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46 rue Barrault, Paris 75013 - France

Abstract. Common spatial pattern (CSP) is widely used for construct-
ing spatial filters to extract features for motor-imagery-based BCI. One
main parameter in CSP-based classification is the number of spatial filters
used. An automatic method relying on Rayleigh quotient is presented to
estimate its optimal value for each subject. Based on an existing dataset,
we validate the contribution of the proposed method through a study of the
effect of this parameter on the classification performance. The evaluation
on testing data shows that the estimated subject-specific optimal values
yield better performances than the recommended value in the literature.

1 Introduction

Neuro-electrophysiologic studies reveal that both real movement and motor im-
agery of a specific body part induce an electro-encephalogram (EEG) rhythmic
attenuation termed event-related desynchronization (ERD) in the µ (8-13Hz)
and β (13-30Hz) bands over corresponding functional regions in the sensorimo-
tor cortex [1]. Thus, the essential task of a motor-imagery based brain-computer
interface (BCI) is to distinguish different spatial localizations of ERD for predict-
ing different motor intentions. The common spatial pattern (CSP) algorithm is
very effective in constructing optimal spatial filters that extract discriminative
activity (i.e. ERD) and reduce feature dimensions in motor-imagery BCI [2].
This algorithm was firstly proposed for a binary discrimination and then ex-
tended to multi-class problems through various approaches (for details, see [3]).

One main parameter of CSP-based classification is the number of paired spa-
tial filters, which determines the features used in classification and therefore
affects the classification result. Most researchers choose the value of this pa-
rameter just based on their experience and often use a constant value for all
subjects, which ignores the potential individual differences. Although it was
mentioned in [4] that this parameter can be alternatively determined via cross
validation, this work neither provided any detail nor experimental validation.
Moreover, using exhaustive searching strategy to find the optimal value of this
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parameter in the whole range of values increases the computational time, par-
ticularly when the dimension of data is very large. Thus, the method proposed
in this paper includes two steps: 1) a criterion based on Rayleigh quotient is
applied for pre-selecting the range of this parameter, 2) an algorithm based on
cross validation is then employed for more precise estimation of the optimal
value of this parameter in the pre-selected range. Based on an existing dataset,
we validate the importance of the estimation through studying the effect of this
parameter on the classification, and then verify the effectiveness of the proposed
method by comparing the classification results using the estimated optimal val-
ues with those obtained using the recommended fixed value in existing work in
both binary-class and multi-class problems.

2 Methods

2.1 Pre-selection of paired spatial filters

CSP is a data-driven approach to construct spatial filters, W = [w1, ..., wN ],
which decomposes the N -channel EEGX = [x1, x2, ..., xN ]T into N uncorrelated
filtered signals Z = [z1, z2, ..., zN ]T through the transformation zj = wT

j X , (j =
1, 2, ..., N) where wj is a generalized eigenvector that satisfies:
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where CL, CR ∈ R
N×N are the estimated covariance matrices of two classes

(i.e. ’L’ and ’R’) of N -channel EEG signals, respectively. As λL
j + λR

j = 1, wj

tends to yield a large variance of signal for one class and a small variance of
signal for the other class. These contrary effects of wj on two classes contribute
to the discrimination. Usually, wi and wN−i+1 according to i-th largest λL

and λR, respectively, are used together as the i-th paired filters in CSP-based
classification [4].

The discriminative activity Sd and common activity Sc between two classes
are defined as Sd = CL − CR, Sc = CL + CR, respectively. Thus, the ratio
between discriminative activity and common activity projected on the wj spatial
filter is the (Rayleigh quotient) R(wj) [4] and is obtained by:
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For the i-th paired filters, FD(i) = R(wi) + R(wN−i) reflects their effectiveness
in extracting the discriminative components from the original signal [5]. Usually
the first m pairs of spatial filters according to the m largest FD(i) are used. Too
small or too large values of m will lead to poor classification performances (see
Sect. 3.2), so that the optimal value of m should be estimated for each subject.
A too small FD(i) (typically FD(i) < 0.1) indicates that the i-th paired filters
have a very weak ability of extracting discriminative components, and cannot
improve classification results (see Sect. 3.2). As all paired filters are sorted in
descending order of FD(i), the FD(i) values are used as a pre-selection criterion
to shrink the range for seeking the optimal m value.



2.2 Refined estimation of the optimal number of paired filters

The optimality criterion for selecting paired spatial filters must satisfy two prop-
erties: (1) the number of paired spatial filters must be minimal, (2) it must yield
the classification result that is equal or comparable to the best one, i.e. such
that there is no statistical difference between them or their difference is less than
a tolerance δ (δ = 0.015 in this paper). Here, the classification performances are
evaluated via the kappa coefficient : κ = (Po − Pe)/(1− Pe), where Po is the ob-
served agreement between classifier and dataset labels, and Pe is the chance level
for agreement (i.e. Pe = 0.5 for binary-class problems, Pe = 0.25 for four-class
problems). Thus, a larger κ value indicates a good classification result [6].

Assuming the number of paired spatial filters with FD(i) ≥ 0.1 is M , the
optimal number of paired spatial filters is evaluated by checking each possible
m value (m ≤ M) to see whether its corresponding κ value is significantly larger
than others obtained for smaller values of m. The paired difference test (paired
t -test) is employed for the significance analysis [7]. In this case, if several m
values yield equal or comparable classification results, the smallest one will be
chosen as the most optimal. The algorithm of this procedure is described below.

Algorithm A: Selection of the optimal number of paired spatial filters

Let M denote the number of paired spatial filters with FD(i) ≥ 0.1 and let
m ≤ M ; κ(m) is a set of κ for a given m evaluated with a 100 repetitions of
10-fold cross-validation (κ(m) ∈ R

1×100), κ̄(m) is the mean value (over the 100
components), t(a, b) represents the p-values of paired t-test between vectors a
and b

1:mi ← 1; mj ← 2
2:while mj ≤M do

3: if κ̄(mj) > κ̄(mi) + δ and t(κ(mi), κ(mj)) < 0.05 then

4: mi ← mj

5: endif

6: mj ← mj + 1
7:endwhile

8:mopt ← mi

9:return the optimal parameter, mopt

The optimal parameter mopt is estimated offline from the training data for
each subject, and then applied to the testing data or on-line applications for
the same subject. This strategy can be extended to multi-class problems (see
Sect. 3.4).

3 Experimental validation

3.1 Data description

The data used in this work are from BCI competition IV dataset IIa [8], which
contains one training session and one testing session of 22-channel EEG data
from 9 subjects who performed four classes cue-driven motor imagery (left hand,



right hand, both feet and tongue). Details about this dataset can be found in
the associated technical document1. In this paper, we first use the data of left
and right hands to investigate the effect of m on classification in Sect. 3.2 and
then test the proposed automatic estimation strategy on binary-class (left vs.
right hands) in Sect. 3.3 and multi-class data (the full dataset) in Sect. 3.4.

3.2 Sensitivity analysis of the number of paired spatial filters

A broad frequency band of 8-30Hz (µ and β bands) and the segment of 0.5-2.5s
of EEG data after the cue onset were used in this study for calculating the trans-
formation matrix W in CSP, and FD(i) value for each paired spatial filters, and
for training the classifier [2]. The Fisher’s linear discriminant analysis (LDA),
which is classically used with CSP, was employed here for the classification [4].
The effect of the number of spatial filters was studied on the training data us-
ing 100 repetitions of 10-fold cross-validations. The classification performances
were measured by κ value. Algorithms of CSP, classifier training and evaluation
(including calculating κ value) are performed with the BioSig toolbox2.

The effects of the parameter m on the classification results and FD(i) value
of each paired spatial filters for all subjects are shown in Figure 1. It can be
observed that (1) the performance of CSP-based classification is not proportional
to m but has significant variations depending on m for all subjects; (2) the
sensitivities of classification results to m are different between subjects: some
(i.e. subjects 8, 9) are relatively low but most are relatively high; (3) adding
the paired spatial filters with FD(i) < 0.1 does not improve the classification
results: e.g. for subject 1, M = 6 and the κ value decreases if m > 6 is used;
for subject 8, M = 7 and the κ value remains stable when m > 7. Those results
prove that (1) it is critical to choose a right m value for each individual in CSP-
based classification; (2) it is reasonable to estimate the optimal m in the range
of [1, M ], where M is the number of the paired spatial filters with FD(i) ≥ 0.1.

Fig. 1: Effect of parameter m on the left vs right hand classification and FD(i)
of each paired spatial filters for all subjects in the BCI competition IV dataset
IIa. The horizontal line on the right plot indicates FD = 0.1.

1http://bbci.de/competition/iv/desc_2a.pdf
2http://biosig.sourceforge.net/



3.3 Comparison for binary-class discrimination

Table 1 lists the estimated mopt values learned from the 100 repetitions of 10-
fold cross-validations in the training data of two classes (i.e. left hand, right
hand) and provides a comparison of the evaluation results on the independent
testing data using mopt and the classical value (m = 3) recommended in [2, 4].
The mopt value varies for different subjects and the classification performances
are better than those with the recommended value. For subjects 8 and 9, whose
sensitivities to m are relatively low, one pair of filters can already yield fine
performance, while others may need more pairs of filters.

Subjects
1 2 3 4 5 6 7 8 9 Mean

mopt 5 4 3 3 5 5 4 1 1

κ (mopt) 0.75 0.22 0.96 0.40 0.11 0.35 0.70 0.94 0.86 0.59
κ (m = 3) 0.67 0.13 0.96 0.40 0.09 0.25 0.69 0.93 0.82 0.55

Table 1: Estimated mopt values were obtained by 100 repetitions 10-fold cross-
validations on the training data. The computational time was always less than
32s on a 2.66GHz PC with Matlab (2010Ra). The evaluation results were com-
puted on the independent testing data using mopt and the recommended value
(m = 3).

3.4 Extension to multi-class problem

One Versus the Rest (OVR) CSP is a multi-class CSP approach that computes
W for each class against all others and then projects the EEG signals on all
the 2m × P chosen spatial filters (P is the number of classes, here P = 4)
to extract the features, and then performs a multi-class LDA classification [3].
Based on the pre-selection procedure in Sect. 2.1, each W generates a M value,
thus P ×M values are obtained. The largest M value (Mmax) is chosen as the
upper limit of possible mopt. Then mopt is estimated based on the classification
results in the range of [1, Mmax] using Algorithm A and then applied to the
independent testing data. The comparison of results obtained with mopt and
with fixed recommended m is shown in Table 2 for the four-class problem of
BCI competition IV dataset IIa. Using mopt leads to better performances than
using the fixed recommended m. As we used the broad frequency band (8-
30Hz) of EEG signal in this work, it is difficult to make a comparison with the
1st placed winner in BCI competition IV who extracted features from multiple
narrow bands and reported the results based on searching the largestKappa over
the entire time range of the testing data using a 2-s sliding window [9]. However,
it makes more sense to compare with the 2nd placed winner3 who used the
same frequency band, in order to validate the interest of using subject-specific
mopt with OVR CSP. The comparison showed that mopt with OVR approach in
CSP-classification needs less classifiers (only one multi-class LDA) and generates
better mean performance.

3http://www.bbci.de/competition/iv/results/index.html



Subjects
1 2 3 4 5 6 7 8 9 Mean

mopt 4 3 1 2 3 3 2 4 2

κ (mopt) 0.72 0.30 0.74 0.48 0.20 0.25 0.75 0.71 0.68 0.53
κ (m = 3) 0.69 0.30 0.71 0.47 0.20 0.25 0.74 0.71 0.50 0.51

κ (2nd) 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52

Table 2: Estimated mopt (obtained in less than 90s) and independent evaluation
in a four-class problem using mopt and fixed m, and comparison with the 2nd

placed winner in BCI competition IV who also used 8-30Hz data but fixed m
(m = 4) and pair-wise approach with three LDA and one Bayesian classifiers.

4 Conclusion

The number of spatial filters used in feature extraction affects the classification
results. An automatic strategy based on Rayleigh quotient and cross validation
is proposed to estimate the subject-specific optimal m value. Experimental
results show that the estimated optimal m values vary for different subjects and
often yield better results than those obtained with the fixed recommended value
for both binary-class and multi-class problems. The proposed strategy can be
applied on the training data to estimate the optimal value of m for each subject
and then use it for the long term on-line classification of the given classes for
the same subject to achieve the best results.
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