Time-frequency Selection in Two Bipolar Channels for Improving the Classification of Motor Imagery EEG - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Time-frequency Selection in Two Bipolar Channels for Improving the Classification of Motor Imagery EEG

Résumé

Time and frequency information is essential to feature extraction in a motor imagery BCI, in particular for systems based on a few channels. In this paper, we propose a novel time-frequency selection method based on a criterion called Time-frequency Discrimination Factor (TFDF) to extract discriminative event-related desynchronization (ERD) features for BCI data classification. Compared to existing methods, the proposed approach generates better classification performances (mean kappa coefficient = 0.62) on experimental data from the BCI competition IV dataset IIb, with only two bipolar channels.
Fichier principal
Vignette du fichier
EMBC12_0320_FI.pdf (428.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00737280 , version 1 (01-10-2012)

Identifiants

  • HAL Id : hal-00737280 , version 1

Citer

Yuan Yang, Sylvain Chevallier, Joe Wiart, Isabelle Bloch. Time-frequency Selection in Two Bipolar Channels for Improving the Classification of Motor Imagery EEG. The proceeding of 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'12), Aug 2012, San Diego, United States. pp.2744-2747. ⟨hal-00737280⟩
235 Consultations
428 Téléchargements

Partager

More