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Discrete simulation of dense flows of polyhedral grains down a rough inclined plane
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1UNAM, IFSTTAR, Route de Bouaye, CS4, 44344 Bouguenais Cedex, France
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The influence of grain angularity on the properties of dense flows down a rough inclined plane are
investigated. Three-dimensional numerical simulations using the Non-Smooth Contact Dynamics
method are carried out with both spherical (rounded) and polyhedral (angular) grain assemblies.
Both sphere and polyhedra assemblies abide by the flow start and stop laws, although much higher
tilt angle values are required to trigger polyhedral grain flow. In the dense permanent flow regime,
both systems show similarities in the bulk of the material (away from the top free surface and the
substrate), such as uniform values of the solid fraction, inertial number and coordination number,
or linear dependency of the solid fraction and effective friction coefficient with the inertial number.
However, discrepancies are also observed between spherical and polyhedral particle flows. A dead (or
nearly arrested) zone appear in polyhedral grain flows close to the rough bottom surface, reflected
by locally concave velocity profiles, locally larger coordination number and solid fraction values,
smaller inertial number values. This dead zone disappears for smooth bottom surface. In addition,
unlike sphere assemblies, polyhedral grain assemblies exhibit significant normal stress differences,
which increase close to the substrate.

PACS numbers: 45.70.Mg, 81.05.Rm, 83.10-y, 83.80.Fg

I. INTRODUCTION

A. State of the art: dense flow of spherical grains

Research carried out over the past ten years have led
to significant progress in the understanding of the rheol-
ogy of dry granular materials in the dense regime [1–8].
Most studies, either experimental or by numerical simu-
lation, have been carried out using circular two dimen-
sional (2D) or spherical three dimensional (3D) grains.
For such grains, the local rheological laws, i.e. the rela-
tions between normal stress σn, shear stress σt, shear rate
γ̇ and solid fraction ν, have successfully been formulated,
involving the dimensionless inertial number [3]:

I = γ̇d

√

ρ

σn
. (1)

In (1), d denotes the mean grain diameter and ρ the mass
density within the grains. Flow regimes can be classified
according to I values. Low I values correspond to the
quasi-static regime, the material behaving as an elasto-
plastic solid (critical state of soil mechanics) [9]. Con-
versely, high I values correspond to the collisional regime,
where grains interact through binary collisions that can
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be considered as instantaneous and decorrelated [10]. Be-
tween these two regimes, a dense flow regime exists for
which the role of grain inertia cannot be neglected. Then,
the material flows in a liquid rather than gaseous state.
Grain displacements are strongly correlated. A contact
network, which fluctuates both in space and time, perco-
lates through the assembly. When I increases, the mean
contact duration decreases, the assembly dilates, and the
force chains become smaller and scarcer.

The rheological laws may be described through the in-
ertial number dependency of two dimensionless quanti-
ties, solid fraction ν and effective friction µ∗ = σt/σn.
Simulations of 2D homogeneous shear flow [3] evidenced
the following simple linear laws for solid fraction and ef-
fective friction coefficient, which provide good fit to the
numerical data within interval 5.10−3 ≤ I ≤ 0.15:

ν(I) = νmax − aI, (2)

µ∗(I) = µ∗
min + bI. (3)

Maximum solid fraction νmax and minimum effective fric-
tion coefficient µ∗

min can respectively be identified with
the solid fraction νc and with the internal friction coeffi-
cient tanφ in the critical state. The properties of the crit-
ical state generally depend only on grain geometry and
contact friction coefficient [11]. Similar laws were identi-
fied in 3D simulations [12, 13], although power laws are
reported with exponents below 1 for the dependence on I,
as the quasistatic limit I → 0 is approached. Coefficient
µ∗(I) is also observed to cease increasing as I reaches
larger values, above a few times unity [5]. Eqs. (2)–(3)
were successfully applied to 2D heterogeneous shear flows
in annular cells [14]. They apply in homogeneous steady
shear flows whatever the initial conditions. These laws
have been generalized to cohesive granular materials [15]



and to concentrated suspensions [11, 16], provided ade-
quate dimensionless numbers are introduced to charac-
terize viscous or cohesive effects. In general parameters
νmax and µ∗

min, as well as coefficients a and b, when a lin-
ear fit is used, depend on material characteristics [3, 17].

Dry granular material flows down a rough inclined
plane have received wide attention in 2D [18] and 3D
experiments [5, 19, 20] and in 2D [20–23] and 3D [24] dis-
crete numerical simulations. Truly 3D experiments have
suggested and evidenced a tensorial form of the friction
law µ∗(I) [5]. The plane bed must be sufficiently rough
to affect the flow. Then, a dense steady and uniform flow
is observed within a given range of tilt angle θ and flow
thickness H values. Starting from such a flow regime
and slowly decreasing the tilt angle, the friction law (3)
predicts gradual deceleration of the flow until a stop tilt
angle θstop = φ is reached, as well as gradual acceler-
ation of the flow beyond a start tilt angle θstart equal
to the stop tilt angle. In fact, for various materials and
bed roughnesses, a sudden flow stop is observed both
experimentally and numerically for a tilt angle which is
strongly influenced by the flow thickness, H [19–22], and
a sudden flow start is observed when the tilt angle is in-
creased to reach a threshold value also highly dependent
on the flow thickness H the start tilt angle being higher
than the stop tilt angle [25]. As a consequence, stop and
start flow thicknesses Hstop/start(θ) may be defined, that
can be well described by the following expression:

Hstop/start(θ) = Bd
θM − θ

θ − θm
, (4)

in which parameters B (of order 1), θm and θM respec-
tively express substrate surface roughness and flowing
material dependent length (Bd) and limit tilt angles for
thick and thin layers.

B. Influence of grain shape

The works mentioned above highlight that a minimal-
istic model of granular material reveals a complex generic
rheology. However, this fact tends at the same time to
hide the complexity arising from specific features such as
the shape of particles.

Given a multitude of potential particle morphologies,
a wide range of nontrivial effect were reported, both ex-
perimentally and numerically, mainly in static and qua-
sistatic conditions [26–42]. Only very recently did sys-
tematic studies of elongated [43–50] or nonconvex [51, 52]
particles report unusually high or low packing fractions,
while the shear strength is observed to grow as the shape
increasingly deviates from the disk or the sphere. The
shear strength in assemblies of regular n-sided polygons
increases with angularity 2π/n and saturates at a max-
imum, whereas the packing fraction declines towards a
plateau [53]. In all cases, the increase of shear strength
with a suitably defined non-sphericity parameter may be

attributed to the increasing frustration of particle rota-
tions [54].

The flows of smooth-shaped non-spherical particles
(e.g., spheroid and cuboids) were also studied in vari-
ous geometries [28, 29, 33, 40, 55–57, 57–66]. Those
works reported strong shear strength increases away from
the spherical shape. At the same time, the increase of
the aspect ratio of the particles leads to an increase in
solid fraction near the wall and to a lower central solid
fraction [67]. Remarkably, faster silo discharges are ob-
served for elongated particles than for circular or spher-
ical ones [59].

The flows of particles of more complex shape were stud-
ied experimentally by Borzsonyi et al. [62, 63], who, in-
terestingly, reported that the effective friction increases
with bed roughness, and that avalanches of non-spherical
particles have a higher velocity than for spherical parti-
cles. Numerically, it is only recently that more complex
shapes, such as polyhedra, have been used to simulate silo
discharge flows [68–71]. It has been shown that the in-
crease of the angularity of the particles reduces the mass
flow rate from the hopper.

Nevertheless, no results have been reported yet on the
effect of particle shape on macroscopic laws. Such a
study involves technical difficulties, related to contact
detection and force calculation between particles of ar-
bitrary shape [72–76], and also requires extensive sim-
ulation campaigns to systematically explore sufficiently
wide ranges of material states. It is nevertheless felt nec-
essary to understand to what extent local laws evidenced
for spherical grains (flow threshold, rheological laws) still
apply to angular shapes.

C. Engineering concerns about grain angularity

The angularity of aggregates –i.e., granular materials
used in construction and civil engineering – has long
been recognized as an issue of great practical importance.
More than 85% of the volume of road pavement materials
is occupied by aggregate grains, either unbound or mixed
with a bituminous binder. Of the 3 billion tons of aggre-
gate produced each year in Europe (31 countries, includ-
ing Russia), about 40% come from alluvial deposits [77],
and are made of rounded shaped grains or gravels. This
lack of angularity induces poor performance in terms of
pavement surface skid resistance [78] and rutting of as-
phalt mixes [79, 80] or unbound [81] structural layers.

In order to avoid excessive amounts of rounded grav-
els in road building materials, as direct visual inspection
of grain surfaces is slow and inaccurate, a test based on
flow rate measurement at the outlet of a vibrated vertical
chute is customarily employed [82]. Even though the flow
rate is also influenced by rock texture, aggregate grading
and flakiness index [83, 84], it is regarded as character-
izing the angularity of the grains, as it notably increases
for rounded particles as compared to gravels with a high
percentage of crushed and broken surfaces. Motivated



by the search for simpler, more reproducible and better
characterized rheological tests than vibrated chute flows,
rough inclined plane experiments recorded the effects of
gravel angularity on steady-state flow rates [85], in good
correlation with vibrated vertical chute results [86]. The
dense permanent flow regime is shifted to larger slope
angles for angular gravels as compared to rounded ones,
but results are qualitatively similar for slope angle and
layer thickness dependencies, and flow thresholds are still
fitted by relation (4), in which parameters θm, θM and
B depend on grain angularity.

D. Objectives. Outline of the paper

This study exploits the unique ability of discrete sim-
ulations of granular assemblies to carry out “numerical
experiments” in ideally controlled conditions, and to pro-
vide detailed information on the internal state of the
tested material. In order to investigate the influence of
grain angularity on the properties of dense flows down
a rough inclined plane, formulated in intrinsic rheologi-
cal terms, simulations using either angular or spherical
grains are performed in parallel and their results are sys-
tematically compared. After the simulated system are
described in Sec. II, Sec. III reports on the flow diagrams
and on the profiles of various quantities in dense steady
flows. Then Sec. IV identifies constitutive laws. Sec. V
summarizes our results and draws some perspectives.

II. SIMULATED SYSTEM

A. Shape of grains

The simulated system is a three dimensional dense as-
sembly of n grains of mass density ρ, interacting by con-
tact forces involving two dissipative mechanisms, fric-
tion (microscopic friction coefficient µ) and totally in-
elastic collisions. Two grain shapes are studied, spher-
ical grains of average diameter d and polyhedral grains
of average characteristic dimension d. The polyhedral
geometry (Fig. 1) is that of a pinacoid, with eight ver-
tices, fourteen edges and eight faces. This pohyhedron

L
l
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α

FIG. 1: (Color online) Model polyhedral grain: pinacoid.

has three planes of symmetry and is determined by four

parameters: length L, width l, height h and angle α.
According to an extensive experimental study with vari-
ous rock types [87], the pinacoid gives the best fit among
simple geometries for an aggregate grain. In order to
have the same aspect ratio for both grain geometries,
the pinacoid dimensional parameters are taken identical
(L = l = h), with the characteristic dimension d ex-

pressed as d =
√

L2 + l2. In addition, angle α is set to
60◦ (so that the grain volume is approximately equal to
0.143d3, around 1/3 of the volume of a sphere). Besides,
grain diameters (or characteristic dimensions) are uni-
formly distributed between d.(1 − ε) and d.(1 + ε), with
ε = 0.1 to prevent both crystallization and segregation
phenomena.

Previous studies showed that, in the rigid contact limit

– say, when typical contact deflections do not exceed
10−4d – the rheology of granular flows does not depend on
contact elasticity [3, 4, 13, 17, 88–90]. Given usual values
of elastic modulus and stresses, this applies to most nat-
ural and experimental granular flows, and we therefore
deal with perfectly rigid grains.

B. Flow configuration. Sample preparation.

The sample geometry is that of a parallelepiped
(Fig. 2) limited in the z direction by a fixed rough bottom
wall and a free surface at the top, with periodic bound-
ary conditions applied in the flow direction y and in the
transverse direction x. Thanks to these periodic condi-
tions, the flow structure is not affected by lateral walls,
contrary to experiments [91] and infinitely long chutes
can be simulated using a finite number of grains. The
lengths of the parallelepiped (Ly = 30d and Lx = 26d)
are large enough to avoid size effects [18, 22, 24]. The
initial configuration is prepared according to the follow-
ing geometrical deposition protocol [92]: spherical grains
are sequentially dropped along z in the simulation box,
and each grain stops on the free surface made of the pre-
ceding layer of grains (or on the rough bottom wall for
the first layer of grains), so that each new grain relies on
three grains chosen in order to minimize its altitude z. In
the case of polyhedral grains, a pinacoid with the largest
possible characteristic dimension d is subsequently intro-
duced in each sphere and randomly oriented.

For both studied grain shapes, a specific rough sub-
strate is prepared, consisting of a plane bottom wall on
which grains (identical to the flowing ones) are glued.
The rough substrate is constructed by geometrical de-
position of three layers of grains according to the pre-
ceding procedure. The lowest one is in contact with the
bottom plane, while the highest grains are removed in
order to keep a thickness of the rough bottom of ap-
proximately 1.5d. In the case of polyhedral grains, an
intermediate phase consisting of grain deposition under
gravity is needed prior to the elimination of the highest
grains, as the geometrical deposition protocol does not
lead to mechanical equilibrium. In the following, z = 0
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FIG. 2: (Color online) Samples of 19000 polyhedra (a) and
6900 spheres (b).

corresponds to a distance d from the plane bottom wall.
Fig. 3 shows an image of the substrate used for polyhe-
dral particles. In the next preparation step, n free grains
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FIG. 3: (Color online) Rough substrate obtained on gluing
pinacoids to a plane, seen from above.

are geometrically deposited onto this substrate, by the
same procedure. Finally, gravity ~g (0,g sin θ,−g cos θ) is

applied in order to initiate the flow, the bottom rough
surface being now inclined at angle θ with respect to the
horizontal plane. According to the geometrical deposi-
tion protocol, spheres are in contact when the gravity
is applied, while pinacoids are still free of contact inside
their virtual spherical envelope. However, all features
of initial configurations are forgotten in the steady state
flows investigated in the present study.

C. Contact dynamics method

The numerical simulations are carried out using the
contact dynamics (CD) method [76, 93–95]. The method
integrates the equations of motion of a collection of rigid
objects with contact interactions, involving Coulomb fric-
tion and dissipative collisions. It relies on an implicit
time-stepping scheme in which the contact laws are pre-
scribed as complementarity relations between momentum
transfers at contacts within one time step and relative
velocities, in such a way that enduring contacts and in-
stantaneous collisions are dealt with on an equal foot-
ing. These laws introduce restitution coefficients (a nor-
mal one, eN and a tangential one, eT ) and a coefficient
of sliding friction µ such that the Coulomb inequality
ft ≤ µfn is enforced on tangential (ft) and normal (fn)
force components at a contact point, with sliding relative
motion only allowed when the equality is fulfilled. The
contact laws are nonsmooth, as they express no func-
tional dependence between contact forces and relative
velocities. Iterative methods are used to determine both
forces and velocities at the end of each time step, si-
multaneously. The CD method proved apt to deal with
dense flows [4, 21, 96] as well as with quasi-static plas-
tic deformation [48, 75, 97–101]. One advantage of the
CD method over more conventional molecular dynamics
(MD) is that time needs not be finely discretized, as the
very small space and time scales associated with contact
deflection and collisions are overlooked. Some compar-
isons of CD and MD methods can be seen in [102, 103].
In our simulations the time step is fixed to 5.10−3t0, with
t0 =

√

d/g, the characteristic free fall time of a grain over
height d under gravity g.

To simulate polyhedral particles we use the LMGC90
software implementation [76, 104, 105] of the CD method,
which exploits a 3D contact detection algorithm de-
scribed in detail in [72, 76, 105], and deals with the var-
ious types of contacts illustrated in Fig. 4 as sets of one
to three independent point contacts. Vertex to face con-
tacts, and edge to edge ones, are simple point contacts.
Edge to face contacts are dealt with as double contacts, or
pairs of contacts points, each one being applied the con-
tact law. Face-to-face contacts are decomposed into tri-
angular regions, each treated as a triple contact (a triplet
of contact points). Two forces are calculated for edge to
face contacts and three forces for face to face contacts,
but only the net resulting force and its point of applica-
tion are physically meaningful.
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FIG. 4: (Color online) Different types of contacts between
two polyhedra: (a) vertex to face; (b) edge to face; (c) face
to face; (d) edge to edge.

D. Material and system parameters

For spheres, the number of grains in the simulated cell,
n, varies between 1100 and 6900, so that H/d varies be-
tween 5 and 18. For pinacoids, n varies between 7100 and
19000, so that H/d varies between 6 and 14. Because of
the dilation of the material, height H/d will slightly in-
crease when θ increases.

TABLE I: Simulated systems. Number of grains (n), horizon-
tal dimensions of simulation cell (Ly/d and Lx/d), friction (µ)
and restitution (eN,T ) coefficients.

Grain n Ly/d Lx/d µ eN,T

Spheres 1100 - 6900 30 26 0.4 0
Pinacoid 7100 - 19000 30 26 0.4 0

The simulated system parameters are listed in Tab. I.
Unless specified differently, the friction coefficient, µW ,
in contacts between the flowing particles and the rough
substrate is equal to µ. In the sequel, results are given
in dimensionless form on expressing lengths and times in
respective units of d and t0 (defined in Sec. II C), while
the stress scale is given by ρgd.

III. FLOW CHARACTERISTICS

Dense permanent flows down a rough inclined plane
being expected only for a finite range of parameters H
and θ, the phase diagram (θ, H) with the flow thresholds
is first determined (Sec. III A). Then, dense permanent
flow regimes are analyzed in detail through the profiles

of various quantities (solid fraction, coordination num-
ber, velocity, stress components and inertial number) in
Sec. III B. We also investigate some specific properties
of the polyhedral particle layers flowing close to the sub-
strate in (Sec. III C).

A. Phase diagram

We typically observe two kinds of states: in the flowing
states, the ratio of the total kinetic energy of the flowing
grains to their potential energy in the gravity field is of
order 1 with relative fluctuations of order 0.1 (increasing
close to stop). This ratio drops below 10−4 in the no-flow
state.

Fig. 5a shows two pairs of curves characterizing the
flow initiation (Hstart) and cessation (Hstop) calculated
for spheres and pinacoids, as functions of tilt angle θ. To
determine these curves a number n of grains is chosen,
corresponding to a typical flow height H , and a tilt angle
θ is imposed, such that the material flows. Then, the
tilt angle is gradually reduced by steps of 0.5◦ down to
a critical value θstop corresponding to flow stop. Thick-
ness H is then measured in the no-flow state. Next, the
tilt angle is slowly increased by steps of 0.5◦ until a crit-
ical value θstart corresponding to flow start is reached,
whence a measurement of the corresponding layer thick-
ness H . This procedure is repeated for different numbers
n of grains and leads to various θstop(H) and θstart(H)
thresholds, from which Hstop(θ) and Hstart(θ) curves are
built.

In agreement with [19], Fig. 5a shows that the flow stop
and initiation curves calculated for spheres are fitted by
Eq. 4, for pinacoids as well as for spheres, with a shift
towards larger values of θ for the angular grains. The
values of constant B, and angles θm and θM are given
in Tab. II. On switching from spheres to pinacoids, the
three parameters significantly increase, as B nearly dou-
bles while threshold angles θm and θM are respectively
shifted by approximately 13◦ and 16◦.

Fig. 5b displays the flow threshold curves measured
by [19] for glass beads and by [85] for angular aggregates
(roughness made of grains similar to the flowing ones).
We observe a good qualitative agreement between these
experimental values and the present simulation results.
Furthermore, in the case of spheres, the calculated values
are also consistent with the 3D simulations results of [24].

TABLE II: Values of the parameters B, θm and θM for
Hstop(θ) and Hstart(θ) for polyhedra and spheres.

B/d θm θM

Hstop(θ) (Spheres) 2 19◦ 31◦

Hstop(θ) (Polyhedra) 3.5 32◦ 47◦

Hstart(θ) (Spheres) 2.5 20◦ 31◦

Hstart(θ) (Polyhedra) 4.2 32◦ 49◦
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FIG. 5: (Color online) Flow diagram (red = start, black =
stop): (a) data points and fit with Eq. 4, this study (squares=
polyhedra, circles = spheres); (b) fit with Eq. 4 for experi-
ments with spheres [19] and aggregates [85].

B. Analysis of steady flow

We now compare steady flows of spheres (n = 6900
grains) and pinacoids (n = 19000 grains), which corre-
sponds to the larger and approximately equal height. A
steady flow regime is deemed to be reached when the
mean velocity of grains does not show any appreciable
trend over 500t0. In the following paragraphs, we study
the influence of tilt angle θ on the profiles of various quan-
tities, for both spheres and polyhedra. Average quanti-
ties are measured in order to characterize the packing
structure (solid fraction, coordination number), grains
velocity (translation and rotation) and stress distribu-
tion. Homogeneity in the flow direction as well as flow
stationarity allow calculating time-averaged values from
N configurations (N= 75 to 125) regularly spread over
the steady flow range (e.g. every 1000 time steps) as well
as spatial mean values along the y axis. The value G(z) of
a quantity G at altitude z is calculated across a δz = d/10
wide stripe using procedures detailed in [20, 22, 106].
When represented, error bars denote the standard devi-
ation.

For spheres, the steady flow regime covers values of
tilt angle θ ranging from 21◦ to 28◦ for H/d ≃ 17. This
result is consistent with the 2D simulations carried out
by Azanza [18] (tilt angle 19◦ to 28◦ for H/d ≃ 16), and
Prochnow [22] (θ from 15◦ to 24◦ for H/d between 16

and 18). For polyhedra, this range of tilt angles is offset
to much higher values and it is much narrower than for
spheres, as θ ranges from 35.7◦ to 38◦ for H/d ≃ 15.

Generally, in assemblies of spheres, close to the sub-
strate, oscillations are observed in the profiles of solid
fraction, coordination number, angular velocities and
stresses, as in Figs. 6a, 7a, 9a, 10a. This phenomenon
reflects a material structuring effect over the first five
layers [18, 22, 24]. Figs. 6b, 7b, 9b, 10b show no such
effect for polyhedra.

1. Solid fraction

Fig. 6 shows solid fraction profiles ν(z) for polyhedra
(a) and for spheres (b) as functions of tilt angle θ. For
both grain shapes, the solid fraction is nearly uniform in
the bulk of the assembly. For polyhedra, the solid frac-
tion increases close to the rough bottom surface (within a
distance of about 5 grain diameters). Solid fractions for
polyhedra flows are significantly lower than for sphere
flows (0.5 compared to 0.6 for spheres - except the lowest
five layers). Finally, these profiles evidence an expansion
of the assembly (dilatancy effect) when the tilt angle in-
creases.
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FIG. 6: (Color online) Solid fraction profiles for polyhedra (a)
and spheres (b).



2. Coordination number

In Fig. 7 coordination number profiles Zc(z) for poly-
hedra (a) and for spheres (b) are plotted for different
values of θ. Zc is the mean number of contacts per grain.
For polyhedra, a contact is counted just once whatever its
type (simple, double or triple). Zc appears to be nearly
uniform in the bulk of the assembly and it decreases when
the tilt angle increases. For spheres, Zc decreases from
about 3.6 for θ = 21◦ to about 2 for θ = 28◦, which
falls within the range of values observed by [24]. The
maximum value, 3.6, is still somewhat below the mini-
mum coordination number (about 4, see [107]) in equi-
librated bead packs, just like coordination numbers be-
low 3 were reported in [3]. The quasistatic limit of Zc

requires extremely small I values to be accurately ap-
proached. Moreover, values of Zc in dense flows remain
somewhat sensitive to restitution coefficients and elastic
contact stiffness [3, 24], even though constitutive rela-
tions are not. For polyhedra, Zc decreases from roughly
3.3 for θ = 35.7◦ to about 2.7 for θ = 38◦, but it always
increases significantly close to the substrate, where the
solid fraction increases.
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FIG. 7: (Color online) Coordination number profiles for poly-
hedra (a) and spheres (b).

3. Velocity

Fig. 8 shows velocity profiles vy(z) for polyhedra (a)
and for spheres (b) as a function of tilt angle θ. In both
cases, no sliding is observed at the rough bed interface,
and the velocity profiles are convex a few layers away
from the rough bed. In addition, shear rate γ̇ decreases to
zero at the rough bottom in the case of polyhedra, which
is not the case for spheres. Thus, velocity profiles are
totally convex for spheres, whereas they are concave close
to the rough bed for polyhedra. Besides, in the case of
polyhedra, scaled velocities are significantly higher than
for spheres (by a factor of 5) just above the flow start
threshold (tilt angle 35,7◦ and 36◦).
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FIG. 8: (Color online) Velocity profiles for polyhedra (a) and
spheres (b) - insert: test of Bagnold’s rheology.

4. Angular velocity

Fig. 9 shows mean rotation velocity profiles ωx(z) for
polyhedra (a) and for spheres (b) as a function of tilt
angle θ. Like for the previous three profiles, a difference
can be observed close to the rough bed between spheres
and polyhedra. In both cases rotation velocities tend to
decrease away from the rough bed, but angular velocities
first increase with z (for z/d ≤ 5) for polyhedral grains.
It was previously shown that the relation ωx = −γ̇/2
is very well satisfied in various shear configurations [14,
15, 18, 20, 22]. In Fig. 9, the shear rate is evaluated



using a polynomial fit of the velocity profile (represented
as symbols). This relation remains valid for spheres and
polyhedra across the full assembly thickness.
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FIG. 9: (Color online) Angular velocity profiles for polyhedra
(a) and spheres (b). Comparison with −γ̇/2 (symbols).

5. Stress components

Fig. 10 shows mean stress profiles σzz(z) and σyz(z) for
polyhedra (a) and for spheres (b) for various tilt angle
θ. In dense flows the stress tensor σ is dominated by
the contribution of contact forces. The contribution of
grain velocity fluctuations remains very small (about 20
times smaller for polyhedra) compared to that of contact
forces in all the simulations considered here [3, 22], so
that we shall not discuss it in the following. We adopt
the symmetrized expression suggested by Moreau [108].
Otherwise, asymmetries of the order of 50% are observed
for polyhedra. Local expressions are calculated within
each slice z to z + δz from the contact forces at any
contact point c inside the slice, whence the formula:

σ(z) =
1

LxLyδz
Sym





∑

z≤c≤z+δz

~f c ⊗ ~rc



 , (5)

in which ~f c is the contact force (or the sum of contact
forces in case of double or triple contact) exerted on grain
j by grain i and ~rc is the vector pointing from the center

of mass of grain i to the center of mass of grain j. Also
observe that, since the CD method determines contact

impulses ~P c at each time step, the contact forces are

given by ~f c = ~P c × ∆t.
As a check, we compare our calculations with the pre-

dictions of the momentum balance equations in steady
uniform flow:







σzz(z) = ρg cos θ
∫ ∞

z
ν(t)dt,

σyz(z) = −ρg sin θ
∫ ∞

z ν(t)dt.
(6)

The insert in Fig. 10 shows excellent agreement. In such
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FIG. 10: (Color online) Stress component profiles for polyhe-
dra (a) and spheres (b). In both cases, the insert compares
calculated stresses (plain curves) and those predicted by (6)
(dashed lines) for θ = 36◦.

a steady uniform flow the effective friction coefficient is
defined as µ∗ = −σyz/σzz and is equal to tan θ. Fig. 11
focuses on mean normal stress profiles σxx(z), σyy(z) and
σzz(z) for polyhedra with θ = 36◦ (a) and for spheres
with θ = 21◦ (b).

For spheres, one observes σyy ≃ σzz while σxx is
slightly (typically by 15%) smaller in the bulk of the ma-
terial, in full agreement with [24]. The layer structuring
perpendicular to the z-axis, close to the rough bottom,
induces oscillations in the stress profiles, as most contacts
are located at regular intervals along the z axis, and their
favored orientation is correlated to z. If l denotes the or-
der number of a layer (ranging from 1 close to the rough
wall to H/d at the top free surface), contacts between
particles of the same layer are more frequent in planes
z = (l − 1/2)d, while interlayer ones tend to occur at
z = (l − 1)d. As a consequence, σzz(z) reaches maxima



as z is an integer multiple of d, whereas σxx(z) and σyy(z)
reach their maxima as z is an odd multiple of d/2.
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FIG. 11: (Color online) Normal stress profiles in the x, y and
z directions for polyhedra with θ = 36◦ (a) and spheres with
θ = 21◦(b).

For polyhedra, we observe differences between normal
stress components σxx, σyy and σzz. In the bulk of the
material, σyy is larger than σzz by about 15% and σxx is
smaller than σzz by roughly 20% (see insert in Fig. 11a).

6. Inertial number

Fig. 12 plots inertial number profiles I(z) (with σn =
σzz in Eq.1) for polyhedra (a) and for spheres (b) for
different values of tilt angle θ. We observe that I is uni-
form for spheres, except close to boundaries, as larger
I values are recorded in an agitated thin layer near the
free surface and as local layerwise structuring affects the
material close to the substrate. For polyhedra, however,
discarding the immediate vicinity of the free surface, two
regions should be distinguished. While I is nearly uni-
form above z = 5d, it is a growing function of z below.

For spheres, since the solid fraction is nearly uniform
along z, one may estimate:

σzz(z) = ρgν(H − z) cos θ, (7)

where ν slightly depends on θ (dilatancy effect). Then,
since the inertial number is also nearly uniform along
z, we conclude that the stress components satisfy the
Bagnoldian scaling σij ∝ γ̇2 [109]. We may even deduce
that the velocity profile verifies:

vy(z) =
2I(θ)

√

ν(θ)g cos θ

3d

(

H3/2 − (H − z)3/2
)

. (8)
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FIG. 12: (Color online) Inertial number profiles for polyhedra
(a) and spheres (b).

The insert in Fig. 8b shows an excellent agreement
with this prediction, except close to the rough wall due
to deviations of solid fraction and inertial number from
their value in the bulk, as was previously shown in [8, 22].

C. The “dead zone” of polyhedra near the
susbtrate

1. Specific features

The bottom part of the flowing layer, about 5 di-
ameters thick, in assemblies of polyhedra particles, has
several seemingly anomalous properties. Solid fraction
(Fig. 6) and coordination number (Fig. 7) are larger than
in the bulk, velocity gradient and angular velocities de-
crease to zero at the bottom susbtrate (Figs. 8 and 9),
and so does inertial number I (Fig. 12). Normal stress
differences (Fig. 11) also behave differently in that region.

As the flow is almost arrested near the substrate, we re-
fer to this bottom layer as the dead zone. Such a nearly
arrested zone was experimentally observed for flows of
angular grains down a rough inclined plane[64]. If its
upper boundary is conventionnally placed at the maxi-
mum of the profile of |ωx| (Fig. 9a), its thickness then
slightly decreases for larger θ, from 5d (θ = 35.7◦) down
to 4d (θ = 38◦). The microstructure of the dead zone
(see Fig. 13) exhibits no apparent positional or orien-
tational ordering of polyhedra, beyond the short range
correlations induced by excluded volume and face to face
contacts.



FIG. 13: (Color online) Bottom part of flowing polyhedron
layer, as seen from the side. θ = 35.7◦.

2. The different contact types between polyhedra

Structural and mechanical properties of the contact
network exhibit characteristic differences between the
dead zone and the bulk material. Fig. 14 displays profiles
of coordination numbers for θ = 35.7◦ and θ = 38◦, dis-
tinguishing between simple (Zs), double (Zd) and triple
contacts (Zt), as defined in Sec. II C, in connection with
Fig. 4. All three coordination numbers increase within
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FIG. 14: (Color online) Profiles of coordination numbers Zs

(black curves), Zd (red/gray curves), and Zt (blue/light gray
curves), for θ = 35.7◦ (solid lines) and θ = 38◦ (dashed lines).

the dead zone on approaching the bottom surface, but
the proportion of face to face contacts increases too, most
notably for lower slope angle θ. As Zs increases by about
20%, Zt nearly doubles through the dead zone, and con-
sequently ratio Zt/(Zs + Zd + Zt) grows from 0.11 in the
bulk to about 0.19 near the substrate for θ = 35.7◦.

To assess the mechanical importance of different con-
tact types, one may write down shear stress σyz as the
sum of the contributions of simple (σs

yz), double (σd
yz)

and triple (σt
yz) contacts:

σyz = σs
yz + σd

yz + σt
yz. (9)

Fig. 15 shows profiles of corresponding contributions to
the stress ratio, µ∗

ξ = σξ
yz/σzz , ξ denoting contact type s,

d or t. From Fig. 10, one may deduce that friction coef-
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FIG. 15: (Color online) Profiles of µ∗
s (a), µ∗

d (b) and µ∗
t (c),

for θ = 35.7◦ (solid black line) and θ = 38◦ (dashed red/gray
line).

ficient µ∗ = µ∗
s + µ∗

d + µ∗
t = σyz/σzz is constant through

the whole layer, including the dead zone. The data of
Fig. 15 thus reveal a significant increase of the contri-
bution of face to face (triple) contacts to the internal
friction coefficient in the dead zone, which is correlated
to a decrease of the contribution of simple contacts. Re-
markably, µ∗

t and µ∗
s are nearly equal at the bottom of

the dead zone for θ = 35.7◦, while the density of simple
contacts is about three times as large as that of triple
ones.

The normal stress ratio profiles displayed in Fig. 16
show that the network of face to face contacts is the
major contributor to the increase of the normal stress
differences in the dead zone.

In the dead zone, the prevalence of face to face con-
tacts, which considerably restrict relative motions of con-
tacting grains is likely responsible for the gradual vanish-
ing of velocity gradients.
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FIG. 16: (Color online) Profiles of normal stress ratios
σxx/σzz and σyy/σzz, for θ = 36◦ (as in the insert of Fig. 11a).

3. Effect of substrate roughness

The specific properties of the dead zone may be ex-
pected to depend on the surface properties of the sub-
strate. We tested this possible sensitivity to the substrate
roughness as follows. A rough substrate was prepared
from the standard one on raising the bottom smooth
plane by 1.5d, so that the glued polyhedra are partly
buried below its surface and the size of the asperities is
reduced (Fig. 17).
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z

FIG. 17: (Color online) View of the substrate with reduced
asperity size.

We also simulated the flow down a smooth plane, on
which the friction coefficient of pinacoids was increased
to µW = 0.8 (while the same value µ = 0.4 as in previ-
ously reported simulations was kept for particle-particle
contacts). As shown in Fig. 18(a), velocity profiles in
steady flow for θ = 36◦ very nearly coincide within nu-
merical accuracy for the standard case and for the sub-
strate with reduced roughness. In the case of a smooth
plane, with µW = 0.8 and θ = 34◦, we obtain a steady
flow with a finite slip velocity at the bottom wall and a
non-vanishing shear rate within the flowing layer (as in
the two-dimensional results of [66] for pentagons), but
the velocity profile is convex throughout the thickness of
the flowing layer, with a nearly constant profile of in-
ertial number, indicating a Bagnoldian rheology in the

whole flowing layer, and the “dead zone” phenomenon is
absent. Note that steady state flow conditions appear to
be restricted to a small θ interval, as we observed the flow
to stop for θ < 34◦ and to keep accelerating for θ > 35◦.
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FIG. 18: (Color online) (a) Velocity profiles in steady state in
standard case and with the modified substrate with smaller
asperities both for θ = 36◦, and for the smooth plane with
µW = 0.8 and θ = 34◦. (b) Profiles of coordination numbers
Zs (black circle), Zd (red square), and Zt (green triangle) for
the smooth substrate at θ = 34◦.

Fig.18(b) displays the profiles of coordination numbers
for the case of plane surface at θ = 34◦. Interestingly,
all partial coordination numbers appears uniforms near
the substrate. The results obtained for the simulations
performed with the roughness having a smaller asperity
size are similar to those of the standard case.

We conclude that a minimum level of roughness is nec-
essary for the dead zone phenomenon to appear, but that
the dead zone and the overall flowing layer properties
should not be sensitive to fine characteristics of the bot-
tom rough surface.

IV. CONSTITUTIVE LAWS

As recalled in the introduction, the rheology of dense
disk assemblies in 2D and dense sphere assemblies in 3D
is conveniently expressed using two dynamic laws, respec-
tively relating solid fraction ν and effective friction coef-
ficient µ∗ to inertial number I. Our intention is now to
identify similar laws for both spheres and polyhedra using



measured effective friction coefficient values (µ∗ = tan θ),
mean solid fraction and inertial number (measured for
z/d between 8 and 15 for spheres, between 6 and 12 for
polyhedra).

The calculated inertial number values range from 0.05
to 0.31 for spheres, and from 0.54 to 0.98 for polyhedra.
The highest values indicate the beginning of the collision-
nal regime whereas the lowest values correspond to flow
stop.

The steady flows of polyhedra down a smooth frictional
substrate provide two other points for much smaller value
of inertial number.
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FIG. 19: (Color online) Friction law for spheres (red) and for
polyhedra (black). The diamond (other symbol) corresponds
to smooth frictional substrate.
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FIG. 20: (Color online) Dilation law for spheres (red) and for
polyhedra (black). The diamond (other symbol) corresponds
to smooth frictional substrate.

Effective friction and solid fraction dynamic laws cor-
responding to the present simulations are shown respec-
tively on Fig. 19 and 20, both figures showing results
for spheres and polyhedra. Error bars denote the stan-
dard deviation calculated from ν (Fig. 6), µ∗ (Fig. 11)
and I (Fig. 12) measurements. These laws can be fitted
by linear expressions (2) and (3), for which we measure
νmax = 0.601, µ∗

min = 0.35, a = 0.56 and b = 0.15 for
spheres and νmax = 0.607, µ∗

min = 0.635, a = 0.14 and
b = 0.13 for polyhedra. It can be observed that µ∗

min val-
ues compare very well with tan θm values given in Tab. II
(respectively 0.344 for spheres and 0.624 for polyhedra).

These values evidence a strong quantitative grain shape
effect on the friction law.

Interestingly, in the case of polyhedra, the points de-
duced from the flow down a smooth frictional substrate
(in the whole layer) nicely coincide with the linear law
identified for the flow down a rough substrate (in the
bulk). This is consistent with the fact that the constitu-
tive law is intrinsic to the material and does not depend
on the boundary condition. Varying the value of the fric-
tion coefficient µW at the smooth substrate might allow
to measure the constitutive law in a larger range of iner-
tial number.

These results correspond to particular values of the
friction coefficient (µ = 0.4) and the restitution coeffi-
cients (eN = eT = 0). Measurements with disks evi-
denced a significant influence of the contact friction co-
efficient on the effective macroscopic friction coefficient,
but no influence of the restitution coefficient value [3, 17].
Similar findings are expected for both spheres and poly-
hedra, in addition to a shape effect for polyhedra, and
this will have to be confirmed in the future.

Our results for spheres are compared to other ones in
the literature [20, 24] in Fig. 19 for the friction law (for
which both experimental results [20] and numerical ones
deduced from [24] are shown) and in Fig. 20 for the dila-
tion law (with the numerical data of [24]).

Flow height H and tilt angle θ dependencies of the
velocity profile may be derived from the friction law as:

vy(z) =
2
√

ν(θ)g cos θ

3bd
(tan θ − µ∗

min)
(

H3/2 − (H − z)3/2
)

.

(10)

Thus, with V = 1
H

∫ H

0 vy(z)dz denoting the mean veloc-
ity, one readily obtains:

V (θ, H) =
2
√

ν(θ)g cos θ

5bd
H3/2 (tan θ − µ∗

min) , (11)

whence (given the values of θ)

V (θ, H) ∝ H3/2 (θ − θm) . (12)

This expression is compatible with experimental and nu-
merical measurements [18, 19]. Ref. [19] fits experimental

data with expression V (θ, H) ∝ H3/2

Hstop(θ)
, hence from (4)

a similar factor of θ − θm.

V. CONCLUSION

The influence of grain angularity on the properties of
dense flows down a rough inclined plane has been inves-
tigated by comparison between sphere and polyhedral
grain assemblies. Upon clarification of the flow condi-
tions, the dense permanent flow regime has been ana-
lyzed in details through the examination of various flow
quantities, then rheology aspects have been discussed.



We find both sphere and polyhedra assemblies to obey
the flow start and flow stop laws identified in [19], with
quite different parameters, as flow thresholds for polyhe-
dra correspond to much larger tilt angles. An analysis
of dense permanent flow regime for polyhedra and for
spheres reveals the following similarities and differences
between spherical and polyhedral grains. In the bulk,
both systems exhibit uniform solid fraction, coordination
numbers and inertial number. An increase of tilt angle
θ entails faster flows with larger shear rates and inertial
effects, smaller solid fraction and coordination number.
Velocity profiles assume Bagnoldian convex shapes and
angular vecocities tend to decrease at growing distance z
from the substrate. Solid fraction and internal friction co-
efficient vary linearly with inertial number I for I varying
from 5×10−2 to 0.3 (for spheres) or between 0.5 and 1 (for
polyhedra). Quantitatively, polyhedral grain flows occur
for higher inertial number (for the tested inclined plane
configuration and H/d of order 10), are faster and have
lower solid fraction than spherical grain flows. For a given
flow height, the range of tilt angles covered by the dense
permanent flow regime is considerably narrower for poly-
hedra than for spheres. Some qualitative differences are
also observed between spherical and polyhedral grains.
Near a rough substrate, polyhedral grain samples do not
structure in parallel layers and a dead zone appears, 4
or 5 diameters thick, where the flow is anomalously slow,
the velocity profile is concave, and the density of face-
to-face contacts, as well as their contribution to stresses

and internal friction, notably increase. Limited tests of
the sensitivity of the dead zone phenomenon to substrate
roughness reveal that it is hardly sensitive to the size and
spacing of asperities but disappears for smooth, frictional
substrates (in which case, within the narrow inclination
angle interval corresponding to steady flow, a velocity
discontinuity is observed at the substrate, with a smooth,
convex velocity profile throughout the granular layer).

Whereas normal stress components σxx, σyy , σzz are
about the same for spheres (with σxx slightly smaller
than the other two in the bulk of the material), polyhe-
dral grain flows exhibit significant normal stress differ-
ences, which increase in the “dead zone”. These features
correlate with the important mechanical role of face to
face contacts within this region.

More detailed investigations of the microstructure of
packings of polyhedral particle, exploring, in particu-
lar, ranges of orientational correlations and additional
properties of contact networks should shed more light on
the observed behaviour. Such perspectives should be ad-
dressed in future work.
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[39] E. Azéma, Ph.D. thesis, Université Montpellier II
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78, 021301 (2008).
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