
HAL Id: hal-00737202
https://hal.science/hal-00737202v1

Submitted on 1 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subscription Indexes for Web Syndication Systems
Zeinab Hmedeh, Harris Kourdounakis, Vassilis Christophides, Cédric Du

Mouza, Michel Scholl, Nicolas Travers

To cite this version:
Zeinab Hmedeh, Harris Kourdounakis, Vassilis Christophides, Cédric Du Mouza, Michel Scholl, et al..
Subscription Indexes for Web Syndication Systems. EDBT’12, International Conference on Extending
Database Technology, Mar 2012, Berlin, Germany. pp.311-322. �hal-00737202�

https://hal.science/hal-00737202v1
https://hal.archives-ouvertes.fr

Subscription Indexes for Web Syndication Systems

Zeinab Hmedeh
CEDRIC Lab. - CNAM

Paris, France
zeinab.hmedeh@cnam.fr

Harris Kourdounakis
FORTH/ICS, Univ. of Crete

Heraklion, Greece
kourdoun@csd.uoc.gr

Vassilis Christophides
FORTH/ICS, Univ. of Crete

Heraklion, Greece
christop@ics.forth.gr

Cedric du Mouza
CEDRIC Lab. - CNAM

Paris, France
dumouza@cnam.fr

Michel Scholl ∗

CEDRIC Lab. - CNAM
Paris, France

scholl@cnam.fr

Nicolas Travers
CEDRIC Lab. - CNAM

Paris, France
nicolas.travers@cnam.fr

ABSTRACT

The explosion of published information on the Web leads to
the emergence of a Web syndication paradigm, which trans-
forms the passive reader into an active information collec-
tor. Information consumers subscribe to RSS/Atom feeds
and are notified whenever a piece of news (item) is pub-
lished. The success of this Web syndication now offered on
Web sites, blogs, and social media, however raises scalability
issues. There is a vital need for efficient real-time filtering
methods across feeds, to allow users to follow effectively per-
sonally interesting information. We investigate in this paper
three indexing techniques for users’ subscriptions based on
inverted lists or on an ordered trie. We present analytical
models for memory requirements and matching time and we
conduct a thorough experimental evaluation to exhibit the
impact of critical workload parameters on these structures.

Categories and Subject Descriptors

H.3 [Information Systems]: Miscellaneous

General Terms

Performance

Keywords

Pub/sub, subscription indexing

1. INTRODUCTION
Web 2.0 technologies have transformed the Web from

a publishing-only environment into a vibrant information
place where yesterday’s passive readers have become active

∗Michel Scholl passed away on Nov 15th, 2011, too early
after a short battle with cancer. We would like to express
our gratitude for everything Michel offer us on a personal
and professional level during our long-lasting collaboration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

information collectors and content generators themselves. In
this context, Web syndication formats such as RSS or Atom
emerge as a popular mean for timely delivery of frequently
updated Web content. According to these formats, informa-
tion publishers provide brief summaries (textual snippets) of
the content they deliver on the Web [8], called information
items, while information consumers subscribe to a number
of RSS/Atom feeds (i.e., channels) and get informed about
newly published items. Today, almost every personal we-
blog, news portal, discussion forum, user group or social
media (e.g., Facebook, Twitter, Flickr) on the Web employs
RSS/Atom feeds. Given that the amount and diversity
of the information generated on a daily basis in Web 2.0 is
unprecedented, there is a vital need for efficient real-time fil-
tering methods across feeds which allow users to effectively
follow personally interesting information. For these reasons,
we advocate a content-based Publish/Subscribe paradigm for
Web 2.0 syndication in which information consumers are de-
coupled (in both space and time) from information providers
and they can express their interest to specific information
items using content-based subscriptions. Keyword-based
subscriptions will be matched on the fly against the content
of incoming items originating from different feeds.

To efficiently check whether all keywords of a subscription
also appear in an incoming item (i.e., broad match seman-
tics) we need to index the subscriptions. Count-based (CI)
and Tree-based (TI) are two main indexing schemes proposed
in the literature for counting explicitly vs implicitly the num-
ber of contained keywords. The majority of related data
structures [15, 7, 1] cannot be employed for conjunctions
of keywords (rather than attribute-value pairs) due to the
space high-dimensionality. In this paper, we are interested
in efficient implementations of both indexing schemes using
Inverted Lists (IL) [23] for CI and a variant for distinct terms
of Ordered Tries (OT) [11] for TI and study their behavior
for critical parameters of realistic Web syndication work-
loads. Although these data structures have been employed
to evaluate broad match queries in the context of selective in-
formation dissemination [21] and sponsored search [12] or for
mining frequent Item sets [3, 14], their memory and match-
ing time requirements appear to be quite different in our
setting. This is due to the peculiarities of Web syndication
systems which are characterized [8] (a) by information items
of average length (25-36 distinct terms) which are greater
than advertisement bids (4-5 terms [12]) and smaller than
documents of Web collections (12K terms [21]) (b) by very
large vocabularies of terms (up to 1.5M terms) Note also,

that due to broad match semantics Information Retrieval
techniques for optimizing ILs (e.g., early pruning [23]) are
not suited in our setting.

A detailed analysis of Trie structures has not been con-
ducted in the past while the Ordered Trie usage has been
discouraged in Pub/Sub systems due to the prohibiting per-
formance exhibited in other application areas studied in re-
lated work (e.g. document filtering in [22]). In our work we
are going one step forward in identifying real setting param-
eters under which Trie structures became competitive. In a
nutshell, the main contributions of this work are:

(1) In Section 2 we consider three index structures imple-
menting different counting techniques for pruning as early
as possible non matching subscriptions to an incoming item.
The first two implement the CI scheme and rely on an In-
verted List (IL) of terms to the subscriptions that contain
them. The Count-based Inverted List (CIL) variant stores
each subscription into the ILs of all the terms it contains
while the Ranked-key Inverted List (RIL) only once in the
IL of its least frequent term. We finally consider an Ordered
Trie (OT) of distinct terms implementing TI with factoriza-
tion of common subscription prefixes while and a variation
that compacts paths of unary nodes called POT.

(2) Section 3 provides a detailed probabilistic analysis of
the size and number of nodes visited during matching of the
three indices which takes into account the term occurrence
distribution and the distribution of subscription lengths. To
the best of our knowledge an analysis of OT matching time
has not been previously reported in the literature.

(3) In Section 4 we conduct a thorough experimental eval-
uation of CIL, RIL and POT1 using generated subscriptions
of terms appearing in a real RSS/Atom testbed2 of items [8].
To the best of our knowledge, this is the first study investi-
gating (a) how critical workload parameters, such as terms
distribution, size of the vocabulary and lengths of subscrip-
tions affect the morphology of OT, i.e., the level of achieved
factorization and (b) their scalability and performance in re-
alistic settings (e.g. for 100M of subscriptions with 100K of
distinct terms and real distribution of terms in items).

Related work is presented in Section 5 while a brief sum-
mary along with plans for future work are given in Section 6.

2. SUBSCRIPTION INDEXES
In the pub/sub paradigm for web syndication, users sub-

mit long lasting (continuous) queries under the form of
keyword-based subscriptions. Whenever a news item is pub-
lished, it gets evaluated against the set of subscriptions sub-
mitted to the system and for every matching subscription
the corresponding subscriber is notified. The set of stored
subscriptions is denoted by S and their total number by |S|.
Each subscription s ∈ S includes a set of (distinct) terms
from a vocabulary VS = {t1, t2, ..., tn}. The length of s,
denoted by |s|, is the total number of (distinct) terms it
contains. I = [I1, I2, ...Im] denotes the stream of incoming
news items. News item I ∈ I is also formed by a set of
terms3 (I ⊆ VI , with VI the vocabulary of items). Like [21]
we make the common assumption that VS ⊆ VI . However it

1the regular OT scheme called ROT turned out to be outper-
formed in terms of memory and matching time requirements
2Available on line at deptmedia.cnam.fr/∼traversn/roses
3Duplicate terms in items are eliminated after sorting during
items preprocessing.

is worth noting that in reality, VS may diverge from VI sig-
nificantly. In this context, a match occurs if and only if all
of the terms (keywords) of a subscription s are also present
in a news item I (i.e., broad match semantics).

Table 1: Example of keyword based subscriptions
Subscription S1(t1 ∧ t2 ∧ t4) S2(t1 ∧ t3) S3(t1 ∧ t2 ∧ t5)
(Terms) S4(t2 ∧ t4) S5(t1 ∧ t3 ∧ t6)

Consider the set of subscriptions S illustrated in Table 1.
Matching item I = {t2, t4} against S will result in the set of
matched subscriptions SM = {S4} since t2 and t4 of S4 are
contained in I. A naive matching approach consists in test-
ing whether the terms of every subscription are contained
in the incoming news item. Clearly, this naive solution does
not scale to millions of subscriptions. For this reason, in-
dex structures have to be found which allow to prune as
early as possible non matching subscriptions. A widely used
structure is the inverted list (IL) which maintains an inverse
mapping from terms tj to the subscriptions s that contain
them. It essentially confines the original search space only
to subscriptions containing at least a term present within
the item being matched. In particular, two variants of IL
namely the Count-based Inverted List and the Ranked-key
Inverted List are studied in this paper. Additionally an Or-
dered Trie structure is considered which exploits the term
subset relations between subscriptions.

Count-based Inverted List

Count-based Inverted List (CIL) is essentially a mapping dic-
tionary whose key is a term tj ∈ VS and value the corre-
sponding posting list Postings(tj), i.e. the set of subscrip-
tions that contain the term. Furthermore, to implement
broad match semantics, an additional structure has to be
maintained: a counter per subscription keeps track of the
number of remaining terms to be matched for a given sub-
scription. The structure that maps every subscription s ∈ S
to the number of remaining terms to be tested before re-
porting a matching is denoted by Counter.

Figure 1(a) depicts the CIL index for the example of Ta-
ble 1. The posting list associated with t2 is Postings(t2) =
{S1, S3, S4}. Initially, Counter = {S1 : 3, S2 : 2, S3 :
3, S4 : 2, S5 : 3}. Consider an incoming news item I =
{t2, t4}. The subscription elements of Postings(t2) are first
accessed and their corresponding counters decremented, and
thus Counter = {S1 : 2, S2 : 2,S3 : 2,S4 : 1, S5 : 3}. Fi-
nally, after processing t4, Counter = {S1 : 1, S2 : 2, S3 :
2,S4 : 0, S5 : 3} and a matching is reported for subscription
S4 since its counter becomes 0.

CIL - Construction.
When a new subscription s is posted to the system, a new

element labeled with the subscription identifier s is added to
the posting lists of all its terms. Additionally, a new entry
is inserted into Counter with the total number of distinct
terms |s| the subscription contains.

CIL - Matching.
The matching process for an item I is given in Algo-

rithm 1. Initialization consists of an exact copy of Counter
into Counter copy (l.1). For every term tj ∈ I, Posting(tj)
is accessed (l.3). For each subscription s in Posting(tj), the
corresponding subscription value in Counter copy is decre-

C
o
u
n
te

r

D
ic

ti
o
n
ar

y
P

o
st

in
g
 L

is
ts

(a) Counted-based inverted list

S5t6

S3t5

S1 S4t4

S2 S5t3

S1 S3 S4t2

S1 S2 S3 S5t1

3

2

3

2

3

S1

S2

S3

S4

S5

D
ic

ti
o
n
ar

y
P

o
st

in
g
 L

is
ts

(b) Ranked-key inverted list

t6

t5

t4

t3 S2

S1

S5

S3

t1

t1 t2

t1 t2

t2 t3

t2S4

(c
)

O
rd

er
−

tr
ie

 i
n
d
ex

root

t1 t2

t2 t4

t6t4 t5

t3

S1 S3 S5

S2 S4

Figure 1: Subscription Indexes

mented (l.5). Whenever a counter reaches zero, a matching
is reported.

Algorithm 1: CIL MATCH(I)

Require: An item I.

1: Counter copy ← copy of Counter

2: for all terms tj ∈ I do

3: PostSet← Posting(tj)
4: for all s in PostSet do

5: Counter copy[s]← Counter copy[s]− 1
6: if Counter copy[s] = 0 then

7: SMATCHED ← SMATCHED ∪ {s}
8: end if

9: end for

10: end for

Ranked-key Inverted List

In contrast to CIL, in the Ranked-key Inverted List (RIL)
a subscription is added only to the posting list of the least
frequent among its terms. This term is called key of the sub-
scription. Besides the subscription identifier, the elements
of a posting list include the set of the remaining subscription
terms. This variant obviates the need for an explicit Counter
structure while accessing only the posting list of the most
discriminating term of a subscription. More precisely, for
every term of an incoming item the corresponding posting
list is accessed and for each of its subscriptions it is checked
whether it contains the remaining item terms. Clearly the
posting lists of the frequent terms is reduced in comparison
with CIL and subscriptions are now distributed over a large
number of posting lists of medium-frequent terms.

Figure 1(b) depicts the RIL index for the example of Ta-
ble 1 where the term rank in frequency distribution is given
by the term subscript (t1 has the higher rank in VS). Not
all the terms have entries in the dictionary. For instance,
t1 and t2 do not appear as least frequent terms in any of
the subscriptions in S. Posting(t4) has two elements (S1

and S4) for which the remaining (more frequent) terms to
be checked are stored. With item I = {t2, t4} we start by
checking for subscriptions in Posting(t4); for S1: I does not
contain t1 thus S1 is not satisfied by I. Then in the next
subscription S4, t2 appears in I ′ = I − t4 = {t2} and there
are no more terms in S4 so it is reported as matching I.

RIL - Construction.
When a new subscription s is posted to the system, the

posting list where it should be added is located. This implies
to sort the terms of s by their rank. Then an entry labeled
with the subscription identifier s is added to the posting list
of the least frequent term followed by the remaining terms.

RIL - Matching.
Matching an item I is given in Algorithm 2. When item I

arrives its terms are sorted by their rank (line 1). In the rest
of the paper, unless otherwise specified, term subscripts are
used to denote ordering. Then, the posting lists Posting(tj)
of the least frequent terms are iteratively accessed (lines 2-4).
For every subscription element of Posting(tj), it is checked
whether its remaining terms also appear in I (lines 6-7).

Algorithm 2: RIL MATCH(I)

Require: An item I.

1: sorted terms← sort(I)
2: while sorted terms 6= {} do

3: tj ← less frequent(sorted terms)
4: sorted terms← sorted terms− tj
5: PostSet← Posting(tj)
6: for all s in PostSet(tj) do

7: if s.remaining ⊆ sorted terms then

8: SMATCHED ← SMATCHED ∪ {s}
9: end if

10: end for

11: end while

Regular Ordered Trie

As an alternative to IL indexes, an OT index is capable of
exploiting the term subset relations between subscriptions in
order to build a hierarchical (as opposed to a flat) search
space for sets of terms taking advantage of common prefixes
of terms in subscriptions (i.e. factorization). A Trie node
represents a term and a subscription is stored at node n of
the Trie iff its terms are found in the path from the root to
node n. Then, two subscription paths sharing a subset of
k nodes can be merged in a single subpath of length k (i.e.
common prefix), followed by two distinct paths representing
the remaining subscription terms.

Clearly, in this structure, subscriptions are stored only
once and there is no need anymore for an explicit Counter
structure. Compared to the commonly used Trie structures
for storing sentences on a given vocabulary [11] two fea-
tures characterize the Ordered Trie: (i) there is no repeti-
tion of terms in any sentence (i.e. a subscription is a set of

terms; (ii) terms in the subscriptions and therefore in the
Trie are totally ordered. This total order could be random,
follow the ranking of the terms occurrence distribution in
subscription/new items whenever available, etc. This struc-
ture referred to as Regular Ordered Trie (ROT) has been
investigated in a different setting [21], as discussed in Sec-
tion 5. It was also used more recently in data mining [4,
14].

Figure 1(c) depicts the ROT index for the example sub-
scriptions of Table 1 where the term rank is given by the
term subscript (t1 has the highest rank in VS). Factor-
ization leads to a single node t1 for all subscriptions that
share this term. Consider now an incoming news item
I = {t2, t4} (whose terms are already sorted). Initially,
term t2 is searched as child of the root. Since such a node
exists, navigation continues by looking for a t4 child node.
Since such a node also exists, the stored subscription S4

is reported as matching. Finally, the last term t4 of I is
processed and since no such path from the root exists, the
matching concludes. Collapsing single paths in the trie to
single nodes should not only reduce the number of nodes
therefore the memory occupied by the index but also should
accelerate matching. A variant of a Patricia Ordered Trie
(POT) obeys this principle. The single paths corresponding
to multiple nodes are compacted into one single compact
node. Each compact node is labeled with the set of terms
corresponding to the nodes in the path. For instance, nodes
t2 and t4 in Figure 1(c) are merged in a single node labeled
with t2.t4 in POT.

ROT - Construction.
Initially, the terms of a new subscription s are sorted ac-

cording to their ranking order. Then the path corresponding
to the first term of the ordered set of terms is followed from
the root. This procedure is repeated for every term tj ∈ s.
If a particular path does not exist, then a new node labeled
with the term under consideration is created and inserted
into the Trie structure. The node at which the top down
traversal concludes, after consuming the whole set of terms,
is where s is finally stored.

ROT - Matching.
The matching process for an item I is given in Algo-

rithm 3. When a news item I arrives its terms are also
sorted. The paths corresponding to all the terms of I, whose
ranks are superior to that of the term assigned to the cur-
rently considered node are followed (lines 5-10). For every
node visited the subscriptions stored at that specific node
are reported as matching (lines 2-4).

An index dependent definition of nodes

The three indexes presented previously essentially imple-
ment a relation R of vocabulary terms within subscriptions.
The specific technique employed for counting the match-
ing terms in subscriptions to satisfy broad match semantics
identifies each index. As a consequence, the node definition,
inherent to each data structure, is also different. In CIL, an
index node is a tuple (tj , s) expressing that subscription s
contains term tj . If s has k terms, k nodes (so k R-tuples)
are needed to represent s. In RIL, an index node is a nested
tuple (tk, {(s, {tj})}) where tk is the key term, s the corre-
sponding subscription and {tj} the remaining terms to be
checked. In ROT, an index node is a nested tuple ({tj}, s)

Algorithm 3: TRIE MATCH(TNode, I)

Require: TNode: the current trie node, I an item

1: sorted terms← sort(I)
2: if TNode contains subscriptions then

3: SMATCHED ← SMATCHED ∪ {Si|Si ∈ TNode}
4: end if

5: sorted terms← sorted terms− Term(TNode)
6: for all term tj ∈ sorted terms do

7: childNode← get child for term tj
8: if childNode 6= NULL then

9: TRIE MATCH(childNode, sorted terms− {tj})
10: end if

11: end for

where {tj} is the set of terms encountered in the path from
root to this node which form the actual content of subscrip-
tions in s. When subscriptions share the same prefix, it is ex-
pected to create less index nodes in Trie-based indexes than
in Inverted List-based indexes. The rationale in studying the
index behavior in terms of abstract nodes is to understand
the impact in the morphology of the three indexes (and thus
of the search space) of critical parameters of web syndication
systems (i.e., the distribution of term occurrences as well as
the distribution of subscription lengths).

3. ANALYTICAL MODELS
This section is devoted to analytical modeling for predict-

ing the number of nodes of the CIL, RIL and ROT structures
presented in Section 2 as well as to predict the number of
visited nodes upon matching. The set of parameters and no-
tations that affect construction time, memory requirements
and matching time are summarized in Table 2.

|S| total number of subscriptions
|VI |, |VS | vocabulary size of items and subscriptions
|s|avg , |s|max resp. average and max. subscription length
|I| average news item length
P (tj) frequencies distribution of terms in VI

θ(k) proba. for a subscription to have a length k
σi proba. to have a term with a rank ≤ i
w(c), w(v) size of Counter/Dictionary entry
w(p), w(n) size of Subscription Posting entry/Trie Node

Table 2: Parameters that characterize the workload

3.1 Building time
The average length of a subscriptions is: |s|avg =

Σ
|s|max

k=1 θ(k) × k, where θ(k) is the probability that a sub-
scription has a length k with k ∈ [1, |s|max]. It is easy to
check that the time required to insert a subscription into
CIL is O(|s|avg) (we insert |s|avg new postings and one new
counter). RIL requires to sort the terms before insertion
to determine the less frequent one. Consequently an inser-
tion is performed in O(|s|avg× log |s|avg). The time required
to insert a subscription into ROT is O(|s|avg × log |s|avg).
This is due to the fact that using a hash-based implemen-
tation of Trie nodes, the time required to sort the terms
of subscriptions dominates. Observe that indexing time for
all structures is independent of the total number of stored
subscriptions |S|.

3.2 Memory requirement

Let P (tj), denote the frequency of occurrences of term
tj ∈ VI . It is assumed that the choice of tj ∈ s is indepen-
dent of the choice of any other term tk ∈ s. In addition let
θ(k) be the probability that a subscription has a length k
with k ∈ [1, |s|max]. The probabilities that tj is one of the
terms of a subscription s, denoted by Pr(tj ∈ s) and that tj

is one of the terms of at least one subscription in S denoted
by Pr(tj ∈ S) are:

Pr(tj ∈ s) = 1 − P (tj /∈ s)

= 1 −

|s|max
X

k=1

θ(k) × (1 − P (tj))
k (1)

Pr(tj ∈ S) = 1 − Pr(tj /∈ S)

= 1 −

|S|
Y

i=1

(1 − Pr(tj ∈ s))

(1)
= 1 − (

|s|max
X

k=1

θ(k) × (1 − P (tj))
k)|S|

Then the number of terms in the vocabulary of subscriptions

VS is equal to: |VS | = Σ
|VI |
j=1Pr(tj ∈ S)

CIL Memory Requirement.
Recall that the count based index is composed of two

structures, the Counter and the inverted lists that are them-
selves further decomposed into the dictionary and the sub-
scription postings. Thus the overall memory required by the
index is:

Size(CIL) = Size(Dictionary) + Size(Postings)

+ Size(Counter)

The memory required by the Counter is equal to:

Size(Counter) = |S| × w(c) (2)

We assume a low collision rate. Then the memory occupied
by the Dictionary is equal to:

Size(Dictionary) = |VS | × w(v) (3)

Finally, since each term of any subscription leads to an entry
in the corresponding posting list the expected total number
of entries in the posting lists is equal to |S| × |s|avg and the
size of the posting lists is equal to:

Size(Postings) = |S| × |s|avg × w(p) (4)

In addition, for computing the matching time we need to
know the size Size(Postings(tj)) of the posting list of a
term tj :

Size(Postings(tj)) =
Pr(tj ∈ S)

|VS |
X

i=1

Pr(ti ∈ S)

× |S| × |s|avg (5)

where Pr(tj ∈ S)/

|VS |
X

k=1

Pr(tk ∈ S) is the normalized fre-

quency of tj in the postings. Thus the space consumed by
the index is:

Size(CIL)
(2,3,4)

= |S| × w(c) + |VS | × w(v) + |S| × |s|avg × w(p)

RIL Memory Requirements.
RIL is decomposed into the Dictionary which stores the

set of terms that are the less frequent in at least one s ∈ S,
and the postings lists which store the set of subscriptions.
Since virtual nodes in CIL and RIL consist in subscription or
term ids, we assume that both structures share the same size
w(p) for posting entry. Thus Size(Postings) is computed
as for CIL (equation 4). Size(Dictionary) is however less
than the CIL’s one.

A subscription s belongs to a posting list Postings(tj)
iff tj ∈ s and there is no term ti ∈ s with i < j. Thus
Post(s, tj), the probability that a subscription s belongs to
Posting(tj) is:

Post(s, tj) =

|s|max
X

k=1

θ(k) × k × P (tj) × (σj−1)
k−1

where σj = Σj
i=1P (ti) is the probability to have a term with

a rank higher than i. Indeed, if the subscription length is k,
then there are k ways of choosing tj , the remaining terms
being chosen among the terms with higher rank. The prob-
ability to have a term tj in the Dictionary is the probability
to have at least one subscription in his Posting(tj):

Pr(tj ∈ Dictionary) = 1 − (1 − Post(s, tj))
|S|

So the size of the Dictionary is:

Size(Dictionary) =

|VI |
X

j=1

(1 − (1 − Post(s, tj))
|S|) × w(v) (6)

The overall memory required by the index is:

Size(RIL)
(4,6)
=

|VI |
X

j=1

1 − (1 − Post(s, tj))
|S| × w(v)

+|S| × |s|AV G × w(p)

Finally, when considering the length of each subscription
to be stored in the posting list, we deduce:

Postings(tj) = |S|

|s|max
X

k=1

kθ(k) × kP (tj) × (σj−1)
k−1 (7)

ROT Memory Requirements.
Although analyses of the regular trie can be found in par-

ticular in [6], to our knowledge, the following is the first at-
tempt to predict the expected number of nodes of a regular
ordered trie as defined in the previous section. The analysis
takes into account any term distribution and any distribu-
tion of the subscriptions length. However it does not provide
a closed form. Therefore its applicability is limited to vo-
cabularies with size |VI | < 100 and short subscriptions with
length (|s| < 12). It turns out that this is the case when the
vocabulary is restricted to the terms of an item. We show
that the analysis is useful for computing the expected time
to match an item against a set of subscriptions. Let P be a
path from the root to a node in the trie representing term
(labeled with) ti. Its label Λ is defined as follows:

i) Λ = λ is the empty path label
ii) if P with label Λ is a path from root to a node labeled

with ti then Λ•j is the label of a path ending at node labeled
with tj whose parent is tail(P) labeled with ti

In the following, for short, we shall say that node j has
for a prefix Λ or that j (tail(P)) has for an address Λ • j

(Λ). Let s be a subscription. There is a path in the trie
with label the (ordered) sequence of ranks of terms in s. It
is noteworthy than there are possibly

`

k

k−|P |

´

subscriptions

sharing prefix Λ. Given s, Q(Λ, j) denotes the probability
that the node with address Λ • j belongs to s.

Lemma 1. Q(Λ, j) =
|s|max
P

k=|P|+1

θ(k) × Q(Λ, j, k) where

Q(Λ, j, k) denotes the probability that the node with address
Λ • j belongs to a subscription with length k and is equal to:
Q(Λ, j, k) =

k

k − |P|

!

Y

m∈P

P (tm) × P (tj) × (1 − σj)
(k−|P|−1) (8)

Proof sketch. The probability that term tj belongs to
s at address Λ• j is Πm∈PP (tm)×P (tj)× (1−σj)

(k−|P|−1),
since the remaining k− |P|− 1 nodes of s must be drawn in
VI − {t1, . . . , tj} (recall σj denotes the sum of probabilities
of the first j terms). Since there are

`

k

k−|P|

´

such possible

subscriptions, we obtain equation 8.

We denote P (Λ, j) the probability that node n with address
Λ • j exists in at least one subscription. So node n is said to
be occupied with probability P (Λ, j). Then if one observes
that a node with address Λ • j is not occupied if it is not
occupied in all |S| subscriptions, we have:

P (Λ, j) = 1 − (1 − Q(Λ, j))|S| (9)

Finally let E(Λ, j) denote the expected number of nodes of
the trie with root Λ • j where j has for a prefix Λ.

Theorem 1.

E(Λ, j) =
|VI |−|s|max+|P|

P

m=i+1

P (Λ • j, m) × [1 + E(Λ • j, m)]

with E(Λ, j) = 0 if |P| > s or j ≥ |VI |

Indeed, if node with address Λ•i•j is occupied the expected
size of the trie with root Λ • i • j is equal to E(Λ • i, j) Last
the expected size of ROT is expressed as:

Size(ROT) = E(λ, 0) × w(n). (10)

3.3 Matching time

CIL Matching Time Requirements.
The time complexity of matching an item I against the

set of indexed subscriptions S with Algorithm 1 is equal to
the time needed to copy the counter, Time(Copy counter),
and the time for dealing with posting lists entries. The lat-
ter depends on the number of times the critical inner loop
(line 4-9) is executed, i.e., the sum of the sizes of all of the
posting lists corresponding to terms tj in item I. The con-
stant time required to perform a counter decrement or test
(resp. to copy an entry of the counter) is denoted by τdecr

(resp. τcopy). Then the time needed to perform matching is:

TimeMatch(CIL) = Time(Copy counter) + Time(Postings)

= |S| × τcopy +

|I|
X

j=1

Size(Postings(tj)) × τdecr

(5)
= |S| × τcopy +

2

6

6

6

6

6

4

|I|
X

j=1

Pr(tj ∈ S)
|VS |
X

i=1

Pr(ti ∈ S)

× |S| × |s|avg

3

7

7

7

7

7

5

× τdecr

RIL Matching Time Requirements.
The time needed to match an item I depends on the num-

ber of its terms and the size of the corresponding postings
lists. First we must sort its terms (set up phase) and then
run through the postings lists to check the inclusion of the
subscriptions. The matching cost is estimated as:

TimeMatch(RIL) = Time(Sort) + Time(Postings)

= |I| × log |I| + |I| ×

|VI |
X

j=1

Size(Postings(tj)) × τcomp

(7)
= |I| × log |I|+

|I| ×

|I|
X

j=1

|S| ×

|s|max
X

k=1

k × θ(k) × (k × P (tj) × σj−1)
k−1 × τchk

where τchk is the time needed to check term inclusion in I.

ROT Matching Time Requirements.
Given a set of subscriptions S whose length obeys dis-

tribution Distk using vocabulary V the resulting ROT is
denoted by T (S, Distk,V).

Definition 1 (Restriction of a trie). The restric-
tion T ′(S, Distk,V ′) = ∆V ′(T (S, Distk,V)) is the subtrie
of T on vocabulary V ′ ⊂ V with same maximal depth the
maximal size of a subscription |s|max.

By definition T ′ has been pruned from terms not in V ′. It
contains subscriptions s whose terms are all in V ′ as well as
subscriptions whose prefix is defined in V ′ but tail is out of
V ′. All nodes of the prefix of the latter subscriptions are
occupied as well. Theorem 2 allows to predict the number
of nodes visited upon matching an item against the set of
subscriptions. The set of terms of an item (V(I)) is very
small: it is on the average equal to 25 in our datasets for
experiments. Then the expected number of visited nodes of
the restriction of the ROT to the vocabulary of item V(I),
T ′(S, Distk,V(I)) is the expected number of nodes visited
for matching I. T is used as a short cut for T (S, Distk,V).

Theorem 2. The expected number of visited nodes for
matching item I against the subscriptions of trie T (Algo-
rithm 3) is equal to the expected number of nodes of the
restriction ∆V(I)(T) where V(I) is vocabulary of I.

Then the expected number of visited nodes for matching
item I = {t1, . . . , tk} which has been sorted on the term

ranks, is expressed, using the P (Λ, j) formula 9, as:
8

<

:

V isitedNodes = E(λ, 0) where

E(λ, j) =
|I|−|s|max+1

P

m=j+1

P (λ • j, m) × (1 + E(Λ • j, m))

Proof sketch. Theorem 2 evaluates the average num-
ber of nodes occupied. A node n to be visited by Algo-
rithm 3 is a node occupied. Either n contains subscriptions
or the subtrie of root n possibly contains subscriptions to be
checked for matching. A node has no child (line 8 of Algo-
rithm 3) if it is of maximal depth or the child is defined on
terms not in VI . There are no other nodes to be visited.

Table 3 validates this model against actual measures on real
items obeying the Zipf distribution and 1M subscriptions
with fixed lengths. An average was taken over 5K real items
chosen randomly from the English items crawled in [8]. We
notice that the deviation slightly increases with subscrip-
tions size. With large subscriptions, the depth of the Trie is
higher, so the approximations of the computations at each
level are propagated. For a large number of leaf nodes, the
sum of approximations done becomes more significant.

|s|max real calc. theorem 1 deviation (%)
2 426.7 426.89 +0.043
3 538.99 538.86 −0.024
4 576.52 575.77 −0.13
5 594.66 590.03 −0.77
6 600.15 595.64 −0.75
7 603.36 596.06 −1.2
8 599.8 592.17 −1.27

Table 3: Real vs estimated # visited nodes

The total matching time, given by equation 11 is equal to
the time needed to sort the item’s terms and the sum of the
time spent on the visited nodes. The average time spent on
a single nodes is τn.

TimeMatch(ROT) = Time(Sort) + Time(Nodes)

= |I| × log |I| + E(λ, 0) × τn (11)

4. PERFORMANCE EVALUATION
The core implementation choices and the characteristics

of the dataset of items and subscriptions are first presented,
then experiments illustrate the impact of the different work-
load parameters on the morphology, the space requirement
and the matching time.

4.1 Implementation
All indexes were implemented using the standard Java

Collection Framework v1.6.0 20. All experiments were run
on a 3.60 GHz quad-core processor with 16 GB in JVM
memory. The Dictionary representing the inverted list in
both CIL and RIL indexes is implemented using a static
hash table inherited from Java Hash Map. Subscrip-
tion Ids are encoded in all structures as 4-byte integers. In
CIL, due to collisions, a dictionary entry may correspond
to more than one term. For this reason, with each entry
is associated a linked list of term nodes, whose nodes are
(termid, ↑ subslist, ↑ next), where ↑ subslist is a pointer to a
subscription list implemented as an array list and ↑ next a
pointer to the next node. Finally, Counter is a byte array of

size |S| (a subscription cannot exceed 28 terms). RIL is im-
plemented in a similar way with two noteworthy differences:
(i) the lack of Counter, and (ii) beside subscriptions’ ids the
elements of subscription lists also keep track sequentially of
the terms that remain to be checked per subscription.

Many different data structures (e.g. linked lists, arrays
or trees) have been suggested for implementing efficiently
a Trie structure. We choose a hash tree based [16] imple-
mentation of the (ROT). Every internal node includes: (i)
a 4-byte integer that stores the term’s rank, (ii) an array
list for storing the corresponding subscriptions, and (iii) a
Java Hash Map for storing the children nodes. A leaf node
consists only of the term’s id and the subscription list. We
have paid particular attention in optimizing the memory re-
quirements of internal and leaf nodes w.r.t. the number
of their children. So, we distinguish nodes with or with-
out associated subscriptions, and with zero, one or several
children. Each node type is equipped with a different imple-
mentation. An internal node has a hash map to index its
children, but has only when required subscription list asso-
ciated with. Oppositely leaf nodes do not contain any hash
map since they have no child. Since nodes may store only
one subscription, we further reduce the node size by using a
single subscription’s id instead of an array list. Finally, in
the POT variant, paths of unary nodes are compacted into a
compact node labeled with the set of terms of the compacted
unary ones. A 4-byte array is used to store the terms sorted
by their ranks. Despite its factorization gain in terms of
abstract nodes (see Section 4.3), the memory requirements
of a concrete POT node are clearly more important than
CIL and RIL: while for CIL and RIL a node occupies only
4 − byte, it occupies on average 128 − byte for the POT (a
complex Java object with a hash map, pointers, array lists,
etc).

Experiments focus on the evaluation of the memory space
required by each structure and the matching time. We as-
sume that updates will be maintained in a small tail data
structure, which is periodically, offline, merged and then
swapped with the main read-optimized data structure.

4.2 Description of synthetic and real datasets
The experimental evaluation relies on a large-scale testbed

acquired over a 8-months campaign from March to Octo-
ber 2010 in the context of the French ANR project Roses4.
A total number of 10,7M items was collected originating
from 8K productive feeds (spanning over 2K different host-
ing sites) [8]. From the textual content of items a vocab-
ulary of 1.5M distinct terms was extracted which has been
used for the synthetic generation of subscriptions. More pre-
cisely, we rely on the Alias sampling method [18] to generate
subscriptions whose distinct terms follow a given occurrence
distribution Dist. Three distributions are chosen for the
subscriptions in the experiments: real (subscriptions obey
the same term distribution as the news items term distribu-
tion), uniform, and inverse (subscriptions follow the inverse
term occurrence distribution of items). Generated subscrip-
tions are characterized by three features: (a) the vocabulary
size and the occurrence distribution of terms in subscriptions
VS , (b) the total number of generated subscriptions |S|, and
(c) the subscription length k that can be constant for all
subscriptions, or follow a particular distribution. When not
specified, we use the length distribution of web queries re-

4www-bd.lip6.fr/roses

Rank # occurrences # ROT nodes Gain (%)
1 138090 1 99.99

10 60469 52 99.91
1000 4967 2201 55.69

10000 251 218 13.15
470000 1 1 0

Table 4: Gain per term’s rank

ported in [2]. It is characterized among others by a maximal
length equal to 12 and an average equal to 2.2.

4.3 Size and morphology of indexes
This subsection is devoted to the impact of the subscrip-

tions length and the terms’ occurrence distribution on the
index size and morphology. These parameters determine the
degree of factorization achieved by ROT (or POT) com-
pared to CIL (or RIL) on common subscription prefixes as
well as the rank of terms for which factorization is actu-
ally taking place. Both are essentially affecting the pruning
opportunities of the indexes during matching. In order to
provide a common basis for comparing the morphology of
the indexes, the number of index nodes is measured (for the
index dependent definition of abstract nodes see Section 2).
Figure 2 depicts the number of ROT nodes created per term
rank compared to CIL when indexing the same set of 10M
subscriptions with a vocabulary VS = 470K following the
real distribution of terms in items [8]. Clearly, the distribu-
tion of the size of the CIL posting lists is identical to the
distribution of terms’ occurrences in subscriptions. We ob-
serve that the number of ROT nodes is significantly reduced
not only w.r.t CIL (due to factorization of common prefixes)
but also w.r.t. the Complete Ordered Trie (COT) of depth
the maximal subscription length 12.

Table 4 highlights the gain achieved in number of nodes
per term rank tr. The number of occurrences for a given
term rank in the generated subscriptions as well as the num-
ber of ROT nodes that hold this term are also given in this
table. As expected the gain decreases from almost 1 for rank
1 (most frequent term) to 0 for rank 470, 000 (no factoriza-
tion). The closer the number of nodes in ROT to CIL, the
smaller the factorization. In this experiment for all terms
having a rank greater than 18, 789 the gain is equal to 0.

Figure 2: # nodes vs term’s rank

4.3.1 Impact of subscription length

We now focus on how the length of subscriptions affects
nodes factorization in ROT. Sets of subscriptions are gen-

erated using the same vocabulary as previously, but with a
fixed length k ∈ {3, 6, 9, 12, 24, 36}. To provide a common
comparison ground, the total number of term occurrences T
in each set of subscriptions is fixed to T = |S| × s = 1.5M .
We observe in Figure 3 that the number of ROT nodes in-
creases with k, i.e. factorization decreases with k. Indeed,
the larger the subscriptions, the deeper the ROT. In this con-
text, the probability that two subscriptions share the same
terms decreases for lengthy subscriptions and the ROT be-
havior is close to the COT one. In other words, lengthy
subscriptions imply more distinct paths. For instance, for
subscription length k > 24 even for frequent terms (i.e.
rank around 100) there is no gain. Oppositely, for subscrip-
tion lengths k ≤ 24 more occurrences of frequent terms are
encountered in subscriptions and thus the structure fully
benefits from the factorization gain. Of course for s ≤ 2,
the number of subscriptions associated with leaves becomes
large and the structure degenerates to an inverted list over
term combinations (rather than individual terms).

Figure 3: # nodes vs term rank for different |s|

4.3.2 Impact of the term order

To estimate the impact of the total order of terms when
building ROT or POT four orders are considered (a) a fre-
quency order (descending order in the number of term oc-
currences in subscriptions), (b) a reverse order (ascending
order in the number of occurrences), (c) arrival order (or-
der of arrival of terms in the subscriptions) and (d) random
order (the term rank is randomly drawn).

The term order has a limited impact on the size of ROT
(see Figure 4). Compared to the frequency order, reverse,
random and arrival order require respectively 23.9%, 12.1%
and 1.6% more nodes. The difference between the frequency
order and the arrival order is expected since more frequent
terms appear statistically earlier than infrequent ones and
there is an important factorization on the terms with the
lowest ranks. For the reverse order, there is now a (low)
factorization on the highly ordered terms but since these
terms are infrequent, more subscriptions will be indexed in
the sub-tries rooted at medium-frequency terms where fac-
torization is more important. This explains why this order
leads to more Trie nodes, but the increase is limited. Fig-
ure 5 shows that the term order impacts more seriously the
number of nodes visited during matching: e.g. with the fre-
quency order, for an incoming item 36.1% more nodes are
visited than with the reverse one. The reverse order allows a
better pruning than the frequency order since subscriptions
featuring less frequent terms can be quickly filtered out. A

similar result, in a different context, is reported in [21]. Sur-
prisingly enough the order has an almost negligible effect
both on the POT size and as on the number of nodes vis-
ited during matching. The number of Trie nodes differs by
less than 1% w.r.t. the considered order, and the difference
between the numbers of visited nodes does not exceed 8%.
Indeed, whereas the reverse order requires more nodes for
ROT, subscriptions in sub-tries rooted at the low-ordered
terms are poorly factorized which leads to many unary paths
that benefit from the path compaction of the POT.

Figure 4: Impact of terms order on # created nodes

Figure 5: Impact of terms order on # visited nodes

4.3.3 Impact of the terms distribution

To investigate the impact of terms’ occurrence distribu-
tion on the indexes, in addition to the real distribution
employed previously, two more distributions are considered
when generating subscriptions: (a) uniform and (b) inverse
where the most frequent terms in subscriptions correspond
to the least frequent terms in the items. Note that terms are
ranked according to their frequency order in items. Figure 6
shows that the terms’ occurrence distribution in subscrip-
tions has no impact on the size of the four indexes. For CIL
and RIL, the number of nodes corresponds to the number
of terms in subscriptions so it is independent from their oc-
currence distribution. Regarding ROT, real or inverse dis-
tributions have no impact on the index size. As a matter
of fact, the left part of the Trie structure becomes unbal-
anced for the former and this unbalance is shifted to the
right for the latter. But in all cases, a similar factorization
gain is observed. As expected, an uniform distribution re-
sults in a significant larger ROT index. More combinations
of terms are drawn, resulting in a more balanced Trie with
more paths rooted at internal nodes, and thus less factoriza-
tion opportunities. Paths compaction attenuates this effect
for POT.

In contrast, distributions seriously impact the numbers
of visited nodes during matching (Figure 7). For CIL, this
number reaches 300, 000 nodes for real, but only 1, 400 for

uniform and it drops to 8 for inverse. ROT and POT
exhibit a similar behavior with respectively 400, 26 and 1
nodes visited on the average for the different distributions.
For CIL, inverse leads to the scanning of shorter subscrip-
tion lists leading to a lower matching cost. For a uniform
distribution , subscription lists have almost the same size,
while in real, subscription lists of frequent terms are par-
ticularly large with a high probability to be scanned for an
incoming item. Regarding ROT and POT, uniform and
inverse distributions yield a fast pruning, because of low
factorization. For inverse, frequent item terms correspond
to quite few subscriptions, and it is quite rare to match more
than one term. For uniform, less subscriptions are associ-
ated with a given prefix compared to real and consequently
less nodes have to be visited.

Figure 6: Impact of the distribution on index size

Figure 7: Impact of the distribution on matching

4.4 Scalability and performance
We turn now our attention to benchmarking memory

space and matching/indexing time for CIL, RIL and POT.
ROT, whose space consumption reveals quickly scalability
issues, has been discarded.

4.4.1 Memory requirements

Figure 8 illustrates the evolution of the memory space for
the three indexes for 10M of subscriptions when scaling vo-
cabulary size VS . Using vocabularies of items VI ranging
from 100K to 1.5M terms, we generate subscriptions whose
vocabularies VS ranges from 87, 839 to 471, 324 terms. In
general, IL indexes require a third of the memory required
by POT. CIL and RIL space requirements slightly increase
with vocabulary size, from 250 to 280MB when the vocabu-
lary size triples, so around a 10% increase. This is due to the

fact that a larger vocabulary leads to a larger hash table for
the Dictionary (we fix it as half size of the vocabulary) while
subscription lists are constant, with |s|AV G × |S| nodes for
CIL and RIL. On the other hand, POT is more sensitive to
the vocabulary size, since its space requirement grows from
710 to 925MB, so a 30% increase. This is due to the appear-
ance of more terms combinations in subscriptions so more
paths in the Trie and less factorization opportunities.

Figure 8: Memory footprint by scaling |VS |

Figure 9 illustrates the memory space consumed by the
three indexes for a vocabulary VI (resp. VS) of 1.5M (resp.
1.2M) terms when scaling the number of subscriptions from
5M to 100M . As expected, the memory space consumed
by CIL and RIL increases linearly with the number of sub-
scriptions. Since the Dictionary size is fixed to half of the
VS size, only subscription lists consume more space to store
the incoming subscriptions (i.e., a 4 − byte id per new sub-
scription). Surprisingly enough, POT ’s also exhibits a lin-
ear size growth. While a sub-linear growth is expected with
factorization, this effect competes with the creation of new
nodes. This happens when a subscription does not match
with any of the Trie paths or with alteration of existing ones
when adding a new subscription list, resizing the array of an
existing subscription list, or adding to a new hashmap for
its children. The gradient of the memory curve is four times
larger for POT than for CIL and RIL. For instance for 100M
subscriptions, the first requires 9, 200MB while the other two
only 2, 320MB. Remember that despite its factorization gain
in terms of abstract nodes (see Section 4.3), the memory re-
quirements of a concrete POT node in our implementation
is on average 128bytes versus 4bytes for CIL and RIL.

Figure 9: Memory footprint by scaling |S|

4.4.2 Matching time

Figure 10 reveals that for 10M of subscriptions, RIL and
POT outperform CIL by a one or two orders of magnitude

for all vocabulary sizes. For instance, a matching is per-
formed in 4.33ms (resp. 6.21ms) for CIL with |VS | equal
to 87K (resp. 378K), while it requires only 0.55ms (resp.
0.89ms) for RIL and 0.03ms (resp. 0.94ms) for ROT. CIL
matching leads to scanning large subscription lists, and con-
sequently to decrement many counters, especially for items
with 25 terms on the average that are likely to contain sev-
eral frequent terms. RIL takes advantage of the terms dis-
tribution to scan smaller subscription lists than with CIL,
since by construction only few subscriptions appear in the
posting lists of frequent terms. POT benefits from a more
drastic pruning of the search space, since despite the the-
oretically large number of paths, in POT not many term
combinations actually exist (see the difference between the
complete trie COT and the ROT in Figure 2).

The vocabulary size VS also affects indexes. CIL exhibit a
convergent behavior: with larger VS more subscription lists
are scanned but since each one is smaller, on the average the
same number of nodes are eventually visited. RIL matching
cost grows linearly with VS : for large vocabularies, subscrip-
tions are less likely to contain the least frequent terms, and
consequently the subscription lists of the medium frequent
terms are larger; since these lists have a higher probability
to be scanned when matching an incoming item, more nodes
are expected to be visited. In POT this number increases
exponentially with VS : trie has less factorization opportuni-
ties (nodes for frequent terms degenerate to inverted lists)
and for an incoming item more paths need to be explored.
As a consequence, while POT outperforms RIL with one
magnitude order for small vocabularies, RIL provides better
performances for large ones (i.e. |VS | > 378K).

Figure 10: Matching time by scaling |VS |

Figure 11: Matching time by scaling |S|

Figure 11 depicts the matching time for a vocabulary VI

of 1.5M terms when scaling the number of indexed subscrip-
tions from 5 to 100M. In the three indexes, matching time

scales linearly with the number of subscriptions. CIL and
RIL subscription lists grow linearly with |S|, thus achieving
a constant gain which explains this linear behavior (with a
gradient that remains 6.5 times higher for CIL). In POT,
the larger the number of subscriptions, the larger the size of
the index, so the pruning effect decreases since more paths
are possibly explored when matching an incoming item. Ob-
serve that POT slightly outperforms RIL for a large num-
ber of subscriptions: for 100 million subscriptions, matching
time is only 7.2ms for POT versus 10ms for RIL.

4.4.3 Indexing time

Last, we measure the average time required to index 10M
subscriptions generated from a vocabulary VI of 1.5M terms.
IL building time is in general faster than OT, with only
0.7ns (resp. 1.0ns) required to insert a subscription to RIL
(resp. to CIL) while POT needs 17ns. The additional POT
overhead stems from the cost of converting a Trie node from
one type to the other (to accommodate added subscriptions,
children, etc.). On the contrary, CIL requires only to add
the new subscription to the corresponding posting lists of its
terms while RIL indexing is even simpler since a subscription
is added only to one posting list of its key term.

4.4.4 Summary

The morphology study conducted with our first set of
experiments, highlights the factorization gains in terms of
abstract nodes of TI compared to IL indexes. However,
as we have seen in the second set of experiments, these
gains are somehow eroded, by the concrete representation
requirements of nodes in memory of the three indexes: CIL
(vs. ROT) exhibits the lowest (vs. biggest) memory re-
quirements while ROT (vs CIL) offers better (vs. worst)
matching performances. RIL appears as a good compromise
with memory requirements close to that of CIL and match-
ing time close to ROT (and can even outperform ROT for
some settings). More precisely, for critical parameters of web
syndication systems, the three indexes exhibit the following
behavior:

i) Nodes factorization is particularly important in ROT
for small subscription lengths; short subscriptions are ex-
pected to be the reality of web syndication systems as for
web queries [17]. In addition, such factorization is almost
not sensitive to the order of terms chosen for building ROT;

ii) Although not affecting the number of created nodes in
the three structures, the occurrence distribution of terms se-
riously impacts their matching time. In particular, under the
realistic assumption that terms distribution in subscriptions
follows the terms distribution in items, the search space for
frequent terms in CIL is extremely large compared to ROT.
When terms in subscriptions follow the same distribution as
in items [8] the latter has to visit on the average three orders
of magnitude less nodes than the former. Of course, when
they follow the inverse distribution, the number of visited
nodes drastically drops for both indexes.

iii) In the three indexes, the larger the vocabulary size |VS |
is, the more memory is consumed. VS additionally impacts
matching time: for small vocabularies, POT outperforms
RIL (resp. CIL) by an order (resp. two orders) of magni-
tude; but for large vocabularies employed in web syndication
systems, while CIL matching time converges, POT match-
ing time exponentially grows and is outperformed by RIL;

iv) finally memory and matching time scale linearly in all

indexes w.r.t. the number of indexed subscriptions.

5. RELATED WORK
Several indexes have been proposed for matching effi-

ciently structured (i.e. attribute-value pairs) or unstruc-
tured (i.e. keywords) subscriptions with incoming items,
commonly called Publish/Subscribe. The goal of our match-
ing is to find all subscriptions fully contained in an incoming
item and not to find the most synthetic or relevant subscrip-
tions (that may be useful for the inverse matching prob-
lem of documents to queries). Neighborhood topics such
as LCA/SLCA or top-k keyword queries are left for future
work since they can be applied only on semi-structured text
(e.g. XML) or support approximate subscription matching.
None of the related works provide an exhaustive experimen-
tal evaluation of the most suited indexes supporting broad
matching semantics as in our paper. Mostly, they rely on
CI schemes rather than on a TI structure, since memory
requirement is larger for TI than CI systems. For example,
Le Subscribe [15] system employs a CI index on predicates
where subscriptions match by counting contained predicates.
But all partially matching subscriptions are examined, and
some optimizations have been proposed which group sub-
scriptions according to their size with several variants: by
focusing on disjunctive predicates [5], by guiding cost-based
algorithms with statistics on subscriptions and incoming
events [7], or by sorting matching lists and subscription ids
in lists in order to skip unmatching ids quickly [20].

In [1], a TI with a two phase matching of conjunctive
subscriptions has been proposed, assuming a fixed total or-
dering among subscription predicates. The pre-processing
phase creates a matching tree over the subscription pred-
icates, in which nodes are predicates. This TI’s matching
time complexity is sub-linear, with respect to the number
of indexed subscriptions. [10] proposes a two-level TI
partitioning of the subscriptions, taking advantage that in
most applications events have only a few ’relative’ attributes.
This allows to efficiently identify a small subset of matching
subscriptions. Multi-dimensional TI [19, 13] rely on spatial
reduction of the search space to points (for subscriptions)
and range queries (for incoming events). [13] extends this
index for conjunctive predicates for a Pub/Sub ranked ver-
sion.

Few Pub/Sub systems have been proposed for keyword-
based subscriptions. Most noteworthy is the SIFT [22] se-
lective dissemination of text documents whose alternative
indexes have been thoroughly studied [21]. Those studies
are only based on disk implementations of (a) the ranked
key Counter-Less IL in which subscriptions are sorted on
their smallest rank keyword, (b) the Regular Trie and (c)
the Regular Ordered Trie (ROT), but not the POT (our Pa-
tricia Trie variant). It is expected that this ordering leads
to many more common prefixes between subscriptions. In
contrast to the disk-based approach, we chose a main mem-
ory implementation since it enhances the performance when
scaling up to a large number of subscriptions (about 10M).
The main differences in their observed behavior are due to
(a) the size of the incoming set of words (52 in average for
web syndication [8] vs 12K in text documents), (b) the size
of the subscription vocabulary (1,5M in web syndication vs.
18,000 in text documents), and (c) the distribution of terms’
occurrences. This explains why authors observe that ROT
matching takes significantly more time than IL indexes as

documents take more I/O to be read. The only work exploit-
ing CI ranks information of terms occurrence distribution in
order to optimize subscription matching by clustering tech-
niques is presented in [9]. This proposal does not scale in
our context due to our vocabulary size.

On the other hand, ILs have been exploited in [12] for
indexing advertisement bids in sponsored search. This opti-
mization relies on a multi-term indexing which combinations
are the most frequent in the bids. Since the number of index
probes grows exponentially with query size, authors consider
a maximum length on indexed term combinations and pro-
pose a mapping scheme that reorganizes bids sharing the
same subset of terms to the same data nodes based on a
memory access cost model. Clearly this optimization does
not scale in our setting given that the number of incoming
items (on average 25-36 terms) are clearly larger than web
queries (on average 2-3 terms [2]).

6. CONCLUSION AND FUTURE WORK
We present and compare three index structures imple-

menting different counting techniques for pruning as early
as possible non matching subscriptions to an incoming item.
The technical novelty of our work comes from the thorough
analysis of the complexity and experimental evaluation of
the three chosen indexes. The first two, CIL and RIL, rely
on an inverted list while the last one, POT, is based on a
Patricia ordered trie. We found that for small vocabularies
POT matching time is one order of magnitude faster than
the best IL (RIL), while for large vocabularies, both exhibit
a matching time of the same order. The actual distribu-
tion of term occurrences has almost no impact on the size
of the three indexing structures while it significantly affects
the number of nodes that need to be visited upon matching
something that justifies OT performance gains. Finally, the
smaller the subscription length, the larger the OT factoriza-
tion gain w.r.t. IL and the larger the rank of the term from
which the OT substructure degenerates to an IL. Moreover,
not only we experimentally evaluate the redundancy saving
provided by a Trie w.r.t. IL structures, but also we propose
a first analysis of the ROT structure, especially based on
variation of the vocabulary, the subscription size distribu-
tion and several term occurrence distributions.

We intend as future work to extend the matching process
to take into account a similarity score between the subscrip-
tion and the item. This could imply to weight the subscrip-
tion terms or to consider additional taxonomic relationships
like broader and narrow terms We will also study the behav-
ior of the three indexes in a parallel and distributed setting.

7. REFERENCES

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman,
M. Astley, and T. D. Chandra. Matching Events in a
Content-Based Subscription System. In PODC, pages
53–61, 1999.

[2] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. A.
Grossman, and O. Frieder. Hourly analysis of a very
large topically categorized web query log. In SIGIR,
pages 321–328, 2004.

[3] F. Bodon. Surprising Results of Trie-based FIM
Algorithms. In FIMI - ICDM Workshop, 2004.

[4] F. Bodon. A Trie-based APRIORI Implementation for
Mining Frequent Item Sequences. In OSDM, pages

56–65, 2005.

[5] A. Carzaniga and A. Wolf. Forwarding in content-
based network. In SIGCOMM, pages 163–174, 2003.

[6] J. Clément, P. Flajolet, and B. Vallée. Dynamical
Sources in Information Theory: A General Analysis of
Trie Structures. Algorithmica, 29(1):307–369, 2001.

[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira,
K. A. Ross, and D. Shasha. Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe. In
SIGMOD, pages 115–126, 2001.

[8] Z. Hmedeh, N. Vouzoukidou, N. Travers,
V. Christophides, C. du Mouza, and M. Scholl.
Characterizing web syndication behavior and content.
In WISE, pages 29–42. Springer Heidelberg, 2011.

[9] U. Irmak, S. Mihaylov, T. Suel, S. Ganguly, and
R. Izmailov. Efficient Query Subscription Processing
for Prospective Search Engines. In USENIX, pages
375–380, 2006.

[10] S. Kale, E. Hazan, F. Cao, and J. P. Singh. Analysis
and algorithms for content-based event matching. In
ICDCS, pages 363–369, 2005.

[11] D. E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
1973.

[12] A. C. König, K. W. Church, and M. Markov. A Data
Structure for Sponsored Search. In ICDE, pages
90–101, 2009.

[13] A. Machanavajjhala, E. Vee, M. N. Garofalakis, and
J. Shanmugasundaram. Scalable ranked
publish/subscribe. PVLDB, pages 451–462, 2008.

[14] H. H. Malik and J. R. Kender. Optimizing Frequency
Queries for Data Mining Applications. In ICDM,
pages 595–600, 2007.

[15] J. Pereira, F. Fabret, F. Llirbat, R. Preotiuc-Pietro,
K. A. Ross, and D. Shasha. Publish/Subscribe on the
Web at Extreme Speed. In PVLDB, pages 627–630,
2000.

[16] B. Philip. Ideal hash trees. Technical report, EPFL
Swtzerland, 2000.

[17] N. Vouzoukidou. On the statistical properties of web
search queries. Technical report, ISL, ICS-FORTH,
Greece, 2010.

[18] A. Walker. An efficient method for generating discrete
random variables with general distributions. TOMS,
3:253–256, 1977.

[19] B. Wang, W. Zhang, and M. Kitsuregawa. UB-Tree
Based Efficient Predicate Index with Dimension
Transform for Pub/Sub System. In DASFAA, pages
63–74, 2004.

[20] S. Whang, J. Shanmugasundaram, S. Vassilvitskii,
E. Vee, R. Yerneni, and H. Garcia-molina. Indexing
boolean expressions. PVLDB, 2:37–48, 2009.

[21] T. W. Yan and H. Garcia-Molina. Index structures for
selective dissemination of information under the
boolean model. TODS, 19(2):332–364, 1994.

[22] T. W. Yan and H. Garcia-Molina. The SIFT
Information Dissemination System. TODS,
24(4):529–565, 1999.

[23] J. Zobel and A. Moffat. Inverted files for text search
engines. CSUR, 38(2), 2006.

