
HAL Id: hal-00737332
https://hal.science/hal-00737332v1

Preprint submitted on 1 Oct 2012 (v1), last revised 10 Jan 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursive co-kriging model for Design of Computer
experiments with multiple levels of fidelity with an

application to hydrodynamic
Loic Le Gratiet

To cite this version:
Loic Le Gratiet. Recursive co-kriging model for Design of Computer experiments with multiple levels
of fidelity with an application to hydrodynamic. 2012. �hal-00737332v1�

https://hal.science/hal-00737332v1
https://hal.archives-ouvertes.fr


Recursive co-kriging model for Design of Computer

experiments with multiple levels of fidelity with an

application to hydrodynamic

Loic Le Gratiet

CEA, DAM, DIF, F-91297 Arpajon, France

loic.le-gratiet@cea.fr

October 1, 2012

In many practical cases, a sensitivity analysis or an optimization of a complex time consuming
computer code requires to build a fast running approximation of it - also called surrogate model.
We consider in this paper the problem of building a surrogate model of a complex computer
code which can be run at different levels of accuracy. The co-kriging based surrogate model is a
promising tool to build such an approximation. The idea is to improve the surrogate model by
using fast and less accurate versions of the code. We present here a new approach to perform
a multi-fidelity co-kriging model which is based on a recursive formulation. The strength of this
new method is that the co-kriging model is built through a series of independent kriging models.
From them, some properties of classical kriging models can naturally be extended to the presented
co-kriging model such as a fast cross-validation procedure. Moreover, based on a Bayes linear
formulation, an extension of the universal kriging equations are provided for the co-kriging model.
Finally, the proposed model has the advantage to reduce the computational complexity compared
to the previous models. The multi-fidelity model is successfully applied to emulate a hydrodynamic
simulator. This real example illustrates the efficiency of the recursive model.

Keywords. surrogate models, universal co-kriging, recursive model, fast cross-validation,
multi-fidelity computer code.

1 Introduction

Computer codes are widely used in science to describe physical phenomena. Advances in physics
and computer science lead to increased complexity for the simulators. Therefore, it is common
for the physicist to have different versions of a code which have different levels of accuracy and
cost. Usually, to design and analyze a complex computer code, a fast approximation of it - also
call surrogate model - is built in order to avoid prohibitive computational cost.

A very popular method to build surrogate model is the Gaussian process regression, also named
kriging model. It is a particular class of surrogate models which makes the assumption that the
response of the complex code is a realization of a Gaussian process. This method was originally
introduced in used in geostatistics by [Krige, 1951] and [Matheron, 1963] and it was then proposed
in the field of computer experiments by [Sacks et al., 1989]. During the last decades, this method
has become widely used and investigated. The reader is referred to the books of [Stein, 1999],
[Santner et al., 2003] and [Rasmussen and Williams, 2006] for more detail about it.

A question of interest is how to build a predictive model using data from experiments of multi-
ple levels of fidelity. Indeed, complex computer codes can be extremely expensive and sometimes
we cannot have, under reasonable time constraint, enough simulations to sample the input pa-
rameter space with enough density and range. In this case, it could be worth using fast versions
of the code (which can be old or coarse versions of it) to improve its approximation. Our ob-
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jective is hence to build a multi-fidelity surrogate model which is able to use the information
obtained from the fast versions of the code. Such models have been presented in the literature
[Craig et al., 1998], [Kennedy and O’Hagan, 2000], [Forrester et al., 2007], [Qian and Wu, 2008]
and [Cumming and Goldstein, 2009].

The first multi-fidelity model proposed in [Craig et al., 1998] is based on a linear regression
formulation. Then [Cumming and Goldstein, 2009] have improved this model by using a Bayes lin-
ear formulation. The reader is referred to [Goldstein and Wooff, 2007] for further details about the
Bayes linear approach. The methods suggested by [Craig et al., 1998] and [Cumming and Goldstein, 2009]
have the strength to be relatively not computationally expensive but as it is based on a linear
regression formulation, it could suffer from a lack of accuracy. Another approach is to use an exten-
sion of kriging for multiple response models which is called co-kriging. The idea was implemented
by [Kennedy and O’Hagan, 2000] who present a co-kriging model based on an autoregressive re-
lation between the different code levels. This method has become very popular and many authors
have developed it. In particular, [Forrester et al., 2007] presents the use of co-kriging for multi-
fidelity optimization and [Qian and Wu, 2008] proposed a Bayesian formulation of it.

The strength of the co-kriging model is that it gives very good predictive models but it is often
computationally expensive, especially when the number of simulations is large. Furthermore, large
data set can generate problems such as ill-conditioned covariance matrices. It is even more difficult
to deal with these problems for co-kriging since the total number of observations is the sum of the
observations at all code levels.

In this paper, we adopt a new approach for multi-fidelity surrogate modeling which uses a
co-kriging model but with a recursive formulation. In fact, our model is able to build a s-level
co-kriging model by building s independent krigings. This approach significantly reduces the com-
plexity of the model since it divides the total number of observations on groups of observations
corresponding to the ones of each level. Therefore, we will have s sub-matrices to invert which
is less expensive than a big one and the estimation of the parameters can be performed sepa-
rately. Finally, one of the main strengths of this approach is that it allows us to naturally extend
classical results of kriging to the considered co-kriging model. In particular, we generalize and
adapt the equations of the fast cross-validation proposed by [Dubrule, 1983] and we propose an
universal co-kriging which is the natural extension of the well known universal kriging equations
[Matheron, 1969].

2 Multi-fidelity Gaussian process regression.

In a first subsection, we briefly present a first approach to build multi-fidelity model suggested
by [Kennedy and O’Hagan, 2000] that uses a co-kriging model. In the next subsection, we detail
our recursive approach to build a multi-fidelity recursive model. The recursive formulation of the
multi-fidelity model is the first novelty of this paper. We will see in the next sections that the new
formulation allows us to find very important results about the co-kriging model and to reduce its
computational complexity. Furthermore, we prove that the two models are equivalent.

2.1 The classical autoregressive model.

Let us suppose that we have s levels of code (zt(x))t=1,...,s sorted by increasing order of fidelity and
modeled by Gaussian processes (Zt(x))t=1,...,s, x ∈ Q. We hence consider that zs(x) is the most
accurate and costly code that we want to surrogate and (zt(x))t=1,...,s−1 are cheaper versions of it
with z1(x) the less accurate one. We consider the following autoregressive model with t = 2, . . . , s:







Zt(x) = ρt−1(x)Zt−1(x) + δt(x)
Zt−1(x) ⊥ δt(x)
ρt−1(x) = gTt−1(x)βρt−1

(1)

where:
δt(x) ∼ GP(fT

t (x)βt, σ
2
t rt(x, x

′)) (2)
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and:
Z1(x) ∼ GP(fT

1 (x)β1, σ
2
1r1(x, x

′)) (3)

Here, T stands for the transpose, ⊥ denotes the orthogonality relationship, GP designs a Gaussian
Process, gTt−1(x) is a vector of qt−1 regression functions, fT

t (x) is a vector of pt regression functions,
rt(x, x

′) is a correlation function, βt is a pt-dimensional vector, βρt−1
is a qt−1-dimensional vector

and σ2
t is a real. Since we suppose that the responses are realizations of Gaussian processes,

the multi-fidelity model can be built by conditioning by the known responses of the codes at the
different levels.

The previous model comes from the article of [Kennedy and O’Hagan, 2000]. It is induced by
the following assumption: ∀x ∈ Q, if we know Zt−1(x), nothing more can be learned about Zt(x)
from Zt−1(x

′) for x 6= x′.
Let us consider Z(s) = (ZT

1 , . . . ,ZT
s )

T the Gaussian vector containing the values of the random
processes (Zt(x))t=1,...,s at the points in the experimental design sets (Dt)t=1,...,s with Ds ⊆
Ds−1 ⊆ · · · ⊆ D1 and z(s) = (zT1 , . . . , z

T
s )

T a vector containing the values of (zt(x))t=1,...,s at the
points in (Dt)t=1,...,s. The nested property of the experimental design sets is not necessary to
build the model but it allows for a simple estimation of the model parameters. Since the codes are
sorted in increasing order of fidelity it is not an unreasonable constraint for practical applications.
By denoting β = (βT

1 , . . . , β
T
s )

T the trend parameters, βρ = (βT
ρ1
, . . . , βT

ρs−1
)T the trend of the

adjustment parameters and σ2 = (σ2
1 , . . . , σ

2
s ) the variance parameters, we have:

∀x ∈ Q [Zs(x)|Z(s) = z(s), β, βρ, σ
2] ∼ N

(

mZs
(x), s2Zs

(x)
)

where:
mZs

(x) = h′s(x)
T β + ts(x)

TV −1
s (z(s) −Hsβ) (4)

and:
s2Zs

(x) = v2Zs
(x) − ts(x)

T V −1
s ts(x) (5)

The Gaussian process regression mean mZs
(x) is the predictive model of the highest fidelity

response zs(x) which is built with the known responses of all code levels z(s). The variance s2Zs
(x)

represents the predictive mean squared error of the model.

The matrix Vs is the covariance matrix of the Gaussian vector Z(s), the vector ts(x) is the
vector of covariance between Zs(x) and Z(s), Hsβ is the mean of Z(s), h′s(x)

Tβ is the mean of
Zs(x) and v2Zs

(x) is the variance of Zs(x). All these terms are built in terms of the experience
vector at level t (6) and to the covariance between Zt(x) and Zt′(x

′) (7) and (8).

h′t(x)
T =

((

t−1
∏

i=1

ρi(x)

)

fT
1 (x),

(

t−1
∏

i=2

ρi(x)

)

fT
2 (x), . . . , ρt−1(x)f

T
t−1(x), f

T
t (x)

)

(6)

Let us consider t > t′ :

cov(Zt(x), Zt′(x
′)|σ2, β, βρ) =

(

t−1
∏

i=t′

ρi(x)

)

cov(Zt′(x), Zt′(x
′)|σ2, β, βρ) (7)

with :

cov(Zt(x), Zt(x
′)|σ2, β, βρ) =

t
∑

j=1

σ2
j





t−1
∏

i=j

ρi(x)ρi(x
′)



 rj(x, x
′) (8)

Remark. The model (1) is an extension of the model of [Kennedy and O’Hagan, 2000] in which
the adjustment parameters ρt(x)t=2,...,s do not depend on x. We show in a practical application
that this extension is worthwhile.
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2.2 Recursive multi-fidelity model.

In this section, we present the new multi-fidelity model which is based on a recursive formulation.
Let us consider the following model for t = 2, . . . , s :







Zt(x) = ρt−1(x)Z̃t−1(x) + δt(x)

Z̃t−1(x) ⊥ δt(x)
ρt−1(x) = gTt−1(x)βρt−1

(9)

where Z̃t−1(x) is a Gaussian process with distribution [Zt−1(x)|Z(t−1) = z(t−1), βt−1, βρt−2
, σ2

t−1]
and Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. The unique difference with the previous model is that we express
Zt(x) (the Gaussian process modeling the response at level t) as a function of the Gaussian process
Zt−1(x) conditioned by the values z(t−1) = (z1, . . . , zt−1) at points in the experimental design sets
(Di)i=1,...,t−1. We note that, as in the previous model, the nested property is assumed to allow
efficient estimations for the model parameters. The Gaussian processes (δt(x))t=2,...,s have the
same definition as previously and we have for t = 2, . . . , s:

[

Zt(x)|Z(t) = z(t), βt, βρt−1
, σ2

t

]

∼ N
(

µZt
(x), s2Zt

(x)
)

(10)

where:

µZt
(x) = ρt−1(x)µZt−1

(x) + fT
t (x)βt + rTt (x)R

−1
t (zt − ρt−1(Dt)⊙ zt−1(Dt)− Ftβt) (11)

and:
σ2
Zt
(x) = ρ2t−1(x)σ

2
Zt−1

(x) + σ2
t

(

1− rTt (x)R
−1
t rt(x)

)

(12)

The notation ⊙ represents the element by element matrix product. Rt is the correlation matrix
Rt = (rt(x, x

′))x,x′∈Dt
and rTt (x) is the correlation vector rTt (x) = (rt(x, x

′))x′∈Dt
. We denote by

ρt(Dt−1) the vector containing the values of ρt(x) for x ∈ Dt−1, zt(Dt−1) the vector containing
the known values of Zt(x) at points in Dt−1 and Ft is the experience matrix containing the values
of ft(x)

T on Dt.

The mean µZt
(x) is the surrogate model of the response at level t, 1 ≤ t ≤ s, taking into account

the known values of the t first levels of responses (zi)i=1,...,t and the variance σ2
Zt
(x) represents the

mean squared error of this model. The mean and the variance of the Gaussian process regression
at level t being expressed in function of the ones of level t− 1, we so have a recursive multi-fidelity
metamodel. Furthermore, in this new formulation, it is clearly emphasized that the mean of the
predictive distribution does not depend on the variance parameters (σ2

t )t=1,...,s. This is a classical
result of kriging model which states that for covariance kernels of the form k(x, x′) = σ2r(x, x′),
the mean of the kriging model is independent of σ2.

Remark. The previous comment highlights an important strength of the recursive formulation.
Indeed, contrary to the formulation suggested in [Kennedy and O’Hagan, 2000], once the multi-
fidelity model is built, it provides the surrogate models of all the responses (zt(x))t=1...,s.

Furthermore, from this formulation, we can directly deduce that building a s-level co-kriging
is equivalent to build s independent krigings. This implies a reduction of the model complexity.
Indeed, the inversion of the matrix Vs of size

∑s
i=1 ni ×

∑s
i=1 ni is more expensive than the

inversions of s matrices (Rt)t=1,...,s of size (nt ×nt)t=1,...,s where nt corresponds to the size of the
vector zt at level t = 1, . . . , s. We also reduce the memory cost since storing the matrix Vs required
more memory than storing the s matrices (Rt)t=1,...,s. Then, we note that the model with this
formulation is more interpretable since we can deduce the impact of each level of response into the
model error through (σ2

Zt
(x))t=1,...,s. Finally we will see that it allows us to adapt classical kriging

results to the multi-fidelity co-kriging model (e.g. universal kriging and fast cross-validation).
We have the following proposition.
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Proposition 1 Let us consider s Gaussian processes (Zt(x))t=1,...,s and Z(s) = (Zt)t=1,...,s the
Gaussian vector containing the values of (Zt(x))t=1,...,s at points in (Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆
· · · ⊆ D1. If we consider the mean and the variance (4) and (5) induced by the model (1) when
we condition the Gaussian process Zs(x) by the known values z(s) of Z(s) and the mean and the
variance (11) and (12) induced by the model (16) when we condition Zs(x) by z(s), then, we have:

µZs
(x) = mZs

(x)

σ2
Zs
(x) = s2Zs

(x)

The proof of the proposition is given in Appendix A.1. It shows that the model of [Kennedy and O’Hagan, 2000]
and the recursive model (16) have the same mean and covariance function. Therefore, predictive
distributions of the two models are identical and the recursive model has the same strengths as
the one of [Kennedy and O’Hagan, 2000] to which we add the benefits mentioned in the previous
remark.

2.3 Parameter estimations

We present in this section a Bayesian estimation of the parameter ψ = (β, βρ, σ
2) focusing on

conjugate and non-informative distributions for the priors. This allows us to obtain closed form
expressions for the estimations of the parameters. Furthermore, from the non-informative case,
we can obtain the estimates given by a maximum likelihood method. The presented formulas can
hence be used in a frequentist approach. We note that the recursive formulation directly shows
us that the estimations of the parameters (βt, βρt−1

, σ2
t )t=1,...,s and (β1, σ

2
1) can be performed

separately.
We use in this section the notation info to design the case where all the priors are informative

and ninfo to design the case where all the priors are non-informative. It would be possible to
address the case of a mixture of informative and non-informative priors. For the non-informative
case, we use the ”Jeffreys priors“ [Jeffreys, 1961]:

p(β1|σ2
1) ∝ 1, p(σ2

1) ∝
1

σ2
1

, p(βρt−1
, βt|z(t−1), σ2

t ) ∝ 1, p(σ2
t |z(t−1)) ∝ 1

σ2
t

(13)

where t = 2, . . . , s. For the informative case, we consider the following conjugate prior distribu-
tions:

[β1|σ2
1 ] ∼ Np1

(b1, σ
2
1V1)

[βρt−1
, βt|z(t−1), σ2

t ] ∼ Nqt−1+pt

(

bt =

(

bρt−1

bβt

)

, σ2
t Vt = σ2

t

(

V ρ
t−1 0

0 V β
t

))

[σ2
1 ] ∼ IG(α1, γ1), [σ2

t |z(t−1)] ∼ IG(αt, γt)

with b1 a vector a size p1, b
ρ
t−1 a vector of size qt−1, b

β
t a vector of size pt, V1 a p1 × p1 matrix,

V ρ
t−1 a qt−1 × qt−1 matrix, V β

t a pt × pt matrix and α1, γ1, αt, γt > 0. These informative priors
allow the user to prescribe the means and the variances of all parameters. The choice of conjugate
priors allows us to have closed form expressions for the parameter estimations. Indeed, we have:

[β1|z1, σ2
1 ] ∼ Np1

(Σ1ν1,Σ1) [βρt−1
, βt|z(t), σ2

t ] ∼ Nqt−1+qt(Σtνt,Σt) (14)

where, for t ≥ 1:

Σt =







[HT
t

R−1

t

σ2

2

Ht +
V −1

t

σ2

2

]−1
info

[HT
t

R−1

t

σ2

2

Ht]
−1

ninfo

νt =







[HT
t

R−1

t

σ2

2

zt +
V −1

t

σ2

2

bt] info

[HT
t

R−1

t

σ2

2

zt] ninfo

(15)

with H1 = F1 and for t > 1, Ht = [Gt−1 ⊙ (zt−1(Dt)1
T
qt−1

) Ft] where Gt−1 is the experience

matrix containing the values of gt−1(x)
T in Dt. Furthermore, we have for t ≥ 1:

[σ2
t |z(t)] ∼ IG(at,

Qt

2
) (16)
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where:

Qt =

{

γt + (bt − λ̂t)
T (Vt + [HT

t R
−1
t Ht]

−1)−1(bt − λ̂t) + Q̂t info

Q̂t ninfo

with Q̂t = (zt −Htλ̂t)
TR−1

t (zt −Htλ̂t) , λ̂t = (HT
t R

−1
t HtF )

−1HT
t R

−1
t zt and :

at =

{ nt

2 + αt info
nt−pt−qt−1

2 ninfo

with the convention q0 = 0.
We highlight that the maximum likelihood estimates for the parameters β1 and (βρt−1

, βt)
are given by the means of the posterior distributions of the Bayesian estimations in the non-
informative case. Furthermore, the restricted maximum likelihood estimate of the variance pa-
rameter σ2

t can also be deduced from the posterior distribution of the Bayesian estimation in
the non-informative case and is given by σ̂2

t,EML = Qt

2at

. The restricted maximum likelihood es-
timation is a method which allows us to reduce the bias of the maximum likelihood estimation
[Patterson and Thompson, 1971].

3 Universal co-kriging model

We see in equation (10) that the predictive distribution of Zs(x) is conditioned by the observa-
tions z and the parameters β, βρ and σ2. The objective of a Bayesian prediction is to integrate
the uncertainty due to the parameter estimations into to the predictive distribution. Indeed, in
the previous subsection, we have expressed the posterior distributions of the variance parameters
(σ2

t )t=1,...,s conditionally to the observations and the posterior distributions of the trend parame-
ters β1 and (βρt−1

, βt)t=2,...,s conditionally to the observations and the variance parameters. Thus,
using the Bayes formula, we can easily obtain a predictive distribution only conditioned by the
observations by integrating into it the posterior distributions of the parameters.

Nonetheless, this predictive distribution is clearly not Gaussian and can be expensive to obtain.
In particular, we cannot have a closed form expression for the predictive distribution. Therefore,
it is relevant to consider in our analysis only the mean E[Zs(x)|Z(s) = z(s)] and the variance
Var(Zs(x)|Z(s) = z(s)).

The following proposition giving the closed form expressions of the mean and the variance
of the predictive distribution only conditioned by the observations is a novelty. The proof of
this proposition is based on the recursive formulation which emphasizes the strength of this new
approach.

Proposition 2 Let us consider s Gaussian processes (Zt(x))t=1,...,s and Z(s) = (Zt)t=1,...,s the
Gaussian vector containing the values of (Zt(x))t=1,...,s at points in (Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆
· · · ⊆ D1. If we consider the conditional predictive distribution in equation (10) and the posterior
distributions of the parameters given in equations (14) and (16), then we have for t = 1, . . . , s:

E[Zt(x)|Z(t) = z(t)] = hTt (x)Σtνt + rTt (x)R
−1
t (zt −HtΣtνt) (17)

with hT1 = fT
1 , H1 = F1 and for t > 1, hTt (x) =

(

gt−1(x)
T
E[Zt−1(x)|Zt−1 = zt−1] fT

t (x)
)

and
Ht = [Gt−1 ⊙ (zt−1(Dt)1

T
qt−1

) Ft]. Furthermore, we have:

Var(Zt(x)|Z(t) = z(t)) = ρ̂2t (x)Var(Zt−1(x)|Z(t−1) = z(t−1)) + Qt

2(at−1)

(

1− rTt (x)R
−1
t rTt (x)

)

+
(

hTt − rTt (x)R
−1
t Ht

)

Σt

(

hTt − rTt (x)R
−1
t Ht

)T

(18)
with ρ̂t(x) = [Σtνt]1,...,qt−1

.

The proof of Proposition 2 is given in Appendix A.2. We note that, in the mean of the predictive
distribution, the parameters have been replaced by their posterior means. Furthermore, in the
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variance of the predictive distribution, the variance parameter has been replaced by its posterior

mean and the term
(

hTt − rTt (x)R
−1
t Ht

)

Σt

(

hTt − rTt (x)R
−1
t Ht

)T
has been added. It represents

the uncertainty due to the estimation of the regression parameters (including the adjustment
coefficient). We call these formulas the universal co-kriging equations due to their similarities
with the well-known universal kriging equations (they are identical for s = 1).

4 Fast cross-validation for kriging and co-kriging surrogate

models

The idea of a cross-validation procedure is to split the experimental design set into two disjoints
sets, one is used for training and the other one is used to monitor the performance of the surrogate
model. The idea is that, the performance on the test set can be used as a proxy for the gener-
alization error. A particular case of this method is the Leave-One-Out Cross-Validation (noted
LOO-CV) where n test sets are obtained by removing one observation at a time. This procedure
can be time-consuming for a kriging model but [Dubrule, 1983], [Rasmussen and Williams, 2006]
and [Zhang and Wang, 2009] show that there are computational shortcuts. We present in this sec-
tion their adaptation for co-kriging models. Furthermore, the cross-validation equations proposed
in this section extend the previous ones even for s = 1 (i.e. the classical kriging model) since
they do not suppose that the regression and the variance coefficients are known. Therefore, those
parameters are re-estimated for each training set. We note that the re-estimation of the variance
coefficient is a novelty which is important since fixing this parameter can lead to big errors for the
estimation of the cross-validation predictive variance when the number of observations is small or
when the number of points in the test set is important.

If we denote by ξs the set of indices of ntest points in Ds constituting the test set Dtest and
ξt, 1 ≤ t < s, the corresponding set of indices in Dt - indeed, we have Ds ⊂ Ds−1 ⊂ · · · ⊂ D1,
therefore Dtest ⊂ Dt. The nested experimental design assumption implies that, in the cross-
validation procedure, if we remove a group of points from Ds we can also remove it from Dt,
1 ≤ t ≤ s.

The following proposition gives the vectors of the cross-validation predictive errors and vari-
ances at points in the test set Dtest when we remove them from the t highest levels of code. In
the proposition, we consider that we are in the non-informative case for the parameter estimation
(see Section 2.3) but it can be easily extended to the informative case presented in Section 2.3.

Notations: If ξ is a set of indices, then A[ξ,ξ] is the sub-matrix of elements ξ × ξ of A, a[ξ]
is the sub-vector of elements ξ of a, B[−ξ] represents the matrix B minus the rows of index ξ,
C[−ξ,−ξ] is the sub-matrix of C in which we remove the elements of index −ξ ×−ξ and C[−ξ,ξ] is
the sub-matrix of C in which we remove the rows of index ξ and keep the columns of index ξ.

Proposition 3 Let us consider s Gaussian processes (Zt(x))t=1,...,s and Z(s) = (Zt)t=1,...,s the
Gaussian vector containing the values of (Zt(x))t=1,...,s at points in (Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆
· · · ⊆ D1. We note Dtest a set made with the points of index ξs of Ds and ξt the corresponding
points in Dt with 1 ≤ t ≤ s. Then, if we note εZs,ξs the errors (i.e. real values minus predicted
values) of the cross-validation procedure when we remove the points of Dtest from the t highest
levels of code, we have:

(

εZs,ξs − ρs−1(Dtest)⊙ εZs−1,ξs−1

) [

R−1
s

]

[ξs,ξs]
=

[

R−1
s (zs −Hsλs,−ξs)

]

[ξs]
(19)

with εZu,ξu = 0 when u < t, λs,−ξs

(

[HT
s ][−ξs]Ks[Hs][−ξs]

)

= [HT
s ][−ξs]Kszs(Dtest) and:

Ks =
[

R−1
s

]

[−ξs,−ξs]
−
[

R−1
s

]

[−ξs,ξs]

(

[

R−1
s

]

[ξs,ξs]

)−1
[

R−1
s

]

[ξs,−ξs]
(20)
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Furthermore, if we note σ2
Zs,ξs

the variances of the corresponding cross-validation procedure, we
have:

σ2
Zs,ξs = ρ2s−1(Dtest)⊙ σ2

Zs−1,ξs−1
+ σ2

s,−ξsdiag

(

(

[

R−1
s

]

[ξs,ξs]

)−1
)

+ Vs (21)

with:

σ2
s,−ξs =

(

zs(Dtest)− [Hs][−ξs]λs,−ξs

)T
Ks

(

zs(Dtest)− [Hs][−ξs]λs,−ξs

)

ns − ps − qs−1 − ntrain
(22)

where σ2
u,−ξu

= 0 when u < t, ntrain is the length of the index vector ξs, Hs = [Gs−1 ⊙
(zs−1(Ds)1

T
qs−1

) Fs] and:

Vs = UT
s

(

[HT
s ][−ξs]Ks[Hs][−ξs]

)−1 Us (23)

with Us =
(

(

[R−1
s ][ξs,ξs]

)−1 [
R−1

s Hs

]

[ξs]

)

.

We note that these equations are also valid when s = 1, i.e. for kriging model. We hence have
closed form expressions for the equations of a k-fold cross-validation with a re-estimation of the
regression and variance parameters. These expressions can be deduced from the universal co-
kriging equations. The complexity of this procedure is essentially determined by the inversion of

the matrices
(

[

R−1
u

]

[ξu,ξu]

)

u=t,...,s
of size ntest×ntest. Furthermore, if we suppose the parameters

of variance and/or trend as known, we do not have to compute σ2
t,−ξt

and/or λt,−ξt (they are fixed

to their estimated value, i.e. σ2
t,−ξt

= Qt

2(at−1) and λt,−ξt = Σtνt, see Section 2.3) which reduces

substantially the complexity of the method. These equations generalize those of [Dubrule, 1983]
and [Zhang and Wang, 2009] where the variance σ2

t,−ξt
is supposed to be known. Finally, the term

Vs corresponds to the added term due to the parameter estimations in the universal co-kriging.
Therefore, if the trend parameters are supposed known, this term is equal to 0. The proof of
Proposition 3 is given in Appendix A.3.

5 Application: hydrodynamic simulator

In this section we apply our co-kriging method to the hydrodynamic code “MELTEM”. This code
simulates a second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov
instability [Grégoire et al., 2005]. Two input parameters x1 and x2 are considered. They are
phenomenological coefficients used in the equations of the energy of dissipation of the turbulent
flow. These two coefficients vary in the region [0.5, 1.5]× [1.5, 2.3]. The considered code outputs,
called eps and Lc, are respectively the dissipation factor and the mixture characteristic length.
The simulator is a finite-elements code which can be run at s = 2 levels of accuracy by altering
the finite-elements mesh. The simple code z1(.), using a coarse mesh, takes 15 seconds to produce
an output whereas the complex code z2(.), using a fine mesh, takes 8 minutes. The aim of the
study is to build a prediction as accurate as possible using only a few runs of the complex code
and to assess the uncertainty of this prediction. In particular, we use 5 runs for the complex code
z2(x) and 25 runs for the cheap code z1(x). Then, we build an additional set of 175 points to test
the accuracy of the models. Furthermore, no prior information is available: we are hence in the
non-informative case.

5.1 Estimation of the hyper-parameters

In the previous sections, we have considered the correlation kernels (rt(x, x
′))t=1,...,s as known.

In practical applications, we choose these kernels in a parameterized family of correlation kernels.
Therefore, we consider kernels such that rt(x, x

′) = rt(x, x
′;φt). The hyper-parameter φt can

be estimated by maximizing the concentrated restricted log-likelihood [Santner et al., 2003] with
respect to φt:

log (|det (Rt)|) + (nt − pt − qt−1) log
(

σ2
t,EML

)

(24)
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with the convention q0 = 0 and σ2
t,EML is the restricted likelihood estimate of the variance σ2

t

(see Section 2.3). This minimization problem has to be solved numerically. It is a common
choice to consider the hyper-parameters as known and to estimate them by maximum likelihood
[Santner et al., 2003].

It is also possible to estimate the hyper-parameters (φt)t=1,...,s by minimizing a loss function
of a Leave-One-Out Cross-Validation procedure. Usually, the complexity of this procedure is

O
(

(
∑s

i=1 nt)
4
)

. Nonetheless, thanks to Proposition 3, it is reduced to O
(
∑s

i=1 n
3
i

)

since it is

essentially determined by the inversions of the s matrices (R−1
t )t=1,...,s.Therefore, the complexity

for the estimation of (φt)t=1,...,s is substantially reduced. Furthermore, the recursive formulation
of the problem allows us to estimate the parameters (φt)t=1,...,s one at a time by starting with φ1
and estimating φt, t = 2, . . . , s, one after the other.

5.2 Comparison between kriging and multi-fidelity co-kriging

Before considering the real case study, we propose in this section a comparison between the
kriging and co-kriging models when the number of runs n2 for the complex code varies such that
n2 = 5, 10, 15, 20, 25. For the co-kriging model, we consider n1 = 25 runs for the cheap code. In
this section, we focus on the output eps.

To perform the comparison, we generate randomly 500 experimental design sets (D2,i, D1,i)i=1,...,500

such that D2,i ⊂ D1,i, i = 1, . . . , 500, D1,i has n1 points and D2,i has n2 points.
We use for both kriging and co-kriging models a Matern 5

2 covariance kernel and we consider ρ,
β1 and β2 as constant. The accuracies of the two models are evaluated on the test set composed
of 175 observations. From them, the Root Mean Squared Error (RMSE) is computed: RMSE =
(

1
175

∑175
i=1(µZ2

(xtesti )− z2(x
test
i ))2

)1/2

.

Figure 1 gives the mean and the quantiles of probability 5% and 95% of the RMSE computed
from the 500 sets (D2,i, D1,i)i=1,...,500 when the number of runs for the expensive code n2 varies.
In Figure 1, we can see that the errors converge to the same value when n2 tends to n1. Indeed,
due to the Markov property given in Section 2.1, when D2 = D1, only the observations z2 are
taken into account. Furthermore, we can see that for small values of n2, it is worth considering
the co-kriging model since its accuracy is significantly better than the one of the kriging model.

5.3 Nested space filling design

As presented in Section 2 we consider nested experimental design sets: ∀t = 2, . . . , s Dt ⊆ Dt−1.
Therefore, we have to adopt particular design strategies to uniformly spread the inputs for all Dt.
A strategy based on Orthogonal array-based Latin hypercube for nested space-filling designs is
proposed by [Qian et al., 2009].
We consider here another strategy for space-filling design, described in the following algorithm,
which is very simple and not time-consuming. The number of points nt for each design Dt

is prescribed by the user, as well as the experimental design method applied to determine the
coarsest gridDs used for the most expensive code zs (see [Fang et al., 2006] for a review of different
methods).

ALGORITHM

build Ds = {x(s)j }j=1,...,ns
with the experimental design method prescribed by the user.

for t = s to 2 do:

build design D̃t−1 with the experimental design method prescribed by the user.

for i = 1 to nt do:

find x̃
(t−1)
j ∈ D̃t−1 the closest point from x

(t)
i ∈ Dt where j ∈ [1, nt−1].

remove x̃
(t−1)
j from D̃t−1.
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Figure 1: Comparison between kriging and co-kriging with n1 = 25 runs for the cheap code (500
nested design sets have been randomly generated for each n2). The circles represent the averaged
RMSE of the co-kriging, the triangles represent the averaged RMSE of the kriging, the crosses
represent the quantiles of probability 5% and 95% for the co-kriging RMSE and the times signs
represent the quantiles of probability 5% and 95% of the kriging RMSE. Co-kriging predictions
are better than the ordinary kriging ones for small n2 and they converge to the same accuracy
when n2 tends to n1 = 25.

end for

Dt−1 = D̃t−1 ∪Dt.

end for

This strategy allows us to use any space-filling design method and it conserves the initial struc-
ture of the experimental design Ds of the most accurate code, contrarily to a strategy based
on selection of subsets of an experimental design for the less accurate code as presented by
[Kennedy and O’Hagan, 2000] and [Forrester et al., 2007]. We hence can ensure that Ds has ex-
cellent space-filling properties. Moreover, the experimental design Dt−1 being equal to D̃t−1∪Dt,
this method ensure the nested property.

In the presented application, we consider n2 = 5 points for the expensive code z2(x) and n1 = 25
points for the cheap one z1(x). We apply the previous algorithm to build D2 and D1 such that
D2 ⊂ D1. For the experimental design set D2, we use a Latin-Hypercube-Sampling [Stein, 1987]
optimized with respect to the S-optimality criterion which maximizes the mean distance from
each design point to all the other points [Stocki, 2005]. Furthermore, the set D1 is built using a
maximum entropy design [Shewry and Wynn, 1987] optimized with the Fedorov-Mitchell exchange
algorithm [Currin et al., 1991]. These algorithms are implemented in the library R lhs. The
obtained nested designs are shown in Figure 2.

5.4 Multi-fidelity surrogate model for the dissipation factor eps

We build here a co-kriging model for the dissipation factor eps. The obtained model is compared
to a kriging one. This first example is used to illustrate the efficiency of the co-kriging method

10
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Figure 2: Nested experimental design sets for the hydrodynamic application. The crosses represent
the n1 = 25 points of the experimental design set D1 of the cheap code and the circles represent
the n2 = 5 points of the experimental design set D2 of the expensive code.

compared to the kriging. It will also allow us to highlight the difference between the simple and
the universal co-kriging.

We use the experimental design sets presented in Section 5.3. To validate and compare our
models, the 175 simulations of the complex code uniformly spread on [0.5, 1.5] × [1.5, 2.3] are
used. To build the different correlation matrices, we consider a tensorised matern- 52 kernel (see
[Rasmussen and Williams, 2006]):

r(x, x′; θt) = r1d(x1, x
′

1; θt,1)r1d(x2, x
′

2; θt,2) (25)

with x = (x1, x2) ∈ [0.5, 1.5]× [1.5, 2.3], θt,1, θt,2 ∈ R and:

r1d(xi, x
′

i; θt,i) =

(

1 +
√
5
|xi − x′i|
θt,i

+
5

3

(xi − x′i)
2

θ2t,i

)

exp

(

−
√
5
|xi − x′i|
θt,i

)

(26)

Then, we consider g1(x) = 1, f2(x) = 1, f1(x) = 1 (see Section 2.1 and 2.2) and, using the
concentrated maximum likelihood (see Section 5.1), we have the following estimations for the

correlation hyper-parameters: θ̂1 = (0.69, 1.20) and θ̂2 = (0.27, 1.37).
According to the values of the hyper-parameter estimates, the co-kriging model are very smooth

since the correlation lengths are large compared to the size of the input parameter space. Further-
more, the estimated correlation between the two codes is 82.64%, which shows that the amount
of information contained in the cheap code is substantial.

Table 1 presents the results of the parameter estimations (see Section 2.3).
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Trend coefficient Σtνt Σt/σ
2
t

β1 8.84 0.48
(

βρ1

β2

) (

0.92
0.74

) (

1.98 −18.13
−18.13 165.82

)

Variance coefficient Qt 2αt

σ2
1 6.98 24
σ2
2 0.06 3

Table 1: Application: hydrodynamic simulator. Parameter estimation results for the response eps
(see equations (14) and (16)).

We see in Table 1 that the correlation between βρ1
and β2 is important which highlights the

importance of taking into account the correlation between these two coefficients for the parameter
estimation. We also see that the adjustment parameter βρ1

is close to 1, which means that the
two codes are highly correlated.

Figure 3 illustrates the contour plot of the kriging and co-kriging mean, we can see significant
differences between the two surrogate models.
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Figure 3: Contour plot of the kriging mean (on the left hand side) and the co-kriging mean (on
the right hand side). The triangles represent the n2 = 25 points of the experimental design set of
the expensive code.

Table 2 compares the prediction accuracy of the co-kriging and the kriging models. The
different coefficients are estimated with the 175 responses of the complex code on the test set:

• MaxAE: Maximal absolute value of the observed error.

• RMSE : Root mean squared value of the observed error.

• Q2 = 1− ||µZ2
(Dtest)− z2(Dtest)||2/||µZ2

(Dtest)− z̄2||2, with z̄2 = (
∑n2

i=1 z2(x
test
i ))/n2.

• RIMSE : Root of the average value of the kriging or co-kriging variance.
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Q2 RMSE MaxAE RIMSE.
kriging 75.83% 0.133 0.49 0.110

co-kriging 98.01% 0.038 0.14 0.046

Table 2: Application: hydrodynamic simulator. Comparison between kriging and co-kriging. The
co-kriging model provides predictions significantly better than the ones of the kriging model.

We can see that the difference of accuracy between the two models is important. Indeed, the
one of the co-kriging model is significantly better. Furthermore, comparing the RMSE and the
RIMSE estimations in Table 2, we see that we have a good estimation of the predictive distribution
variances for the two models. We note that the predictive variance for the co-kriging is obtained
with a simple co-kriging model. Therefore, it will be slightly larger in the universal co-kriging
case. Indeed, by computing the universal co-kriging equations, we find RIMSE = 0.058.

We can compare the RMSE obtained with the test set with the RMSE obtained with a Leave-
One-Out cross validation procedure (see Section 4). For this procedure, we test our model on
n2 = 5 validation sets obtained by removing one observation at a time. As presented in Section 4,
we can either choose to remove the observations from z2 or from z2 and z1. The root mean squared
error of the Leave-One-Out cross validation procedure obtained by removing observations from z2
is RMSEz2,LOO = 4.80.10−3 whereas the one obtained by removing observations from z2 and z1
is RMSEz1,z2,LOO = 0.10. Comparing RMSEz2,LOO and RMSEz1,z2,LOO to the RMSE obtained
with the external test set, we see that the procedure which consists in removing points from z2 and
z1 provides a better proxy for the generalization error. Indeed, RMSEz2,LOO is a relevant proxy
for the generalization error only at points where z1 is available. Therefore, it underestimates the
error at locations where z1(x) is unknown.

Figure 4 represents the mean and confidence intervals at plus or minus twice the standard
deviation of the simple and universal co-krigings for points along the vertical line x1 = 0.99 and
the horizontal line x2 = 1.91 (x = (0.99, 1.91) corresponds to the coordinates of the point of D2

in the center of the domain [0.5, 1.5]× [1.5, 2.3]).
In Figure 4 on the right hand side, we see a necked point around the coordinates x1 = 1.5

since, in the direction of x2, the hyper-parameters of correlation for Z1(x) and δ2(x) are large
(θ1,2 = 1.20 and θ2,2 = 1.37) and a point of D2 have almost the same coordinate.

5.5 Multi-fidelity surrogate model for the mixture characteristic length

L
c

In this section, we build a co-kriging model for the mixture characteristic length Lc. The aim of
this example is to highlight that it could be worth having an adjustment coefficient ρ1 depending
on x. We use the same training and test sets as in the previous section and we consider a tensorised
matern- 52 kernel (25). Let us consider the two following cases:

• Case 1: g1(x) = 1, f2(x) = 1 and f1(x) = 1

• Case 2: gT1 (x) = ( 1 x1 ), f2(x) = 1 and f1(x) = 1

We have the following hyper-parameter maximum likelihood estimates for the two cases

• Case 1: θ̂1 = (0.52, 1.09) and θ̂2 = (0.03, 0.02)

• Case 2: θ̂1 = (0.52, 1.09) and θ̂2 = (0.14, 1.37)

The estimation of θ̂1 is identical in the two cases since it does not depend on ρ1 and it is estimated
with the same observations. Furthermore, we see an important difference between the estimates
of θ̂2. Indeed, they are larger in the Case 2 than in the Case 1 which suppose that the model
is smoother in the Case 2. Table 3 presents the estimations of β1 and σ2

1 for the two cases (see
Section 2.3).
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Figure 4: Mean and confidence intervals for the simple and the universal co-kriging. The figure
on the left hand side represents the predictions along the vertical line x1 = 0.99 and the figure on
the right hand side represents the predictions along the horizontal line x2 = 1.91. The solid black
lines represent the mean of the two co-kriging models, the dashed lines represent the confidence
interval at plus or minus twice the standard deviation of the simple co-kriging and the dotted lines
represent the same confidence intervals for the universal co-kriging.

Trend coefficient Σ1ν1 Σ1/σ
2
1

β1 1.26 0.97

Variance coefficient Q1 2α1

σ2
1 15.62 24

Table 3: Application: hydrodynamic simulator. Estimations of β1 and σ2
1 for the response Lc (see

equations (14) and (16)).

Then, Table 4 presents the estimations of β2, βρ1
and σ2

2 for the Case 1, i.e. when ρ1 is constant
(see Section 2.3).

Trend coefficient Σ2ν2 Σ2/σ
2
2

(

βρ1

β2

) (

1.49
−0.26

) (

0.83 −0.79
−0.79 0.95

)

Variance coefficient Q2 2α2

σ2
2 0.01 3

Table 4: Application: hydrodynamic simulator. Estimations of β2, βρ1
and σ2

2 for the Case 1, i.e.
when ρ1 is constant, for the response Lc (see equations (14) and (16)).

Finally, Table 5 presents the estimations of β2, βρ1
and σ2

2 for the Case 2, i.e. when ρ1 depends
on x (see Section 2.3).
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Trend coefficient Σ2ν2 Σ2/σ
2
2

(

βρ1

β2

)





1.66
−0.48
−0.04









2.34 −3.50 0.44
−3.50 9.18 −3.67
0.44 −3.67 2.60





Variance coefficient Q2 2α2

σ2
2 3.24.10−4 2

Table 5: Application: hydrodynamic simulator. Estimations of β2, βρ1
and σ2

2 for the Case 2, i.e.
when ρ1 depends on x, for the response Lc (see equations (14) and (16)).

We see in Table 4 that the adjustment coefficient is around 1.5 which indicates that the
magnitude of the expensive code is slightly more important than the one of the cheap code.
Furthermore, we see in Table 5 that if we consider an adjustment coefficient which linearly depends
on x1 (i.e. with gT1 (x) = ( 1 x1 )), the constant part of βρ1

is more important (it is around
1.66) and there is a negative slop in the direction x1 (it is around −0.48). Since x ∈ [0.5, 1.5],
the averaged value of ρ1 is 1.18 and goes from 1.42 at x1 = 0.5 to 0.94 at x1 = 1.5. We see also
a significant difference between the two case for the variance estimation. Indeed, the variance
estimate in the Case 1 (see Table 4) is much more important than the one in the Case 2 (see Table
5). This could mean that we learn better in the Case 2 than in the Case 1.

Figure 5 illustrates the contour plot of the two co-kriging models, i.e. when ρ1 is constant and
when ρ depends on x.
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Figure 5: Contour plot of the co-kriging mean when ρ1 is constant (on the left hand side) and
when ρ1 is depends on x (of the right hand side). The triangles represent the n2 = 5 points of the
experimental design set of the expensive code.

Furthermore, Table 6 compares the prediction accuracy of the co-kriging in the two cases. The
precision is computed on the test set of 175 observations.

15



RMSE MaxAE
Case 1 7.26.10−3 0.23
case 2 1.53.10−3 0.16

Table 6: Application: hydrodynamic simulator. Comparison between co-kriging when ρ1 is con-
stant (Case 1) and co-kriging when ρ1 depends on x (Case 2). The Case 2 provides predictions
better than the Case 1, it is hence worthwhile to consider an adjustment coefficient not constant.

We see that the co-kriging model in Case 2 is clearly better than the one in Case 1. Therefore,
we illustrate in this application that it can be worth considering an adjustment coefficient not con-
stant contrary to the model presented in [Kennedy and O’Hagan, 2000] and [Forrester et al., 2007].

6 Conclusion

We have presented in this paper a recursive formulation for a multi-fidelity co-kriging model. This
model allows us to build surrogate models using data from experiments of different levels of fidelity.

The strength of the suggested approach is that it considerably reduces the complexity of the
co-kriging model while it preserves its predictive efficiency. Therefore, the proposed method is
competitive regarding the Bayes linear approach in which the principal strength is a low com-
putational cost but with a low predictive efficiency. Furthermore, one of the most important
consequences of the recursive formulation is that the construction of the surrogate model is equiv-
alent to build s independent krigings. Consequently, we can naturally adapt results of kriging to
the proposed co-kriging model.

In this paper, we first prove that our model is equivalent to another very popular model in
terms of predictive distributions whereas it reduces its complexity. Then, we present a Bayesian
estimation of the model parameters which provides closed form expressions for the parameters of
the posterior distributions. We note that, from these posterior distributions, we can deduce the
maximum likelihood estimates of the parameters. Then, thanks to the joint distributions of the
parameters and the recursive formulation, we can deduce closed form formulas for the mean and
covariance of the posterior predictive distribution. Due to their similarities with the universal
kriging equations, we call these formulas the universal co-kriging equations. Finally, we present
closed form expressions for the cross-validation equations of the co-kriging surrogate model. These
expressions reduce considerably the complexity of the cross-validation procedure and are derived
from the one of kriging model that we have extended.

The suggested model has been successfully applied to a hydrodynamic code. We also present
in this application a practical way to design the experiments of the multi-fidelity model and we
show that it is worth using this co-kriging model instead of a kriging model.
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A Proofs

A.1 Proof of Proposition 1

Let us consider the co-kriging mean of the model (1) presented in [Kennedy and O’Hagan, 2000]
for a t-level co-kriging with t = 2, . . . , s:

mZt
(x) = h′t(x)

T β(t) + tt(x)
TV −1

t (z(t) −Htβ
(t))

16



where β(t) = (βT
1 , . . . , β

T
t )

T , z(t) = (zT1 , . . . , z
T
t )

T and h′t(x)
T is defined in equation (6). We have:

h′t(x)
Tβ(t) = ρt−1(x)

((

t−2
∏

i=1

ρi(x)

)

fT
1 (x),

(

t−2
∏

i=2

ρi(x)

)

fT
2 (x), . . . , fT

t−1(x)

)

β(t−1) + fT
t (x)βt

= ρt−1(x)h
′

t−1(x)
T β(t−1) + fT

t (x)βt

Then, from equations (7) and (8), we have the following equality:

tt(x)
TV −1

t z(t) = ρt−1(x)tt−1(x)
TV −1

t−1z
(t−1) −

(

ρTt−1(Dt)
)

⊙
(

rTt (x)R
−1
t zt−1(Dt)

)

+rTt (x)R
−1
t zt

and with equation (6):

tt(x)
TV −1

t Htβ
(t) = ρt−1(x)tt−1(x)

TV −1
t−1Ht−1β

(t−1) + rTt (x)R
−1
t Ft(Dt)βt

where ⊙ stands for the element by element matrix product. We hence obtain the recursive relation:

mZt
(x) = ρt−1(x)mZt−1

(x) + fT
t (x)βt + rTt (x)R

−1
t [zt − ρt−1(Dt)⊙ zt−1(Dt)− Ft(Dt)βt]

The co-kriging mean of the model (9) satisfies the same recursive relation (6), and we have
mZ1

(x) = µZ1
(x). This proves the first equality of Proposition 1:

µZs
(x) = mZs

(x)

We follow the same guideline for the co-kriging covariance:

s2Zt
(x, x′) = v2Zt

(x, x′)− tTt (x)V
−1
t tt(x

′)

where v2Zt
(x, x′) is the covariance between Zt(x) and Zt(x

′) and s2Zt
(x, x′) is the covariance function

of the conditioned Gaussian process [Zt(x)|Z(t) = z(t), β, βρ, σ
2] for the model (1). From equation

(8), we can deduce the following equality:

σ2
Zt
(x, x′) = ρt−1(x)ρt−1(x

′)v2Zt−1
(x, x′) + v2t (x, x

′)

where σ2
Zt
(x, x′) is the covariance function of the conditioned Gaussian process [Zt(x)|Z(t) =

z(t), βt, βρt−1
, σ2

t ] of the recursive model (9). Then, from equation (7) and (8), we have:

tTt (x)V
−1
t tt(x

′) = ρt−1(x)ρt−1(x
′)tTt−1(x)V

−1
t−1tt−1(x

′) + σ2
t r

T
t (x)R

−1
t rt(x

′)

Finally we can deduce the following equality:

s2Zt
(x, x′) = ρt−1(x)ρt−1(x

′)
(

v2Zt−1
(x, x′)− tTt−1(x)V

−1
t−1tt−1(x

′)
)

+ σ2
t

(

1− rTt (x)R
−1
t rt(x

′)
)

which is equivalent to:

s2Zt
(x, x′) = ρt−1(x)ρt−1(x

′)s2Zt−1
(x, x′) + σ2

t

(

1− rTt (x)R
−1
t rt(x

′)
)

This is the same recursive relation as the one satisfies by the co-kriging covariance σ2
Zt
(x, x′) of

the model (9) (see equation (12)). Since s2Z1
(x, x′) = σ2

Z1
(x, x′), we have :

σ2
Zs
(x, x′) = s2Zs

(x, x′)

This equality with x = x′ proves the second equality of Proposition 1. 2
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A.2 Proof of Proposition 2

Noting that the mean of the predictive distribution in equation (10) do not depend on σ2
t and

thanks to the law of total expectation, we have the following equality:

E

[

Zt(x)|Z(t) = z(t)
]

= E

[

E

[

Zt(x)|Z(t) = z(t), σ2
t , βt, βρt−1

] ∣

∣

∣Z(t) = z(t)
]

From the equations (11) and (14), we directly deduce the equation (17). Then, we have the
following equality:

var
(

µZt
(x)
∣

∣

∣z(t), σ2
t

)

= (hTt (x)− rt(x)
TR−1

t Ht)Σt(h
T
t (x) − rt(x)

TR−1
t Ht)

T (27)

The law of total variance states that:

var(Zt(x)|z(t), σ2
t ) = E

[

var(Zt(x)|z(t), βt, βρt−1
, σ2

t )
∣

∣

∣
z(t), σ2

t

]

+ var
(

E

[

Zt(x)|z(t), βt, βρt−1
, σ2

t

] ∣

∣

∣z(t), σ2
t

)

Thus, from equations (11), (17) and (27), we obtain:

var(Zt(x)|Z(t) = z(t), σ2
t ) = ρ̂2t (x)var(Zt−1(x)|Z(t−1) = z(t−1), σ2

t ) + σ2
t

(

1− rTt (x)R
−1
t rTt (x)

)

+
(

hTt − rTt (x)R
−1
t Ht

)

Σt

(

hTt − rTt (x)R
−1
t Ht

)T

(28)
Again using the law of total variance and the independence between E

[

Zt(x)|Z(t) = z(t), βt, βρt−1

]

and σ2
t , we have:

var(Zt(x)|z(t)) = Eσ2

t

[

var(Zt(x))|z(t), σ2
t

]

(29)

We obtain the equation (18) from equation (16) by noting that the mean of an inverse Gamma
distribution IG(a, b) is b/(a− 1) 2

A.3 Proof of Proposition 3

Let us consider that ξs is the index of the k last points ofDs. We denote byDtest these points. First
we consider the variance and the trend parameters as fixed, i.e. σ2

t,−ξt
= Qt

2(at−1) and λt,−ξt = Σtνt,

and Vs = 0, i.e. we are in the simple co-kriging case. Thanks to the block-wise inversion formula,
we have the following equality:

R−1
s =

(

A B
BT Q−1

)

(30)

with A =
[

R−1
s

]

[−ξs,−ξs]
+
[

R−1
s

]

[−ξs,−ξs]

[

R−1
s

]

[−ξs,ξs]
Q−1

[

R−1
s

]

[ξs,−ξs]

[

R−1
s

]

[−ξs,−ξs]
,

B = −
[

R−1
s

]

[−ξs,−ξs]

[

R−1
s

]

[−ξs,ξs]
Q−1 and:

Q =
[

R−1
s

]

[ξs,ξs]
−
[

R−1
s

]

[ξs,−ξs]

(

[

R−1
s

]

[−ξs,−ξs]

)−1
[

R−1
s

]

[−ξs,ξs]
(31)

We note that Qs

2(as−1)Q = Qt

2(at−1)

(

[

R−1
s

]

[ξs,ξs]

)−1

represents the covariance matrix of the points in

Dtest with respect to the covariance kernel of a Gaussian process of kernel Qs

2(as−1)rs(x, x
′) (which

is the one of δs(x)) conditioned by the points Ds \Dtest. Therefore, from the previous remark and
the equation (12), we can deduce the equation (21).

Furthermore, we have the following equality:

(

[

R−1
s

]

[ξs,ξs]

)−1
[

R−1
s (zs −Hsλs,−ξs)

]

[ξs]
= zs(Dtest)− hTs (Dtest)Σsνs

−
[

R−1
s

]

[−ξs,ξs]

(

[

R−1
s

]

[ξs,ξs]

)−1

×
(

zs−1(Ds \Dtest)− [HT
s ][−ξs]Σsνs

)

(32)
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From this equation and equation (11), we can directly deduce the equation (19) with εZs,ξs =
zs(Dtest)− µZs

(Dtest).
Then, we suppose the trend and the variance parameters as unknown and we have to re-

estimate them when we remove the observations. Thanks to the parameter estimations presented
in Section 2.3, we can deduce that the estimates of σ2

t,−ξt
and λt,−ξt when we remove observations

of index ξt are given by the following equations:

λs,−ξs

(

[HT
s ]−ξsKs[Hs]−ξs

)

= [HT
s ]−ξsKszs(Dtest) (33)

and:

σ2
s,−ξs =

(zs(Dtest)− [Hs]−ξsλs,−ξs)
T Ks (zs(Dtest)− [Hs]−ξsλs,−ξs)

ns − ps − qs−1 − ntrain
(34)

with Ks =
(

[Rs][−ξs,−ξs]

)−1

.

From the equality (30), we can deduce that Ks = A − BQBT from which we obtain the
equation (20). Finally, to obtain the cross-validation equations for the universal co-kriging, we
just have to estimate the following quantity (see equation (18)):

(

hTs (Dtest)
T −

[

R−1
s

]

[−ξs,ξs]
Ks[Hs]−ξs

)

Σs

(

hTs (Dtest)
T −

[

R−1
s

]

[−ξs,ξs]
Ks[Hs]−ξs

)T

(35)

with Σs =
(

[HT
s ]−ξsKs[Hs]−ξs

)−1
. The following equality:

(

hTs (Dtest)
T −

[

R−1
s

]

[−ξs,ξs]
Ks[Hs]−ξs

)

=
(

(

[R−1
s ][ξs,ξs]

)−1 [
R−1

s Hs

]

[ξs]

)

(36)

allows us to obtain the equation (23) and completes the proof. 2
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