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In the study of complex systems a fundamental issue is the mapping of the networks of interaction between
constituent subsystems of a complex system or between multiple complex systems. Such networks define the
web of dependencies and patterns of continuous and dynamic coupling between the system’s elements char-
acterized by directed flow of information spanning multiple spatial and temporal scales. Here, we propose a
wavelet-based extension of transfer entropy to measure directional transfer of information between coupled
systems at multiple time scales and demonstrate its effectiveness by studying �a� three artificial maps, �b�
physiological recordings, and �c� the time series recorded from a chaos-controlled simulated robot. Limitations
and potential extensions of the proposed method are discussed.
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I. INTRODUCTION

The question often occurs of how to identify and charac-
terize information structure and hidden dependencies be-
tween the components of a complex dynamical system or
between multiple complex systems, given only a set of si-
multaneously recorded �typically multivariate� time series. In
particular, it may be required to identify causal dependencies
or quantify flow of information. Such flow can be
unidirectional—i.e., time series Xt affects time series Yt,
while Yt has no influence on Xt— or �in the general case�
bidirectional. Moreover, because complex systems operate
across multiple spatial and temporal scales, it is likely that
information flow will exhibit a multiscale structure.

Cross-correlation is a common way of evaluating the sta-
tistical dependencies among data sets; it is not only effi-
ciently computed but has also an appealing and natural inter-
pretation. Cross-correlation, however, is a second-order
statistics handling merely linear dependencies. Mutual infor-
mation provides an attractive way of circumventing the re-
strictions of cross-correlation because it is sensitive to
higher-order relationships, both linear and nonlinear ones.
Yet, mutual information is a symmetric measure and fails to
detect directional �asymmetric� flow of information unless
one of the time series is delayed �1�. Measures of interdepen-
dence aimed at overcoming the limitations of mutual infor-
mation have recently been introduced, e.g., extended
Granger causality �2,3�, nonlinear Granger causality �4�,
similarity index �5�, predictability improvement �6�, and
transfer entropy �7�. All these measures, however, do not
account for features related to structure on scales other than
the shortest one.

Here, we introduce a multiscale extension of transfer en-
tropy �7� as a tool for understanding the internal dynamics of
complex systems. By projecting a time series into the wave-
let space, a new set of variables is obtained, whose statistics

allow us to extract causal dependencies between the vari-
ables. In what follows, we show that our wavelet-based ap-
proach augments “sample-based” embedding vector ap-
proaches by disclosing previously undetectable causal
structure in potentially nonstationary and discontinuous sig-
nals. Our analysis is applicable to a wide range of nonsta-
tionary physical and biological signals, regardless of whether
the underlying fluctuations have stochastic origins or arise
from nonlinear dynamical processes.

The paper is organized as follows. We first introduce a
wavelet-based multiscale extension of transfer entropy.
Transfer entropy builds upon conditional entropy, which in
contrast to the standard form of mutual information, or
delayed-related measures, allows one to distinguish actually
“transported” from shared information. We then illustrate the
application of our method by studying three synthetic data
sets, a physiological time series, and data collected using a
simulated robot. Next, we discuss the results, point to some
of the shortcomings of the extension, and eventually draw
some conclusions.

II. METHODS

In this section we give the mathematical background for
the proposed measure. We first outline some formalism and
then describe the method. The method was implemented in
MATLAB R7.2 �MATHWORKS, MA� and the MATLAB wavelet
toolbox using purpose-built script files.

A. Transfer entropy

We are interested in detecting directed exchange of infor-
mation between two distinct dynamical systems X and Y and
in comparing their mutual influence. A good approach to
obtain knowledge about asymmetric dependencies between
coupled systems �or the direction and strength of the cou-
pling between subsystems� is to measure to which extent its
individual components contribute to information production
and at what rate they exchange information among each*Corresponding author. lunga@ifi.uzh.ch
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other. Transfer entropy �7� is an appropriate starting point
because it is an information theoretic measure which not
only shares some of the properties of mutual information but
also takes the dynamics of information transport into ac-
count. It is a specific version of the mutual information for
conditional probabilities, but unlike mutual information it is
designed to detect information transferred between two sys-
tems, separate for both directions, and conditional to com-
mon history and input signals.

Let Xt= �xt�t=1,. . .,N and Yt= �yt�t=1,. . .,N denote bivariate sta-
tionary time series simultaneously measured from X and Y.
We start by reconstructing the dynamics of the two time
series by the method of time delay embedding �8,9�. The
state �or embedding� vector of dimension m of Xt is formed
by delayed past scalar observations of the time series:

xt
m,d = �xt,xt−d,xt−2d, . . . ,xt−�m−1�d�T, �1�

where d is the time delay �or lag� between successive ele-
ments of the state vector, and t=�+1, . . . ,N with embedding
window �= �m−1�d. If not otherwise stated in this paper d
=1, and we use the following expression:

xt
m = �xt,xt−1,xt−2, . . . ,xt−m+1�T. �2�

Similarly, we can define yt
m,d and yt

m. Note that the state
vectors xt

m,d and yt
m,d are points in the m-dimensional spaces

X and Y. To reconstruct the state spaces of the time series,
the embedding dimension m and the time delay d have to be
determined. The choice of both parameters depends on the
dynamics of the underlying data.

Essentially, transfer entropy measures the deviation from
the generalized Markov property

p��xt+1�xt
k� = p��xt+1�xt

k,yt
l� , �3�

where p�� · �·� denotes the transition probability, and k and l
are the dimensions of the two delay vectors. If the deviation
from the generalized Markov process is small, i.e.,
p��xt+1�xt

k�� p��xt+1�xt
k ,yt

l�, then it can be assumed that the
state vectors of space Y have no �or little� influence on the
transition probabilities of the state vectors of space X. If the
deviation is large, however, then the assumption of the Mar-
kov process is not valid. The incorrectness of the assumption
can be quantified by the transfer entropy which is formulated
as a special instance of the Kullback-Leibler entropy be-
tween p��xt+1�xt

k� and p��xt+1�xt
k ,yt

l� �7�:

TY→X = 	
xt+1,xt

k,yt
l

p�xt+1,xt
k,yt

l�log
p��xt+1�xt

k,yt
l�

p��xt+1�xt
k�

, �4�

where xt and yt represent the states of time series Xt and Yt at
time t. An appealing feature of the transfer entropy is that—
unlike mutual information or conditional entropy—it is ex-
plicitly nonsymmetric under the exchange of Xt and Yt �a
similar expression exists for TX→Y�. It can thus be used to
detect coupling and directional transport between two sys-
tems. In other words, the transfer entropy represents the in-
formation about a future observation xt+1 obtained from the
simultaneous observation of k past values of Xt and l past

values of Yt, after discarding the information about the future
of Xt obtained from k past values of Xt alone.

The transfer entropy is obtained by approximating the
joint probabilities p�xt+1 ,xt

k ,yt
l� through kernel density esti-

mation and by coarse-graining the continuous state space at a
resolution r. For computational reasons we set k= l=1 and
obtain:

p̂r�zt� =
1

L
	
t�

��r − ��zt − zt���� , �5�

where zt= �xt+1 ,xt ,yt�T, �� · �� is the Euclidean distance, and L
is the number of pairs �t , t�� �which are selected to exclude
dynamically correlated pairs�. As in �7�, we use a step kernel:
��x�0�=1; ��x�0�=0 �that is, the probabilities are evalu-
ated as normalized histograms�. Alternative kernels can be
found in �10�. The conditional probabilities required for Eq.
�4� are then calculated from the joint probabilities.

When the available data is limited �number of samples
N�1000� and the coupling between the time series is small,
transfer entropy suffers from a finite sample effect �in par-
ticular for small resolutions, r�0.05� which makes the as-
sessment of the significance of the obtained values difficult
�11�. To counter this problem, a slightly modified “finite
sample”-corrected variant of transfer entropy, called effective
transfer entropy, has been proposed �12�. Note that we do not
deal with the finite sample problem here. For all our experi-
ments N�1000 and r�0.05, and we can safely assume that
our results are affected by a finite sample problem just to a
small degree.

B. Wavelet-based extension

Multiresolution wavelet analysis is a useful technique for
analyzing signals at multiple scales, even in the presence of
nonstationarities which often obscure such signals �13,14�.
Wavelet analysis is known for its superiority to both conven-
tional and short-time �windowed� Fourier analysis when it
comes to time and frequency localization �14,15�, and thus
lends itself particularly well as a tool for analyzing nonsta-
tionary and discontinuous signals. Wavelet coefficients not
only provide a compact representation of the power distribu-
tion in time and scale �or frequency�, but they also capture
information about the higher frequency oscillatory properties
and long-term trends.

A doubly indexed family of wavelet coefficients Vs,� can
be extracted from Xt by convolving Xt with a scaled and
translated version of a function called the mother wavelet �or
prototype function� 	��� �an analogous family Ws,� can be
defined for Yt�:

Vs,� =
1

s

	
t=1

N

Xt	
�� t − �

s
� , �6�

where the �*� denotes the complex conjugate, s�0 is the
scale dilation parameter �corresponding to the width of the
wavelet�, and ��R is the translation parameter indicating the
location of the wavelet function as the prototype function is
shifted through the signal �the point of reference of the con-
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volution�. The scale s determines the width of the wavelet
function and hence its resolution. Smaller scales correspond
to more rapid variations and therefore to higher frequencies;
that is, the larger the scale, the wider is the wavelet, and the
more the details are smeared out. In this regard, the wavelet
transform resembles a series of bandpass filters. Each filter
may be assigned an equivalent Fourier period which gives an
idea of the frequency content of the signal analyzed. This is
done by substituting a cosine wave of a known frequency
into Eq. �6� and by computing the scale that matches the
maximum wavelet power spectrum.

Many choices for the mother wavelet functions exist that
differ according to symmetry, width of support, and orthogo-
nality �13�. Here, we use the �complex� MORLET wavelet as it
is characterized by a good trade-off between time and fre-
quency localization �36�:

	��� = 
−1/4ei�0�e−�2/2, �7�

where �0 is the normalized frequency and is here taken to be
�0� �5,6�. With reference to the MATLAB wavelet toolbox,
the mother wavelets used are cmor2–0.9549 ��0=6; syn-
thetic and physiological data; Secs. III A and III B� and
cmor2–0.7958 ��0=5; robot data; Sec. III C�. For the MOR-

LET wavelet the relationship between scale and equivalent
Fourier period is �=1.03 s.

We extend transfer entropy by mapping the information
transfer in the space spanned by the wavelet coefficients. The
formulation is straightforward. First, the wavelet coefficients
Vs,� and Ws,� are extracted from the time series Xt and Yt for
the scales s=s0 , . . . ,sn. The mth scale is sm=s02m/V, where
s0�R+− �0� and V is a positive integer number �correspond-
ing to the number of scales for each octave�. The smallest
resolvable scale s0 �m=0� should be chosen so that the
equivalent Fourier period ��s0��2Ts �where Ts is the sam-
pling period�. For V
4 the wavelets constructed are quasi-
orthogonal and the scales quasi-independent �13,14� �for all
our analyses, V
8�. In analogy to Eq. �2�, we define two
“embedding” vectors using the wavelet coefficients:

Vs,� = �Vs1,�, . . . ,Vsn,��T, �8�

Ws,� = �Ws1,�, . . . ,Wsn,��T. �9�

Assuming that Vs,� and Ws,� are “lag-stationary” �the lag is
denoted by ��, one can express the multiscale extension of
Eq. �4� for k= l=1 as

TY→X�s� = 	 p�Vs,�+1,Vs,�,Ws,��log
p��Vs,�+1�Vs,�,Ws,��

p��Vs,�+1�Vs,��
,

�10�

TX→Y�s� = 	 p�Ws,�+1,Ws,�,Vs,��log
p��Ws,�+1�Ws,�,Vs,��

p��Ws,�+1�Ws,��
,

�11�

where s�0 indicates the scale. If TY→X�s�−TX→Y�s��0, in-
formation flows from Y to X at scale s, and vice versa if
TX→Y�s�−TY→X�s��0, information flows from X to Y.

One pitfall of this measure �as well as of other measures
�16�� is that it does not readily allow us to assess the signifi-
cance of the result. This problem can be addressed with the
concept of surrogates �17�. Here, we generate a set of surro-
gates of �Vs,� ,Ws,�� by permuting the temporal indices of
Ws,� while keeping those of Vs,� fixed. This operation effec-
tively destroys the realizationwise pairings of the times se-
ries while preserving their original statistical structure. Ap-
plying transfer entropy to the original time series and to q
surrogate data sets—each obtained through a different ran-
dom permutation—yields T�s ,q� and allows testing the null
hypotheses that Xt and Yt are extracted from decoupled sys-
tems. As in �18� or �12�, however, our primary use of surro-
gates is not to test this null hypothesis but rather for an offset
correction, which can be interpreted as a significance thresh-
old. We finally define the offset-corrected wavelet-based
transfer entropy as

Tc�s� = T�s� − max
q

�T�s,q�� . �12�

In what follows, Tc,X→Y will indicate “offset-corrected” in-
formation transferred from X to Y, whereas Tc,Y→X will indi-
cate information transferred in the opposite direction. In all
the following numerical experiments, q=10.

III. EXPERIMENTS

We tested our method on five data sets: three unidirection-
ally coupled chaotic maps, one physiological time series, and
a data set generated using a robot.

A. Synthetic data

As a first experiment, for simplicity, we studied the sys-
tem formed of two unidirectionally coupled autoregressive
processes of first order where one process contains a cosine:

xt+1 = 0.7xt + 0.7 cos�0.3t� + nt
�x��0,�2� , �13�

yt+1 = 0.7yt + nt
�y��0,�2� + ext, �14�

where the parameter e� �0,1� regulates the coupling
strength, and nt

�x� and nt
�y� are independent Gaussian random

processes with zero mean and variance �2=0.2. By construc-
tion, the two time series are unidirectionally coupled with
time series Xt influencing time series Yt. For each coupling,
we generated a bivariate time series �Xt ,Yt� �random initial
conditions extracted from a normal distribution with zero
mean and unit variance; N=5�104 samples, the first 2
�104 samples are discarded�.

The parameters used for the analysis were r=0.125, �0
=6, s0=0.5, V=10, and n=64 scales. Figure 1 displays the
offset-corrected directed information exchange between the
two maps �c=Tc,xt→yt

−Tc,yt→xt
as a function of the coupling

strength e and scale s. Because for e=0 the two processes are
independent, �c�0 for any value of s. For increasing values
of e the influence of Xt on Yt increases as demonstrated by
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the larger values of �c. In particular, one can observe the
effect of the cosine on the dynamics of the coupled system: a
slowly increasing ridge, rather well-localized in scale, in the
scale interval �12,28�. We also estimated the information ex-
change as a function of the coupling e using the original
�nonmultiscale� definition of transfer entropy �Fig. 4�a�; see
also �11��. The comparison between the “traditional” and the
multiscale approach reveals the advantage of the latter; that
is, a more fine-grained detection of information flow �or,
causal dependencies� potentially allowing a better under-
standing of the mechanisms underlying the dynamics of a
particular system.

In our second numerical experiment, we studied a one-
dimensional ring lattice of 100 unidirectionally coupled
Ulam maps with periodic boundary conditions:

xt+1
l = f�ext

l−1 + �1 − e�xt
l� , �15�

f�u� = 2 − u2, l = 1, . . . ,100, �16�

where the parameter e� �0,1� denotes the coupling strength,
l is the lattice index, and t the time index. Note that by
construction, information can be transported only in the di-
rection of increasing l. For each coupling, we generated the
two time series Xt

1�l=1� and Xt
2�l=2� with a sample size of

N=2�104, after 2�104 steps of transients �random initial
conditions�.

The analysis was conducted using the following param-
eters: r=0.125, �0=6, s0=0.2, V=8, and n=64 scales. Figure
2 shows the directed exchange of information �c=Tc,xt

1→xt
2

−Tc,xt
2→xt

1 as a function of e and s. As evident from the figure,
�c correctly detects the gradual increase of coupling strength
for increasing values of e, reflecting the causality of the sys-
tem. This result is to be expected by the way the ring lattice
was constructed, and for high values of the scale index is
consistent with what reported in the literature �6,7�. For e
=0.18 and 0.82, there is a sharp drop in the flow of informa-
tion �at all scales�, and the estimated coupling is zero. For
these two values of e, map �l=1� and map �l=2� are in a

�generally� synchronized state, that is, driver and response
system are indistinguishable from each other. As in the pre-
vious numerical experiment, also in this case, we calculated
the amount of information exchanged between the two se-
lected neighboring maps using the original version of trans-
fer entropy �Fig. 4�b�� and compared it to the proposed mul-
tiscale approach. Although for coupling values e�0.5 and
for scales s�6.4 the trends are qualitatively similar, one can
observe a discrepancy for e�0.5 and s�6.4: at low scales
the influence of a high coupling value is less pronounced.
For s�6.4, however, the relative influence of a higher cou-
pling value is larger, hinting at a low frequency information
flow between the two maps.

In our third numerical experiment, we studied two unidi-
rectionally coupled Henon maps:

xt+2 = 1.4 − xt+1
2 + 0.3xt, �17�

yt+2 = 1.4 − �ext+1 + �1 − e�yt+1�yt+1 + 0.3yt. �18�

As in both previous systems, e� �0,1� is the coupling pa-
rameter. In this particular system, the maps synchronize for
e�0.7. For such values of the coupling, no quantifiable dif-
ference between Xt and Yt exists, and the information trans-
ferred from one map to the other is zero. The wavelet-based
transfer entropy was calculated using N=2�104 samples af-
ter discarding the 2�104 initial samples as transients.

The parameters for the analysis were r=0.125, �0=6, s0
=0.2, V=10, and n=64 scales. The directed exchange of in-
formation �c=Tc,xt→yt

−Tc,yt→xt
is shown in Fig. 3. The mea-

sure increases with the coupling strength e up to a critical
point e�=0.7. For e�e�, the two maps synchronize at all
scales and �c�0, as expected. As in the case of the coupled
Ulam maps, we note that the trends of both indices remain
consistent for all couplings and scales, i.e., Tc,xt→yt

�0 and
Tc,yt→xt

�0, reflecting the causality in the system. Our find-
ings are consistent with the results reported in �2�. As in the
two previous numerical experiments, also here we compared
our multiscale approach with a “single scaled” one �Fig.
4�c��. There is a good match between the amount of ex-
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changed information as a function of the coupling measured
by the wavelet-based multiscale extension �at any single
scale s� and the original version of transfer entropy.

B. Physiological data

For our fourth numerical experiment, we used a bivariate
time series extracted from a publicly available physiological
data set �19� consisting of the breath rate �measured as lung
pressure� and the instantaneous heart rate of a sleeping hu-
man patient suffering from a breathing disorder. Under nor-
mal, physiological conditions, the heart rate is modulated by
respiration through a process known as respiratory sinus ar-
rhythmia �RSA�. Sleep apnea �a pathological condition char-
acterized by brief interruptions of breathing during sleep�
affects the normal process of RSA disturbing the usual
�physiological� patterns of interaction and feedback among
heart rate, respiration, and blood oxygen concentration. As a
consequence, the control of heart rate by respiration becomes
unclear. We conjecture that the application of wavelet-based
transfer entropy may provide additional insights into the na-
ture of the interaction. In particular because it is likely that
the dynamics of mutual interaction among physiological
variables act on different �a priori unknown� time horizons.

Figure 5 reproduces the data set that we analyzed. The
figure indicates that bursts of breath and beat-to-beat alter-
ations in heart rate �heart rate variability �HRV�� are interde-
pendent �samples no. 305–4305; approximately 32 min�. The
parameters used for the analysis were r=0.16, �0=6,
s0=0.9, V=60, and n=256 scales. Figure 6 shows that our
multiscale approach finds bidirectional flow of information
�from heart rate to breath rate, and vice versa�. The graph
also illustrates that at lower scales �s� �0.0,1.463�,
corresponding to the frequency interval 0.321–2.0 Hz� the
flow of information from heart rate to breath rate �Tc,H→B� is
larger than the one from breath rate to heart rate �Tc,B→H�.
This result is consistent with the findings reported
in �2,7,20�. Similarly, at higher scales �s� �5.5 ,8.0� ;
0.058–0.086 Hz�, the causal influence of heart rate on
breath rate is larger than vice versa �Tc,H→B�Tc,B→H�. For

s�8.0 �f �0.058 Hz�, however, the direction of the causal
interaction is inverted, i.e., Tc,H→B�Tc,B→H. Such inversion
of information flow is a documented phenomenon �21�, but
to our knowledge no conclusive evidence exists as to why it
occurs. Our result may point to a hidden low frequency
mechanism �f �0.06 Hz� underlying the causal influence
that may be worthwhile investigating further.

Another interesting result is that Tc,B→H�0 in the scale
interval �1.21, 3.15� �0.15–0.39 Hz�; whereas Tc,H→B=0 in
the interval �1.46, 2.4� �0.19–0.32 Hz� and is �0.01 for 1.2
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�s�4.0 �which hints at a weak coupling�. This finding is
consistent with the known fact that the high frequency com-
ponent of HRV �HF, 0.15–0.45 Hz� is synchronous with the
respiratory cycle and is identical to the RSA �which is due to
the parasympathetic activity�. Notable are also the high val-
ues of Tc,B→H and Tc,H→B in the scale interval �5.5, 11.5�
�0.0418–0.0625 Hz� which corresponds to the lower part of
the low frequency component of the HRV spectrum �LF,
0.04–0.15 Hz�. Note that all our findings are plausible under
the assumption that the processes underlying heart rate and
breath rate dynamics mutually causally influence each other
�that is, both can either act as driver or as response�. To
conclude this forth application scenario, we point out that the
proposed multiscale approach is rather specific and reason-
ably sensitive even when applied to a realistic data set, with-
out requiring too much parameter tuning.

C. Robot data

The goal of our last application is to identify and map
information flow in a simple robot �composed of one sensor
and one actuator; henceforth the “controlled system”�
coupled to a chaotic map �henceforth the “controller”�. We

opted for a chaotic controller not only because it represents
one of the most exciting theoretical outcomes of contempo-
rary dynamical systems theory �22,23�, but also because such
a controller might provide an interesting alternative to con-
ventional implementations. We emphasize that the goal of
the present paper is not to discuss the chaos-based control
framework which will be explained in depth in another pa-
per.

Specifically, we collected field data using a two-
dimensional two-link model kinematically equivalent to a
double pendulum and vaguely resembling a human walking
on level ground �Fig. 7�. To simplify our analysis we re-
stricted the motion of the biped to the sagittal plane, forcing
the robot to behave like a compass �hence the name
compass-gait biped robot�. The biped has two rigid �knee-
less� legs of point mass m connected by a frictionless hinge
joint at the hip. A third point mass mH representing the mass
of the upper body is concentrated at the same joint. We as-
sume that when the nonsupporting foot hits the ground its
velocity jumps instantaneously to zero. That foot then be-
comes the supporting leg and stays on the ground acting like
a hinge until the other foot touches the ground. The impact of
the foot with the ground is modeled as an inelastic �no-slip,
no-bounce� collision �see below�—energy is lost at each im-
pact and in order for the system to keep walking �without
falling�, energy must be supplied externally.

The configuration of the compass-gait biped is determined
by

� = ��ns,�s�T, �19�

where �ns and �s are the angles spanned by the nonsupport
�swing� and the support �stance� leg with the vertical, respec-

tively, and �̇ns and �̇s are their temporal derivatives �see Fig.
7�. The equation of motion governing the dynamic behavior
of the biped is
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FIG. 5. Simultaneously recorded time series of heart rate �top�
and lung pressure �breath rate� �bottom�. The data corresponds to
samples no. 305–4305 of the Santa Fe data set B archived in Phy-
sioNet databank �19�. The sampling rate is fs=2 Hz. Both traces
are normalized to zero mean and unit variance.
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FIG. 6. Wavelet-based transfer entropy Tc,B→H �solid� and
Tc,H→B �dashed�. B=breath, H=heart. The parameters used are: fs

=2 Hz, s0=0.9, V=60, n=256, and �0=6.

FIG. 7. Lumped model of compass-gait biped robot. The mass
of each leg is m; the mass of the hip is mH. The length of each leg
is l �divided into a segment a and a segment b�. �s and �ns are the
angles formed by the supporting �stance� and the nonsupporting
�swing� leg with the vertical �counterclockwise positive�. The inter-
leg angle is �ns−�s and g is the gravity vector.

LUNGARELLA, PITTI, AND KUNIYOSHI PHYSICAL REVIEW E 76, 056117 �2007�

056117-6



M����̈ + C��,�̇��̇ + g��� = S� �20�

with

M��� = 
 mb2 − mbl cos��s − �ns�
− mbl cos��s − �ns� �m + mH�l2 + ma2 � ,

�21�

C��,�̇� = 
 0 − mbl sin��ns − �s��̇s

− mbl sin��ns − �s��̇ns 0
� ,

�22�

g��� = g
 mb sin �ns

− �mHl + ma + ml�sin �s
� , �23�

where M��� is the 2�2 inertia matrix of the robot, C�� , �̇� is
a 2�2 matrix containing centrifugal and Coriolis terms,
g��� is a 2�1 vector of gravitational torques, S= �−1,1�T is
a conversion vector, and � is the torque applied to the hip
joint. The values of the parameters used in the simulation can
be found in Table I. The equations of motion were numeri-
cally integrated using a fourth order Runge-Kutta with inte-
gration step �t=5�10−3 s.

Equation �20� adequately expresses the dynamics of the
biped when one foot is on the ground while the other leg is
swinging. The impact of the swinging feet with the ground,
however, requires some additional considerations. Here, to
model such impact we make the following simplifying as-
sumptions: �a� the impact is perfectly plastic �no-bounce
condition�; �b� the legs do not slip �no-slip condition�; �c�
support is instantaneously transferred from the supporting
leg to the swing �nonsupporting� leg; and �d� the angular
momentum is conserved. For further elaborations on this is-
sue, refer to �24�.

The controller applies torque to the hip at continuous time
tk�R0

+, with tk+1� tk, t0=0; in all our simulations, tk=k�t.
The control events can be described by the following equa-
tions:

�n = �2cn,

cn = �1 − �1��1 − �cn−1
2 � + �1f��� ,

f��� = �̇s − �̇ns, �24�

where the control constant �2 determines the coupling
strength between the dynamics of the controller and the con-
trolled system �via torque�, the parameter �1 sets the influ-
ence of the feedback term onto the evolution equation of the

logistic map �xn= �1−�xn−1
2 ��, and � is the bifurcation pa-

rameter. For all our simulations, �=1.95, for which the lo-
gistic map exhibits chaotic dynamics.

We studied two control strategies: �1� open-loop control
��1=0 and �=�2�0; the actuation dynamics and thus the
torque �n applied to the hip joint are independent of the sen-
sory feedback f����; and �2� closed-loop control ��=�1=�2

�0; the state cn of the chaotic map is affected by the con-
trolled system via feedback, and conversely the controller
affects the controlled system�. In both control scenarios, we
varied the coupling parameter � in the interval �0.03, 0.33�
with increments of 0.003 and measured the wavelet-based
transfer entropy between the torque � �controlled variable�
and the interleg angular velocity �̇s− �̇ns �the measured vari-
able�. All runs had a maximum length of 15 000 time steps
�equivalent to 75 s� and a minimum length of 1200 time
steps �equivalent to 6 s�. If the biped fell before the 6 s limit,
the trial was labeled as unsuccessful, and the transfer entropy
was set to zero. For every value of �, we performed 30

runs with ��t=0� and �̇�t=0� uniformly sampled from
�−0.4,0.4�� �−0.4,0.4�. An excerpt from a typical robot data
set for �=�1=�2=0.11 is reproduced in Fig. 8. We note that
other control scenarios would have been possible, e.g., with
asymmetric coupling between controller and controlled sys-
tems, that is, �1��2 or �1��2. For the sake of simplicity,
however, we studied only open-loop control and “symmet-
ric” closed-loop control.

Figures 9–12 show the results of our analysis ��0=5, s0
=1, V=10, and n=256 scales�. We can make a few observa-
tions. First off, in the closed-loop case the information trans-
fer from the controlled system �body� to the controller �cha-
otic “neural” system� is clearly localized in frequency �Fig.
12�. In other words, feedback of “meaningful” sensory infor-
mation occurs at specific time scales. In the figure two peaks
are discernible, one located in the scale interval �45, 60�, the
other in the interval �100, 140� �roughly equivalent to the
frequency intervals 2.7–3.6 Hz and 1.1–1.8 Hz, respec-
tively�. Such localization is clearly a result of the feedback
loop and is absent in the open-loop case. The time scale of
the natural dynamics of the biped lies in the same range. For
example, in Fig. 8 the stride frequency is 1.47 Hz. A second
observation is that in the closed-loop case there is an evident
asymmetry between information flowing into the controlled
system Tc,b→n �peak: 0.445 bit� and information flow out of it
Tc,n→b �peak: 0.021 bit�—despite symmetry in the coupling

TABLE I. Parameters used for the simulated compass
walker.
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FIG. 8. Time series excerpt for closed-loop control scenario
��=0.11�. Torque applied to hip joint in Nm; interleg angle in rad;
interleg angular speed in rad/s. The sampling frequency is 200 Hz.
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��1=�2�. One possible explanation is that for “good” values
of �, the self-stabilizing properties of the biped robot allow it
to operate at a stable pseudoperiodic limit cycle. In a sense,
the natural dynamics of the coupled system and the physical
interaction induce essential information structure in the sen-
sory feedback. This hypothesis is validated by Figs. 10 and
12 which show that the information flow is concentrated at
lower frequencies. In both control scenarios, the controller
affects the controlled system over a larger range of frequen-
cies than vice versa �see Figs. 9 and 10�—as it ought to be,
given that the controller is a chaotic system.

We further observe that a small amount of control infor-
mation can have a large effect. In the closed-loop case, for
instance, the flow of information from controller to con-
trolled system Tc,n→b is one order of magnitude smaller than
the flow from controlled system to controller Tc,b→n. This
result might be relevant from a design point of view. By
focusing more on the natural dynamics of the controlled sys-
tem �i.e., its body dynamics� and less on control �that is,
strong coupling between controlled system and controlled�, it
might be possible to design more energy-efficient robotic
systems �e.g., �25,26��. For instance, the positive mechanical
work per cycle in the case of the symmetric closed-loop con-
troller for �=0.11 is approximately E+=29 mJ /cycle �due to
the instantaneous inelastic collisions of the feet with the

ground energy is lost�; whereas for the open-loop controller
E+=47 mJ /cycle. These are average values obtained over
ten successful runs. A last observation concerns the open-
loop case. For ��0.4, the causal influence of the controller
on the controlled system is small, and the self-stabilizing
properties of the latter are sufficient for walking to be rather
stable �the robot walks stably for more than 10 s� �see Fig.
13�. For ��0.4, however, such influence is too strong and
walking does not occur. The robot falls often and on the
average walks stably only for less than 7.5 s �data not
shown�.

IV. SUMMARY AND DISCUSSION

Systems in the real world are typically regulated by a
complex web of dependencies and couplings exchanging in-
formation at multiple spatial and temporal scales. In the field
of experimental signal analysis, a fundamental problem is to
tell if a given set of scalar observations originates from in-
teracting or noninteracting systems. In this paper we have
proposed a wavelet-based extension of transfer entropy to
analyze the causal dependencies between bivariate time se-
ries across multiple time scales. Using five different data sets
collected from different dynamical systems, we have shown
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�body� and “n” indicates the controller �neural system�.
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that our approach yields consistent findings when applied to
assess multiscale information flow between artificial, physi-
ological, and robotic time series. Our experimental results
are consistent with previous work confirming the effective-
ness and validity of our approach. Our method is furthermore
capable of detecting scale-dependent causal dependencies in
a physiological data set undetectable with previous methods
and provides an innovative view on information flow in a
simulated chaos-based biped walker. Although at small
scales �high frequencies� our approach delivers qualitatively
similar results to other techniques �2,3,20,27�, it yields in-
sights about potential interactions at higher scales �lower fre-
quencies�. Our wavelet-based method appears to yield a
meaningful approach to capture the coarse-to-fine “causal”
structure of the interaction between coupled dynamical sys-
tems.

One particular problem affecting the current implementa-
tion is the finite sample size effect which grows fast as the
number of data points is reduced. The method proposed here
requires an adequate amount of data in order to provide suf-
ficient statistical accuracy to estimate the transfer entropy.
Throughout the paper, it was made sure that N�Nmin
�3 /r3 �11� �e.g., for the physiological time series r=0.16
and N=4000 samples, whereas Nmin=733�. The finite sample
effect is a known problem, and could be addressed either by
replacing transfer entropy with another measure of causality
�21�, or by choosing a better kernel density estimator �28�.
Alternatively, one could replace the kernel density estimator
by some adaptive binning strategy, such as the one proposed
in �21�. A related issue, particularly relevant in the case of a
low number of data, is how to assess the significance of the
detected multiscale information transfer. Here we built sur-
rogate time series by shuffling �randomly reordering� the se-
quence of data points. In this way, we destroyed the correla-
tions among the data points while preserving the statistical
properties of the distribution, particularly, the first and sec-
ond order moments. A similar technique was used in �18�.

Another limitation of the proposed method is its bivariate
nature. Some recent studies have emphasized the importance
of a multivariate approach �21,29�. Moreover, many multi

scale approaches to assess the complexity or the information
flow between interconnected parts of a complex system have
been suggested �e.g., �30–32��. Typically, multivariate non-
linear interdependencies between subsystems at multiple
scales are analyzed by resampling the original time series at
various scales yielding a collection of data possessing differ-
ent coarse-graining from which various measures can be cal-
culated �e.g., entropy, mutual information�. For instance, in
�33� it was shown that the heart-beat time series of healthy
people asymptotically approaches a constant value of en-
tropy as the measurement scale is increased. On the other
hand, the analysis demonstrates that in patients suffering
from “atrial fibrillation” or “congestive heart failure” the en-
tropy as a function of time scale shows a consistently differ-
ent pattern. The usage of such tools for diagnostic purposes
is invaluable. Especially because the relevant time scales of
such measured time series, such as the cardiac cycle, are not
known a priori. Furthermore, they can be modified by auto-
nomic blockades and under pathophysiological conditions.
The approach introduced in this paper can be readily ex-
tended to incorporate multivariate techniques. One could, for
instance, replace the original time series of any multivariate
technique by the wavelet coefficients and then perform the
analysis in scale space. Or, one could achieve the same result
by appropriately conditioning the transition probabilities in
Eq. �4� �7,21�.

In this paper, we have considered the information transfer
�causal structure� on the same scale. It might be worthwhile
considering also information flow between different scales
�34�. This could lead to meaningful insights into the dynam-
ics of many biological systems in which processes working
at dissimilar time scales coexist, e.g., the time scale of neural
activity and the time scale of actions in the real world �30�.
Such processes describe, in a sense, the informational em-
bedding of organisms within their ecological niches at mul-
tiple time scales defining continuous and dynamic coupling
between sensory, neural, and motor variables �35�. The com-
parison of the relative influence such variables exert on each
other helps extract patterns of interaction between the net-
work’s elements that may support biological information
processing. The measure introduced in this paper, which by
using transfer entropy allows capturing directed exchanges
of information �information flow� between sensory and mo-
tor variables in a physically embedded system, might prove
useful for mapping the intrinsic dynamics of such sensorimo-
tor networks.

To conclude, we suggest that the combination of wavelet
transform and transfer entropy �or any other time series
based measure to detect information transfer or couplings�
can help shed light on the hidden causal dependencies in the
coarse structure of the data from a wide range of complex
systems, which a sample-based approach working at one
single time scale is not able to disclose.

ACKNOWLEDGMENTS

We thank two anonymous reviewers for their valuable
comments on the draft of the manuscript.

0.03 0.09 0.15 0.21 0.27 0.33

5

15

25

35

45

55

65

75

coupling γ

av
er

ag
e

w
al

ki
ng

tim
e

[s
ec

]
open,avg
open,min
closed,avg
closed,min

FIG. 13. Average walking time �before falling� of the compass-
gait biped. On the average open-loop control leads to shorter walk-
ing times �due to its inherent instability�.

INFORMATION TRANSFER AT MULTIPLE SCALES PHYSICAL REVIEW E 76, 056117 �2007�

056117-9



�1� J. A. Vastano and H. L. Swinney, Phys. Rev. Lett. 60, 1773
�1988�.

�2� N. Ancona, D. Marinazzo, and S. Stramaglia, Phys. Rev. E 70,
056221 �2004�.

�3� D. Marinazzo, M. Pellicoro, and S. Stramaglia, Phys. Rev. E
73, 066216 �2006�.

�4� Y. Chen, G. Rangarajan, J. Feng, and M. Ding, Phys. Lett. A
324, 26 �2004�.

�5� J. Arnhold, P. Grassberger, K. Lehnertz, and C. E. Elger,
Physica D 134, 419 �1999�.

�6� U. Feldmann and J. Bhattacharya, Int. J. Bifurcation Chaos 14,
505 �2004�.

�7� T. Schreiber, Phys. Rev. Lett. 85, 461 �2000�.
�8� N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,

Phys. Rev. Lett. 45, 712 �1980�.
�9� M. Takens, in Lecture Notes in Mathematics: Dynamical Sys-

tems and Turbulence, edited by D. Rand and L. Young
�Springer-Verlag, Berlin, 1981�, Vol. 898, pp. 366–381.

�10� B. Silverman, Density Estimation for Statistics and Data
Analysis �Chapman and Hall, London, 1986�.

�11� M. Lungarella, K. Ishiguro, Y. Kuniyoshi, and N. Otsu, Int. J.
Bifurcation Chaos 17, 903 �2007�.

�12� R. Marschinski and H. Kantz, Eur. Phys. J. B 30, 275 �2002�.
�13� I. Daubechies, Ten Lectures on Wavelets �SIAM, Philadelphia,

PA, 1992�.
�14� S. Mallat, A Wavelet Tour of Signal Processing �Academic

Press, San Diego, 1999�.
�15� C. Torrence and G. P. Compo, Bull. Am. Meteorol. Soc. 79, 61

�1998�.
�16� H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,

2nd ed. �Cambridge University Press, Cambridge, UK, 2002�.
�17� T. Schreiber and A. Schmitz, Physica D 142, 346 �2000�.
�18� R. G. Andrzejak, A. Ledberg, and G. Deco, New J. Phys. 8, 6

�2006�.
�19� A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,

P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.
Peng, and H. E. Stanley, Circulation 101, e215 �2000�.

�20� J. Bhattacharya, E. Pereda, and H. Petsche, IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern. 33, 85 �2003�.

�21� P. F. Verdes, Phys. Rev. E 72, 026222 �2005�.
�22� E. Ott and M. Spano, Phys. Today 48�5�, 34 �1995�.
�23� J. M. Gonzalez-Miranda, Synchronization and Control of

Chaos �Imperial College Press, London, 2004�.
�24� T. McGeer, Int. J. Robot. Res. 9, 62 �1990�.
�25� S. Collins, A. Ruina, R. Tedrake, and M. Wisse, Science 307,

1082 �2005�.
�26� K. Matsushita, M. Lungarella, C. Paul, and H. Yokoi, in Pro-

ceedings of the 20th International Conference on Robotics and
Automation �2005�, pp. 2020–2025.

�27� L. Angelini, R. Maestri, D. Marinazzo, L. Nitti, M. Pellicoro,
G. D. Pinna, S. Stramaglia, and S. A. Tupputi �unpublished�.

�28� Y.-I. Moon, B. Rajagopalan, and U. Lall, Phys. Rev. E 52,
2318 �1995�.

�29� K. J. Blinowska, R. Kus, and M. Kaminski, Phys. Rev. E 70,
050902�R� �2004�.

�30� M. Breakspear and C. Stam, Philos. Trans. R. Soc. London,
Ser. B 360, 865 �2005�.

�31� M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. E 71,
021906 �2005�.

�32� S. Thurner, M. C. Feurstein, and M. C. Teich, Phys. Rev. Lett.
80, 1544 �1998�.

�33� M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. Lett.
89, 068102 �2002�.

�34� M. Materassi, A. Wernik, and E. Yordanova, Nonlinear Pro-
cesses Geophys. 14, 153 �2007�.

�35� M. Lungarella and O. Sporns, PLOS Comput. Biol. 2, 1301
�2006�.

�36� The general nature of our results does not critically depend on
the exact choice of the mother wavelet.

LUNGARELLA, PITTI, AND KUNIYOSHI PHYSICAL REVIEW E 76, 056117 �2007�

056117-10


