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Abstract—Several different metrics have been proposed for quantifying the throughput of multicore processors. There is no clear

consensus about which metric should be used. Some studies even use several throughput metrics. We show that there exists a

relation between single-thread average performance metrics and throughput metrics, and that throughput metrics inherit the meaning

or lack of meaning of the corresponding single-thread metric. We show that two popular throughput metrics, the weighted speedup

and the harmonic mean of speedups, are inconsistent: they do not give equal importance to all benchmarks. Moreover we demonstrate

that the weighted speedup favors unfairness. We show that the harmonic mean of IPCs, a seldom used throughput metric, is actually

consistent and has a physical meaning. We explain under which conditions the arithmetic mean or the harmonic mean of IPCs can be

used as a strong indicator of throughput increase.

Index Terms—Computer architecture, performance metric, multicore throughput
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1 INTRODUCTION

ONE of the most controversial issue in computer archi-
tecture studies is how to quantify the performance of

a computer [2], [9], [5], [7], [1], [4]. Typically, we try to find
out which of two machines is likely to execute programs
faster. In computer architecture studies, it is not rare that some
benchmarks run faster on one machine while other benchmarks
run faster on the other machine. In such situation, depending
on how we summarize the performance on the benchmark
set, we might obtain different conclusions. Since the introduc-
tion of multicores, researchers use multiprogram workloads
to quantify throughput. A multiprogram workload is a set
of independent programs running simultaneously on a multi-
processor machine, e.g., a multicore. This paper considers only
single-threaded programs (also called threads in the remaining).
Because of resource sharing (cache, bus, ...), the execution time
of a thread may be influenced by the other threads running
concurrently. Several different metrics have been proposed for
quantifying throughput. Some papers even use several such
metrics. However, the meaning of some of these metrics is not
very clear.

The goal of this paper is to clarify the meaning of multicore
throughput metrics. We show in Section 3 that, under certain
conditions, there is a relation between throughput metrics and
single-thread performance metrics. We first recall in Section 2
the meaning of popular single-thread metrics. Among these
metrics, we distinguish those that treat all the benchmarks
equally, which we call consistent metrics. We show in Section
3 that the popular weighted speedup and harmonic mean of
speedups are inconsistent throughput metrics. Moreover, we
demonstrate in Section 4 that the weighted speedup actually
favors unfairness. We propose that consistent throughput met-
rics be used, like the arithmetic mean of IPCs, the harmonic
mean of IPCs, or the geometric mean of speedups. We explain
in Section 5 under which conditions the arithmetic mean of
IPCs or the harmonic mean of IPCs provide a strong indication
of throughput increase.
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2 SINGLE-THREAD AVERAGE PERFORMANCE METRICS

A performance metric P is a mathematical formula giving a
single global performance number for a machine from a set of
per-benchmark performance numbers. We consider n bench-
marks numbered from 1 to n. The performance of a machine
is P (IPC1, · · · , IPCn), where IPCj is the number of instruc-
tions executed per clock cycle 1 by benchmark j. Such IPC-
based metric ignores the total execution time of benchmarks.
Weighting benchmarks according to their respective execution
times would be like assuming that the benchmarks themselves,
and their inputs, are representative of ”random” programs. Ac-
tually, the performance metrics used in computer architecture
studies generally do not consider the total execution time of
benchmarks. Often, we are not interested by a benchmark itself
but by its behavior, which we hope is representative of some
behaviors that can be found in random programs. The IPC,
for instance, better characterizes a benchmark’s behavior than
the total execution time. Ideally, one would like to weight the
different behaviors according to how important they are in real
life situations. But this would require a careful and extensive
workload characterization analysis [7], or at least a justification.
In practice, without any information on the representativeness
of benchmarks, most people assume that all the benchmarks
are equally important. To be in accordance with this assump-
tion, a performance metric should be consistent.

We define a consistent single-thread IPC-based performance
metric P as a metric such that, for any permutation σ on [1, n],

P (IPC1, · · · , IPCn) = P (IPCσ(1), · · · , IPCσ(n))

In words, a consistent metric considers all the benchmarks
equally important, as one can permute their IPCs and still
obtain the same performance. Table 1 lists five single-thread
metrics and illustrate their consistency or non-consistency on
an example with two machines and two benchmarks. Assum-
ing the two benchmarks are equally important, it is objectively
impossible to say that one machine outperforms the other.

1. In this paper we consider only IPC-based metrics. To compare
machines with different or varying clock frequencies, the ”C” in ”IPC”
should be a fixed reference clock cycle.



TABLE 1

Some single-thread average performance metrics (speedups

are relative to machine X).

machine
X

machine
Y

speedup
Y/X

benchmark A IPC = 1 IPC = 2 2
benchmark B IPC = 2 IPC = 1 0.5

metric perf. X perf. Y consistent ?
A-mean of speedups 1 1.25 no
H-mean of speedups 1 0.8 no
G-mean of speedups 1 1 yes

A-mean of IPCs 1.5 1.5 yes
H-mean of IPCs 1.33 1.33 yes

Therefore, a consistent metric must reflect this fact and give
the same performance to both machines. Fleming and Wallace
made a case for consistency, discouraging the use of metrics
that depend on the choice of a particular reference machine
[2]. But inconsistent metrics are still being used today in some
studies. Our definition of consistency is more or less the same,
but expressed in a way which, we hope, is more convincing.

The arithmetic mean (A-mean) and harmonic mean (H-
mean) of speedups are both inconsistent metrics. However, the
geometric mean (G-mean) of speedups is always consistent,
whatever the machine used as reference for defining speedups
[2]. The meaning of the G-mean has been questioned by some
authors [9], [5]. The meaning of a performance metric always
depends on some assumptions, and different metrics rely
on different assumptions. The G-mean of speedups gives an
estimate of the median speedup of random programs assuming
speedups are distributed log-normally [7], [4].

The A-mean and the H-mean of IPCs are both consistent
metrics whose meaning is based on different assumptions.

The A-mean of IPCs is proportional to the total quantity
of work done when executing X seconds of each benchmark
consecutively on the machine considered. It is equivalent to
assuming that, when the machine runs random programs, its
IPC at any instant is equal to one of the benchmarks IPCs,
all benchmarks IPCs being equally likely. This implies that
the total quantity of work done by a program is variable and
adjusted as a function of the machine speed.

The H-mean of IPCs is inversely proportional to the total
time it takes to execute N instructions from each benchmarks
consecutively. An implicit assumption is that the IPC of a ran-
dom program is not correlated with the number of instructions
executed by that program. We could also consider the G-mean
of IPCs, but it is equivalent to the G-mean of speedups (two
performance metrics are equivalent if they define the same
ranking on any set of machines).

3 MULTICORE THROUGHPUT METRICS

In this paper, we consider multicore throughput metrics in-
tended for comparing multicores with the same fixed number
k of logical cores (physical cores may be SMT [11]). In computer
architecture studies, the most frequent method for evaluating
throughput considers a fixed and predefined set of workloads,
where each workload is a combination of k threads running
simultaneously, each thread being taken from a set of n bench-
marks. For instance, assuming the cores are identical and that
a benchmark may occur several times in a workload, there
are

`

n+k−1
k

´

possible distinct workloads. In practice, because
simulators are slow, most researchers work with a relatively
small subset of w workloads.

Let Bi[1], · · · , Bi[k] be the k threads constituting the ith

workload, a thread being one of the n benchmarks. For each
workload, we obtain k IPC values IPCi[1], · · · , IPCi[k]. In
total for the w workloads, we obtain w × k IPC values. A
global throughput metric reduces these w × k IPC values to
a single throughput value. A common practice is to define
a per-workload throughput Ti and then compute the global
throughput as an average over all Ti’s:

Tglobal = X-mean
i∈[1,w]

Ti (1)

where X-mean can be the A-mean, H-mean or G-mean.
The throughput metrics that have been used most frequently

in computer architecture studies are the IPC throughput, the
weighted speedup [10] and the H-mean of speedups [6]. These
metrics can be generalized and divided in two categories:
weighted and unweighted throughput metrics.

3.1 Weighted throughput metrics

Weighted throughput metrics like the weighted speedup and the
H-mean of speedups are the most commonly used throughput
metrics today. They compute the per-workload throughput as
an average speedup:

Ti = X-mean
j∈[1,k]

IPCi[j]

IPCref [Bi[j]]
(2)

where X-mean may be the A-mean, H-mean or G-mean, and
IPCref [b] is a reference IPC for benchmark b (very often, the
IPC for the benchmark running alone on a reference machine).
Using the A-mean in formula (2) yields a metric equivalent to
the weighted speedup [10], provided k is fixed2. Formula (2)
with the H-mean is also an oft-used throughput metric [6].

Many authors use different X-means in formulas (2) and (1),
without justification. For instance, the G-mean is often used
for computing the global throughput (formula (1)), while it
is rarely used for the per-workload throughput (formula (2)).
However, it makes sense to use the same X-mean for the global
throughput and for the per-workload throughput.

A property of the A-mean, H-mean and G-mean, is that, if we
consider a set of values partitioned into equally-sized subsets,
the mean on the set can be obtained by computing the mean
for each subset, then the mean of all subsets means. Therefore,
the global throughput can be computed as

Tglobal = X-mean
(i,j)

IPCi[j]

IPCref [Bi[j]]
(3)

If we consider that the benchmarks are equally important, we
must define the w workloads in such a way that each of the
n benchmarks contributes an equal number of values in the
w × k IPC values. That is, for all b ∈ [1, n],

w × k

n
=

X

(i,j),Bi[j]=b

1 (4)

If this condition holds, the global thoughput (3) can be viewed
as a single-thread average performance metric

Tglobal = X-mean
b∈[1,n]

Pb

2. The weighted speedup is k times the A-mean of speedups.



TABLE 2

The A-mean and H-mean of speedups are both inconsistent

throughput metrics

single
thread

machine X
running AB

machine Y
running AB

benchmark A IPC = 1 IPC = 0.5 IPC = 1
benchmark B IPC = 2 IPC = 1 IPC = 0.5

A-mean of speedups 0.5 0.625
H-mean of speedups 0.5 0.4
G-mean of speedups 0.5 0.5

where per-benchmark performance Pb is defined as

Pb =

X-mean
(i,j),Bi[j]=b

IPCi[j]

IPCref [b]

The throughput metric (3) inherits some properties and mean-
ing (or lack of meaning) of the corresponding single-thread
metric. In particular, using the A-mean or H-mean in formula
(3) leads to a non-consistent metric, as illustrated by the
example shown in Table 2. This example considers a single
workload of two benchmarks A and B. According to the A-
mean of speedups, machine Y offers 25% more throughput
than machine X, whereas according to the H-mean of speedups
it is machine X that offers 25% more throughput than machine
Y. The A-mean gives more weight to the benchmark with a
lower single-thread IPC, while the H-mean gives more weight
to the benchmark with a higher single-thread IPC. The only
conclusion consistent with the assumption that benchmarks A
and B are equally important is the one given by the G-mean:
the two machines offer the same throughput.

3.2 Unweighted throughput metrics

Unweighted throughput metrics use only raw IPC values. We
still assume that the same X-mean is used for per-workload
throughput and for global throughput. Consequently, the
global throughput can be computed as

Tglobal = X-mean
(i,j)

IPCi[j] (5)

where X-mean may be the A-mean or the H-mean (the G-
mean of IPCs is equivalent to the G-mean of speedups). Under
condition (4), the global throughput can be viewed as a single-
thread average performance metric where the per-benchmark
performance Pb is defined as

Pb = X-mean
(i,j),Bi[j]=b

IPCi[j]

As their single-thread counterparts, the unweighted through-
put metrics (5) are consistent: one can permute the benchmarks
IPCs without changing the global performance. Table 3 pro-
vides an example of computing throughput as the A-mean
of IPCs, assuming two cores and three benchmarks. The table
also shows the per-benchmark performance Pb. Providing Pb

for each benchmark individually is another way to summarize
performance, not as concise as global throughput, but poten-
tially more informative.

The A-mean of IPCs is equivalent to the sum of IPCs,
aka the IPC throughput. The IPC throughput used to be the
prevalent metric for studying SMT microarchitectures in the
1990’s [11]. It has been criticized for not conveying any notion

TABLE 3

Example of computing throughput as the A-mean of IPCs on a

dual-core processor using three benchmarks A,B,C

workload IPC ”left” core IPC ”right” core
AA 1 1
BB 2 2
CC 0.5 0.5
AB 1.3 1.8
BC 1.2 0.6
CA 0.8 1.1

benchmark per-benchmark performance
A PA = (1 + 1 + 1.3 + 1.1)/4 = 1.10
B PB = (2 + 2 + 1.8 + 1.2)/4 = 1.75
C PC = (0.5 + 0.5 + 0.6 + 0.8)/4 = 0.60

global throughput
Tglobal = (PA + PB + PC)/3 = 1.15

of fairness [10], [8], [6]. This led to the definition of other
throughput metrics like weighted speedup and H-mean of
speedups. Throughput and fairness are two different notions
[6], [12]. The IPC throughput is really a throughput metric, and
a consistent one, unlike the weighted speedup and the H-mean
of speedups. It represents the total quantity of work done when
all the threads execute for an equal duration. This corresponds
to a situation where the quantity of work per thread is variable
and adjusted as a function of the machine speed.

The H-mean of IPCs is more rarely used to quantify through-
put. Yet, it is a consistent metric with a physical meaning,
which can be seen as follows. We consider a job schedule where
all the jobs execute the same fixed number N of instructions.
Let IPC[i, j] be the IPC of the ith job executed on core j. Under
perfect load balancing, the quantity

P

i
N

IPC[i,j]
is the same for

all j and is equal to the total time t, hence kt =
P

(i,j)
N

IPC[i,j]
.

The number of jobs executed per cycle is

P

(i,j)

1

t
=

k

N
×

P

(i,j)

1

P

(i,j)

1
IPC[i,j]

=
k

N
× H-mean

(i,j)
IPC[i, j]

The throughput metric (5) using the H-mean is proportional
to the job throughput, assuming IPCi[j] and IPC[i, j] are
distributed identically (that is, assuming the fixed workloads
are representative of the job schedule).

4 THE WEIGHTED-SPEEDUP FAVORS UNFAIRNESS

The weighted speedup and the H-mean of speedups have been
introduced with the intent to take fairness into account. Luo et
al. have stated that the H-mean of speedups captures ”some
effect of the lack of fairness”. This statement can be made more
precise. Let us consider the case where the speedups Si are all
close to one, let’s say in the [0.5, 1.5] range. A second-order
multivariate Taylor series expansion about Si = 1 gives

A-mean Si = µ

H-mean Si ≈ µ − σ
2 (6)

G-mean Si ≈ µ −
σ2

2
(7)

where σ2 = A-mean (Si − µ)2 is the variance. The standard
deviation of speedups, σ, is considered a measure of unfairness
[6], [12]. So it is true that the H-mean of speedups captures
some effect of the lack of fairness, as it penalizes machines that



degrade fairness. But the same could be said about the G-mean
of speedups. Yet, the G-mean of speedups ranks machines
exactly like the G-mean of IPCs, which does not bear any
notion of fairness. There is no paradox here: the G-mean
of speedups is indeed neutral with respect to fairness, it is
the weighted speedup which actually favors unfairness. The
example in Table 2 illustrates this fact, which may surprise
some people, considering the reasons usually advanced for
using the weighted speedup.

5 STRONG INDICATORS OF THROUGHPUT INCREASE

Attempts to embed notions of throughput and fairness in
a single metric lead to metrics whose physical meaning is
uncertain. Such metrics have been proposed for not having to
provide two numbers, one for throughput and one for fairness.
But it is frequent practice to use two throughput metrics to show
the robustness of the conclusions. Some studies even use three
different throughput metrics. Instead, we recommend using
true fairness metrics when fairness is important, and consistent
throughput metrics such as the A-mean of IPCs, H-mean of
IPCs, or G-mean of speedups.

A question is, which metric to use? Choosing a metric is
choosing the assumptions behind this metric. We may want to
use several metrics. Nevertheless, it is not necessary to use all
three metrics. If we increase both the A-mean and the H-mean
of IPCs, we quite likely increase the G-mean too. Indeed, from
approximations (6) and (7), and assuming they hold for IPC
values3, the G-mean is approximately the mid point between
the A-mean and H-mean. If both the A-mean and H-mean
increase, so does the G-mean.

If we prefer to use a single throughput metric, it is useful to
have an idea of whether the variance of IPCs is increased or
decreased. When the variance of IPCs is decreased, the A-mean
of IPCs is a strong indicator of throughput increase (SITI), meaning
that an increase of the A-mean implies an increase of the H-
mean (and G-mean). Conversely, when the variance of IPCs is
increased, the H-mean of IPCs is a SITI, as an increase of the
H-mean implies an increase of the A-mean (and G-mean).

For example, consider the situation where we compare a
multicore with private last-level caches, and one with a shared
cache, the total cache capacity being the same. Programs hav-
ing a high IPC with a private cache probably do not suffer
from cache misses, and sharing the cache can only decrease
their IPC. Programs whose IPC is low because the private cache
is too small are more likely to benefit from the shared cache.
The variance of IPCs is smaller with the shared cache. Hence,
the A-mean of IPCs provides a strong indication that a shared
cache increases throughput.

As another example, let us consider a multicore hitting the
thermal limit, such that automatic thermal throttling triggers
and decreases performance. Because the power density in a
core depends on the characteristics of the thread running on
that core, not all cores may be hitting the thermal limit. Hence
we may want to implement activity migration and migrate
a hot thread to a cold core whenever the thermal limit is
reached [3]. In general, power density, hence temperature,
increases with the IPC. Activity migration increases the IPC
of threads suffering from thermal throttling, which have an
already high IPC. Threads with a low IPC and that do not

3. If IPCs are not close to 1 but if a division by a common factor α
makes them all close to 1, approximations similar to (6) and (7) can be
obtained by replacing σ2 with σ2/α.

suffer from thermal throttling do not benefit from activity
migration, and their average IPC decreases because of the
migration penalty. So activity migration increases the variance
of IPCs. If we want a strong indication that activity migration
increases throughput, we should use the H-mean of IPCs.

6 CONCLUSION

Because it is generally very difficult to justify weighting dif-
ferent benchmarks differently, researchers usually assume that
all the benchmarks are equally important. To be coherent with
this assumption, we should use consistent metrics that give the
same weight to all benchmarks. We showed that there exists
a relation between multicore throughput metrics and single-
thread average performance metrics, provided the same type of
mean is used for defining the throughput of each workload and
for summarizing the throughput on several workloads. Under
this condition, a throughput metric inherits the properties and
meaning (or lack of meaning) of the corresponding single-
thread metric. In particular, some commonly used throughput
metrics, like the weighted speedup and the harmonic mean
of speedups, are not consistent. Moreover, we demonstrated
that, contrary to popular belief, the weighted speedup actually
favors unfairness. On the other hand, the geometric mean
of speedups, the arithmetic mean and the harmonic mean of
IPCs, are three consistent throughput metrics whose physical
meaning relies on different assumptions. We showed that, in
situations where the variance of IPCs is decreased, the arith-
metic mean of IPCs provides a strong indication of throughput
increase (SITI), whereas when the variance is increased, a SITI
is obtained with the harmonic mean. We considered solely
single-threaded programs in this study. To the author’s knowl-
edge, defining meaningful throughput metrics generalizing to
parallel programs and usable in computer architecture studies
is still an open problem.
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