);

(b) If kℓ ∈ Ωg(E) then:

2We use the following result (see e.g. [16][Problem V-4.8]): Let T be normal and A ∈ B(H), where H is an Hilbert
space. Let d(ζ) = dist(ζ, σ(T )). Then d(ζ) > ‖A‖ implies ζ ∈ ρ(T + A) and ‖(T + A− ζ)−1‖ ≤ 1/(d(ζ) − ‖A‖).

3For all z0 ∈ C and r > 0, B(z0, r) denotes the closure of the ball B(z0, r) = {z ∈ C, |z − z0| < r}.
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(i) λ1(kℓ, E + iε) ∈ B(Λkℓ
(E + iε), c), and is a simple eigenvalue;

(ii) λj(kℓ, E + iε) ∈ B(0, c) for all j ≥ 2;

(iii) B(0, c) ∩B(Λkℓ
(E + iε), c) = ∅.

Moreover it holds true that:

(c) ∓gλ1(kℓ, E) > ∓1 + 1/(s(s− 1)) if kℓ ∈ B+
E is such that ∓pI(kℓ, E) < ∓q±g.

Proof. (a) Every kℓ ∈ BE\Ωg(E) satisfying one of the three following inequalities |kℓ|2 − E ≥ q2+g
2,

|E−|kℓ|2| ≤ q2−g
2 or E−|kℓ|2 > q2−g

2, we treat each corresponding case separately. If |kℓ|2−E > q2+g
2

it holds true that |p(kℓ, E+ iε)| = ((|kℓ|2−E)2+ ε2)1/4 ≥ q+g, whence g|Λkℓ
(E+ iε)| ≤ (s− 2)/(s− 1)

for every ε ∈ R, by using (2.17). As a consequence we have

dist(1, σ(gΛkℓ
(E + iε)Pkℓ

)) ≥ 1

s− 1
, kℓ ∈ B+

E s.t. pI(kℓ, E) ≥ q+g, ε ∈ R. (2.23)

Similarly for |E − |kℓ|2| ≤ q2−g
2 we get |p(kℓ, E + iε)| ≤ (q4−g

4 + ε2)1/4 for each ε ∈ R. Since q− < s/
(s + 1 + ν)β where ν := 1/(2(s− 1)), it is true that |p(kℓ, E + iε)| < s/(s+ 1 + ν)gβ, and hence that
g|Λkℓ

(E + iε)| > 1 + (1 + ν)/s, provided |ε| < ε̃ := g2((s/(s + 1 + ν))4β4 − q4−)
1/2. As a consequence

we have

dist(1, σ(gΛkℓ
(E + iε)Pkℓ

)) >
1 + ν

s
, |E − |kℓ|2| ≤ q2−g

2, ε ∈ (−ε̃, ε̃). (2.24)

Last, in the case where E − |kℓ|2 > q2−g
2, we see for every ε ∈ R that |p(kℓ, E + iε)| > q−g and

|pI(kℓ, E+ iε)| ≤ (|ε|/2)1/2, according to (2.8). From this, (2.17) and the identity |Re (Λkℓ
(E + iε)) | =

β|pI(kℓ, E+iε)|/|p(kℓ, E+iε)|2 then follows that g|Re (Λkℓ
(E + iε)) | < gβ|ε|1/2/(q2−g2) < (s−1−ν)/s

provided |ε| < ε̂ := g2β−2q4−((s− 1− ν)/s)2. This immediately entails

dist(1, σ(gΛkℓ
(E + iε)Pkℓ

)) >
1 + ν

s
, E − |kℓ|2 ≥ q2−g

2, ε ∈ (−ε̂, ε̂). (2.25)

Now gΛkℓ
(E+iε)Pkℓ

being normal, with g‖Ckℓ
(E+iε)‖B(H) < 1/s from Lemma 2.2(c), we may deduce

from (2.23)-(2.25) that 1 ∈ ρ(gΓkℓ
(E+iε)) and ‖(1−gΓkℓ

(E+iε))−1‖B(H) ≤ 2s(s−1) if |ε| < min(ε̃, ε̂).

(b) For all (kℓ, ε) ∈ Ωg(E)×R it holds true that |p(kℓ, E + iε)| = ((|kℓ|2 −E)2 + ε2)1/4 ≤ q+g+ |ε|1/2.
This, combined with (2.17), (2.22), and the fact that g ∈ (0, 1/(sc)) with s > s0, yields

|Λkℓ
(E + iε)| > r :=

s(s− 2)

s− 1
c > 4c, kℓ ∈ Ωg(E), |ε| < ε̌ := q2+

(
1

sc
− g

)2

, (2.26)

by direct computations, and proves (iii). Further, we fix r0 ∈ (2c, r/2) and consider the circle Cr0 =
Cr0(kℓ, E, ε) := {Λkℓ

(E + iε) + r0e
iθ, θ ∈ [0, 2π)}, so that we have

dist(Cr0 , σ(Λkℓ
(E + iε)Pkℓ

)) ≥ r0, kℓ ∈ Ωg(E), ε ∈ (−ε̌, ε̌). (2.27)

As r0 > c, we deduce from (2.27) and Lemma 2.2(c) that Cr0 ⊂ ρ(Γkℓ
(E + iε)), with

‖(z − Γkℓ
(E + iε))−1‖B(H) ≤

1

r0 − c
, z ∈ Cr0 , kℓ ∈ Ωg(E), ε ∈ (−ε̌, ε̌). (2.28)

This together with (2.27) involves
∥∥∥∥∥

1

2iπ

∫

Cr0

(Γkℓ
(E + iε)− z)−1dz − 1

2iπ

∫

Cr0

(Λkℓ
(E + iε)Pkℓ

− z)−1dz

∥∥∥∥∥
B(L2(R3))

≤ 1

2π

∫

Cr0

‖(Γkℓ
(E + iε)− z)−1Ckℓ

(E + iε)(Λkℓ
(E + iε)Pkℓ

− z)−1‖B(H)ds

≤ c

r0 − c
< 1, kℓ ∈ Ωg(E), ε ∈ (−ε̌, ε̌). (2.29)
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Since Λkℓ
(E + iε) is the only eigenvalue of Λkℓ

(E + iε)Pkℓ
lying in the circle Cr0 , and that it is non

degenerate, (2.29) then entails (see [16][Theorem I.6.32])

dim rank

(
1

2iπ

∫

Cr0

(Γkℓ
(E + iε)− z)−1dz

)
= 1, kℓ ∈ Ωg(E), ε ∈ (−ε̌, ε̌).

Therefore λ1(E+ iε) is simple, and it is the only eigenvalue of Γkℓ
(E+ iε) lying in the disk B(Λkℓ

(E+
iε), r0). Evidently (i) and (ii) follow from this, (2.19), and the imbedding B(Λkℓ

(E+iε), c) ⊂ B(Λkℓ
(E+

iε), r0).
(c) For every kℓ ∈ B+

E we have p(kℓ, E) = ipI(kℓ, E), whence ±gΛ(kℓ, E) < ±1 + 1/(s− 1) from (2.22)
and the assumption ∓pI(kℓ, E) > ∓q±g. Bearing in mind Lemma 2.2(c), the result follows immediately
from this, (2.14)-(2.17), and the minimax principle, since Γkℓ

(E) is selfadjoint in H for every kℓ ∈ B+
E

by Lemma 2.2(b).

Remark 2.2. Notice that Proposition 2.1(a),(c) actually hold true for every s > 2;

Bearing in mind that gc < 1, Proposition 2.1(a),(b) immediately entails the

Corollary 2.1. Under the assumptions of Proposition 2.1, the following equivalence holds true:

(1 ∈ σ(gΓkℓ
(E)), kℓ ∈ BE) ⇐⇒ (kℓ ∈ Ωg(E) and gλ1(kℓ, E) = 1) .

2.4 Analyticity results

Fix (n2, n3) ∈ Z2 and Kℓ =
∑

j=2,3 njbj ∈ L⊥. For the purpose in hand we need to extend analytically

the function kℓ 7→ |kℓ +Kℓ|2, defined in B̊ (interior of B), into B̊ + iR2. For every (tj,R, tj,I) ∈ (−1/
2, 1/2)×R, j = 2, 3, we thus define kℓ,R :=

∑
j=2,3 tj,Rbj and kℓ,I :=

∑
j=2,3 tj,Ibj , in such a way that

fKℓ
(kℓ) := (kℓ +Kℓ)

2 =
∑

j=2,3

(
(tj,R + nj)

2 − t2j,I + 2i(tj,R + nj)tj,I
)
|bj |2, (2.30)

is an analytic function in kℓ := kℓ,R + ikℓ,I ∈ B̊ + iR2. Therefore, (kℓ, z) 7→ z − fKℓ
(kℓ) is analytic in

(B̊+iR2)×C. Further, bearing in mind that |kℓ,R|2 =
∑

j=2,3 t
2
j,R|bj |2 ≤ |kℓ,R+Kℓ|2 =

∑
j=2,3(tj,R+

nj)
2|bj |2 for every kℓ,R ∈ B̊, and noticing that

Re (z − fKℓ
(kℓ)) = Re (z)− (|kℓ,R|2 − |kℓ,I |2) = Re (z)−

∑

j=2,3

((tj,R + nj)
2 − t2j,I)|bj |2,

we introduce the set

D := {(kℓ, z) ∈ (B̊ + iR2)× C, |kℓ,R|2 > Re (z) + |kℓ,I |2}.

Then, the mapping ζ 7→ √
ζ being holomorphic on {ζ ∈ C, Re (ζ) < 0}, (kℓ, z) 7→ p(kℓ + Kℓ, z) :=√

z − fKℓ
(kℓ) is non vanishing and analytic in D for every Kℓ ∈ L⊥. As a consequence (kℓ, z) 7→

γ̃kℓ+Kℓ
(x,y, z) := eip(kℓ+Kℓ,z)|x1−y1|

−ip(kℓ+Kℓ,z)
ei〈kℓ+Kℓ,xℓ−yℓ〉 is thus holomorphic in D for every Kℓ ∈ L⊥ and

every (x,y) ∈ (R × S)2. Moreover, since |γ̃kℓ+Kℓ
(x,y, z)| ≤ e−pI(kℓ+Kℓ,z)|x1−y1|/pI(kℓ +Kℓ, z) from

(2.3)-(2.4), with, due to (2.8),

pI(kℓ +Kℓ, z) := Im (p(kℓ +Kℓ, z)) ≥




∑

j=2,3

(|nj | − 1/2)2|bj |2 − |Re (z) |




1/2

,

for each Kℓ =
∑

j=2,3 njbj ∈ L⊥ such that (n2, n3) ∈ (Z∗)2, we deduce from (1.13)-(1.15) that

(kℓ, z) 7→ γkℓ
(z,x,y) is analytic in D for every (x,y) ∈ (R× S)2. This entails the
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Lemma 2.3. If two out of the three variables (k2, k3, z) ∈ D are fixed then Γkℓ
(z) is a Kato analytic

family of type (A) in the remaining variable.

In Lemma 2.3 we used the obvious notation kℓ = (k2, k3)
T ∈ C2.

Lemma 2.4. Let E, g and ε0 be as in Proposition 2.1. Then (kℓ, ε) 7→ λ1(kℓ, E + iε) and (kℓ, ε) 7→
P1(kℓ, E + iε) are real analytic in Ωg(E)× (−ε0, ε0), and continuous in Ωg(E)× [−ε0, ε0].

Proof. For all ǫ ∈ (0,min(E,Eδ − E, q2−g
2)) we consider the set Ωg(E, ǫ) (resp. Ωg(E, ǫ)) of pairs

(kℓ, z) in the Cartesian product of B̊ + iR2 and (E − ǫ, E + ǫ) + i(−ε0, ε0), satisfying the condition
q2−g

2 < |kℓ,R|2 − |kℓ,I |2 − E < q2+g
2 (resp. q2−g

2 ≤ |kℓ,R|2 − |kℓ,I |2 − E ≤ q2+g
2). It is clear that

Ωg(E, ǫ) ⊂ D since |kℓ,R|2 − |kℓ,I |2 ≥ E + q2−g
2 > E + ǫ > Re (z) for each (kℓ, z) ∈ Ωg(E, ǫ). Further

λ1(kℓ, z) being simple for every (kℓ, z) ∈ Ωg(E, ǫ) by Proposition 2.1(b)(i), we may deduce from Lemma
2.3 that λ1 is analytic in each variable k2, k3 or z separately, when the two other complex variables are
fixed. Separate analyticity implies joint analyticity by Hartogs’ theorem (see e.g. [15][Theorem 2.2.8])
and (kℓ, z) 7→ λ1(kℓ, z) is thus analytic in Ωg(E, ǫ). Similarly, the continuity of (kℓ, z) 7→ λ1(kℓ, z)
in Ωg(E, ǫ) follows from Proposition 2.1(b)(i) and [16][Chap. II-§5.7]. The case of P1 is treated in a
similar way. Indeed, arguing as before, we see that P1 is an analytic function in each variable k2, k3
or z separately, when the two other variables are fixed, whence (kℓ, z) 7→ P1(kℓ, z) is weakly analytic
on Ωg(E, ǫ) by Hartogs’ theorem. Since any weakly analytic vector-valued function on Ωg(E, ǫ) is
extendable to an analytic function in the usual sense in a neighborhood of Ωg(E, ǫ) according to
[19][Proposition 7.6], the proof is now complete.

3 On the invertibility of 1− gΓkℓ
(E), kℓ ∈ BE

3.1 The equation gλ1(kℓ, E)− 1 = 0: proof of Theorem 1.1

In light of Corollary 2.1, we are left with the task of studying the set

Cg(E) = {kℓ ∈ Ωg(E), gλ1(kℓ, E)− 1 = 0}. (3.1)

To this purpose we start by describing the behavior of λ1(kℓ, E) w.r.t. kℓ.

Proposition 3.1. Let E, W , s and g be as in Proposition 2.1. Then the mappings kℓ 7→ λ1(kℓ, E)
and kℓ 7→ P1(kℓ, E) are both continuous in Ωg(E), and real analytic in Ωg(E). Moreover there are two
constants g0 = g0(δ, s,W ) > 0 and κ = κ(δ, s,W ) > 0, such that we have

∑

j=2,3

∣∣∣∣
∂λ1
∂kj

(kℓ, E)

∣∣∣∣ ≥ κ > 0, kℓ ∈ Ωg(E), E ∈ (0, Eδ), g ∈ (0, g0).

The proof of Proposition 3.1 being rather technical and lengthy, it is postponed to §3.2 below. Armed
with Proposition 3.1 we may now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us first show that Cg(E) 6= ∅. To see this we consider any continuous
curve C in B+

E joining two points k±
ℓ belonging to each of the two connex components of the boundary

∂Ωg(E). Since kℓ 7→ λ1(kℓ, E) is continuous in C from the first part of Proposition 3.1, then the

intermediate value theorem combined with Proposition 2.1(c) entails that there is at least one k̃t ∈
C ∩ Ωg(E) satisfying λ1(k̃t, E) = 1. Hence k̃t ∈ Cg(E).
Next, kℓ 7→ λ1(kℓ, E) being a real analytic submersion from Ωg(E) into R, according to Proposition
3.1, the closed set Cg(E) is thus necessarily a real analytic submanifold with no endpoint. In other
words, Cg(E) is a closed, regular, analytic curve in Ωg(E).
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Further, if Cg(E) were homotopic to a point in Ωg(E), then the mapping kℓ 7→ λ1(kℓ, E) would admit
an extremum in the compact set ∆g(E) enclosed by Cg(E), and its gradient would thus vanish in at
least one point of ∆g(E). This claim being in contradiction to Proposition 3.1, Cg(E) is thus not
homotopic to a point in Ωg(E). This completes the proof.

3.2 Proof of Proposition 3.1

Since kℓ 7→ λ1(kℓ, E) is analytic in Ωg(E) by Lemma 2.4, we have

∂λ1
∂kj

(kℓ, E) =

∫

(R×S)2

∂γkℓ

∂kj
(x,y, E)ψ1(x)ψ1(y)dxdy, kℓ ∈ Ωg(E), j = 2, 3,

from the Feynman-Hellmann formula, where ψ1 = ψ1(kℓ, E) denotes a H-normalized and real valued
eigenfunction of Γkℓ

(E) associated to λ1(kℓ, E). From this and (2.4)-(2.8) then follows that

∂λ1
∂kj

(kℓ, E) = −
∫

(R×S)2
βW (x)W (y)

∑

Kℓ∈L⊥

kj +Kj

p(kℓ +Kℓ, E)3
(p(kℓ +Kℓ, E)|x1 − y1|+ 1)

×e−p(kℓ+Kℓ,E)|x1−y1|ei〈kℓ+Kℓ,xℓ−yℓ〉ψ1(x)ψ1(y)dxdy, (3.2)

for all kℓ ∈ Ωg(E) and j = 2, 3, where we used the identity

∑

Kℓ∈L⊥

∫

(R×S)2
W (x)W (y)

e−p(kℓ+Kℓ,E)|x1−y1|

p(kℓ +Kℓ, E)
ei〈kℓ+Kℓ,xℓ−yℓ〉(xj − yj)ψ1(x)ψ1(y)dxdy

= 〈Γkℓ
(E)ψ1, xjψ1〉H − 〈yjψ1,Γkℓ

(E)ψ1〉H = 0.

The strategy consists of splitting the sum in the r.h.s. of (3.2) into two parts, S0 and S∗, corresponding
respectively to Kℓ = 0 and Kℓ 6= 0. We shall treat S0 and S∗ separately.
Let us start dealing with S∗. First, by performing the change of variable u = y1 − x1 in the following
integral, we notice for m = 0, 1, and a.e. y1 ∈ R, that

∫

R

|x1 − y1|me−p(kℓ+Kℓ,E)|x1−y1|W (x1,xℓ)ψ1(x1,xℓ)dx1 = (fm ⋆ W (.,xℓ)ψ1(.,xℓ)) (y1)

where fm(u) := |u|me−p(kℓ+Kℓ,E)|u|, u ∈ R. Since fm ∈ L1(R) with ‖fm‖L1(R) = 2p(kℓ +Kℓ, E)−m+1,
this yields
∥∥∥∥
∫

R

|x1 − y1|me−p(kℓ+Kℓ,E)|x1−y1|W (x)ψ1(x)dx1

∥∥∥∥
L2(R)

≤ 2‖W (.,xℓ)‖L∞(R)‖ψ1(.,xℓ)‖L2(R)

p(kℓ +Kℓ, E)m+1
,

and hence
∣∣∣∣
∫

R2

|x1 − y1|me−p(kℓ+Kℓ,E)|x1−y1|W (x)W (y)ψ1(x)ψ1(y)dx1dy1

∣∣∣∣

≤ 2

p(kℓ +Kℓ, E)m+1
‖W (.,xℓ)‖L∞(R)‖W (.,yℓ)‖L∞(R)‖ψ1(.,xℓ)‖L2(R)‖ψ1(.,yℓ)‖L2(R).

Thus, by integrating the above inequality w.r.t. xℓ and yℓ over S and using the normalization condition
‖ψ1‖H = 1, we find out that

∣∣∣∣∣

∫

(R×S)2
|x1 − y1|me−p(kℓ+Kℓ,E)|x1−y1|W (x)W (y)ψ1(x)ψ1(y)e

i〈kℓ+Kℓ,xℓ−yℓ〉dxdy

∣∣∣∣∣

≤ 2

p(kℓ +Kℓ, E)m+1
‖W‖2L∞(R,L2(S)). (3.3)
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Further, since |kj +Kj| ≤ (p(kℓ+Kℓ, E)2 +E)1/2 ≤ p(kℓ+Kℓ, E)+E
1/2
δ for all Kℓ ∈ L⊥, E ∈ (0, Eδ)

and j = 2, 3, it follows from (3.3) and Lemma 2.1 that

|S∗| ≤ 4β(α3(δ) + α4(δ)E
1/2
δ )‖W‖2L∞(R,L2(S)) := σ∗(δ,W ). (3.4)

We turn now to estimating S0, which is brought into the form

S0 = β
kj

p(kℓ, E)3

(∫

(R×S)2
W (x)W (y)κ(x1 , y1)e

i〈kℓ,xℓ−yℓ〉ψ1(x)ψ1(y)dxdy

−
∫

(R×S)2
W (x)W (y)ei〈kℓ ,xℓ−yℓ〉ψ1(x)ψ1(y)dxdy

)
, (3.5)

where
κ(x1, y1) := 1− e−p(kℓ,E)|x1−y1| − p(kℓ, E)|x1 − y1|e−p(kℓ,E)|x1−y1|. (3.6)

Bearing in mind (2.2) and (2.15), we may express the second term in the r.h.s. of (3.5) as
∫

(R×S)2
W (x)W (y)ei〈kℓ ,xℓ−yℓ〉ψ1(x)ψ1(y)dxdy = |〈ϕkℓ

, ψ1〉|2. (3.7)

The benefits of (3.7) is the following lower estimate:

|〈ϕkℓ
, ψ1〉| ≥

(
1− 4(s− 1)

s(s− 2)

)1/2

, kℓ ∈ Ωg(E). (3.8)

Indeed, we know from (2.29) that the spectral projection P1 = 〈., ψ1〉ψ1 satisfies ‖P1 − Pkℓ
‖B(H) ≤ c/

(r0 − c) for any kℓ ∈ Ωg(E) and r0 ∈ (2c, r/2), with r = s(s − 2)/(s − 1)c. Taking r0 = c + r/4 we
obtain

‖P1 − Pkℓ
‖ ≤ 4(s− 1)

s(s− 2)
, kℓ ∈ Ωg(E). (3.9)

Moreover, since |〈ϕkℓ
, ψ1〉|2 = 〈ψ1, ϕkℓ

〉〈ϕkℓ
, ψ1〉 = 〈ψ1, Pkℓ

ψ1〉 = 1 + 〈ψ1, (Pkℓ
− P1)ψ1〉, we get that

|〈ϕkℓ
, ψ1〉|2 ≥ 1− ‖Pkℓ

− P1‖B(H), which, together with (3.9), entails (3.8).
Let us now study the first term in the r.h.s. of (3.5). Taking into account that 1− e−u ∈ [0, u] for every
u ≥ 0, we get that |κ(x1, y1)| ≤ p(kℓ, E)(|x1|+ |y1|) for all (x1, y1) ∈ R2, and hence

∣∣∣∣∣

∫

(R×S)2
W (x)W (y)κ(x1 , y1)e

i〈kℓ,xℓ−yℓ〉ψ1(x)ψ1(y)dxdy

∣∣∣∣∣ ≤ 2p(kℓ, E)‖W‖H1 , (3.10)

according to (2.2). Finally, putting (3.2), (3.4)-(3.7) and (3.10) together, we find out that
∣∣∣∣
∂λ1
∂kj

(kℓ, E) + β
kj

p(kℓ, E)3
|〈ϕ, ψ1〉|2

∣∣∣∣ ≤ 2β
|kj |

p(kℓ, E)2
‖W‖H1 + σ∗(δ,W ),

for all kℓ ∈ Ωg(E). This, combined with (2.21)-(2.22) and (3.8), yields
∣∣∣∣
∂λ1
∂kj

(kℓ, E)

∣∣∣∣ ≥
|kj |
βg3

σ0(s,W, g)− σ∗(δ,W ), kℓ ∈ Ωg(E),

where

σ0(s,W, g) := β−1

(
s− 2

s− 1

)3(
1− 4(s− 1)

s(s− 2)

)
− 2

(
s

s− 1

)2

‖W‖H1g. (3.11)

As a consequence we have
∑3

j=2

∣∣∣∂λ1

∂kj
(kℓ, E)

∣∣∣ ≥ β−1|kℓ|g−3σ0(s,W, g) − 2σ∗(δ,W ). So, for all kℓ ∈
Ωg(E), we have

∑3
j=2

∣∣∣∂λ1

∂kj
(kℓ, E)

∣∣∣ ≥ s−1
s g−2σ0(s,W, g) − 2σ∗(δ,W ) since |kℓ| ≥ q−g ≥ ((s − 1)/s)βg

according to (2.21)-(2.22). This and (3.11) entails Proposition 3.1.
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4 Characterization of the guided states: proofs of Theorem 1.2

We proceed with a succession of six lemmas, the first five listed leading to the conclusion of Theorem
1.2, while the last one involves Corollary 1.1.

4.1 Quasi-momentum kℓ associated to guided states

We first collect the following preliminary result that will be needed in the proof of Lemma 4.2.

Lemma 4.1. Let E, g and W be as in Theorem 1.1. Then any guided state u with energy E, associated
to kℓ ∈ BE, verifies u = gR0(kℓ, E ± i0)W 2u and, consequently, Wu 6= 0.

Proof. The guided state u being solution to the equation (H0(kℓ)− (E± iε))u = (gW 2 ∓ iε)u for every
ε ∈ R+, we have

u = gR0(kℓ, E ± iε)W 2u∓ iεR0(kℓ, E ± iε)u, ε > 0. (4.12)

If kℓ ∈ B+
E we obtain the desired result directly from Proposition B.1 (a) and (b), by taking the

limit in (4.12) as ε ↓ 0. Doing the same for kℓ ∈ B−
E after noticing that W 2u ∈ H3+ǫ, we find that

u = gR0(E ± i0)u in H−3−ǫ weakly. Further, u being in H, the equality holds true in H and the proof
is complete.

Notice from Proposition B.1 that Lemma 4.1 simply reads u = gR0(kℓ, E)u for kℓ ∈ B+
E .

Armed with Lemma 4.1 we may now characterize the quasi-momenta corresponding to actual guided
states.

Lemma 4.2. Let E, g and W be the same as in Theorem 1.1, and assume that there exists a guided
state with energy E associated to kℓ ∈ B. Then we have either kℓ ∈ Cg(E) or |kℓ| = E1/2.

Proof. Let u denote a guided state associated to kℓ ∈ BE . Then v =Wu is solution to the equation

(1 − gΓkℓ
(E ± i0))v = 0, (4.13)

according to (1.13) and Lemma 4.1. From this and the first part of Lemma 2.2(d) then follows that
(1 − gΓkℓ

(E))v = 0 if kℓ ∈ B+
E . Similarly, putting (4.13) and the second claim of Lemma 2.2 (d)

together with Lemma 2.2 (e) for kℓ ∈ B−
E , we see that C

(0)
kℓ
v = 0 as Γkℓ

(E + i0)v = Γkℓ
(E − i0)v, and

hence that (1− gΓkℓ
(E))v = 0. Since v ∈ H\{0} by Lemma 4.1, we thus have 1 ∈ σ(gΓkℓ

(E)), and the
result follows directly from this and Corollary 2.1.

4.2 Existence and decay properties of the guided states

In light of Lemma 4.2 we examine separately the two cases kℓ ∈ Cg(E) and kℓ ∈ B\BE.

4.2.1 Guided states associated to kℓ ∈ Cg(E)

The case of kℓ ∈ Cg(E) is treated by the following:

Lemma 4.3. Let E, g and W be as in Theorem 1.1. Then for all kℓ ∈ Cg(E) there exists at least one
guided state with energy E associated to kℓ. Moreover it belongs to ∩m∈NHm.

Proof. Let kℓ ∈ Cg(E). The spectrum of Γkℓ
(E) being pure point by Lemma 2.2(a), it follows from the

very definition of Cg(E) that there exists v ∈ H\{0} satisfying (1−gΓkℓ
(E))v = 0. This entails that v =

gWR0(kℓ, E)Wv according to (1.13) and Proposition B.1, and shows that R0(kℓ, E)Wv 6= 0. Further,
by left multiplying the preceeding equality byW , we deduce from (1.13) that (1−gW 2R0(kℓ, E))Wv =
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0. From this and the obvious identity (H(kℓ)−E)R0(kℓ, E)Wv = (1− gW 2R0(kℓ, E))Wv then follows
that

(H(kℓ)− E)R0(kℓ, E)Wv = 0.

Hence R0(kℓ, E)Wv is a guided state with energy E associated to kℓ, which proves the first part of the
result.
To show the second part of the statement, we consider a guided state u ∈ Hτ , τ ≥ 0, associated to kℓ ∈
Cg(E). Since u is solution to the equation u = gR0(kℓ, E)W 2u by Lemma 4.1, and f =W 2u ∈ H3+ǫ+τ

according to (1.17), we deduce from Lemma B.2 that u = gR0(kℓ, E)f ∈ H2,3+ǫ+τ (R × S), where we
used the notation H2,σ(R× S) := H2(R× S, (1 + x21)

σ/2dx) for σ ∈ R. Any guided state associated to
kℓ and taken in Hτ thus belongs to H3+ǫ+τ . From this and the fact that u ∈ H = H0 then follows that
u ∈ Hν for any ν ≥ 0. This terminates the proof.

4.2.2 Guided states associated to kℓ ∈ B\BE

We now examine the case where |kℓ|2 = E. We first establish two lemmas, both refering to the notations
introduced in §B.1, and then derive the claim of Theorem 1.2 in this particular case.

Lemma 4.4. Let E, g and W be the same as in Theorem 1.1. Then any guided state u ∈ Hτ , τ ≥ 0,

with energy E and associated to kℓ, verifies W̃ 2u(0,kℓ) = (W̃ 2u)′(0,kℓ) = 0. Moreover the mapping

ξ 7→ ξ−2W̃ 2u(ξ,kℓ) belongs to H1+ǫ+τ (R) ∩ L1
loc(R).

Proof. The guided state u being solution to the equation (H0(kℓ)− E)u = gW 2u, we get that

W̃ 2u(ξ,kℓ) = g−1ξ2ũ(ξ,kℓ), a.e. ξ ∈ R, (4.14)

directly from (B.46). Further, W̃ 2u(.,kℓ) ∈ H3+ǫ+τ (R), since this is the Fourier transform over R,
according to (B.44)-(B.45), of the L2,3+ǫ+τ (R)-function x1 7→ 〈(W 2u)(x1, .), ϕ(kℓ)〉L2(S). Hence we

have W̃ 2u(.,kℓ) ∈ C1(R) and consequently

W̃ 2u(ξ,kℓ) = W̃ 2u(0,kℓ) + ξ(W̃ 2u)′(0,kℓ) + ξζkℓ
(ξ), ξ ∈ R, (4.15)

for some ζkℓ
∈ C0(R) satisfying limξ→0 ζkℓ

(ξ) = 0. From (4.14), the square integrability of ũ(.,kℓ) over

R, and the continuity of ξ 7→ W̃ 2u(ξ,kℓ) at 0 then follows that

W̃ 2u(0,kℓ) = lim
h↓0

1

2h

∫ h

−h

W̃ 2u(ξ,kℓ)dξ = g−1 lim
h↓0

1

2h

∫ h

−h

ξ2ũ(ξ,kℓ)dξ = 0.

This and (4.15) immediately yield

(W̃ 2u)′(0,kℓ) = −g−1 lim
h↓0

1

2h

∫ h

−h

(ξũ(ξ,kℓ) + ζkℓ
(ξ))dξ = 0.

Finally the last part of the claim is obtained from the two above identities by applying [7][Corollary

3.1] (see also [1][Lemma B.2]) to W̃ 2u(.,kℓ).

Lemma 4.5. Assume that E, g and W are the same as in Theorem 1.1. Then every guided state
u ∈ Hτ , τ ≥ 0, with energy E associated to kℓ verifies:

u = gR0(kℓ, E ± i0)W 2u ∈ H1+ǫ+τ .
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Proof. Let us first prove that u = gR0(kℓ, E± i0)W 2u. With reference to (4.12) (which still holds true
for |kℓ|2 = E) and Proposition B.1(b), it is enough to show that limε↓0R0(kℓ, E± iε)W 2u exists in the
weak topology of H. In view of (B.48) this can be achieved by establishing for every v ∈ H that

lim
ε↓0

∑

Kℓ∈L⊥

∫

R

(
W̃ 2u(ξ,kℓ +Kℓ)

ξ2 + |kℓ +Kℓ|2 − E ∓ iε
− W̃ 2u(ξ,kℓ +Kℓ)

ξ2 + |kℓ +Kℓ|2 − E

)
ṽ(ξ,kℓ +Kℓ)dξ = 0.

Actually, due to (2.4) and (B.47), only the case kℓ = 0 has to be examined. This can be done by
noticing that ∣∣∣∣∣

W̃ 2u(ξ,kℓ)

ξ2 ∓ iε
− W̃ 2u(ξ,kℓ)

ξ2

∣∣∣∣∣ ≤
∣∣∣∣∣
W̃ 2u(ξ,kℓ)

ξ2

∣∣∣∣∣ , a.e. ξ ∈ R,

and then invoking the second statement of Lemma 4.4 in order to apply the dominated convergence

theorem to the integral
∫
R
((ξ2 ∓ iε)−1 − ξ−2)W̃ 2u(ξ,kℓ)ṽ(ξ,kℓ)dξ.

The second part of the proof involves showing that R0(kℓ, E ± i0)W 2u ∈ H1+ǫ+τ . To do that we
decompose w =W 2u into the sum w = w1 + w2, where w1 verifies

w̃1(.,kℓ) = w̃(.,kℓ) = W̃ 2u(.,kℓ) and w̃1(.,kℓ +Kℓ) = 0, Kℓ ∈ L⊥\{0}.

Arguing as in the first part of the proof, we find that limε↓0 R0(kℓ, E ± iε)w1 = R0(kℓ, E ± i0)w1 =
R0(kℓ, E)w1 in H weakly, with, according to (B.44)-(B.45),

(R0(kℓ, E ± i0)w1)(x1,xℓ) =
1

(2π)1/2|S|1/2

(∫

R

eiξx1
W̃ 2u(ξ,kℓ)

ξ2
dξ

)
ei〈kℓ,xℓ〉.

Since x1 7→
∫
R
eiξx1ξ−2W̃ 2u(ξ,kℓ)dξ ∈ L2,1+ǫ+τ (R) from the second claim of Lemma 4.4, we de-

duce from the above identity that R0(kℓ, E ± i0)w1 ∈ H1+ǫ+τ . To prove that R0(kℓ, E ± i0)w2 =
R0(kℓ, E)w2 ∈ H1+ǫ+τ , we notice from (2.4) that

ξ2 + |kℓ +Kℓ|2 − E ≥ ξ2 + δEδ ≥ c(ξ2 + 1), ξ ∈ R, Kℓ ∈ L⊥\{0},

where c = min(1, δEδ) > 0, then we refer to (B.46)-(B.47) and find that

‖w2‖2H = ‖(H0(kℓ)− E)R0(kℓ, E)w2‖2H

≥ c2
∑

Kℓ∈L⊥\{0}

∫

R

(ξ2 + 1)2
|W̃ 2u(ξ,kℓ +Kℓ)|2

(ξ2 + |kℓ +Kℓ|2 − E)2
dξ

≥ c2‖(−∆+ 1)R0(kℓ, E)w2‖2H.

Henceforth we have
‖R0(kℓ, E)w2‖H2(R×S) ≤ c̃‖w2‖H ≤ c̃‖W 2u‖H, (4.16)

for some constant c̃ > 0 independent of u, according to (B.47). Further, W 2u being in H3+ǫ+τ , we

have W̃ 2u(.,kℓ) ∈ H3+ǫ+τ (R), whence

w1(x1,xℓ) =
1

(2π)1/2|S|1/2
(∫

R

eiξx1W̃ 2u(ξ,kℓ)dξ

)
ei〈kℓ,xℓ〉 ∈ H3+ǫ+τ ,

and consequently w2 =W 2u−w1 ∈ H3+ǫ+τ . Finally, arguing as in the proof of Lemma B.2 and using
(4.16), we obtain that R0(kℓ, E)w2 ∈ H3+ǫ+τ .

Any guided state u being in H, the claim of Theorem 1.2 follows by successively applying Lemma 4.5
to u.
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4.3 Proof of Corollary 1.1

We now establish the coming lemma, which, together with Theorem 1.2, entails Corollary 1.1.

Lemma 4.6. Let E and W be the same as in Corollary 1.1. Then for every kℓ ∈ B such that
|kℓ| = E1/2, we have ker(H(kℓ)− E) = {0}.

Proof. Let u ∈ D(H(kℓ)) = D(H0(kℓ)) be solution to the eigenvalue equation

H(kℓ)u = (−∆− gW 2)u = Eu. (4.17)

With reference to (B.44), the set {ϕ(kℓ+Kℓ)}Kℓ∈L⊥ is an orthonormal basis of L2(S), so u decomposes
as

u(x1,xℓ) =
∑

Kℓ∈L⊥

ukℓ+Kℓ
(x1)ϕ(kℓ +Kℓ;xℓ), (4.18)

where ukℓ+Kℓ
(x1) :=

∫
S u(x1,xℓ)ϕ(kℓ +Kℓ;xℓ)dxℓ. From this and (4.17) then follows that

−u′′kℓ+Kℓ
(x1) + (|kℓ +Kℓ|2 − E)ukℓ+Kℓ

(x1)− g(W 2u)kℓ+Kℓ
(x1) = 0, x1 ∈ R, Kℓ ∈ L⊥. (4.19)

Further we have W 2(x1,xℓ) =
∑

K′
ℓ
∈L⊥(W 2)K′

ℓ
(x1)ϕ(K

′
ℓ;xℓ) for a.e. (x1,xℓ) ∈ R× S, from where we

get that

(W 2u)kℓ+Kℓ
(x1) =

∫

S

W (x1,xℓ)
2u(x1,xℓ)ϕ(kℓ +Kℓ;xℓ)dxℓ

=
∑

K′
ℓ
∈L⊥

(W 2)K′
ℓ
(x1)

∫

S

u(x1,xℓ)ϕ(K
′
ℓ;xℓ)ϕ(kℓ +Kℓ;xℓ)dxℓ

= |S|−1/2
∑

K′
ℓ
∈L⊥

(W 2)K′
ℓ
(x1)ukℓ+Kℓ−K′

ℓ
(x1), (4.20)

by using the fact that ϕ(K′
ℓ)ϕ(kℓ +Kℓ) = |S|−1/2ϕ(kℓ +Kℓ −K′

ℓ). From (4.20) then follows for a.e.
x1 ∈ R that



∑

Kℓ∈L⊥

|(W 2u)kℓ+Kℓ
(x1)|2




1/2

≤ |S|−1/2



∑

Kℓ∈L⊥

|(W 2)Kℓ
(x1)|





∑

Kℓ∈L⊥

|ukℓ+Kℓ
(x1)|2




1/2

.

In light of (ii) we may deduce from this that there is a constant c(W,S) > 0, depending only on W and
|S|, such that ∑

Kℓ∈L⊥

‖(W 2u)kℓ+Kℓ
‖2L2(R) ≤ c(W,S)2

∑

Kℓ∈L⊥

‖ukℓ+Kℓ
‖2L2(R). (4.21)

This boils down to the fact that

|(W 2)Kℓ
(x1)| ≤

|S|1/2
(1 + |Kℓ|2)2

‖(1−∆ℓ)
2W 2‖L∞(R×S), x1 ∈ R, Kℓ ∈ L⊥,

where ∆ℓ denotes the Laplace operator w.r.t. to xℓ, as can be seen by noticing that ∆ℓϕ(Kℓ) =
−|Kℓ|2ϕ(Kℓ), and integrating by parts in the following integral:

(W 2)Kℓ
(x1) =

∫

S

W (x1,xℓ)
2 1

(1 + |Kℓ|2)2
(1−∆ℓ)2ϕ(Kℓ;xℓ)dxℓ

=
1

(1 + |Kℓ|2)2
∫

S

ϕ(Kℓ;xℓ)(1−∆ℓ)
2W 2(x1,xℓ)dxℓ.
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Further, for all Kℓ ∈ L⊥ it follows from (i) that (W 2)Kℓ
(x1) =

∫
S
W (x1,xℓ)

2ϕ(Kℓ;xℓ)dxℓ = 0 for a.e.
x1 ∈ I, which, together with (4.20), entails (W 2u)kℓ+Kℓ

(x1) = 0. In light of (4.19) for Kℓ = 0, this
yields −u′′kℓ

(x1) = 0 for a.e. x1 ∈ I, hence ukℓ
(x1) = 0 since ukℓ

is square integrable in I, and finally

ukℓ
(x1) = 0, a.e. x1 ∈ R. (4.22)

by applying Cauchy’s theorem.
The next step of the proof involves multiplying (4.19) by ukℓ+Kℓ

(x1) for each Kℓ ∈ L⊥, integrating the
result w.r.t. x1 over R, and then performing an integration by parts in the first integral in the l.h.s. of
the obtained equality. We find that

‖u′kℓ+Kℓ
‖2L2(R) + (|kℓ +Kℓ|2 − E)‖ukℓ+Kℓ

‖2L2(R) − g〈(W 2u)kℓ+Kℓ
, ukℓ+Kℓ

〉L2(R) = 0, ∀Kℓ ∈ L⊥.

Summing up the above identity over Kℓ ∈ L⊥\{0}, we deduce from (2.4) and (4.21)-(4.22) that

∑

Kℓ∈L⊥\{0}

(
‖u′kℓ+Kℓ

‖2L2(R) + (δEδ − gc(W,S))‖ukℓ+Kℓ
‖2L2(R)

)
≤ 0.

As a consequence we have ukℓ+Kℓ
= 0 in L2(R) for every Kℓ ∈ L⊥\{0}, provided g ∈ (0, δEδ/c(W,S)).

From this, (4.18) and (4.22) then follows that u = 0, which proves the result.

A Appendix A: Proof of Lemma 2.2

We prove the statements (a), (b) and (c) of Lemma 2.2 successively, the claims (d) and (e) being treated
simultaneously.
(a) Fix ε in R. We first prove the result for Γkℓ

(E + iε) and kℓ ∈ B+
E , the cases of kℓ ∈ B−

E and
Ckℓ

(E + iε) being treated in a similar way. To do that we refer to (2.4)-(2.5), and write

|γkℓ
(x,y, E + iε)|2 = β2W (x)2W (y)2ζkℓ

(x,y, E + iε), (A.23)

where

ζkℓ
(x,y, E + iε) :=

∑

Kℓ,K′
ℓ
∈L⊥

ei(p(kℓ+Kℓ,E+iε)−p(kℓ+K′
ℓ
,E+iε))|x1−y1|

p(kℓ +Kℓ, E + iε)p(kℓ +K′
ℓ, E + iε)

ei〈Kℓ−K′
ℓ,xℓ−yℓ〉. (A.24)

In light of (2.12)-(2.13), and since pI(kℓ + Kℓ, E) > 0 for every (kℓ,Kℓ) ∈ B+
E × L⊥ from (2.8), the

series
∑

Kℓ,K′
ℓ
∈L⊥

e−(pI (kℓ+Kℓ,E+iε)+pI(kℓ+K
′
ℓ
,E+iε))|x1−y1|

pI (kℓ+Kℓ,E+iε)pI(kℓ+K′
ℓ
,E+iε) converges for every x1 6= y1 in R, hence the series

in the r.h.s. of (A.24) is normally convergent on S × S. Bearing in mind that

∫

S

ei〈Kℓ−K′
ℓ,xℓ〉dxℓ = |S|δ(Kℓ,K

′
ℓ), Kℓ,K

′
ℓ ∈ L⊥, (A.25)

this entails

∫

S×S

ζkℓ
(x,y, E + iε)dxℓdyℓ = |S|2

∑

Kℓ∈L⊥

e−2pI(kℓ+Kℓ,E+iε)|x1−y1|

|p(kℓ +Kℓ, E + iε)|2 := |S|2fε(x1, y1). (A.26)

Further, we have ζkℓ
(x,y, E + iε) ∈ R+ for all x,y ∈ R× S, from (A.23), hence

∫

S×S

|γkℓ
(x,y, E + iε)|2dxℓdyℓ ≤ β2|S|2‖W (x1, .)‖2L∞(S)‖W (y1, .)‖2L∞(S)fε(x1, y1), (A.27)
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for each x1 6= y1 in R, by (A.26). Moreover the mapping y1 7→ fε(x1, y1) is integrable on R for every
x1 in R, with ∫

R

fε(x1, y1)dy1 ≤
∑

Kℓ∈L⊥

1

pI(kℓ +Kℓ, E + iε)3
:= α3(δ, ε), (A.28)

the series in the r.h.s. of (A.28) being convergent according to (2.13) and Lemma 2.1. Henceforth∫
R
‖W (y1, .)‖2L∞(S)fε(x1, y1)dy1 ≤ ‖W‖2L∞(R×S)α3(δ, ε) for all x1 ∈ R, whence

∫

R×R

‖W (x1, .)‖2L∞(S)‖W (y1, .)‖2L∞(S)fε(x1, y1)dx1dy1 ≤ ‖W‖2L∞(R×S)‖W‖2L2(R,L∞(S))α3(δ, ε).

From this and (A.27) then follows that
∫

(R×S)2
|γkℓ

(x,y, E + iε)|2dxdy ≤ β2|S|2‖W‖2L2(R,L∞(S))‖W‖2L∞(R×S)α3(δ, ε), (A.29)

by the Tonelli-Fubini theorem.
(b) The second part of the result boils down to the fact that

γkℓ
(x,y, E + iε) = γkℓ

(y,x, E − iε), (kℓ, ε) ∈ (B−
E × R∗) ∪ (B+

E × R), x,y ∈ R× S,

as p(kℓ +Kℓ, E + iε) = −p(kℓ +Kℓ, E − iε) for every Kℓ ∈ L⊥ by (2.5) and (2.8)-(2.9).
(c) In light of (2.7) and (2.18), ckℓ

(x,y, E + iε) decomposes into the sum

ckℓ
(x,y, E + iε) :=

∑

j=1,2

c
(j)
kℓ

(x,y, E + iε), (A.30)

where

c
(1)
kℓ

(x,y, E + iε) := βW (x)W (y)
eip(kℓ ,E+iε)|x1−y1| − 1

−ip(kℓ, E + iε)
ei〈kℓ,xℓ−yℓ〉, (A.31)

and

c
(2)
kℓ

(x,y, E + iε) := βW (x)W (y)
∑

Kℓ∈L⊥\{0}

eip(kℓ+Kℓ,E+iε)|x1−y1|

−ip(kℓ +Kℓ, E + iε)
ei〈kℓ+Kℓ,xℓ−yℓ〉. (A.32)

Let C
(j)
kℓ

(E + iε), j = 1, 2, denote the integral operator with kernel c
(j)
kℓ

(x,y, E + iε). We shall compute

the Hilbert-Schmidt norm of each C
(j)
kℓ

(E + iε), j = 1, 2, successively. First, we have

|c(1)kℓ
(x,y, E + iε)|2 = β2W (x)2W (y)2

|eip(kℓ,E+iε)|x1−y1| − 1|2
|p(kℓ, E + iε)|2 , x,y ∈ R× S,

by (A.31), whence |c(1)kℓ
(x,y, E+iε)|2 ≤ β2W (x)2W (y)2|x1−y1|2 from (2.8) together with the inequality

|ez−1| ≤ |z|, which holds true for all complex number z such that Re (z) ≤ 0. This entails |c(1)kℓ
(x,y, E+

iε)|2 ≤ 2β2W (x)2W (y)2(x21 + y21) for all x and y in R× S, and hence
∫

(R×S)2
|c(1)kℓ

(x,y, E + iε)|2dxdy ≤ 4β2‖W‖2H1
, (A.33)

by recalling (2.2). Further, arguing in the same way as in the derivation of (A.29), we deduce from
(A.32) that

∫

(R×S)2
|c(2)kℓ

(x,y, E + iε)|2dxdy ≤ β2|S|2‖W‖2L2(R,L∞(S))‖W‖2L∞(R×S)α3(δ),

19



where α3(δ) is the constant defined in Lemma 2.1. Now (c) follows from this, (A.30) and (A.33).
(d) & (e) In light of (A.31) we may write for every kℓ ∈ BE and ε ∈ R,

|c(1)kℓ
(x,y, E + iε)− c

(1)
kℓ

(x,y, E)|2 = β2W (x)2W (y)2ζ
(1)
kℓ

(x,y, E + iε), x,y ∈ R× S, (A.34)

with, due to (A.25),

∫

S2

ζ
(1)
kℓ

(x,y, E + iε)dxℓdyℓ = |S|2
∑

Kℓ∈L⊥\{0}

|dkℓ+Kℓ
(x1, y1, E + iε)|2, (A.35)

where we have set for each Kℓ ∈ L⊥\{0},

dkℓ+Kℓ
(x1, y1, E + iε) :=

eip(kℓ+Kℓ,E+iε)|x1−y1|

−ip(kℓ +Kℓ, E + iε)
− e−pI(kℓ+Kℓ,E)|x1−y1|

pI(kℓ +Kℓ, E)
. (A.36)

Let us decompose dkℓ+Kℓ
(x1, y1, E + iε) into the sum

∑3
j=1 d

(j)
kℓ+Kℓ

(x1, y1, E + iε), with

d
(1)
kℓ+Kℓ

(x1, y1, E + iε) :=
e−pI(kℓ+Kℓ,E+iε)|x1−y1|(eipR(kℓ+Kℓ,E+iε)|x1−y1| − 1)

−ip(kℓ +Kℓ, E + iε)
,

d
(2)
kℓ+Kℓ

(x1, y1, E + iε) :=
e−pI(kℓ+Kℓ,E+iε)|x1−y1| − e−pI(kℓ+Kℓ,E)|x1−y1|

−ip(kℓ +Kℓ, E + iε)
,

d
(3)
kℓ+Kℓ

(x1, y1, E + iε) := e−pI(kℓ+Kℓ,E)|x1−y1|

(
1

−ip(kℓ +Kℓ, E + iε)
− 1

pI(kℓ +Kℓ, E)

)
,

and notice for every (kℓ,Kℓ) ∈ (B+
E × L⊥) ∪ (B−

E × (L⊥\{0})) and ε ∈ R, that we have

pI(kℓ +Kℓ, E) = |p(kℓ +Kℓ, E)| ≤ pI(kℓ +Kℓ, E + iε) ≤ pI(kℓ +Kℓ, E) +

( |ε|
2

)1/2

, (A.37)

from (2.8), and consequently

|p(kℓ +Kℓ, E + iε)− p(kℓ +Kℓ, E)| ≤ |ε|
2pI(kℓ +Kℓ, E)

, (A.38)

since (p(kℓ+Kℓ, E+ iε)− p(kℓ+Kℓ, E))(p(kℓ +Kℓ, E+ iε)+ p(kℓ+Kℓ, E)) = iε. Thus, by using that

| sinu| ≤ u for u ≥ 0 (resp. e−u−e−v ≤ (v−u)e−u for v ≥ u) in the estimation of d
(1)
kℓ+Kℓ

(x1, y1, E+iε)

(resp. d
(2)
kℓ+Kℓ

(x1, y1, E + iε)), we deduce from (A.37)-(A.38) for every ε, x1 and y1 in R, that

|dkℓ+Kℓ
(x1, y1, E + iε)| ≤ e−pI(kℓ+Kℓ,E)|x1−y1|

( |x1 − y1|
pI(kℓ +Kℓ, E)2

+
1

2pI(kℓ +Kℓ, E)3

)
|ε|. (A.39)

Fix x1 in R. The series
∑

Kℓ∈L⊥\{0} |dkℓ+Kℓ
(x1, y1, E + iε)|2 is normally convergent for each y1 ∈ R.

This comes from Lemma 2.1 and (A.39). So we get that

∫

S×(R×S)

ζ
(1)
kℓ

(x,y, E + iε)dxℓdy =
∑

Kℓ∈L⊥\{0}

∫

R

|dkℓ+Kℓ
(x1, y1, E + iε)|2dy1 ≤ 3α7(δ)

2
ε2,

from (A.35) and (A.39). In light of (A.34)-(A.35), this yields

‖C(1)
kℓ

(E + iε)− C
(1)
kℓ

(E)‖HS ≤
(
3α7(δ)

2

)1/2

̺|ε|, kℓ ∈ BE , ε ∈ R, (A.40)
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where ̺ := β|S|‖W‖L∞(R×S)‖W‖L2(R,L∞(S)), by straightforward computations. Arguing in the same
way, we get moreover that

‖C(0)
kℓ

(E + iε)− C
(0)
kℓ

(E)‖HS ≤
(

3

2pI(kℓ, E)7

)1/2

̺|ε|, kℓ ∈ B+
E , ε ∈ R. (A.41)

Notice from (2.10)-(2.11) that the picture is quite different for kℓ ∈ B−
E . Indeed, in this case it holds

true that p(kℓ, E) > 0 by (2.10), and, for every ε > 0,

pR(kℓ, E ± iε) = ±
(
(p(kℓ, E)4 + ε2)1/2 + p(kℓ, E)2

2

)1/2

,

pI(kℓ, E ± iε) =

(
(p(kℓ, E)4 + ε2)1/2 − p(kℓ, E)2

2

)1/2

,

by (2.8)-(2.9). As a consequence we have

|p(kℓ, E ± iε)∓ p(kℓ, E)| ≤ ε1/2, kℓ ∈ B−
E , ε ∈ R∗

+. (A.42)

Therefore, |c(0)kℓ
(E ± iε,x,y) ∓ c

(0)
kℓ

(E,x,y)| being of the form βW (x)W (y)|c̃kℓ
(E ± iε, x1, y1)|, with

c̃kℓ
(E ± iε, x1, y1) =

∑3
j=1 c̃

(j)
kℓ

(E ± iε, x1, y1), and

c̃
(1)
kℓ

(E ± iε, x1, y1) =
eip(kℓ,E±iε)|x1−y1| − eipR(kℓ,E±iε)|x1−y1|

−ip(kℓ, E ± iε)
,

c̃
(2)
kℓ

(E ± iε, x1, y1) =
eipR(kℓ,E±iε)|x1−y1| − e±ip(kℓ,E)|x1−y1|

−ip(kℓ, E ± iε)
,

c̃
(3)
kℓ

(E ± iε, x1, y1) = e±ip(kℓ,E)|x1−y1|

(
1

−ip(kℓ, E ± iε)
− 1

−ip(kℓ, E)

)
,

we then derive from (A.42) for every kℓ ∈ B−
E , ε ∈ R∗

+ and x,y ∈ R× S, that

|c(0)kℓ
(E ± iε,x,y)∓ c

(0)
kℓ

(E,x,y)| ≤ βW (x)W (y)

(
21/2|x1 − y1|+

1

p(kℓ, E)

)
ε1/2

p(kℓ, E)
.

Taking account of (2.2), this entails

‖C(0)
kℓ

(E ± iε)∓ C
(0)
kℓ

(E)‖HS ≤ β|S|
(
2
‖W‖2H1

p(kℓ, E)
+

1

p(kℓ, E)2

)
(2ε)1/2, kℓ ∈ B−

E , ε ∈ R∗
+,

by direct computations. Now the result follows immediately from this and (A.40)-(A.41).

B Appendix B: LAP for H0(kℓ), kℓ ∈ B
B.1 Spectral decomposition and generalized Fourier coefficients

For each (ξ,kℓ) ∈ R× B and Kℓ ∈ L⊥, we introduce

φ(ξ,kℓ +Kℓ;x) :=
1

(2π)1/2
eiξx1ϕ(kℓ +Kℓ;xℓ), x = (x1,xℓ) ∈ R× S, (B.43)

where

ϕ(kℓ +Kℓ;xℓ) :=
1

|S|1/2 e
i〈kℓ+Kℓ,xℓ〉, xℓ ∈ S, (B.44)
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then we define the generalized Fourier coefficient of any u ∈ H as

ũ(ξ,kℓ +Kℓ) := lim
X→+∞

〈u, φ(ξ,kℓ +Kℓ)〉L2((−X,X)×S)

=
1

(2π)1/2
lim

X→+∞

∫ X

−X

e−iξx1〈u(x1, .), ϕ(kℓ +Kℓ)〉L2(S)dx1. (B.45)

For every kℓ ∈ B fixed, the set {φ(ξ,kℓ +Kℓ), Kℓ ∈ L⊥, ξ ∈ R} is a complete system of generalized
eigenfunctions of H0(kℓ), in the sense that:

(a) Fkℓ
: u 7→ (ũ(.,kℓ +Kℓ))Kℓ∈L⊥ is a unitary transform from H onto

⊕
Kℓ∈L⊥ L2(R);

(b) ˜f(H0(kℓ))u(ξ,kℓ +Kℓ) = f(λ(ξ,kℓ +Kℓ))ũ(ξ,kℓ +Kℓ) for any (ξ,kℓ) ∈ R×B and Kℓ ∈ L⊥, and
any borelian function f : R → R, where we have set

λ(ξ,kℓ +Kℓ) := ξ2 + |kℓ +Kℓ|2. (B.46)

Notice from (a) that the following Parseval equality

‖u‖2H =
∑

Kℓ∈L⊥

∫

R

|ũ(ξ,kℓ +Kℓ)|2dξ, kℓ ∈ B, u ∈ H, (B.47)

holds true, and from (b) that we have

〈R0(kℓ, z)u, v〉H =
∑

Kℓ∈L⊥

∫

R

ũ(ξ,kℓ +Kℓ)ṽ(ξ,kℓ +Kℓ)

λ(ξ,kℓ +Kℓ)− z
dξ, kℓ ∈ B, u, v ∈ H, (B.48)

for each z ∈ C with Im (z) 6= 0.
Actually (B.48) is the starting point in the derivation of the LAP for H0(kℓ), kℓ ∈ BE , stated in
Proposition B.1. Its proof relies on the following a priori Hölder estimates of the generalized Fourier
coefficients (B.45) of suitably decreasing functions.

Lemma B.1. Assume σ > 1/2. Then, for every u ∈ Hσ := {v ∈ H, (1 + x21)
σ/2v ∈ H}, it holds true

that:

(a) |ũ(ξ,kℓ + Kℓ)| ≤ cσ‖u‖Hσ
for all (ξ,kℓ) ∈ R × B and Kℓ ∈ L⊥, where we have set cσ :=

(2π)−1/2
(∫

R
(1 + x21)

−σdx1
)1/2

;

(b) For each α ∈ [0, 1] ∩ [0, σ − 1/2) there exists a constant cσ,α > 0 depending only on S, σ and α,
such that for all ξ, ξ′ ∈ R, kℓ ∈ B and Kℓ ∈ L⊥, we have:

|ũ(ξ,kℓ +Kℓ)− ũ(ξ′,kℓ +Kℓ)| ≤ cσ,α|ξ − ξ′|α‖u‖Hσ
.

Proof. The first claim follows readily from (B.43)-(B.45) and the Cauchy-Schwarz inequality. Further,
as

e−iξx1 − e−iξ′x1 =

∫ 1

0

d

dt
(e−ix1(tξ+(1−t)ξ′))dt = −ix1(ξ − ξ′)

∫ 1

0

e−ix1(tξ+(1−t)ξ′)dt,

we have |e−iξx1 − e−iξ′x1 | ≤ |x1||ξ − ξ′|, whence

|e−iξx1 − e−iξ′x1 | ≤ 21−α|e−iξx1 − e−iξ′x1 |α ≤ 21−α|x1|α|ξ − ξ′|α, α ∈ [0, 1]. (B.49)
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Moreover, since (e−iξx1 − e−iξ′x1)u(x) = (1 + x21)
−σ/2(e−iξx1 − e−iξ′x1)(1 + x21)

σ/2u(x), it follows from
(B.49) that

∣∣∣∣
∫

R

(e−iξx1 − e−iξ′x1)u(x1,xℓ)dx1

∣∣∣∣ ≤
(∫

R

|e−iξx1 − e−iξ′x1 |2
(1 + x21)

σ
dx1

)1/2(∫

R

(1 + x21)
σ|u(x1,xℓ)|2dx1

)1/2

≤ 21−α

(∫

R

dx1
(1 + x21)

σ−α

)1/2

|ξ − ξ′|α‖u(.,xℓ)‖L2,σ(R), xℓ ∈ S, α ∈ [0, σ − 1/2).

From this and (B.43)-(B.45) then follows that

|ũ(ξ,kℓ +Kℓ)− ũ(ξ′,kℓ +Kℓ)| ≤
21−α

(2π)1/2

(∫

R

dx1
(1 + x21)

σ−α

)1/2

|ξ − ξ′|α‖u‖Hσ
,

by integrating over S. This terminates the proof.

B.2 LAP for kℓ ∈ B
For every kℓ ∈ B and σ > 1/2, u 7→ ũ(0,kℓ) is a continuous linear form onHσ according to (B.43)-(B.45)
and Lemma B.1(a), hence

NHσ(kℓ) := {u ∈ Hσ, ũ(0,kℓ) = (2π)−1/2|S|−1/2

∫

R×S

e−i〈kℓ,xℓ〉u(x)dx = 0},

is a closed hyperplane of Hσ. Hence we may not regard its (topological) dual set NHσ(kℓ)
′ as a

subspace of H′
σ = H−σ, in the main result of Appendix B:

Proposition B.1. Let E ∈ (0, Eδ) where δ > 0.

(a) For all kℓ ∈ B+
E there exists R0(kℓ, E) = R0(kℓ, E ± i0) := limε→0 R0(kℓ, E + iε) in the B(H)

norm sense. If kℓ ∈ B−
E (resp. kℓ ∈ B\BE) there is R0(kℓ, E ± i0) := limε↓0 R0(kℓ, E ± iε) in the

B(Hσ,H−σ) norm sense (resp. the B(NHσ(kℓ),NHσ(kℓ)
′) norm sense) provided σ > 1/2 (resp.

σ > 1).

(b) For all kℓ ∈ B+
E we have limε↓0 εR0(kℓ, E ± iε) = 0 in the B(H) norm sense. If kℓ ∈ B\B+

E then
for every u ∈ H it holds true that limε↓0 εR0(kℓ, E ± iε)u = 0 in H weakly.

Proof. We prove the successively the claims (a) and (b).
(a) For kℓ ∈ B+

E , the result follows readily from the first resolvent formula, since σ(H0(kℓ)) =
[|kℓ|2,+∞). Therefore it is sufficient to examine the case kℓ ∈ B\B+

E. We shall actually prove that
the function z 7→ R0(kℓ, z) is uniformly continuous in C± ∩ KE , for some appropriate compact neigh-
borhood KE of E in C, where C± := {ζ ∈ C, ±Im (ζ) > 0}. To this purpose we fix u, v ∈ H, set
h(ξ,kℓ +Kℓ) := ũ(ξ,kℓ +Kℓ)ṽ(ξ,kℓ +Kℓ) for all Kℓ ∈ L⊥, and, with reference to (B.46) and (B.46),
introduce the integrals

rKℓ
(z) :=

h(ξ,kℓ +Kℓ)

λ(ξ,kℓ +Kℓ)− z
dξ, z ∈ C±. (B.50)

Let KE := {z ∈ C, |Re (z)− E| ≤ d and |Im (z) | ≤ 1} where

d :=

{
δEδ/2 if kℓ ∈ B\BE

min((E − |kℓ|2)/4, δEδ/2) if kℓ ∈ B−
E .

We have |λ(ξ,kℓ +Kℓ)− z| ≥ 2d for every ξ ∈ R, Kℓ ∈ L⊥\{0} and z ∈ KE by (2.4), hence
∣∣∣∣∣∣

∑

Kℓ∈L⊥\{0}

(rKℓ
(z′)− rKℓ

(z))

∣∣∣∣∣∣
≤ ‖u‖H‖v‖H

4d2
, z, z′ ∈ KE , (B.51)
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from (B.47). Thus we are left with the task of examining the behaviour for z ∈ C± ∩ KE of

r0(z) =
∑

ζ=+,−

r0,ζ(z) where r0,ζ(z) :=

∫ +∞

0

h(ζξ,kℓ)

λ(ξ,kℓ)− z
dξ, ζ = +,−.

We treat the the two cases kℓ ∈ B−
E and kℓ ∈ B\BE separately.

1. We start with kℓ ∈ B−
E . Setting ξ0 = ξ0(kℓ) := (E − |kℓ|2)1/2, we introduce a function χ ∈

C1(R+; [0, 1]) verifying

χ(ξ) =

{
1 if ξ ∈ [(ξ20 − 2d)1/2, (ξ20 + 2d)1/2]

0 if ξ ∈ R+\((ξ20 − 3d)1/2, (ξ20 + 3d)1/2),

and decompose r0,ζ(z), ζ = +,−, into the sum:

r0,ζ(z) =

∫ +∞

0

(1 − χ(ξ))h(ζξ,kℓ)

λ(ξ,kℓ)− z
dξ +

∫ +∞

0

χ(ξ)h(ζξ,kℓ)

λ(ξ,kℓ)− z
dξ

:= aζ(z) + bζ(z). (B.52)

Taking into account that |ξ2 − (z − |kℓ|2)| ≥ d > 0 for every ξ ∈ supp(1 − χ) and z ∈ KE , we deduce
from (B.47) that

|aζ(z′)− aζ(z)| ≤
|z′ − z|
d2

‖u‖H‖v‖H, z, z′ ∈ KE , ζ = +,−. (B.53)

Further, the remaining term bζ(z) is brought into the form

bζ(z) =

∫

I

gζ(λ)

λ− (z − |kℓ|2)
dλ where gζ(λ) :=

χ(λ1/2)h(ζλ1/2,kℓ)

2λ1/2
,

and I := (ξ20 −3d, ξ20+3d), by performing the change of variable λ = ξ2 in the second integral of (B.51).
Bearing in mind that I is at distance d > 0 from 0, and then applying Lemma B.1(b), we get that gζ is
Hölder continuous in I. Namely, α being fixed in [0, 1] ∩ (0, σ − 1/2), we may find a constant Ag > 0,
independent of u and v, such that we have

|gζ(λ′)− gζ(λ)| ≤ Ag|λ′ − λ|α‖u‖Hσ
‖v‖Hσ

, λ, λ′ ∈ I, ζ = +,−,

It follows from this, the identities gζ(ξ
2
0 ± 3d) = 0, and the Plemelj-Privalov theorem (see [18][Part

1, Chap. 2, §22]) that bζ is extendable to an α-Hölder continuous function, also denoted by bζ, in

V ± := {z ∈ C±, Re (z) ∈ I}: there exists c ∈ C0((V ±)2;R+) satisfying

|bζ(z′)− bζ(z)| ≤ c(z, z′)|z′ − z|α‖u‖Hσ
‖v‖Hσ

, z, z′ ∈ V ±. (B.54)

Now, putting (B.48) and (B.50)-(B.54) together, we end up getting that

|〈(R0(kℓ, z
′)−R0(kℓ, z))u, v〉H| ≤ C|z′ − z|α‖u‖Hσ

‖v‖Hσ
, z, z′ ∈ C± ∩ KE ,

for some constant C independent of u and v, since C± ∩ KE is a compact subset of V ±. This yields

‖R0(kℓ, z
′)−R0(kℓ, z)‖B(Hσ,H−σ) ≤ C|z′ − z|α, z, z′ ∈ C± ∩ KE ,

hence the result.
2. Let us now consider the case where kℓ ∈ B\BE. We define aζ and bζ as in (B.52), where χ ∈
C1(R+; [0, 1]) satisfies

χ(ξ) =

{
1 if ξ ∈ [(0, (2d)1/2]

0 if ξ ∈ R+\(0, (3d)1/2).
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As |ξ2− (z−E)| ≥ d > 0 for every ξ ∈ supp(1−χ) and z ∈ KE by standard computations, it is easy to
check that (B.53) still holds true for |kℓ|2 = E. Similarly, we find that bζ(z) =

∫
I gζ(λ)/(λ− (z−E))dλ

where I = (0, 3d) and gζ(λ) is unchanged. The next step of the proof involves choosing α ∈ [0, 1]∩ (1/
2, σ − 1/2) and recalling that ũ(0, ξ) = ṽ(0, ξ) = 0, in such a way that

|h(ζ(λ)1/2,kℓ)| ≤ c2σ,α‖u‖Hσ
‖v‖Hσ

λα, λ ∈ R+, ζ = +,−,

according to Lemma B.1(b). From this then follows that ξ 7→ gζ(ξ,kℓ), ζ = +,−, can be extended to
an (α− 1/2)-Hölder continuous function in I, verifying gζ(3d) = 0. Arguing as before we thus get that

‖R0(kℓ, z
′)−R0(kℓ, z)‖B(NHσ(kℓ),NHσ(kℓ)′) ≤ C|z′ − z|α−1/2, z, z′ ∈ C± ∩ KE ,

for some constant C > 0, which yields the result.
(b) The claim (b) is an immediate consequence of (a) for kℓ ∈ B+

E . If kℓ ∈ B\B+
E , the result follows

from the dominated convergence theorem as we have limε→0 εh(ξ,kℓ)/(λ(ξ,kℓ) − E − iε) = 0 for
a.e. ξ ∈ R, and |εh(ξ,kℓ)|/|λ(ξ,kℓ) − E − iε)| ≤ |h(ξ,kℓ)| for all ε ∈ R and a.e. ξ ∈ R, with∫
R
|h(ξ,kℓ)|dξ ≤ ‖u‖H‖v‖H.

Remark B.1. The result of Proposition B.1(a) for kℓ ∈ BE can be recovered from the reasonning
developped in [1][§4] (see also [8], [22] and [23]) but this would require that the estimate (B.55) in
Lemma B.2 be generalized to the case of kℓ ∈ B−

E . The derivation of this particular result being quite
tricky we prefer to apply the above method essentially based on the Plemelj-Privalov theorem, which is
a very powerful tool in this framework.

B.3 More on R0(kℓ, z) for (kℓ, z) ∈ B+
E × C such that |Re (z) | < |kℓ|2

In view of characterizing the rate of decay of guided states associated to kℓ ∈ Cg(E) in the direction
orthogonal to x1 (see Theorem 1.2 and the proof of Lemma 4.3), we need the following result about
the resolvent of H0(kℓ) for kℓ ∈ B+

E :

Lemma B.2. Let kℓ ∈ B+
E and z ∈ C be such that |Re (z) | < |kℓ|2 and |Im (z) | ≤ 1. Then R0(kℓ, z)v ∈

H2,σ(R× S) := H2(R× S; (1 + x21)
σ/2dx) for every v ∈ Hσ, σ ≥ 0, and it holds true that

c1‖v‖Hσ
≤ ‖R0(kℓ, z)v‖H2,σ(R×S) ≤ c2‖v‖Hσ

, (B.55)

where c1 > 0 and c2 > 0 are two constants independent of v and Im (z).

Proof. Bearing in mind that the domain of H0(kℓ) is a subset of H2(R×S) according to (1.7) and that
σ(H0(kℓ)) = [|kℓ|2,+∞), we may write

|kℓ|2‖u‖2H ≤ 〈H0(kℓ)u, u〉H = −〈∆u, u〉H = ‖∇u‖2H ≤ ‖∆u‖H‖u‖H,

for every u ∈ dom H0(kℓ), from where we get that

|kℓ|‖u‖H ≤ ‖∇u‖H ≤ |kℓ|−1‖∆u‖H. (B.56)

Next, setting ε := (|kℓ|2−|Re (z) |)/(1+|kℓ|2) > 0, in such a way that we have ε = (1−ε)|kℓ|2−|Re (z) |,
and then noticing from (B.56) that

‖(H0(kℓ)− z)u‖H ≥ ‖(H0(kℓ)− Re (z))u‖H
≥ ε‖∆u‖H + (1 − ε)‖∆u‖H − |Re (z) |‖u‖H
≥ ε‖∆u‖H + ((1 − ε)|kℓ|2 − |Re (z) |)‖u‖H,
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we find that ‖(H0(kℓ)− z)u‖H ≥ ε(‖∆u‖H + ‖u‖H). This entails

C1‖u‖H2(R×S) ≤ ‖(H0(kℓ)− z)u‖H ≤ C2‖u‖H2(R×S), u ∈ dom H0(kℓ), (B.57)

for some constants C1 > 0 and C2 > 0 depending only on |kℓ| and |Re (z) |. Further, since (1+x21)σ/2u ∈
dom H0(kℓ) for all u ∈ dom H0(kℓ), and ‖u‖H2,σ(R×S) is equivalent to ‖(1+x21)σ/2u‖H2(R×S), it follows

from (B.57) that ‖u‖H2,σ(R×S) is equivalent to ‖(H0(kℓ) − z)(1 + x21)
σ/2u‖H. As ‖(H0(kℓ) − z)(1 +

x21)
σ/2u‖H is easily seen to be equivalent to ‖(H0(kℓ)− z)u‖Hσ

, we finally obtain the result from this
by taking u = R0(kℓ, z)v.

We now conclude Appendix B with the two following comments.

(a) It is not hard to see that a LAP for H0 =
∫
kℓ∈BH0(kℓ), similar to the one stated in [1], can

be obtained from Proposition B.1 and Lemma B.2, by “integrating” the above results w.r.t. kℓ

over B. The technical difficulty arising in this method when |kℓ| = E1/2 is easily overcomed by
the change of the integration variables (ξ,kℓ) into spherical coordinates, in a neighborhood of the
sphere S(0, E1/2) ⊂ R× S.

(b) Furthermore, the results of Theorem 1.1 allow for the derivation of a LAP for the perturbed
operator H , under slightly less rectrictive conditions than in [11]-[12] or [14]. Nevertheless, as
already mentioned in the introduction, the proof of this result is left to the reader in order to avoid
the inadequate expense of the size of this paper.
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