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Abstract

Unit-selection speech synthesis is one of the current corpus-based text-to-
speech synthesis techniques. The quality of the generated speech depends
on the accuracy of the unit selection process, which in turn relies on the
cost function definition. This function should map the user perceptual pref-
erences when selecting synthesis units, which is still an open research issue.
This paper proposes a complete methodology for the tuning of the cost func-
tion weights by fusing the human judgments with the cost function, through
efficient and reliable interactive weight tuning. To that effect, active inter-
active genetic algorithms (aiGAs) are used to guide the subjective weight
adjustments. The application of aiGAs to this process allows mitigating user
fatigue and frustration by improving user consistency. However, it is still un-
feasible to subjectively adjust the weights of the whole corpus units (diphones
and triphones in this work). This makes it mandatory to perform unit clus-
tering before conducting the tuning process. The aiGA-based weight tuning
proposal is evaluated in a small speech corpus as a proof-of-concept and re-
sults in more natural synthetic speech when compared to previous objective
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and subjective-based approaches.
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1. Introduction

The main goal of any Text-to-Speech (TTS) synthesis system is the gen-
eration of natural synthetic speech from text. The unit selection TTS (US-
TTS) approach is one of the current corpus-based synthesis techniques that
try to reach this aim [1, 2, 3]. During the last decade, US-TTS systems
have been the basis for making a significant jump towards obtaining natu-
ral synthetic speech thanks to overcoming the limitations of diphone-based
concatenative synthesis, and becoming one of the dominant synthesis tech-
niques [2]. This method generates the synthetic speech signal by means of
the selection and concatenation of prerecorded speech units (e.g., phones,
diphones, etc.) from a large database of continuous read speech (with many
instances per unit). As a result of increasing the database size and coverage,
US-TTS synthesis minimizes the number of artificial concatenation points,
and reduces the need for prosodic modification at synthesis time when com-
pared to diphone-based TTS systems [3]. Although US-TTS systems can
produce sentences with high intelligibility and naturalness in general, this
quality sometimes cannot be maintained along the whole utterance [4, 5],
yielding synthetic errors when a required phonetic and prosodic context is
underrepresented in the speech database [2, 3]. The tuning of all parameters
and features involved in the selection process is a key issue for addressing
this problem [6, 7]. In particular, the weight tuning is a very important
stage in the design of the cost function, which drives the unit selection pro-
cess. The weights should reflect the relative importance of each sub-cost
(acoustic, linguistic, concatenative, etc.) for retrieving the most appropriate
set of candidate units from the speech database so as to achieve the best
synthetic speech quality (e.g., see [8, 9, 10, 5, 11]).

Since the performance of TTS systems is evaluated based on the perceived
speech quality, it is key to embed these subjective criteria into the tuning pro-
cess of TTS systems. For US-TTS synthesis, the perceptual component may
be modeled by the sub-cost functions (computing target and concatenative
distances) and their weights. The unit selection weight tuning problem has
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been historically addressed by: (i) defining an objective measure represent-
ing subjective similarities accurately [8, 9, 12], or (ii) mapping some sparse
samples of users’ perception as a post-processing step [13, 14] (see section
3). Nevertheless, weight training is still an open research issue. For instance,
in [3] it is stated that heuristically tuned weights provide acceptable high
quality speech rendering not worth it to automate the process. In contrast,
other works such as [15] try to embed the perceptual preferences into the
target cost and automate the processes, since they consider that manually
tuning the many weights of the cost function is unlikely to produce optimal
results.

This paper describes an actual subjective weight tuning methodology.
We use active interactive genetic algorithms (aiGAs) [16] to efficiently and
reliably embed the perceptual criteria for the weight tuning problem. To that
effect, aiGAs are adapted to work on a real-valued continuous search space,
besides introducing several evolutionary indicators to assess user interaction.
Moreover, we consider diphone and triphone pairs instead of phone pairs [12]
during the tuning process, since these are the basic units of our US-TTS syn-
thesis system, as in [3]. As a result, the proposed approach is able to adjust
both target and concatenative weights at the same time in contrast to other
works (e.g., [9, 15]), avoiding the naive hypothesis they are independent.

This paper is organized as follows. Section 2 briefly describes the basic
concepts related to the considered unit selection cost function. Section 3 re-
views the main approaches to the weight tuning problem, both objective and
subjective. Section 4 describes the main features of aiGAs, which are the core
component of the proposed interactive weight tuning methodology at cluster
level detailed in section 5. Section 6 describes the conducted experiments
on a controlled environment, analyzing users’ consistency and comparing the
achieved synthetic speech quality to previous weight tuning approaches. Fi-
nally, we discuss the results achieved in section 7, and the conclusions and
future work in section 8.

2. Unit Selection Cost Function

The cost function plays a key role in the unit selection process of US-TTS
systems, retrieving the set of units un

1 = (u1, . . . , un) from the speech cor-
pus that potentially yields the best synthetic speech quality given a target
sequence tn1 = (t1, . . . , tn) [8]. To that effect, the cost function takes into
account the unit distortion between the candidate unit (ui) and the target
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(ti), the target cost (Ct), and the continuity distortion between consecutive
units (ui and ui+1), the concatenation cost (Cc) [8]. The target and concate-
nation costs are defined as a weighted sum of p target sub-costs Ct

j(ti, ui)(j =
1, . . . , p) and q concatenation sub-costs Cc

j (ti, ui)(j = 1, . . . , q)[8]:

Ct(ti, ui) =

p∑
j

wt
j Ct

j(ti, ui), (1)

Cc(ui, ui+1) =

q∑
j

wc
j Cc

j (ui, ui+1). (2)

where wt
j and wc

j stand for target and concatenation weights, respectively.
These sub-costs are generally calculated as the difference of relevant lin-

guistic, acoustic or phonetic features. Once the desired features and their
corresponding weights are defined, the unit selection process can be run. Its
main goal is to retrieve the set of units from the speech corpus that mini-
mize the given cost function C(tni , un

i ). In particular, we compute the linear
combination of Ct and Cc across the n units of the utterance as [8]

C(tni , un
i ) =

n∑
i

Ct(ti, ui) +
n−1∑

i

Cc(ui, ui+1). (3)

It should be noticed that other options could have been chosen, and that
several works exist focusing on defining more complex integration schemes
for building the cost function from sub-cost functions (see e.g., [5, 17]). Nev-
ertheless, these approaches lay beyond the scope of this paper.

Since this work is focused on validating the proposed methodology for
subjective weight tuning, we have only defined the sub-costs in the prosodic
framework at this research stage, simplifying the computation of the cost
function and centering the perceptual comparisons on speech prosodic vari-
ability due to the changes of the weight values. The target sub-costs of Eq. (1)
are measured scoring mean differences in pitch (Pit.T), energy (Ene.T) and
duration (divided into left halphone, DurL.T, and right DurR.T) between
units (following Eq. (4)). The concatenation sub-costs of Eq. (2) take into ac-
count the local differences in pitch (Pit.C), energy (Ene.C) and Mel-frequency
cepstral coefficients (Mel.C) at the point of concatenation (see Eq. (5)). As it
can be observed from these equations, the differences are normalized through
a sigmoid function[5, 11] to bound the sub-cost values between 0 and 1.

4



  

Ct
j(ti, ui) = 1− e

− (Xt)2

σ(Xt)2

X t = |Pj(ti)− Pj(ui)| (4)

Cc
j (ui, ui+1) = 1− e

− (Xc)2

σ(Xc)2

Xc =
N∑
1

|PR
j (ui)− PL

j (ui+1)| (5)

where Pj(·) represents the mean value of parameter j for the analyzed unit
(target ti or candidate ui), σ(X i) is the deviation of the parameter differ-
ences across the analyzed units, and N = 1 for pitch and energy sub-costs,
while N = 24 for the Mel.C measure (12 coefficients plus their respective 12
derivatives). Finally, superscripts R and L of Eq. (5) represent right and left
values of parameter Pj(·) at the concatenation point, respectively.

3. Related work

As seen in Eq. (3), the cost function is composed of two costs (target and
concatenation) computed as a weighted set of sub-costs (see Equations (1)
and (2)). These weights wt

j and wc
j define the relevance of each sub-cost in

the selection of the candidate units. The goal of any scheme for the train-
ing of these weights is obtaining the values of W = (wt

1, . . . , w
t
p, w

c
1, . . . , w

c
q)

which lead to the highest synthetic speech quality, observing the following
restrictions [18, 19]

p+q∑
i=1

wi = 1, wi ≥ 0. (6)

The efficient training of these weights is a key issue for the retrieval of
the candidate units regarding the set of considered objective features (e.g.,
phonetic, acoustic, linguistic, etc.) [6]. However, the weight tuning of the
unit selection cost function is one of the toughest problems when designing
US-TTS systems [8, 20, 5, 11, 15]. This is due to the fact that the criterion
for retrieving the best set of units from the speech corpus should be able to
somehow embed the subjective preferences of listeners [20, 14, 5].

The following sections describe the main approaches to the weight training
problem in the literature, from both objective and subjective perspectives.
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3.1. Objective weight tuning

Weights map the sub-costs to the considered acoustic distance and, hence,
model the relevance of sub-cost differences objectively. Weight space search
and multilinear regression [8] are the basis of the objective approach, lately
extended in [12]. The following paragraphs briefly describe the weight tun-
ning approach.

3.1.1. Weight space search (WSS)

The weight space search technique discretizes the real-valued weight search
space W and then operates on the resulting finite space. Optimal weights
are obtained by analysis-by-synthesis exploration of all the possible variable
configurations [8]. The process starts with the selection of a target utter-
ance taken from the speech corpus. Next, the unit selection process is run,
obtaining a synthesized utterance for each one of the possible weights in
the discretized space[14]. Finally, the best sequence of candidate units (and
thus, the best set of weights) is determined as the one attaining the minimum
distance (typically computed as a cepstral distance [8]) to the target.

This process is repeated for all the selected target utterances and the
most consistent set of weights is chosen as the final solution [8].

Initially, WSS was used to optimize weights all together [8]. Later it was
only used to obtain concatenation weights [9]. WSS tends to be computa-
tionally expensive. Proposed improvements attempt to accelerate the search
process by splitting the process in two steps [12]: (i) precalculate the anal-
ysis (selection) and then, (ii) run the synthesis (evaluation). Other authors
have also applied WSS to solve related problems [14, 11]. Unfortunately, this
approach quickly becomes infeasible as we increase the number of weights to
adjust and want to maintain a reasonable accurate adjustment [8].

3.1.2. Multilinear Regression (MLR)

Another proposed approach to adjust the weights relies on solving a multi-
linear regression between an objective measure (typically based on a cepstral
distance) and the sub-costs for a given target unit [8]. This process was only
applied to target weight generation at the phoneme level in [8]. The tar-
get cost is computed according to Eq. (1), only considering candidate units
acoustically closest to the target (k = 20). This process is repeated for all
the realizations of the phoneme at hand, being considered as the target unit
successively.
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MLR can adjust weights at a unit level (e.g., for each phoneme of the
speech corpus), or for sets of phonemes (e.g., all nasals, fricatives, etc.), or
all phonemes together [8]. MLR was applied to pairs of concatenated phones
simultaneously tunning target and concatenation weights [12].

It is important to note that MLR takes into account all the units’ realiza-
tions instead of making use of a prediscretized set of values when adjusting
the target weights, yielding theoretically more robust solutions than WSS
[12]. Also, the computational cost of the MLR technique increases linearly
with the number of considered sub-costs in front of the exponential increase
of the WSS [8]. However, it forces a linear relationship between the sub-cost
measures and the acoustic distance losing relevant higher order dependences.

3.1.3. Non-linear approaches

After the WSS and MLR seminal proposals, there have been several works
introducing different approaches to the weight training process since neither
the WSS nor the MLR approaches are optimal. Among these works, [21]
defines three generic categories of weights: wl (loose), wt (tight) and wo

(overlapped), according to the considered unit types. In [18, 19] a non-
linear discriminative weight training technique is presented, which is based
on representing the unit selection process as a classification problem. Weights
are updated by means of the gradient descent technique, considering the
classification error as the objective measure to be optimized (including a
heuristic adjustment of several parameters). However, the proposal is only
applied for the tuning of the target weights, leaving the extension to the
training of concatenation weights for future works.

In [22] a scheme for the application of genetic algorithms to the cost
function weight tuning is introduced. Genetic algorithms (GA) [23, 24] are
population-based search algorithms. Inspired in natural evolution ideas, GAs
evolve a population of candidate weights solutions adapting them to a given
environment, in this case, the unit selection cost function. This process
takes advantage of mechanisms such as the survival of the fittest and genetic
material recombination to deal with the multiple local optima of the cost
function, which is a highly non-linear function [15]. GAs can overcame the
restrictions of MLR and WSS with a feasible computational effort and use
of a cepstral distance as a means of evaluating the quality of the weight
configurations within the fitness function [22].
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3.2. Subjective Weight Tuning

The subjective (human) criterion may be included in the unit selection
cost function through the weights of the sub-costs. There are different ap-
proaches for addressing this goal, which we will summarize below.

3.2.1. Manual tuning

The cost function weights can be obtained by some hand-tuning process
that is perceptually supervised (see, for instance [25, 26, 27, 11, 3]). This
process is based on a preselection of a finite set of weight values, synthesizing
several utterances. The optimal set of weights is determined after ranking
the preferences of evaluators (generally, speech technology experts) when
presented with the resulting synthetic utterances.

This approach involves several problems. It is mandatory to consider a
small set of weights to make feasible the tuning process (e.g., weights can be
chosen among {0.25, 0.5, 0.75, 1} values [14]). Thus, the weight search space
is dramatically discretized and highly dependent on the synthesis quality.
Also, the large number of evaluations necessary to adjust the weights may
produce poor or noisy results [28].

As a consequence, tuning the weights of the cost function manually (de-
spite the discretization heuristic used) is unlikely to produce optimal results
[15]. US-TTS synthesis systems using perceptually-adjusted weights consis-
tently produce smoother transitions and better voice quality than systems
using weights that have been set manually [20].

3.2.2. Post-mapping subjective criterion

There are several works which propose different methodologies for setting
the weights of the cost function based on perceptual preference tests as a
post-mapping stage. In these works, the Mean Opinion Score (MOS) is
used, since it is one of the most widely accepted measures for evaluating the
naturalness of synthetic speech subjectively [13, 14]. In [20], an algorithm
based on the downhill simplex method is introduced, which searches the set
of weights that rank the utterances according to the ranking achieved from
the perceptual tests. In [13], a cost function built from a categorical set
of factors is introduced, later improved in [14], whose correlation to a set of
MOS values is calculated besides optimized, obtaining apparent good average
correlation. In [26, 5, 17], the definition of the cost function for conveying
perceptual MOS is optimized as accurately as possible, leaving the analysis of
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the obtained weights for future works. In section 6, the MOS post-mapping
approach is compared to our proposal.

3.2.3. Interactive Genetic Algorithms

Interactive Genetic Algorithms (iGAs) can be defined as an optimiza-
tion model capable of combining the adjustment of quantitative parame-
ters and the subjective evaluation of the results by replacing the traditional
computer-based fitness and selection scheme (objective measure) of classical
GAs [23, 24] by a human-driven selection process (subjective data). This
kind of algorithm has been applied in several disciplines to fuse human and
computer efforts when subjective evaluation is a key element [29], e.g., for
perceptual tuning of hearing aids in [30], or as an actual perception-guided
weight adjustment technique for US-TTS synthesis systems in [31].

The results obtained in [31] showed that the objective weights (based on
MLR and GA) were poorly correlated with subjective weights obtained from
human perception. However, the experiments evidenced two main problems
[31]: the tediousness of the process (user fatigue) and the complexity of
maintaining a stable comparison criterion throughout the whole process (user
consistency), which may yield unreliable results.

4. Weight tuning by using Active Interactive Genetic Algorithms

As described in previous paragraphs, our previous work proved the use-
fulness of using GAs (as an objective method) [22] and iGAs (as a subjective
method) [31] for addressing the non-linear weight tuning problem [15, 29].
However, further research was needed to improve the quality of the achieved
synthesis and to combat user fatigue, though. Later, active iGAs (aiGAs)
introduced several advances for combating user fatigue [16], greatly reducing
the number of evaluations required to achieve high-quality solutions.

aiGAs are a particular kind of genetic algorithms, which are population-
based search algorithms [23, 24], with the particularity of learning from user
interaction and exploiting the learned knowledge to guide the process of
collecting user evaluations [16]. Inspired in natural evolution ideas, aiGAs
evolve a population of candidate solutions (in this work, weights) adapting
them to the given environment (i.e., the users preferences), by learning from
user interaction to anticipate which hypotheses the user may be interested
in through a synthetic fitness function [16].

9



  

The following paragraphs describe the main issues related to obtaining
the synthetic fitness function from users’ preferences, and how aiGAs are
adapted to the weight tuning problem.

4.1. Synthetic fitness function and Partial-Ordering Graphs

The synthetic fitness function used in aiGAs assumes that the interaction
of the user with the evolutionary process can be archived for mining and
learning purposes (i.e., modeling users’ subjective preferences). As consid-
ered in [16, 30], the minimal scenario for collecting meaningful user evalua-
tion is provided by a binary tournament scheme (s = 2) [32], where users are
prompted to choose after listening the two resulting synthetic solutions (sim-
ilar to a pair-wise preference test). Thus, given two solutions {s1, s2} ∈ V
the user is able to provide three possible outcomes: (i) s1 > s2, (ii) s1 < s2,
and (iii) s1 = s2 —or equal/don’t know/don’t care. This pair-wise relative
comparison is denoted as partial ordering. As a result, user evaluations intro-
duce a partial order among the solutions (weight configurations) presented
so far.

The partial order is made explicit by assembling a graph G =< V , E >—
as shown in [16]. A vertex in V represents the solutions presented to the user,
whereas the edges in E represent the partial-ordering evaluations provided
by the user. The synthesized sentences (one per tested weight configura-
tion) are presented to the user wisely by the so-called tournament ordering
to guarantee that (i) all of them are evaluated, and (ii), the partial order
introduced by the user evaluations produces a connected graph G (see Fig. 1).
The partial ordering graph provided by the user may be undirected (equal
evaluations are allowed), however, such a graph G can be easily turned into a
normalized directed graph G ′ (see Fig. 2) by replacing the equal (undirected
edges) by the proper greater than or less than relations (directed edges)—
see [16] for further details. In [30], they also attempted to ensemble global
rankings based on pair-wise comparisons in order to provide the tournaments
to the users. However, they never explored the model building over the ob-
tained graph to reduce user fatigue by means of educated guesses of the user
preferences, which is one of the key features of aiGAs, as later explained.

Given a normalized partial-ordering graph G ′, aiGAs create a synthetic
fitness based on the partial ordering provided by user evaluations and the
Pareto dominance concept [33] of multiobjective optimization [34, 35]. A
global ordering measure may be computed using a heuristic based on two
dominance measures, δ and φ, inspired by multiobjective optimization [34,
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010111 010100 010101 100001 100000 101010 001000 001110

4 2 3 2 1 3 1 3

Figure 1: Eight randomly chosen individuals from a population are grouped in seven
different tournaments {(010111, 010100), (010101, 100001), (100000, 101010), (001000,
001110), (010111, 010101), (100000, 001000), (010111, 100000)}. The number beside
each node simulates the objective function in the user’s mind [16].

35]. Let δ(v) be the number of different nodes present on the paths departing
from vertex v, and φ(v) the number of different nodes present on the paths
arriving at v. Table 1 presents δ(v) or φ(v) given the graph presented in
Fig. 2(b). The estimated fitness of a given solution v may be computed as
f̂(v) = δ(v)− φ(v). Intuitively, the more solutions a vertex v dominates (is
greater than), the greater the fitness. Otherwise, the more solutions dominate
(are greater than) a solution v, the smaller the fitness. The final global
estimated ranking r̂(v) is obtained sorting the vertex v ∈ V by f̂(v), as
shown in Table 1.

A synthetic fitness is obtained applying a regression to the aforementioned
global estimated ranking. Following the specifications detailed in [16], the
synthetic fitness regression must accomplish two properties: (i) fitness ex-
trapolation and (ii) order maintenance. ε-SVM [36] satisfies these conditions
as it is demonstrated in [16]. Thus, the columns (v,r̂(v)) of global estimated
ranking are used as training data to obtain a supervised ε-SVM model. Also
in [16], it is stated that the number of training examples for the ε-SVM must
be �+2, where � is the problem size (in our case, � = 7, which is the number
of weights). Thus, the population is composed of 16 individuals (24), since
8 individuals (23) do not ensure consistency on the ε − SV M training step
(8 < �+2, 8 < 9). Finally, by optimizing such a synthetic fitness (the output
of ε-SVM for unevaluated input data) we can obtain new individuals (edu-
cated guesses) about the user preferences. In this work, the optimization step
is conducted by a continuous population-based incremental learning (PBIL)
[37], instead of using compact GA, as done in [16], due to the real-valued
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010100 2010100

010111 4 100001 2010101 3010111 100001010101

101010 3 100000 1101010 100000

001110 3 001000 1001110 001000

(a) Initial graph G

010100 2010100

010111 4 100001 2010101 3010111 100001010101

101010 3 100000 1101010 100000

001110 3 001000 1001110 001000

(b) Normalized graph G′.

Figure 2: Partial ordering graph built from the comparisons provided by a user based on
the tournaments of Fig. 1. Direction on the arrows indicates greater than relations. When
no direction is provided, equality is assumed [16].

representation of the weight tuning problem [28].

4.2. aiGAs for weight tuning

Figure 3 presents the basic execution flow of the proposed aiGA-base
methodology for the weight tuning of the cost function. It starts with a popu-
lation generated at random. Each individual is a vector W (weight configura-
tion) containing the weights to be adjusted, that isW = (wt

1, . . . , w
t
p, w

c
1, . . . , w

c
q).

Then, the population is evaluated by the user. Given an initial set of tourna-
ments presented to the user, the user listens to the product of the synthesis
of the proposed weight configurations. Then, we collect the user preferences
of the proposed pairs, and a partial-ordering graph is incrementally built
by adding this round of user preferences. This graph is used to compute
the synthetic fitness function presented on the previous section. Once it is
available, the continuous-variable based PBIL optimizes the fitness function.
The important output of this process is a probability distribution over the
weight configurations. This probability distribution models the current user
preferences toward perceptually good solutions. The new round of solutions
to be presented to the user is a fifty-fifty combination of previously shown
top-ranking solutions (weight configurations), and new solutions sampled out
of the learned probability distribution—representing promising solutions or
educated guesses. The process continues until the finalization criterion is
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Table 1: Estimation of the global ranking based on the dominance measure using the
partial order presented in Fig. 2(b).

v f(v) r(v) δ(v) φ(v) f̂(v) r̂(v)

010111 4 1 5 0 5 1
010100 2 3 0 1 -1 5
010101 3 2 1 1 0 4
100001 2 3 0 2 -2 6
100000 1 4 0 3 -3 7.5
101010 3 2 2 0 2 2.5
001000 1 4 0 3 -3 7.5
001110 3 2 2 0 2 2.5

met—usually a predefined time duration to avoid tiring the user (see section
6).

ε-SVM
training

Sampling

Evaluated
Population

Population i

Synthesis
Engine

Speech  
Corpus

Tournament of 
candidates

Partial-ordering Graph

WEB
INTERFACE

Interactive
Evaluation

Global ranking

100000 6
001000 6

100001 5

101010 2
001110 2

010111 1

010101 3
010100 4

100000 7.0
001000 6.5

100001 5.3

101010 2.2
001110 2.8

010111 0.9

010101 2.9
010100 4.5

111101 0.7
011111 0.7

111110 0.6

111011 0.2
111011 0.2

111011 0.2

101111 0.5
101111 0.5

Optimized
Population

100000
001000

100001

101010
001110

010111

010101
010100

111011
111110

Population i+1

v f(v) r(v) δ(v) φ(v) f̂(v) r̂(v)

010111 4 1 5 0 5 1
010100 2 3 0 1 -1 5
010101 3 2 1 1 0 4
100001 2 3 0 2 -2 6
100000 1 4 0 3 -3 7.5
101010 3 2 2 0 2 2.5
001000 1 4 0 3 -3 7.5
001110 3 2 2 0 2 2.5

G =< V , E >G′
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automatic
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Figure 3: Execution flow of the aiGA-based weight tuning methodology for unit selection
TTS synthesis.

5. Obtaining subjective weight patterns at cluster level

As the literature has shown, the weight training process can be conducted
at three different levels: at unit level (e.g., for each phoneme of the speech
corpus), at cluster level (i.e. for several groups of units) or at corpus level (i.e.
for all the corpus’ units as a whole) [8, 9]. In our previous works, the weights
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were adjusted objectively at unit level using genetic algorithms [22], and at
corpus level subjectively through a very reduced set of sentences by means
of interactive GAs [31, 28]. However, dividing the unit space into clusters
offers an intermediate level of precision between global (all units together)
and unit-dependent (one weight set per unit) adjustment techniques [8, 12].
And even more important, it becomes the most feasible way for conducting
the weight tuning in the perceptual framework this work is focused on. On
the one hand, both the number of tests that the user should conduct and the
difficulty involved in comparing variations at unit level (i.e. by presenting
only the synthesis of a stand-alone unit or embedding the unit in a carrier
word or sentence) discards the weight tuning at unit level. On the other
hand, tuning the cost function weights altogether may yield oversmoothed
(averaged) weights since all units vary at the same time, making it difficult to
know the actual contribution of each sub-cost to the final synthetic quality.
Therefore, the interactive weight tuning approach described in this work
makes working at cluster level mandatory. As a consequence, this approach
allows obtaining different weights for different kinds of units. As an added
value, it also minimizes the drawbacks of sparsely populated units by means
of distributing them among the clusters.

5.1. Clustering weights by classification and regression trees

In this work, the automatic weights obtained from GA-based weight tun-
ing methodology (see section 3.1.3) are clustered according to their units’
phonetic features by using a classification and regression tree (CART) (the
wagon function of the Festival platform [38]).

On the one hand, grouping units depending on their weights resulting
from an automatic process assures consistent clusters in terms of weight
patterns (although based on an objective distance), whereas working at the
parameter level may not lead to this goal, besides making also indispensable
the inclusion of some weighted objective distance to determine unit similarity
(see for instance the distance defined in [9]). On the other hand, CART
implicitly deals with sparseness of units [9], obtaining the phonetic set that
best minimizes the entropy of each cluster, thus, avoiding the clustering of
weight patterns obtained from phonetically different units.

The CART’s question set includes the following information for each half
phone of the unit: the type (vowel, consonant, semivowel or silence), the
sonority (voiced or unvoiced), the manner of articulation (plosive, fricative,
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etc.) and the place of articulation (bilabial, dental, etc.). Since the cur-
rent cost function considers sum-normalization of weights (i.e. their sum
must be 1, see Eq. (6)), the cosine distance has been selected for compar-
ing weight vectors similarity, as neither their direction nor their modulus is
the significant characteristic for clustering purposes. Finally, after building
the clustering tree, the optimal number of clusters is obtained by computing
several clustering impurity measures (see section 6.1).

5.2. Weight patterns

After grouping the speech units thanks to CART clustering, a weight
pattern per cluster is obtained by means of the aiGA-based methodology
described in section 4. To that effect, firstly, we selected some phonetically
balanced sentences containing the largest number of units of each cluster
from the speech corpus by means of a simple entropy maximization algo-
rithm. Next, a specific corpus is built for each one of the selected sentences
by considering: (i) only one candidate unit (i.e. carrier unit) for those units
not belonging to the cluster at hand, and (ii) all versions of the units whose
weights are to be tuned with the exception of the target ones (i.e. coming
from the recorded sentence). Then, the weight tuning process (with the orig-
inal recorded prosody as the target) is put into users’ hands by means of
the “Sin-Evo” platform [31, 28], where the varying units of the sentences are
underlined and the reference sentence (the original recording) is also avail-
able. The users are asked to evolve the weights interactively for a particular
sentence according to the execution flow depicted in Fig. 3. To that effect, 16
different weight settings are compared in a binary tournament (15 compar-
isons between 2 synthetic speech samples in each iteration) during 3 iterations
—this configuration was found to be a good trade-off to obtain reliable weight
values [28]. As a result, each user conducts a total of 45 comparisons (i.e.,
subjective evaluations) for sentence. Moreover, user consistency is controlled
by means of the κ measure (see appendix A).

After finishing the tuning process, the unreliable evaluations of each test
(i.e., the ones attaining a consistency κ < 1, see Eq. (7)) are removed. Next,
for the reliable results, it has to be determined whether the user has provided
significant information until the last iteration or not. This might occur either
because a good solution has been found before finishing the tournaments or
because the user has become fatigued, being unable to realize the minor vari-
ations the last iteration of the evolutionary process typically attain. The stop
criterion of the iterative process is determined by considering the evolution of
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the number of draws with respect to the total number of comparisons of the
directed graph (i.e., the certainty ratio)[39]). The last iteration the certainty
ratio increases (before decreasing until the end of the iterative process) is
considered as the point where the user has converged (see Fig. 6). Thanks to
this measure, it can be observed that users tend to draw final comparisons
of the run as they become fatigued.

Once the stop criterion is determined, the best weights coming from the
complete order r̂(v) of each user-test sentence pair are used to obtain the
weights patterns for each cluster c. These weights are the ones whose fitness
is over 0.9 in the [0, 1] range. To that effect, the median is calculated for each
weight throughout the whole setWc (we use median and not average because
of working with discrete values) resulting in the median vector w̄c. Finally,
after normalizing w̄c according to Eq. (6), the closest real weight vector of
Wc to the w̄c (in terms of cosine distance) is labeled as the weight pattern
of the cluster c.

6. Experiments

The main goal of the following experiments is to evaluate the performance
of the proposed weight tuning methodology in a controlled environment as a
proof-of-concept. To that effect, the experiments have been conducted on a
labeled Catalan speech corpus composed of 1520 sentences (containing 9863
units, diphones and triphones, in total). The referred corpus had not been
intentionally designed for its use in a US-TTS system framework. However, it
allows conducting the desired proof-of-concept of the proposed methodology
since there are 100 units with enough variability (with 23 to 282 realizations),
making 6064 retrievable candidate units during unit selection.

Three different baseline methods have been considered to obtain the
weights for each of the 100 most populated units of the speech corpus: two
objective methods, based on MLR and GA, and the MOS post-mapping ap-
proach, as subjective method. Moreover, the aiGA-based perceptual weight
adjustments have been conducted at cluster level by using the “Sin-Evo”
platform [31, 28]. The proposed subjective weight tuning methodology is
evaluated in terms of user consistency, certainty and correlation among users.

After obtaining the weight patterns for each cluster, the synthetic speech
quality obtained through the four different weight tuning methods is evalu-
ated by means of preference tests.
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Is right half phone CONSONANT?

Is right half phone PLOSIVE?

YES

Is right half phone CLOSED?

NO

CLUSTER 1 (1266)

YES

CLUSTER 2 (2085)

NO

CLUSTER 3 (844)

YES

CLUSTER 4 (1869)

NO

Figure 4: Resulting CART of 4 clusters with the number of instances per cluster indicated
between brackets.

6.1. Number of clusters

The main goal of the following analysis is to define the number of clusters
considered for the interactive weight tuning experiments. Firstly, a CART is
trained on the GA-based weights of the 100 most populated units, resulting
in the tree phonetic question set used to partition the whole corpus. Next,
the optimal number of clusters is determined. To that effect, we consider
several well-known cluster impurity measures: Silhouette, Dunns, Davies-
Bouldin, etc. For a review on validation measures the reader is referred to
[40].

Table 2 shows that the different measures yield their optimal values be-
tween 2 and 4 clusters. After analyzing the distribution of units (see the
number of units per cluster of Fig. 4), we selected 4 as the number of clusters
to be considered for the perceptual weight tuning. Although cluster 3 and
cluster 4 represent quite similar objective weight patterns (see the boxplots
of Fig. 5), the quite large number of unit realizations contained in the merged
cluster results in a quite unbalanced data partition. Moreover, 4 clusters still
yield a feasible number of subjective tests.

6.2. aiGA-based weight tuning

After defining the clusters of units for the aiGA-based subjective weight
tuning process, 16 representative sentences (4 per cluster) are selected from
the speech corpus by means of a simple greedy algorithm applied to each
cluster—containing 30.2±11.6 units, with 5.7±2.4 varying units per sentence.
21 users conducted the interactive weight tuning adjustment on different
clusters. Each sentence was adjusted by 4.8 users in average. The weight
tuning lasted 13 ± 3 minutes for each sentence approximately (each version
could be listened to as many times as desired).
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Figure 5: Boxplots of the weight values obtained after clustering the GA-based weight
patterns for (a) cluster 1, (b) cluster 2, (c) cluster 3 and (d) cluster 4. Note that w1
stands for DurL.T, w2 for DurR.T, w3 for Ene.C, w4 for Ene.T, w5 for Mel.C, w6 for
Pit.C and w7 for Pit.T.

Table 2: Clustering impurity measures used for determining the optimal number of clus-
ters. In bold the optimal value per measure.

Measure/#clusters 2 3 4 5

Silhouette 0.1072 0.0753 -0.0447 -0.0748
Davies-Bouldin 1.896 3.4578 7.5295 7.5091
Calinski-Harabasz 13.114 24.458 17.361 14.584
Dunn 0.8272 0.2835 0.1072 0.113
C-index 0.4201 0.349 0.3545 0.3771
Krzanowski-Lai 0.4547 3.0914 2.9821 0.3346
Hartigan 13.114 31.695 2.4406 4.4043
weighted inter/intra 0.2281 0.5348 0.4734 0.4702
Homogeneity 0.628 0.6692 0.6649 0.6474
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6.2.1. Collecting reliable information from users’ evaluations

The consistency index computed by the κ measure allows considering only
those sentence-evaluator pairs, which finish the subjective iterative process
in a consistent way (i.e., κ = 1, see Eq. (7)). As indicated in section 5.2
only consistent results are considered before selecting the best ranked weight
patterns that yield the clusters’ weight patterns. Figure 6 shows an example
of the consistency measure of 5 users for a particular sentence along the
tournaments. It can be observed that three users are always consistent, one
of them (user1) is able to return to the consistency path thanks to aiGAs,
whereas user4 is unable to return to κ = 1 due to significant consistency drops
—a similar behavior was observed in other sentences as already reported in
[28]. As a result, 6 of the 77 sentence-evaluator pairs (i.e., the 7.8%) were
discarded since the weight tuning process finished inconsistently.

Then, for each test finishing consistently, the last informative iteration
(i.e., the stop criterion) is determined by computing the certainty ratio, as
described in section 5.2. Figure 6 shows an example of this computation for
a particular sentence. It can be observed how each of the 5 users converges
between iterations 40 and 51 (the last informative iteration is determined for
each user). Starting from that iteration, the certainty ratio keeps decreasing
to the end of the test, i.e., the iterative process does not contribute to new
information. After analyzing the conducted experiments, the last informative
iteration was 44.5± 4.8 in average (i.e., around the 80% of the 60 iterations
were informative).

6.2.2. Weights convergence and users’ correlation

The degree of weight values convergence obtained by the users and their
global correlation are evaluated so as to validate the proposed methodology.
Firstly, Fig. 7 shows the averaged seven weight values along the iterative
process for a particular sentence selected to set an example. As it can be
observed, the weight values start from a noisy evolutionary pattern (from the
first iteration to iteration 20, approximately), but they converge to stable
values at around iteration 50. It is notable that the weights of the different
sentences present similar behaviors of weight values evolutions.

Secondly, although each user generates a particular graph built from
his/her preferences, the correlation of the resulting best ranked weights for
each cluster is also evaluated since it may give information about the relia-
bility of the results. Figure 8 shows the correlation among the users for each
one of the 16 sentences whose weights are interactively adjusted grouped per
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Figure 6: Evolution of five users’ consistency measures along the iterative process for a
particular sentence of cluster 1. The vertical lines of the leftmost plot indicate the last
significant iteration in terms of certainty for each of the 5 users.

cluster. It is worth noting that, although starting from very dispersed values,
the correlation values are 0.76±0.02 at the end of the iterative process, which
is a very good result considering the subjective problem at hand [14, 17].

6.2.3. Final results

Finally, Fig. 9 shows the boxplots of the resulting patterns of weights
obtained for each cluster, following the aiGA-based interactive methodology
and the two objective-based weight tuning methods considered in this work
(MLR and GA). These patterns were computed as indicated in section 5.2
by considering the weights adjusted by means of MLR and GA of the most
populated units at unit level, after being grouped according to the clusters
obtained in the experiment reported in section 6.1. It can be observed that
the application of MLR and aiGA yield different patterns, but with similar
standard deviations (stdMLR = ±0.07 and stdaiGA = ±0.08), whereas GA
presents a definitely different behavior due to its prominent elitist search
(stdGA = ±0.12).

Moreover, in order to compare the aiGA-based weight values to the ones
obtained through the MOS post-mapping technique, the subjective prefer-
ences of users in front of synthetic sentences have to be collected. In this
work, this information is obtained from the preference test involving aiGA,
MLR and GA-based weight patterns described in section 6.3. As a result,
three MOS values for each sentence are obtained, following the same scheme
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Figure 7: Users’ median normalized weight values evolution for a particular sentence of
cluster 1. Note that w1 stands for DurL.T, w2 for DurR.T, w3 for Ene.C, w4 for Ene.T,
w5 for Mel.C, w6 for Pit.C and w7 for Pit.T.

as the one described in [13, 14], but in a different way since the corpus at
hand is not large enough to conduct a size sweep. The CMOS values are
converted into MOS values in two stages. Firstly, the CMOS values are nor-
malized into an absolute range for each sentence and weight configuration by
averaging the users’ punctuations. And secondly, these values are mapped
into the 5-point MOS scale (1 to 5), through a simple max-min normalization
process. Since the reliable aiGA-based weights are obtained around iteration
45 (see section 6.2.1), we collected 45 evaluations from each user, making the
size of the MOS post-mapping evaluation set equivalent to the one used in
the aiGA-based approach.

Next, following the process described in [13, 14], the log file of the syn-
thesis process for each sentence and weight configuration is retrieved. Each
sub-cost of the cost function is averaged among the selected set of units for
each sentence and weight configuration pair. Next, the averaged sub-costs
are mapped into the users’ MOS punctuations by means of a multilinear
regression (MLR) [13, 14]. In this work, the MLR is implemented by Non
Negative Least Squares (NNLS) algorithm, which assures positive weight val-
ues, obtaining a correlation of −0.49 (see Fig. 10)—a similar value to the ones
reported in [17] when the lower range of sub-costs is considered. The result-
ing weight values are the following: w1 = 0.12, w2 = 0, w3 = 0.20, w4 = 0,
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Figure 8: Correlation of the median weight values of the different users for the 4 sentences
selected from (a) cluster 1, (b) cluster 2, (c) cluster 3 and (d) cluster 4.
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Figure 9: Boxplots of the weight values obtained after applying aiGA, MLR and GA
weight tuning approaches on (a) cluster 1, (b) cluster 2, (c) cluster 3 and (d) cluster 4.
Note that w1 stands for DurL.T, w2 for DurR.T, w3 for Ene.C, w4 for Ene.T, w5 for
Mel.C, w6 for Pit.C and w7 for Pit.T.
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Figure 10: Multilinear regression between the averaged sub-costs and the MOS values
obtained from the collected preferences of users in front or the different tested sentences
(see section 6.3).

w5 = 0.03, w6 = 0.65, and w7 = 0. Note that w1 stands for DurL.T, w2 for
DurR.T, w3 for Ene.C, w4 for Ene.T, w5 for Mel.C, w6 for Pit.C and w7 for
Pit.T.

6.3. Preference tests

The purpose of the following experiments is to evaluate the synthetic
speech quality obtained by the considered weight adjustments techniques,
validating the impact of the introduced efficient subjective tuning approach,
as opposed to previous objective (MLR and GA) and subjective (MOS post-
mapping) proposals. To that effect, 20 synthetic sentences (different from
the ones used for tuning purposes) are considered in two preference tests,
which are conducted by 19 evaluators (14 coming from the group who did
the weight tuning plus 5 new users included as a control group). In the first
one, three synthetic candidates per sentence are synthesized considering the
weight patterns obtained by MLR, GA and aiGA-based methodologies in the
unit selection search, respectively. In the second one, the aiGA-based syn-
theses are compared to the ones generated by the weights obtained through
the MOS post-mapping approach. In both tests, the evaluators are asked
to compare two synthetic candidates per sentence in similar terms of the
comparison mean opinion scores (CMOS), but ranging in 5 steps from -2
(significant worse quality) over 0 (about the same quality) to +2 (significant
better quality) in order to simplify the evaluators’ task to obtain consistent
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judgments (see the results on Fig. 11(a)).
Boxplots of Fig. 11(b) depict the results of the pairwise comparisons

(method A vs. method B) for the four weight tuning approaches, show-
ing to what extent the former weight tuning method is better (indicated as
positive values) or worse (indicated as negative values) than the latter. The
users’ preference for the synthetic results obtained using the weight patterns
from the introduced aiGA-based methodology can be clearly observed when
compared to the objective approaches (MLR and GA). Moreover, there is
also a preference to the aiGA-based syntheses when compared to the MOS
post-mapping approach (37.54 % of preference for aiGA vs. 22.46% of pref-
erence for MOS post-mapping), although there is a slight preference to find
both methods with equivalent quality (40% of equals in Fig. 11(a)).

Moreover, in order to evaluate the statistical significance of these results, a
paired t-test comparing the users’ preferences for each pair of tuning methods
is computed. As a result, the test shows that aiGA > MLR (median= 1
and mean= 0.68) with a confidence level of p < 2 · 10−16, aiGA > GA
with a confidence level of p = 8.7 · 10−13 (median= 1 and mean= 0.51).
Moreover, aiGA > MOS post-mapping is also statistically significant with
a confidence level of p = 0.00083 (median= 0 and mean= 0.18). Finally,
the difference between MLR and GA is not statistically significant (i.e., p >
0.05, with median= 0 and mean= 0.16). Thus, these results reinforce the
conclusion that the aiGA outperforms the objective and subjective methods
for weight tuning in unit selection synthesis in this proof-of-concept analysis.
Furthermore, the 5-users control group presents a similar behavior: aiGA >
MLR with a confidence level of p = 1.9 · 10−4, aiGA > GA with a confidence
level of p = 2 · 10−3, aiGA > MOS post-mapping with p = 0.036, besides no
significant difference between MLR and GA is found. Therefore, it can be
concluded that the weight patterns yield sentences with a higher synthetic
speech quality appreciated by users who did not participate in the tuning
process too.

7. Discussion

In this section, some of the decisions taken during the realization of this
work and several issues related to the proposed weight tuning methodology
are discussed.

As indicated in the introduction of section 6, in order to decouple the
effect of signal post-processing after unit selection, only a small amount of
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Figure 11: Five-point scale CMOS responses of users’ preferences when comparing syn-
thetic sentences generated considering the weight values obtained by MLR, GA and MOS
post-mapping approaches vs. the aiGA-based methodology, using the latter of the pairs
as a reference. The horizontal dotted line within the boxplots represents the distributions’
mean values.

(pitch-synchronous) soft concatenation is applied for concatenating the se-
lected units. Some works advocate the inclusion of some signal processing
in the adjustment loop [12], while others propose making independent these
processes [8]. We think adjusting the weights without post-processing, on
the one hand, allows the portability of the results independently of the con-
sidered post-processing technique, and, on the other hand, avoids obtaining
too similar synthetic candidates during the subjective weight tuning due to
the masking caused by the signal processing. Some informal tests including
TD-PSOLA in the aiGA-based weight tuning methodology yield very simi-
lar results within the tournaments, which in turn, slowed the convergence of
the algorithm and frustrated the users since no significant improvement was
noticeable during the iterative process (the graphs contained a large number
of draws).

Although the weights obtained through the proposed interactive weight
tuning methodology are independent of the signal processing module, they
have been derived from the speech units of a particular speech corpus. Hence,
these weights depend on the corpus at hand, and may not be useful for a
different speech corpus. However, in future works we want to study the
degree of portability of the users’ preferences to other speech corpora since
part of their subjective criterion is modeled by means of the ε-SVM included
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in the aiGA-based tuning proposal.
The MOS post-mapping proposal evaluated in section 6 can be under-

stood as a refinement of the initial MLR method [8], by substituting the ob-
jective acoustic distance by a set of preference values obtained from a MOS
listening test. Although it is an interesting approach to correlate the ob-
jective distance to human perception, there are some issues the aiGA-based
methodology improves. Firstly, MOS post-mapping only allows polinomic
regression between sub-costs and sampled perception, loosing any non-linear
relation or correlation between sub-costs, which can be dealt with the aiGA-
based approach. Secondly, although the number of sentences used in the
MOS test may be increased easily, the literature indicates that for getting
a reliable optimization, the utterances used for the MOS experiment should
be designed carefully so that units have wide coverage for sub-costs [14, 26],
in order to avoid obtaining illogical [26] or over-fitted weight values [17]. Fi-
nally, it is well known that long perceptual tests yield users fatigue, and thus,
noisy results [28]. Therefore, in order to reliably introduce the subjective cri-
teria of users in the weight training problem it is necessary to include some
machine-driven technique controlling the process, as the one included in the
proposal.

It is important to note that the current methodology allows controlling
users consistency avoiding the explicit inclusion of control points (i.e., A-
B vs. B-A comparisons) along the tournaments thanks to the κ measure.
Including control points may disturb the weight tuning process due to user
frustration, besides leading to user fatigue. Hence, it’s an implicit method for
speeding up the weight tuning process, helping to increase user consistency.

8. Conclusions

This work introduced an efficient and reliable weight tuning methodology
for unit selection text-to-speech synthesis systems based on active interactive
genetic algorithms. The main goal of this work was to show the viability and
the reliability of the current proposal, being evaluated objectively (in terms
of users’ consistency and correlation) and subjectively (in terms of perceptual
tests). The clustering process allows diversification of the subjective weight
tuning by having a sufficient number of clusters of similar units, avoiding
scarcely or massively populated clusters and making the subjective tuning
a feasible process. The weights obtained perceptually through the proposed
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methodology were preferred in front of the ones obtained by previous objec-
tive and subjective-based techniques with regard to preference tests.

It is notable that due to the use of diphone and triphone pairs, the search
space is considerably increased in relation to the phone pairs. However,
these units allow optimal concatenation at synthesis time and the training
cost is not critical, since this is an off-line process (i.e., it is not conducted
at synthesis time).

Since the main goal of the current work is to evaluate the viability of the
proposed methodology, there are several issues which are postponed for future
work. For instance, we have not analyzed in depth the resulting weight values
according to the phonetic units they are obtained from or we have kept quite
small the number of perceptually evaluated sentences (both for the proposal
and the MOS post-mapping approaches) since the speech corpus at hand may
not be considered as a typical database for conducting unit selection text-
to-speech synthesis. We leave these analyses for future works where larger
databases will be considered. Moreover, we want to evaluate the degree of
portability of the pattern weights to other speech corpora. And finally, we
want to continue working on fusing the final users’ preferences to determine
the most appreciated weight patterns.
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A. Measuring User Consistency

Given a normalized partial-ordering graph G ′, if a vertex v appears more
than once in a path computing δ(v) or φ(v), then a cycle exists. If such
behavior arises, it represents an inconsistency in the user evaluations. Thus,
due to the greater than relations, the consistency of the user evaluations
can be identified [16]. This property is the basis of the consistency metric
proposed in [28]. A user will be consistent at time t if no cycles can be
found in the normalized partial-ordering graph G ′. In order to compute such
a measure we need two components: cycle detection capabilities for a given
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graph G ′ at time t (G ′t), and a heuristic to quantify how much inconsistency
the detected cycle is causing, which can be defined as [28]:

κ
(G ′t, ω)

= 1−

 1

|V ′t| ·
∑

v∈χ(G′t)

ωv




α

(7)

where |V ′t| is the number of vertices in G ′ at time t, ωv the weight of vertex
v (not to be confused with the cost function weights), χ (G ′t) the vertices in
the cycles detected in G ′t, and α a global scaling factor bigger or equal than
1. Unless noted otherwise, ωv = 1,∀v ∈ V ′t and α = 1.

In terms of cycle detection, algorithms 1 and 2 perform the detection of
cycles in the graph based on the evaluations made by the user. The idea of
these algorithms is to maintain the same criteria on identifying the cycles and,
thus, avoiding the redundancy on the detected cyclic parts. For each vertex
v in G ′ =< V ′, E ′ > the algorithms explore the relation with the other vertex
VN not yet processed by means of an accumulative set of visited vertices in
the path. Once the set of cyclic paths is formed, the non cyclic parts of the
paths are filtered to avoid the subcycle ambiguity. Then, the algorithm sorts
each vertex of a cycle by age. The algorithm removes the oldest edge that
breaks the cycle. Finally, all the vertices that appear in at least one cycle
form the set χ (G ′), which is used to define the user consistency measure as
introduced in the next section.

Algorithm 1 Algorithmic description of the cycle detection algorithm in G ′.
cycleDetection(G ′, i)
1: Create the empty sets C of cycles, VT of visited vertices
2: Extract the first vertex vi ∈ V | vi /∈ VT
3: Create the set VN = {∀ v ∈ VN : (v �= vi) ∩ (v ∈ G ′)}
4: Create the set CI = {∀v ∈ VN ∀e(vi, v) ∈ E : cycleExporer({vi}, v,G ′) ⊆
CI}

5: Filter the non-cyclic parts of paths ∀c ∈ CI
6: Sort cycles considering the oldest vertex as the first/last vertex ∀c ∈ CI
7: VT ← VT ∪{vi}
8: C ← C ∪ CI
9: Go to 2 while ∀vi ∈ G ′: vi /∈ VT . Else cycleDetection← C
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Algorithm 2 Algorithm to explore all paths departing from v in VI
cycleExplorer(VI , v,G ′ =< V ′, E ′ >)

1: VI ⇐ VI∪ v
2: Create the set R ={∀vi ∈ VI ∀e(v, vi) ∈ E ′ :e(v, vi) ⊆ R}
3: (R�= ∅)⇒ return(R)
4: Create the set CI = {∀vi ∈ (V−{v})∀e(v, vi) ∈ E ′ :

cycleExporer(VI , vi,G ′) ⊆ CI}
5: return(CI)
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