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LiMn0.50Fe0.50PO4 and LiMn0.75Fe0.25PO4 powders have been synthesized by ceramic route. A 

comparative investigation of their electrochemical behaviour using operando 57Fe Mössbauer and X-

ray diffraction is reported. The complementarity of operando techniques used in this study allows the 

monitoring of changes of the local electronic environment and the lattice modifications that are 10 

directly linked to the redox reaction mechanisms. During the charge, LiMn0.50Fe0.50PO4 has been found 

to undergo three well defined and reversible reactions via an intermediate phase containing 

simultaneously FeII and FeIII cations.  LiMn0.75Fe0.25PO4  undergoes a two reactions mechanism.  FeIII 

Mössbauer signature has been found to be sensitive to the oxidation of MnII since this oxidation is 

accompanied with a significant increase of the iron quadrupole splitting. This study summarizes the 15 

different mechanisms observed for compositions with different manganese content.

1. Introduction 

Since the work on the Fe3+/Fe2+ redox couple in phospho olivines was first reported in 1997, LiFePO4 

has been intensively studied as a promising cathode material1-4 for the next generation of lithium-ion 

batteries because of its low cost, safety and environmental compatibility. Numerous studies have 20 

attempted to improve the electrochemical performances of the material and to get deeper insight in the 

lithium electrochemical mechanism5-9. On the other hand, attempts have been made to enhance the 

potential of olivine cathode materials by using manganese phosphate instead of iron phosphate 3, 10. 

Despite the recent advances in cycling insulating materials, thanks to nano-coating techniques and new 

preparation routes 11, 12 and even though some authors have reported promising results11-13, LiMnPO4 is 25 

not used as active material in lithium battery. This is due to the fact that it shows much lower effective 

energy density than the lithium iron phosphate owing to the low practical capacity evidenced. In 

addition, LiMnPO4 requires very slow charge and discharge rates 2, 14-16. The main reason on that is the 
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large kinetic barrier at the mismatched interface of MnPO4/LiMnPO4
4. It is also worth noticing that 

during the charge, LiMnPO4 exhibits higher volume change than LiFePO4 
2, 15, 17. 

A good compromise between LiFePO4 and LiMnPO4 is the partially substituted phases LiMnyFe1-yPO4 
3, 15, 18, that would introduce the advantage of combining good electrochemical performances of 

LiFePO4 with a higher potential for manganese (~ 4.1 V compared with ~ 3.4 V vs. Li+/Li for iron) in 5 

order to enhance the energy density.  

It is however not yet clear which composition has to be preferred for practical application. Yamada et 

al. suggested that LiMn0.6Fe0.4PO4 composition exhibits the best electrochemical performances 15. 

LiMn0.4Fe0.6PO4 has also been reported to give good specific capacity after 100 cycles 19. Chang et al. 

have reported that LiMn0.3Fe0.7PO4 shows the excellent cycling performances20, whereas Xu et al. 10 

found that LiMn0.1Fe0.9PO4 shows the best cycling performances21. Despite increasing interest in the 

Mn substituted phases, their electrochemical mechanisms are not yet well understood. It is for example 

not clear why the Fe3+/Fe2+ and Mn3+/Mn2+ redox potentials are shifted (vs. Mn content) and why the 

polarizations related to these two couples show an opposite behaviour22. 

Operando techniques are increasingly employed for the investigation of the batteries electrochemical 15 

behaviour. Few analyses of LiMnyFe1-yPO4 have been reported using XRD and X-ray absorption 

spectroscopy (XAS) 23-25.  

We have recently reported an operando study of LixMnyFe1-yPO4/C composites (y = 0; 0.25)1, 26. In 

order to establish a global mechanism, we have prepared LiMn0.50Fe0.50PO4/C and LiMn0.25Fe0.75PO4/C 

using solid-state reaction. Operando XRD and 57Fe Mössbauer Spectroscopy analyses have been used 20 

to investigate the evolution of iron local environment, oxidation state and lattice structure during the 

electrochemical redox process. 

2. Experimental section 

2.1  Synthesis procedure  

LiMnyFe1-yPO4/C (y = 0.5; 0.75) composites were obtained by solid-state reaction from Li2CO3, 25 

FeC2O4●2H2O, Mn(COOCH3)2●4H2O, NH4H2PO4 and a source of carbon (all chemicals of 99% 

purity from Aldrich) taken in stoichiometric quantities. The precursors were first ball milled during 90 

minutes and then thermally treated in a furnace under argon flow at 600 °C.  
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2.2 Characterization of Materials 

After preparation, the compounds were crushed in an agate mortar and powder XRD (PHILIPS 

X’Pert MPD θ-2θ diffractometer equipped with the X’celerator detector) patterns were recorded using 

Cu Kα radiation (λ = 1.5418 Å) and a nickel filter. 

The residual carbon content was evaluated by a Flash EA 1112 analyser based on the Dynamic Flash 5 

Combustion which produced complete combustion of the sample followed by an accurate and precise 

determination of the elemental gases produced. 57Fe Mössbauer spectra were recorded in the constant 

acceleration mode and in transmission geometry on a standard Mössbauer spectrometer composed of 

electronic devices from Ortec and Wissel. A 57Co(Rh) source with a nominal activity of 370 MBq was 

used. The source and the absorber were always kept at RT. All the isomer shifts are given relative to       10 

α-Fe at RT. 

2.3 Electrochemical behaviour 

Electrodes containing 80 wt. % sample and 20 wt. % carbon black were prepared for cycling tests. 

Standard Swagelok cells Li|1 M LiPF6 (propylenecarbonate (PC): ethylene carbonate (EC):dimethyl 

carbonate (DMC)) 1:1:3, v/v)| LiMnyFe1-yPO4 were assembled in an argon-filled glove box and tested 15 

using a VMP system. 

To identify the electrochemical reaction mechanisms, we carried out operando XRD and 57Fe 

Mössbauer spectroscopy measurements for both LiMnyFe1-yPO4 (y = 0.5; 0.75) electrodes using an 

electrochemical cell designed especially for this aim27. 

To preserve beryllium window from the oxidation due to high working voltage, it was covered by a 20 

2 µm thick foil of pure aluminium (Goodfellow). Here, the cells were charged and discharged using a 

C/40 rate, at room temperature in the voltage ranges 2.75-4.6 V. Each operando XRD scan was 

recorded during 1h in which Li extraction/insertion was performed and the results correspond to a 

change of composition of ∆x = 0.025 Li (where x is in LixMnyFe1-yPO4/C (y  = 0.5; 0.75). A 2 hours 

acquisition time was used for the operando Mössbauer measurement. Each spectrum corresponds to 25 

∆x = 0.05 extracted/inserted Li. For y = 0.75.The spectra presented are obtained in situ but not 

operando due to the low amount of iron in the electrode. 

3. Results and discussion 
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XRD patterns of the obtained powders are given in Figure 1a. As it can be seen, the powder are 

free of any crystalline impurity. 

All the diffraction peaks can be indexed in the orthorhombic Pnma space group. Lebail method28 

has been used to estimate the lattice parameters respectively a = 10.368(1)Å, b = 6.050(1)Å, c = 

4.710(1)Å for LiMn0.50Fe0.50PO4/C and a = 10.397(1)Å, b = 6.073(1)Å, c = 4.726(1)Å for 5 

LiMn0.75Fe0.25PO4/C. These values are in good agreement with the literature3. Average crystallite sizes 

of 120 nm have been obtained using the Scherrer formula29. The residual carbon content was evaluated 

at 4.89 % and 4.82% for LiMnyFe1-yPO4 (y = 0.5; 0.75) respectively.  

Figure 1b give the variation of a, b and c for the olivine phases. All, the lattice parameters increase 

linearly with manganese content. The main effect of the substitution of iron-manganese in LiMnyFe1-10 

yPO4 is the expansion of the network that can be explained simply by the difference between the ionic 

radii of high spin Mn2+ (0.97 Å) and Fe2+ high spin (0.92 Å).  

LiMnyFe1-yPO4/C (y = 0.50; 0.75) spectra (Figure 2) consist of sharp doublets with an isomer shift 

of δ = 1.235(2) and a quadrupole splitting of ∆ = 2.947(3) mm/s for y = 0.5 and an isomer shift of  δ = 

1.239(1) and a quadrupole splitting of ∆ = 2.942(2) mm/s for y = 0.75 as discussed previously 1. 15 

The voltage profiles of LiMnyFe1-yPO4 are shown in Figure 3a. For LiFePO4, a flat plateau is observed 

at 3.4 V as previously reported. For the substituted phases, two pseudo plateaus are observed in 

agreement with the two redox reactions Fe3+/Fe2+ and Mn3+/Mn2+. The length of the Mn plateau is 

proportional to manganese content. 

Calculated capacities with the cycle rate for LixMnyFe1-yPO4/C (y = 0.25, 0.50, 0.60, 0.75) are 20 

summarized in Figure 3b. This representation allows direct visualization of the reversible capacity of 

the material depending on the rate of cycling. The capacity is found to be a function of both cycling 

rate and Mn content. For our synthesis conditions, the material with the best performance is the 

composition LiMn0.25Fe0.75PO4/C. The loss of capacity between C/10 and C is 12% and 62% 

respectively for the compositions LiMn0.50Fe0.50PO4/C and LiMn0.75Fe0.25PO4/C. The electrochemical 25 

performance decreases with the manganese content: for the phase LiMn0.75Fe0.25PO4/C the reversible 

capacity calculated for a cycle rate of C/10 is 56 mAh.g-1 against 125 mAh.g-1 for the substituted phase 

with less manganese content LiMn0.50Fe0.50PO4/C. 

The redox potentials have been obtained from the derivative curves (Figure 4). These potentials 
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associated with the redox couples Fe3+/Fe2+ and Mn3+/Mn2+ undergo an increase with the manganese 

content. Kobayashi et al. 30 explain this with an expansion of the volume of all compositions. These 

variations are sufficient to increase the average potential of the couple Fe3+/Fe2+ from 3.45 V to  3.56 

V vs. Li+/Li0 respectively for y = 0 and y = 0.75. This variation in potential of 0.11 V may appear 

negligible in the case of a battery with one cell, however it can be important in the case of batteries 5 

with many cells mounted in parallel that can be used for example for electrical vehicles. 

To better understand the reaction mechanisms, operando analyses have been performed. 

For y = 0.50 the Mössbauer spectra corresponding to the first cycle and the parameters associated with 

the first charge are represented respectively in Figure 5a and 5b. The diffractograms corresponding to 

the first cycle of phase LiMn0.50Fe0.50PO4 are shown in Figure 6a. At the beginning of the charge (blue 10 

area) (0.70 ≤ x < 0.95) a new phase appears in both XRD patterns and Mössbauer data. The (020) peak 

of the pristine material vanishes at the expense of a new peak locate at 29.3°. In this domain, the 

Mössbauer spectra (Figure 7) indicate the transformation of initial Fe2+ into two components: the first 

is associated with Fe3+ with the parameters (δ = 0.42 mm/s and ∆ = 1.12 mm/s) and a second 

component associated with a new Fe2+ component (δ = 1.26 mm/s and ∆ = 2.72 mm/s). The 15 

quadrupole splitting of this new Fe2+ is lower than that of the initial Fe2+ indicating an increase of the 

distortion of the iron environment31 caused by the deintercalation of Li+ and iron oxidation. This 

observation allows us to conclude to formation of a mixed valence phase with the following 

composition: Li�.��Mn�.��
		 Fe�.��

		 Fe�.�
			 PO�. It is worth noting that such phases (called ferrisicklerites 

Lix<1(Fe,Mn)PO4) have been reported by mineralogists and attributed to natural oxidation of triphylite  20 

Li(Fe,Mn)PO4
32-34. From the study of 45 ferrisicklerite minerals, Fanton et al. have concluded on the 

absence of any structural order of the Mn and Fe cations in this family of materials32. 

 From these observations we conclude to a biphasic mechanism with the coexistence of 

LiMn�.��
		 Fe�.��

		 PO� and Li�.��Mn�.��
		 Fe�.��

		,			
PO�for the charge and discharge in the range 0.70 ≤ x < 

0.95. 25 

The electrochemical reaction in this region can be written: 

 

Li�.�Mn�.��
		 Fe�.��

		 PO� ↔ �α�Li�.��Mn�.��
		 Fe�.��

		 Fe�.�
			 PO� � 

�1 � α�Li�.�Mn�.��
		 Fe�.��

		 PO� � 0.30αLi� � 0.30αe�				�where	0	<α " 1� 
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In the second region (0.50 ≤ x ≤ 0.70), shown in black in Figure 6a, the diffraction lines corresponding 

to the Li0.70Mn0.50Fe0.50PO4 phase are shifted to upper angles, indicating the existence of a solid 

solution domain in charge and discharge. This also is supported by gradual increase (~ 21%) of the 

quadrupole splitting of Fe3+ with the oxidation of iron. Therefore, in this area the electrochemical 

reaction can be written as follow: 5 

 

Li�.��Mn�.��
		 Fe�.��

		 Fe�.�
			 PO� ↔ 

Li�.���#Mn�.��
		 Fe�.���#

		 Fe�.��#
			 PO� � αLi� � αe� 

�where	0 " α " 0.2� 

 

In the third region (~ 0.16 ≤ x < 0.5, shown in red in Figure 6a, the two-phase character is more 

evident. A new phase appears from x = 0.50 (Li0.50MnIII
0.50FeIII

0.50PO4) with diffraction peaks located 

at angles higher than the initial phase: 10 

Li�.��Mn�.��
		 Fe�.��

			 PO� ↔ βMn�.��
			 Fe�.��

			 PO� 	� 

�1 � β�Li�.��Mn�.��
		 Fe�.��

			 PO� � 0.50βLi� � 0.50βe�	�where	0	<	β " 1� 

 

All the Fe2+ was oxidized into Fe3+
 at the end of the second region, however, the Mössbauer spectra 

continue to evolve (Figure 7), indicating that the environment of iron is affected by the oxidation of 

Mn2+ in Mn3+ as already observed for the phase LiMn0.25Fe0.75PO4
1.  

From x ≤ 0.50 the spectra (Figure 7) are refined by adding a new Fe3+ doublet shown in magenta. The 15 

new doublet corresponding to Fe3+ phase Mn�,��
			 Fe�,��

			 PO� exhibits a quadrupole splitting of 1.65 

mm/s, which is higher than 1.55 mm/s observed for Mn�.��
			 Fe�.��

			 PO�, and this further confirms that 

the Fe3+ is very sensitive to the oxidation state of Mn since an increase of the amount of Mn3+ around 

the Fe3+ site lead to a significant increase of the quadrupole splitting31. Similar spectra have been 

reported for natural purpurite (Fe,Mn)PO4
31. The electromechanism of the charge and discharge of 20 

LiMn0.50Fe0.50PO4/C is done in three steps as the LiMn0.25Fe0.75PO4/C phase. At beginning, the 

mechanism is biphasic, with the coexistence of LiMn�,��
		 Fe�,��

		 PO� and a mixed composition 

Li�.��Mn�.��
		 Fe�.��

		 Fe�.�
			 PO� up to x = 0.50. From x = 0.50, the second domain is a solid solution 

where the phase Li'Mn�,��
		 Fe�,��

		 Fe�,�
			 PO� oxidizes up to x = 0.16. The last domain is biphasic 

between Li�,��Mn�,��
		 Fe�,��

			 PO� and Mn�,��
		 Fe�,��

			 PO�	. 25 
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The electrochemical mechanism corresponding to the richest manganese phase LiMn0.75Fe0.25PO4/C 

was also studied. The diffractograms corresponding to the first cycle with the galvanostatic curves are 

shown in Figure 6b. The three 57Fe Mössbauer spectra (Figure 8) do not match the operando mode 

indeed the low iron content of this phase would not have sufficient quality for data processing. They 5 

were however recorded in situ with the battery paused at key points. 

From x = 0.95 the diffraction line corresponding to the plane (020) phase LiMn0.75Fe0.25PO4/C        

(29.2° (2θ)) shifts to higher angles up to x = 0.75 (black area of Figure 6b). The reaction corresponding 

to the oxidation of iron is single phase in this area (0.45 ≤ x < 0.75) for the charge and discharge: 

 10 

		Li�.�Mn�.��
		 Fe�.��

		 PO� ↔ Li��#Mn�.��
		 Fe�.���#

		 Fe#
			PO� 

�αLi� � αe�	 

�where	0	<	α " 0.25� 

 

After x = 0 .75, the Mössbauer spectra show clearly that all the Fe2+ has been oxidized to Fe3+ (Figure 

8). 

From x = 0.75, the potential is 4.15 V, an olivine-type phase appeared, the main diffraction peak (2θ ~ 

30.2 °) corresponding to this new phase is shown Figure 6b. The coexistence of two phases in charge 15 

and discharge is established for the oxidation-reduction of Mn3+/Mn2+ in the area shown in red. The 

electrochemical reaction in (0.45 ≤ x < 0.75) can be written: 

Li�.��Mn�.��
		 Fe�.��

			 PO� ↔ βMn�.��
			 Fe�.��

			 PO� 	� 

�1 � β�		Li�.��Mn�.��
		 Fe�.��

			 PO� � 0.25βLi� � 0.25βe�	�where	0	<	β " 1� 

 

Mössbauer spectra shown in Figure 8 (where x = 0.60 and 0.45) correspond to the spectra of Fe3+ on 

the "plateau" of redox reaction Mn3+/Mn2+. Indeed, it was interesting to see the indirect effect of Mn3+ 20 

on the environment of Fe3+ as in previous phases with less manganese. The spectra cannot be refined 

with a single component in this area, we must add a second doublet for a correct refinement. 

Mössbauer parameters for the two Fe3+ components (Li0.75Mn0.75Fe0.25PO4 and Mn0.75Fe0.25PO4) are 

shown in Table 1. Component Mn0.75Fe0.25PO4 is characterized by a quadrupole splitting of 1.705 

mm/s. 25 
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In conclusion, the electrochemical mechanism of phase LixMn0.75Fe0.25PO4/C differs from the three 

previously studied compositions. The first part corresponding to the domain (0.75 ≤ x < 0.95) is single-

phase, the phase LiMn0.75Fe0.25PO4 evolves to the composition Li0.75Mn0.75Fe0.25PO4. The second area 

(0.45 ≤ x < 0.75) which is located at the "plateau" of the reaction Mn3+/Mn2+ is biphasic between the 

two compositions Li0.75Mn0.75Fe0.25PO4 and Mn0.75Fe0.25PO4 for the charge and discharge. 5 

To summarize, all the mechanisms observed for these substituted phases LiMnyFe1-yPO4/C in charge 

are respectively represented in Figure 9. Other compositions LiMnyFe1-yPO4/C (y = 0.4, 0.6, 0.67) 

prepared under the same conditions have also been studied and can complete the graph of Figure 9. 

The regions corresponding to different types of mechanism are shown as a function of lithium content: 

- The beginning of the charge corresponding to the reaction Fe2+→Fe3+ is biphasic for all 10 

compositions, except LiMn0.75Fe0.25PO4/C where the reaction is a single-phase. 

- A domain of solid solution is also observed for all compositions, except LiMn0.75Fe0.25PO4/C between 

the two "plateaus" corresponding to the two redox reactions, this domain decreases with the 

manganese content. 

- The end of the charge where the potential is around 4.2 V corresponding to the Mn3+/Mn2+ reaction is 15 

biphasic for all the compositions. 

An inductive effect has already been established in some intercalation compounds polyanionic 

lithium35, it can result in changes in potential more than 1 V. In the case of compounds LiMnyFe1-

yPO4/C, the ionicity or covalent bonds (Fe, Mn-O) is controlled by the size of the network ( the length 

of these bonds). It was therefore interesting to compare the values of the isomer shifts of phases 20 

LiMnyFe1-yPO4/C with the values of potentials associated with the couple Fe3+/Fe2+ (Figure 10). 

Indeed, there is a correlation between the inductive effect and value of the isomer shift as demonstrated 

Menil36. The representation of values of δ and potentials in Figure 10 clearly shows a very similar 

tendency of the two parameters. This interesting result suggests that it is possible to predict the 

reaction potential from iron Mössbauer data as reported by Naille et al. for tin compounds37. 25 

Finally we observed an excellent capacity retention over 100 cycles for all the studies compositions 

(see Add. Data). Although the substitution of iron with manganese does not improve the capacity 
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(since it decreases with the manganese content), the possibility of tuning the working voltage may be 

useful for some applications as electric hybrid cars.  

4. Conclusion 

In this paper we report a comparative operando study for LiMnyFe1-yPO4/C for y = 0.50 and y = 0.75 

combining XRD and 57Fe Mössbauer spectroscopy. The electrochemical mechanisms have been 5 

studied by monitoring the evolution of the local electronic environment (Mössbauer probe) and the 

lattice changes (XRD). The solid solution phase LiMn0.50Fe0.50PO4 exhibits a complex three steps 

mechanism during the charge. First a two biphasic reaction in the domain (0.70 ≤ x < 0.95) between 

LiMn�.��
		 Fe�.��

		 PO� and Li�.��Mn�.��
		 Fe�.��

		 Fe�.�
			 PO�, the Mössbauer probe helps to determine the 

composition of this mixed valence phase. The reaction is followed by a solid solution in the domain 10 

(0.50 ≤ x ≤ 0.70). The third step is described by a biphasic reaction between Li�.��Mn�.��
		 Fe�.��

			 PO� 

and Mn�.��
			 Fe�.��

			 PO�	until x ~ 0.1. In conclusion, the electrochemical mechanism of phase 

LixMn0.75Fe0.25PO4/C differs from the three previously studied compositions. The first part 

corresponding to the domain (0.75 ≤ x < 0.95) is single-phase, the phase LiMn0.75Fe0.25PO4 evolves to 

the composition Li0.75Mn0.75Fe0.25PO4 followed by a two phase mechanism with LiMn0.25Fe0.75PO4 and 15 

LiMn0.50Fe0.50PO4 . The second area (0.45 ≤ x < 0.75) which is located at the "plateau" of the reaction 

Mn3+/Mn2+ is biphasic between the two compositions Li0.75Mn0.75Fe0.25PO4 and Mn0.75Fe0.25PO4 for the 

charge and discharge. An interesting correlation has been established between the isomer shift and the 

average potential of the Fe3+/Fe2+ redox reaction, which can be used to predict the 

potential indirectly from Mössbauer data. 20 
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Fig. 1 Powder X-ray diffraction patterns (a) and evolution of lattice parameters with manganese content of LiMnyFe1-yPO4/C (b).  
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Fig.2  57Fe Mössbauer spectra for LiMnyFe1-yPO4/C, where y = 0.50 and y = 0.75 . 
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Fig.3 Electrochemical curves (first cycle) (a) and rate capability (b) of LiMnyFe1-yPO4 . 
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Fig.4 Average potential of redox reactions in LiMnyFe1-yPO4 . 20 
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Fig.5 Evolution of the operando Mössbauer spectra (a) and hyperfine parameters of FeII and FeIII species (b) of LixMn0.5Fe0.5PO4/C   recorded during the 

electrochemical process recorded at C/40 rate . 25 
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Fig.6 Operando X-ray diffractograms of LiMn0.50Fe0.50PO4/C (a) and LiMn0.75Fe0.25PO4/C (b)  

recorded during the electrochemical process at C/40 rate . 
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Fig. 7: Mössbauer spectra of LixMn0.50Fe0.50PO4/C obtained at the indicated x values .
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Fig. 8 Mössbauer spectra of LixMn0.75Fe0.25PO4/C obtained at the indicated x values . 
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Table 1 Hyperfine parameters of the composition involved during the electrochemical charge process . 

 

 

Composition 
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Fig. 9 Schematic diagram of the different mechanisms observed during the first charge . 
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Fig.10 Evolution of the Isomer Shift Vs. Average potential . 
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