
HAL Id: hal-00736993
https://hal.science/hal-00736993

Submitted on 1 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trajectory planning and replanning strategies applied to
a quadrotor unmanned aerial vehicle

Abbas Chamseddine, Youmin Zhang, Camille-Alain Rabbath, Didier Theilliol

To cite this version:
Abbas Chamseddine, Youmin Zhang, Camille-Alain Rabbath, Didier Theilliol. Trajectory planning
and replanning strategies applied to a quadrotor unmanned aerial vehicle. Journal of Guidance,
Control, and Dynamics, 2012, 35 (5), pp.1667-1671. �10.2514/1.56606�. �hal-00736993�

https://hal.science/hal-00736993
https://hal.archives-ouvertes.fr


Trajectory Planning and Re-planning Strategies

Applied to a Quadrotor Unmanned Aerial Vehicle

Abbas Chamseddine1 and Youmin Zhang2

Concordia University, Montreal, Quebec, Canada H3G 2W1

Camille Alain Rabbath3

Defense Research and Development Canada, Valcartier, Quebec, Canada G3J 1X5

Didier Theilliol4

Nancy Université, Vandoeuvre Cedex, France 54506

I. Introduction

Path or trajectory planning is a complex problem. It involves meeting the physical constraints

of the unmanned vehicles, constraints from the operating environment and other operational re-

quirements [1]. The quadrotor helicopter is one of the unmanned aerial vehicles (UAVs) that has

been considered for the trajectory planning problem. However, most of the existing works are

optimization-based methods. A time-optimal motion planning approach is proposed in [2] for a

non-linear model of a quadrotor helicopter. In [3], adaptive path planning algorithms are developed

for an optimized trajectory. Several trajectory optimization algorithms are presented in [4] for a

team of cooperating unmanned vehicles. Flatness has been also employed for the trajectory planning

of the quadrotor helicopter: a method is presented in [5] to generate time-optimal trajectories for

the quadrotor system whereas Cowling et al. [6] use the differential flatness to pose the trajectory

planning as a constrained optimization problem in the output space.

Posing the trajectory planning as an optimization problem has one major limitation. The on-
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board implementation of the trajectory planning approach requires a microcontroller that is capable

of solving a nonlinear optimization problem in real time. Moreover, most of the exciting works

on trajectory planning are only illustrated in the simulation framework. The main contribution

of this work with respect to existing works is in: a) proposing a simple and effective trajectory

planning/re-planning method that can be solved in a straightforward manner without the need to

solve a complex optimization problem in real time; and b) successfully flight-testing the approach

through an experimental application to a cutting-edge quadrotor helicopter UAV.

The Note is organized as follows. Section II presents the mathematical model of the quadrotor

helicopter. Section III presents the trajectory planning/re-planning method where two types of

constraints are investigated: flight envelope and actuator limitations. The flight envelope is repre-

sented by the pitch and roll angles and the actuator limitations are the maximal thrusts that can be

generated by the rotors. To initialize trajectory re-planning in the presence of actuator faults, fault

detection and diagnosis problem is also considered. This is achieved by implementing on-board an

unscented Kalman filter-based fault detection and diagnosis scheme. Experimental results are given

in Section IV followed by conclusions in Section V.

II. Dynamics of the Quadrotor UAV System

The quadrotor UAV available at the Networked Autonomous Vehicles (NAV) Lab in the De-

partment of Mechanical and Industrial Engineering of Concordia University is the Qball-X4 testbed

[7]. It is developed by Quanser Inc. under the financial support of an NSERC (Natural Sciences

and Engineering Research Council of Canada) Strategic Project Grant lead by Concordia University

with Quanser Inc. as one of three industrial partners. A detailed description of the Qball-X4 as

well as its nonlinear model can be found in [8]. In this paper, the following simplified model will be

employed for trajectory planning as well as for the design of the baseline LQR controller:

ẍ = θg; J1θ̈ = uθ

ÿ = −φg; J2φ̈ = uφ (1)

z̈ = uz/m− g; J3ψ̈ = uψ

This simplified model is obtained by assuming hovering conditions (uz ≈ mg in the x and y
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directions) with no yawing (ψ = 0) and small roll and pitch angles. x, y and z are the coordinates of

the quadrotor UAV center of mass in the earth-fixed frame. θ, φ and ψ are the pitch, roll and yaw

Euler angles respectively. m is the mass, g is the gravitational acceleration and Ji (i = 1, 2, 3) are

the moments of inertia along y, x and z directions respectively. uz is the total lift generated by the

four propellers and applied to the quadrotor UAV in the z-direction (body-fixed frame). uθ, uφ and

uψ are respectively the applied torques in θ, φ and ψ directions. The Qball-X4 is equipped with four

outrunner brushless motors driven by pulse-width modulated (PWM) inputs. By assuming that the

motor dynamics is a simple gain K, it is possible to express the relation between the lift/torques

and the PWM inputs ui as follows:

uz = K(u1 + u2 + u3 + u4)

uθ = KL(u1 − u2)

uφ = KL(u3 − u4)

uψ = KKψ(u1 + u2 − u3 − u4)

(2)

where K and Kψ are positive constants and L is the distance from the center of mass to each motor.

III. Flatness-based Trajectory Planning/Re-planning

The objective of the trajectory planning/re-planning is to find the profile of the path that a

quadrotor UAV will follow when moving from an initial to a final position while respecting sys-

tem constraints in nominal and fault conditions. Differential flatness is the first step towards this

objective as explained hereafter.

A. Differential Flatness of the Quadrotor Helicopter

Flatness can be defined as follows. A general nonlinear dynamic system ẋ = f(x, u), y = h(x)

with x ∈ <n and u ∈ <m, is flat if and only if there exist variables F ∈ <m called the flat outputs

such that: x = Ξ1(F, Ḟ , ..., F (n−1)), y = Ξ2(F, Ḟ , ..., F (n−1)) and u = Ξ3(F, Ḟ , ..., F (n)) [11], [12].

Ξ1, Ξ2 and Ξ3 are three smooth mappings and F (i) is the ith derivative of F . The parameterization

of the control inputs u in function of the flat outputs F plays a key role in the trajectory planning

problem: the nominal control inputs to be applied during a mission can be expressed in function

3



of the desired trajectories. This allows to tune the profile of the trajectories to keep the applied

control inputs below the actuator limits. The same idea applies for the roll and pitch angles that

the system will achieve during the mission. For the quadrotor UAV simplified model given in (1),

the system is flat with flat outputs F1 = z, F2 = x, F3 = y and F4 = ψ. In addition to x, y, z and

ψ, the parameterization of θ and φ in function of the flat outputs is:

θ =
F̈2

g
; φ = − F̈3

g
(3)

The parameterization of the control inputs in function of the flat outputs is:

uz = m(F̈1 + g); uθ = J1
F

(4)
2

g
; uφ = −J2

F
(4)
3

g
; uψ = J3F̈4 (4)

Let F ∗
i be the reference trajectory for the flat output Fi with i = 1, ..., 4. An important

consequence of the differential parameterization (4) is that if the system is forced to follow the

reference trajectories, then the nominal control inputs to be applied along the trajectories are:

u∗z = m(F̈ ∗
1 + g); u∗θ = J1

F
(4)∗
2

g
; u∗φ = −J2

F
(4)∗
3

g
; u∗ψ = J3F̈

∗
4 (5)

B. Trajectory Parametrization

Before considering the trajectory planning problem, the reference trajectory F ∗
i will be first

time-parameterized. The total time of the mission is then tuned so that the system constraints are

respected. In [9], the authors use second-order systems for the reference trajectories in the framework

of spacecrafts in formation flight. They also approximate the natural frequency as function of the

rise time to define the transient specifications for the formation. However, they state that it is hard

to choose a good rise time beforehand to achieve a good performance in the system. On one hand,

if the rise time is small then the formation moves too fast and the formation members could fall far

behind their desired positions. On the other hand, if the rise time is big then the formation moves

too slowly and the mission cannot be achieved within short time. Inspired by that work, this paper

proposes to solve the above-mentioned problem by using differential flatness. Let us first define the

reference trajectories F ∗
i (i = 1, ..., 4) as second-order systems:

F̈ ∗
i (t) = −2ξωnḞ

∗
i (t)− ω2

nF
∗
i (t) + ω2

nri(t) (6)
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where ξ is the damping ratio and ωn is the natural frequency. ri(t) (i = 1, ..., 4) are the references

along z, x, y and ψ directions respectively and are defined as step functions of amplitude Ri.

Consider a critically damped system by setting ξ = 1 and assuming zero initial conditions, it turns

out that the solutions of the reference models given in (6) are:

F ∗
i (t) =

[
1− (1 + ωnt) e

−ωnt
]
Ri ; i = 1, ..., 4 (7)

This work considers the actuator faults that may take place during the mission. When faults

occur it is necessary to re-plan the nominal trajectories. This is because forcing the system to follow

the same pre-fault trajectory may lead to saturation or even instability if the new limitations of the

actuators are not taken into consideration. Eq. (7) is only valid for zero initial conditions. However,

when faults occur and re-planning is needed, the initial conditions at the re-planning instant depend

on the quadrotor status and they are not necessarily zero. With a critically damped system (ξ = 1)

and non-zero initial conditions, the solutions of the reference models given in (6) are:

F ∗
i (t) = Ri − (1 + ωnt) e

−ωnt∆i + Ḟ ∗
i (trep) te

−ωnt ; i = 1, ..., 4 (8)

where ∆i = Ri−F ∗
i (trep) is the remaining distance to the desired position and F ∗

i (trep) and Ḟ ∗
i (trep)

are the position and the velocity of the system at the instant of re-planning trep. It can be shown

that the presence of the term Ḟ ∗
i (trep) te

−ωnt in the reference trajectory (due to the non-zero initial

velocity) makes it impossible to derive a solution for the trajectory re-planning in a straightforward

manner. Nevertheless, it is always possible to find the solution to the trajectory re-planning problem

by posing it as an optimization problem where the function to minimize is the mission time and the

constraints are those of the flight envelope or the actuator limits. However, the objective of this

work is to minimize as much as possible the calculation requirements for the quadrotor on-board

microcomputer. To this end, it is proposed to proceed as following. Once a fault is detected by a

Fault Detection and Diagnosis (FDD) scheme, the trajectory is re-planned with a sufficiently large

mission time. This big mission time will result in a very slow reference trajectory serving in two

directions. First, it will give sufficient time to diagnose (isolate and identify) the fault before taking

any action since the system will almost stay in hovering position. Second, the system velocity will

drop to zero and therefore, the last term of (8) can be set to zero. This allows to easily re-plan the
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trajectory as will be shown in the sequel.

C. Fault Detection and Diagnosis: Unscented Kalman Filter for Parameter Estimation

Actuator faults can be modeled as ufi = (1 − wi)ui for i = 1, ..., 4. wi represents the loss of

effectiveness in the ith rotor. wi = 0 denotes a healthy rotor, wi = 1 denotes a complete loss of

the ith rotor and 0 < wi < 1 represents a partial loss of control effectiveness. As will be shown

in the subsequent sections, trajectory re-planning in fault cases requires the knowledge of the fault

amplitude wi. Thus, an FDD module is needed to detect, isolate and identify the fault. This is

achieved by employing a parameter estimation-based FDD where the unscented Kalman filter [13]

is used to estimate the parameters wi. It should be noted that for FDD purpose, the nonlinear

model [8] is employed. In the fault-free case, the estimates of wi (i = 1, ..., 4) are close to 0

and a deviation from 0 will be an indication for a fault occurrence. In the subsequent sections, the

trajectory planning/re-planning approach will be explained for two cases: flight envelope constraints

and actuator constraints.

D. Trajectory Planning/Re-planning Under Flight Envelope Constraints

A trajectory with a small travel time involves aggressive maneuvers with big roll and pitch

angles. A controller based on the nonlinear model would be able to guarantee the system stability.

However, a controller based on a linearized model (such as (1)) may not be able to keep system’s

stability when the quadrotor goes outside the linear operating zone. To avoid this latter situation,

it is possible to impose bounds on the maximal pitch and roll angles that are attained during the

system’s travel from the initial to the final position. According to (3), the pitch angle of the system

when it is forced to follow the reference trajectory is given by:

θ∗ =
F̈ ∗
2

g
(9)

Using (9) and the double time derivative of (7), one can find the nominal pitch angle θ∗ in

function of the time t, the natural frequency ωn, and the amplitude R2 as following:

θ∗ = −ω
2
n

g
(tωn − 1) e−ωntR2 (10)
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For a critically damped second-order system (ξ = 1) and for a settling time specification of 2%

of the steady state value, it is possible to approximate the natural frequency as:

ωn ≈
5.83

ts
(11)

where ts is the settling time of the reference model. Eq. (10) reads then:

θ∗ = −5.832

gt2s

(
5.83t

ts
− 1

)
R2e
−5.83t

ts (12)

It is necessary at this stage to find a relation between the settling time ts and the total time

of the mission tt. For a critically damped system (ξ = 1), it is reasonable to assume that the

settling time approximately equals the total time of the mission (ts ≈ tt). The objective turns out

to determine ts such that −ρθθmax ≤ θ∗ ≤ ρθθmax where θmax is the maximal pitch angle that the

system is allowed to make during its travel. Since (9) is derived using the simplified model (1), the

parameter 0 < ρθ < 1 is introduced to create a safety margin to deal with model uncertainties. One

way to calculate ts so that −ρθθmax ≤ θ∗ ≤ ρθθmax is to determine where the maximal pitch is

taking place and then tune ts such that the angle constraints are respected. To determine where

the maximal pitch is taking place, let us calculate first the time derivative of the pitch angle with

respect to time:

dθ∗

dt
=

5.833

gt3s

(
5.83t

ts
− 2

)
R2e
−5.83t

ts (13)

By setting (13) to zero, one finds that the maximal pitch angle is taking place at t = 2ts/5.83.

Plugging this value of t in (12) gives the extrema:

θ∗Ext = −5.832

gt2se
2
R2 (14)

where the extrema collectively denote the minima and the maxima of a function. It is also necessary

to check the value of the pitch angle at the beginning and at the end of the mission, i.e. for t = 0

and t = ts. These are given by:

θ∗(0) =
5.832

gt2s
R2 and θ∗(ts) = −4.83× 5.832

gt2se
5.83

R2 (15)

Finally, to ensure that |θ∗| ≤ ρθθmax three solutions are obtained from (14) and (15):

ts ≥

√
5.832 |R2|
gρθθmax

; ts ≥

√
5.832 |R2|
ge2ρθθmax

and ts ≥

√
4.83× 5.832 |R2|
ge5.83ρθθmax

(16)
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which respectively corresponds to t = 0, t = 2ts/5.83, and t = ts. The solution to consider is

the maximal one among the three possible solutions. It is easy to see however that the solution

corresponding to t = 0 is the maximal one and hence it is the one to be considered. Similarly to

the study carried out for the pitch angle θ, it is possible to derive the solution for the roll angle φ

which is associated to the reference r3(t) along the y-direction as following:

ts ≥

√
5.832 |R3|
gρφφmax

(17)

In the fault case, the trajectory re-planning can be achieved by replacing R2 and R3 in (16) and

(17) with the remaining distances to travel ∆2 = R2−F2(trep) and ∆3 = R3−F3(trep) respectively.

Remark 1 The solution obtained under flight envelope constraints does not explicitly consider the

actuator limits. Therefore, it is necessary to calculate ts by considering actuator constraints as

explained in the subsequent section. If the solution obtained under actuator constraints is bigger

than the one obtained under flight envelope constraints then the former must be considered since the

actuator constraints are more restrictive than those of the flight envelope.

E. Trajectory Planning/Re-planning Under Actuator Constraints

If aggressive maneuvers are allowed, the constraints on the pitch and roll angles can be ignored.

However, it is necessary to consider actuator constraints. When actuators hit their limits and

cannot deliver the actuation inputs desired by the controller this results in degraded performance or

can even lead the closed-loop system to an unstable behavior [10]. The control inputs to be applied

along the reference trajectories are given in (5). In this work, the system is assumed to not changing

altitude during the mission and thus F ∗
1 is constant and F̈ ∗

1 = 0. It is also assumed that the system

is not yawing, thus F ∗
4 = 0 and F̈ ∗

4 = 0. By using (5), the control inputs are then:

u∗z = mg; u∗θ = J1
F

(4)∗
2

g
; u∗φ = −J2

F
(4)∗
3

g
; u∗ψ = 0 (18)

The relation between the lift/moments and the PWM inputs is given by (2). Taking the inverse

of (2) and using (18) gives the PWM inputs to be applied along the reference trajectories. For

instance, the first PWM input u∗1(t) is:

u∗1(t) =
1

4K
mg +

J1
2gKL

F
(4)∗
2 (t) (19)
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Since F ∗
2 (t) is given in (7) it is possible to calculate the fourth derivative of F ∗

2 (t) with respect

to time. Then, approximating the natural frequency as ωn ≈ 5.83/ts gives the nominal PWM inputs

in function of t and ts as:

u∗1(t) =
1

4K
mg − J1

2gKL

5.834

t4s

(
5.83t

ts
− 3

)
R2e
−5.83t

ts (20)

The objective is to determine the settling time ts so that the nominal PWM inputs are less

than the maximal allowable input umax, i.e. u∗i (t) ≤ umax ∀t ∈ [0, ts] for i = 1, ..., 4. Similarly as

before, the extrema of u∗i (t) must be determined as well as its terminal values at t = 0 and t = ts.

For u∗1(t), the extrema is taking place at t = 4ts/5.83 and its value is:

u∗1Ext =
1

4K
mg − J1

2gKL

5.834

e4t4s
R2 (21)

The terminal values at t = 0 and t = ts are:

u∗1(0) =
1

4K
mg +

3J1
2gKL

5.834

t4s
R2 and u∗1(ts) =

1

4K
mg − J1

2gKL

2.83× 5.834

t4s e
5.83

R2 (22)

From (21) and (22), one can determine ts for which u∗1(t) ≤ ρuumax. That is:

ts ≥ max


(
− 5.834J1R2

2gKLe4ūmax

)1

4
;

(
3× 5.834J1R2

2gKLūmax

)1

4
;

(
−2.83× 5.834J1R2

2gKLe5.83ūmax

)1

4

 (23)

where ūmax = ρuumax −mg/4K and ρu works similarly to ρθ. Similar development can be carried

out for the three remaining PWM inputs u∗2(t), u∗3(t) and u∗4(t). After ignoring the complex values

of ts, four solutions are obtained and the maximal one is the solution to be considered.

Trajectory re-planning consists in solving (23) by replacing R2 with the remaining distance to

travel ∆2 = R2 − F2(trep) and ūmax with the new actuator constraint ū1max = (1 − ŵ1)ρuumax −

mg/4K. ŵ1 is the estimate of effectiveness loss in the first actuator provided by the unscented

Kalman filter of Section III C. Based on the obtained solution ts, the damaged system must decide

whether to continue the mission, return to the base or land safely while taking into consideration

the remaining fuel or battery power and/or the attainable speed.

IV. Experimental Results

The trajectory planning/re-planning approach is applied to the quadrotor UAV testbed. The

baseline controller for the Qball-X4 is an LQR controller which is designed based on the simplified
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model (1). The fault-free trajectory planning is illustrated in Figures 1(a) and 1(b) with R2 =

−1.5 m and R3 = 0. The figures show the pitch angle and position tracking as well as the system’s

height which is set to 0.3 m and the PWM inputs to the four rotors. The reference trajectory along

the x-direction is given by (7) whereas the desired pitch angle is generated by the LQR controller

and its evolution is predicted in (9) thanks to flatness. Figure 1(a) considers the trajectory planning

when the flight envelope is restricted to |θmax| = 10◦. The total time of the mission is ts = 5.46 s. It

is clear that when the system is forced to follow the reference trajectory, the amplitude of the pitch

angle θ does not exceed 10◦ as required. One can see that due to model mismatch, the experimental

application does not provide one extrema as found in the theoretical development. One can also

notice that the height tracking is not affected during the mission since the LQR controller provides

good performance when the pitch angle is restricted to |θmax| = 10◦. Figure 1(b) considers the

trajectory planning when the actuator constraints are considered. The maximal PWM input is

umax = 0.028 and the total time of the mission is ts = 4.46 s. This experiment shows a degradation

in the height tracking performance due to the limitation of the baseline controller.
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(a) Trajectory planning with |θmax| = 10◦
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(b) Trajectory planning with umax = 0.028

Fig. 1 Trajectory planning under flight envelope and actuator constraints

The trajectory re-planning is illustrated in Figure 2(a) where a 40% loss of control effectiveness

is taking place in the second motor (w2 = 0.4) at time instant t = 31.5 s. The fault makes the

system to loose its height and to fall behind the reference trajectory. This sudden jump in the

tracking error along x and z directions indicates an eventual occurrence of a fault. Once the fault is

detected, the trajectory is temporarily re-planned at about t = 32 s with a ts = 900 s. Figure 2(b)

shows that the fault is successfully identified where 1−w2 = 0.6 and 1−w1 = 1−w3 = 1−w4 = 1.

The temporary trajectory lasts (for illustration purpose) for about 30 s where the system is held in
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place before re-planning the trajectory with ts = 7 s. The re-planned trajectory is slower than the

initial pre-fault trajectory to take into consideration the new actuator limits after fault occurrence.
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(a) Trajectory re-planning in the fault case
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Fig. 2 Trajectory re-planning and fault identification

V. Conclusion

This paper proposes a trajectory planning/re-planning approach where reference trajectories are

defined as second-order systems. The main advantage of the proposed approach is that solutions

are obtained in a straightforward manner by solving simple equations in the fault-free and fault

conditions. Therefore, it has very few calculation requirements and it is very suitable for systems

with limited calculation capabilities such as small-scale UAVs with single-board microcomputers.
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