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The Black-Scholes model as a determinant of the implied 
volatility smile: A simulation study

Abstract
The paper represents an initial effort to shed light on the determinants of the implied volatility smile in financial 

(derivative) markets. It fully details the implications of the institutionalization of the Black-Scholes model in an 

uncertain world populated by individuals who are bounded by the amount of calculation or accounting which is 

technically possible. Combining model simulations, empirical analysis, and mathematical derivations, the paper 

proposes that the determinants of the volatility smile might be related to the behavior of traders. In pricing options, 

they use the widely accepted Black-Scholes formula with a measure of stock volatility that they derive from their 

subjective beliefs. Moreover, heterogeneity of traders’ beliefs and the way traders update their expectations have 

nontrivial effects, both on equilibrium prices and on the emergence of the implied volatility smile.

Key words: implied volatility smile; Black-Scholes option pricing model; agent-based simulation.

_____________________________________________________________________________

1. Introduction

This paper stands at the frontier between the academic disciplines of finance and organization 

theory. It concerns finance, generally, by addressing the long-standing problem of pricing 

financial options and, specifically, the phenomenon of the implied volatility smile. It concerns 

organizational theory because the emergence of the implied volatility smile, we argue, might be 

related to the behavior of boundedly rational individuals who—equipped with the widely 

accepted formula of Black and Scholes (1973)—try to resolve the uncertainty about future 

underlying stock volatility, in part by learning from the flow of information the market provides 

and in part by relying on their subjective beliefs.

A standard financial option gives its owner the right to buy or sell some asset in the future for 

a fixed price (the strike price). Call options confer the right to buy the asset, while put options

confer the right to sell the asset. These rights can be exercised at a predefined point in time 

(European option) or at any time before the expiry date (American option). In both kinds of

options, the implied volatility is the value the market has implicitly assigned to the option, 

which, in turn, justifies its current market price. In other words, it is the volatility value that 
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creates the theoretical value for the option, as derived by a particular pricing model, identical to 

the current market price.

Using the Black-Scholes (1973) option pricing model, if we plot the implied volatility as a 

function of the exercise price, we should obtain a horizontal straight line. This implies that all 

options for buying or selling the same underlying asset with the same expiration date, but with 

different exercise prices, should have the same implied volatility. This is not, however, what 

occurs in practice in option markets worldwide. The implied volatility presents a strong U-

shaped pattern, as the call option goes from deep in-the-money to at-the-money and then to deep 

out-of-the-money, or as the put option goes from deep out-of-the-money to at-the-money and 

then to deep in-the-money (e.g., Black, 1975; MacBeth and Merville, 1979; Galai, 1983; 

Rubinstein, 1985; Derman and Kani, 1994). In addition, the U-shaped pattern is most 

pronounced for short-term options, with the graph of the implied volatility function looking like 

the smile of the “Cheshire cat” (e.g., Cont and da Fonseca, 2002).

The research that has studied the volatility smile (or volatility skew) is abundant, and several 

approaches have been proposed both to explain and to model it. In a prominent work, Rubinstein 

(1994) related the smile effect to the presence of (i) jumps in the price of the underlying asset 

between successive opportunities to trade, (ii) market imperfections and frictions, such as 

transaction costs, illiquidity, and other trading restrictions, which imply that a single arbitrage-

free option price no longer exists, and (iii) disturbances in the price process of the underlying 

assets that do not follow a geometric Brownian motion with constant volatility. Regarding the 

presence of jumps in the price of the underlying asset, Hafner and Wallmeier (2001) analyzed 

the determinants of the volatility smile in the Danish financial markets and indicated that market 

participants’ assessment of crash risk does affect the smile. It follows that traders set the 

expected volatility value artificially, at a level that is higher than the historical one, in order to 

obtain a risk premium against an unexpected decrease (for in-the-money options) or increase (for 

out-of-the-money options) of the stock price. Regarding the presence of market imperfections 

and frictions, Longstaff (1995) and Figlewski (1989) examined the effects of transaction costs

and found that they could be a major element in the divergences of implied volatilities across 
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strike prices. Furthermore, Constantinides (1997) stated that transaction costs affect the 

equilibrium asset prices and, therefore, generate a difference in the mean rate of return of two 

assets, one of which is subjected to transaction costs, and the other, not. Thus, the concept of a 

single, no-arbitrage price of a derivative is replaced by a range of option prices that may differ 

across strike rates. On the presence of disturbances in the price process, it is assumed that 

skewness and excess kurtosis in the underlying asset return distributions are the main sources of 

the volatility smile in option prices because they make extreme observations more likely than the 

value predicted by the Black-Scholes model, and, in turn, they increase the value of away-from-

the-money options relative to at-the-money options (e.g., Hull, 1993).

Models attempting to incorporate stochastic volatility processes are varied. Among them, we 

refer to the stochastic volatility models (Hull and White, 1987), the general equilibrium 

stochastic volatility models (Detemple and Osakwe, 2000), the pure jump-diffusion models 

(Merton, 1976), the affine jump-diffusion models (Duffie et al., 2000), and the double 

exponential jump-diffusion models (Kou, 2002). In particular, it has been demonstrated that 

stochastic volatility models exhibit a symmetric smile locally centered on the current forward 

price, as originally shown by Renault and Touzi (1996). A simpler proof can also be found in 

Sircar and Papanicolaou (1999). The authors show the result by Renault and Touzi (1996) noting 

that if the stochastic volatility stems from a diffusion process driven by a Brownian motion 

uncorrelated with the Brownian motion driving the stock price, and the option price is computed 

by means of the so-called Hull and White formula (which is an expectation of the Black-Scholes 

price), then the implied volatility is locally convex and symmetric around the current forward 

price. Unable to account for the case wherein low-strike implied volatilities are higher than high-

strike implied volatilities, stochastic volatility models have been enriched by introducing a more 

articulated and complex form of the volatility. In a prominent contribution, Brigo and Mercurio 

(2002) propose a model in which the volatility is correlated with the stock price. By doing so, the 

authors were able to construct a model that lead to skews in the form of the implied volatility. 

From a different perspective, Ziegler (2002) observed that under heterogeneous beliefs about the 

true mean of the constant instantaneous increase in expected dividends, which is another 
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parameter of the Black-Scholes option pricing model, the state-price density function is not log 

normal. As a consequence, the non-log-normality of the equilibrium state-price density gives rise 

to a volatility smile. Furthermore, the implied volatility curve becomes steeper and tends to 

assume a skewed U-shape as the degree of heterogeneity in beliefs is increased (on the 

importance of heterogeneity of traders in asset markets, see also Li and Rosser, 2001).

Although we recognize the undisputed contribution of these studies, we must observe that 

traditional research on the volatility smile has been based on the development and analysis of 

highly stylized, analytically tractable models, in which traders’ limits in knowledge or foresight, 

heterogeneity of beliefs, and learning mechanisms may be or are sometimes missing (e.g., for a 

review of option pricing models, see Broadie and Detemple, 2004). On the other hand, it may be 

a difficult task to enrich and even to refine the assumptions beyond the Black-Scholes model in 

order to endogenize the volatility smile because the Black-Scholes model itself is the basic cause 

of the volatility smile. In this sense, borrowing from Callon (1998) and MacKenzie and Millo 

(2003), the Black-Scholes model does not describe an existing external financial market, but 

rather brings that market into being: the Black-Scholes model performs the functions of the 

financial market, creating an artificial state of affairs in which there is a substantive orientation, 

effectively enforced by the provision of an order, on the way actors behave. Therefore, the 

Black-Scholes model performs a sort of regulation of the market itself, with traders adapting

themselves to it.

The present work is an attempt to flesh out what we believe to be some essential elements that 

explain the volatility smile and to provide a framework that links these elements to theory at the 

market level of analysis. In part, this requires making more explicit what is already implicit in 

some works on the problem, such as the mathematical formulation of the Black-Scholes model 

(e.g., Rubinstein, 1994; Renault and Touzi, 1996; Sircar and Papanicolaou, 1999). In part, it 

involves new considerations and, specifically, it asks us to reframe the problem posed by the 

presence of the implied volatility smile as less of a mathematical problem of how to model a 

stock volatility that is stochastic, and more a taking into account of both the role of traders’ 

beliefs and the environment in which these beliefs are formed and updated over time.
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We will therefore adopt a research approach combining model simulations, empirical 

analysis, and mathematical derivations. We propose a computational model using agent-based 

simulation techniques. It must be observed that our intent is to link the emergence of the implied 

volatility smile to certain rules of thumb followed by autonomous, heterogeneous, and adaptive 

traders in pricing options. These features (bounded rationality, heterogeneity, and learning) 

appear to be best handled by computation. Agent-based computational models permit us to 

address such features and constitute a powerful research method for theory development based 

on more realistic assumptions than closed-form solutions (Cohen and Cyert, 1965). As was 

recently observed by Dawid and Fagiolo (2008), by explicitly modeling the decentralized 

interaction of heterogeneous economic agents in systems such as markets, industries, or 

organizations, agent-based computational economics attempts to transcend the numerous 

oversimplifying assumptions underlying most mainstream analytical models. Moreover, unlike 

empirical analyses, which are very data intensive and pose problems of adequately controlling 

for competing arguments, a simulation permits us to create a controlled environment, in which 

traders’ beliefs and learning algorithms are transparent and can be carefully controlled and 

modified (see Holland and Miller, 1991; Roth, 2002; Tesfatsion and Judd, 2006). Thus, it allows 

us to test whether our logic works in principle by eliminating all alternative explanations. We 

then perform an empirical analysis on S&P 500 index options to assess model robustness. The 

results of this analysis conform very well to the simulation results. Finally, as already observed, 

an exact analysis of the phenomenon studied here is very difficult to obtain because of the highly 

nonlinear nature of agents’ behaviors and interactions over time. However, using a greatly 

simplified model that retains the essential properties of interest, we mathematically adduce the 

emergence of the implied volatility smile from the way individuals seek to resolve the 

uncertainty surrounding a stock’s volatility. Analytical results proposed in Appendix A confirm 

that the volatility observed is induced by behaviors that are, in turn, encouraged by the 

techniques traders are accustomed to using when dealing with option pricing.
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2. Model

Our model simulates a financial (derivative) market, in which J European call options are 

traded with the time to maturity T and the strike price 0jK  , where j belongs to a finite set J. 

All call options are written on only one underlying risky asset, say  t t
S S with 0S s ; we 

denote by   ( ) ( )t
t

C K C K the market equilibrium price of the European call option with strike 

price K . Our model is completed by considering the safe asset B, paying a fixed real dividend r, 

the riskless rate. 1

At any time [0, ]T  , each trader can choose to change her strategy. In other words, at time 

τ, a buyer chooses to sell her holdings and a seller chooses to buy options. We also introduce 

,0i as the i trader’s wealth at initial time zero, for 1,..., ( )i N K , where ( )N K is the number of 

traders that deal with the call option with the strike price K . Given ( )i K the amount of the 

European call option, with strike price K , that agent i holds in the period [0, ) , and 

( ( ), )i i K j J   , we denote the ith trader’s wealth at time τ by

 
0, ,0( ) ( ) [ ( ) ( )],r

i i j j i i j j
j J j J

K C K e K C K
   

 

      (1)

As in the Santa Fe Institute Artificial Stock Market model (see De Long et al., 1990; Palmer 

et al., 1994; Arthur et al., 1997; LeBaron et al., 1999; Ehrentreich, 2006), our trader’s aim is to 

maximize  
,0 ,0, ,[ ( )] ( ( ))i ii i iE Var      , where 

,i tE denotes the expectation of trader i

conditional on information up to time t, i is the coefficient of absolute risk aversion, and, for a 

given random variable X,  ,0iVar is the variance of X with respect to 
,i tE . These mean variance 

criteria correspond, in the Gaussian case, to the maximum of a utility function, such as

2( ) i x
iU x e   (see Freund, 1956).

                                                
1 We concentrate our attention on European options, because their prices and their derived implied 
volatility functions are key to price other derivative securities. As observed by Fouque et al. (2001), 
European options prices, encapsulated in the skew surface, are part of the basic observables and, in turn, 
any effort to understand the determinants of the implied volatility smile for European options might also 
contribute to the stochastic volatility literature on other kinds of options.
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In the proposed model, each trader invests all of her limited funds in one option; this is to say 

that the ith trader deals with only the call option with strike price jK for a ( )j j i . In other 

words, we have that ( ) 0i jK  except for ( )j j i . Therefore, traders’ maximization of (1) 

becomes equivalent to maximizing, for ( )j iK K ,

  2
, 0 ,( )[ ( ) ( )] [ ( )] ( )r

ii i i iK C K e C K K K
        (2)

where   
,0, ( ) : [ ( )]iiC K E C K  and  

,0, ( ) : ( ( ))ii K Var C K  is the variance of traders’ 

expectations on  ( )C K , according to the beliefs of trader i.

The maximum in (2) is achieved with

  
, 0 , 0*

, ,

1 ( ) ( ) ( ) ( )
( )

2 ( ) 2 ( )

r r
i i

i
i i i i

C K e C K e C K C K
K

K K

 
 

 


   

 
 

where 
,, ( ) ( )i

r
iC K e C K




 . Setting for every  ,jK K j J  the amount of the call option 

to a given fixed value of 1, which means that in equilibrium

*

1

( ) 1
N

i
i

K




Given that the aggregate demand is linear in  0 ( )C K , we explicitly derive the solution of the 

above equation for an equilibrium price:


0 , ,

1 1

1
( ) ( ) 2 ( )

N N
r

i i i
i i

C K C K e K
N


  

 

    
 
  (3)

Eq. (3) expresses the equilibrium option price at time 0 as a function of , ( )iC K , the expected 

option prices at time  , the behavioral parameter of the model i , and the second moment of the 

 -period-ahead distribution of expected option prices , ( )i K . It also must be observed that the 

equilibrium market price is assumed to be outside the control of traders. In our model, each agent 

forms an expectation on the equilibrium price at time  , and then she determines her demands 

for the option in question at time 0. Given the fixed supply normalized to 1, a specialist collects 

all demands and, according to Eq. (3), sets the price to clear the market and at such an 

equilibrium price, no agent would want to change her actions. We notice that this simple 
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Walrasian auctioneer process for handling market clearing has the advantage that results are not 

influenced by any troubling issue with pricing adjustment or by any ad hoc mechanism that 

might artificially create higher demand for some options (e.g., options close-to-the-money) and, 

in turn, forces the emergence of the implied volatility smile (see LeBaron et al., 1999; 

Ehrentreich, 2006). However, alternative modeling of market clearing rules and their effect on 

the emergence of the implied volatility smile is an important extension that needs to be addressed 

in future studies.

To complete our market model description, we need only to specify how traders compute 

their expected option prices. In this regard, our economy is populated by noise traders in 

proportion  and by “Black-Scholes traders” in proportion 1  .

Noise traders are individuals who perceive the expected prices of the call option as an 

independent and identically distributed random variable. Accordingly, noise traders define the 

option price as * 2
, ( )( ) ( ( ) , )

i
i i C KC K N C K  , where *( )iC K is the average price of the option as 

expected by trader i and 2
( )iC K is the variance of trader’s expectations (see De Long et al., 

1990).

Black-Scholes traders assume (implicitly or explicitly) that the underlying asset price follows 

a geometric Brownian motion, with constant stochastic volatility,  2exp ( / 2)t tS s r t W    , 

where Wt is a Brownian motion, independent of the stochastic volatility  . Therefore, the

equilibrium market price at time  can be computed according to the well-known Black-Scholes 

formula, that is,  . .( ) ( , , , , )B SC K C S r T K     , where

. . ( )( ) ( )
( , , , , )

2 2
B S l Kl K v T l K v T

C S r T K S e
v T v T

 
 


 


     

                    
,

and  ( )( ) ( , , , ) ln /r Tl K l S r T K S e K
     . As a consequence, we have that:

 ( )( ) [( ) | ( )]r T S
i TC K E S K e F

       

  2 ( )exp ( / 2)( ) ( ) r T
T

v

E S r v T v W W K e 
 


 



        
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We further assume that the current stock price s, the riskless interest rate r, and the time until 

option expiration T are fixed and agreed upon by all traders, but that the stock volatility is not. It 

has been observed that

volatility forecasts are sensitive to the specification of the volatility model…. Correctly 

estimating the parameters of a volatility model can be difficult, because volatility is not 

observable […and] volatility forecasts are anchored at noise proxies or estimates of the 

current level of volatility. Even with a perfectly specified and estimated volatility model, 

forecasts of future volatility inherit and potentially even amplify the uncertainty about the 

current level of volatility (Brandt and Jones, 2006: p. 470; see also Black, 1975).

Consequently, it is natural to believe that the option price is evaluated by traders i as an 

expectation at time 0 for outcome at time  under risk neutral measure. Therefore, for every

[0, ]T  we have

  . .
,

0

( ) : ( , , , , )
i

r r B S
i iC e C K e C s r T K v F dv 
 


 

   (4)

with 
i

F the set of traders’ beliefs (distribution function) over the possible values of stock 

volatility. Thus, Eq. (4) describes the behavior of boundedly rational agents who, far from being 

perfectly rational, rely on the Black-Scholes formula to price options and use a simple but 

reasonable rule of thumb (averaging) to resolve the uncertainty around the underlying stock 

volatility (e.g., Schelling, 1960; Arthur, 1994).2

2.1. The simulation environment

Built in Matlab 7 and borrowing from previous works on artificial stock markets (e.g., see 

Palmer et al., 1994; Arthur et al., 1997), the model we advance creates a dynamic system of high 

internal activity in which J European call options with strike prices jK are on sale, and many 

bidders simultaneously submit their bids. In constructing their bids, traders use their subjective 

beliefs to resolve the uncertainty around the possible values of the stock volatility.

                                                
2 As Keynes (1936) pointed out a long time ago: “Investment based on genuine long-term expectation is so 
difficult as to be scarcely practicable. He who attempts it must surely lead much more laborious days and 
run greater risks than he who tries to guess better than the crowd, how the crowd will behave” (p. 157).
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Computer simulation is the method of choice. As we have observed, it allows us to capture 

the whole complexity of the presented model within a single comprehensive framework and 

gives us the opportunity to follow it in action over an extended timeframe. All of our simulations 

begin with the assignment of a set of individual beliefs about the underlying stock volatility for 

each trader. From this point on, each simulation proceeds in cycles whereby each subsequent 

cycle is the next step. Given the current stock price, the riskless interest rate, and the time until 

the option expires, an option, with different strike prices K, is launched on the market. Traders 

evaluate the option characteristics, and taking into account their beliefs and their budget, 

simultaneously launch their offers. Thus, the demand schedule is composed, and, assuming the 

aggregate demand t to be equal to the fixed supply normalized to 1, the market equilibrium 

price  0 ( )C K is derived according to Eq. (3). The implied volatility ( )K is then extracted by 

inverting the Black-Sholes option price formula. Finally, payoffs are realized and the traders’ 

wealth is updated.

In order to reduce the variance of our results, we use a common set of starting conditions and 

the same random seed for each run, that is, we simply reset the random number seed to its 

former, initial value before executing the next run with different values for the simulation 

parameters. In order to appreciate the stability of the model and to secure that the results are not 

merely specific realizations of a stochastic process, we also replicate each of these conditions 

100 times. For each replication, we use different sets of random numbers drawn by using the 

same random seed (see Kleijnen, 1988; Conway et al., 1959). Results are then based on the 

average over 100 independent runs of the simulation model.

3. The emergence of the implied volatility smile

3.1. The implied volatility smile in a typical simulation run

The analysis starts by considering a homogeneous population of traders ( ( ) 100N K  ) that 

deals with a European call option with a strike price K (ranging from 8 to 13), a current stock 

price s (kept at 10), an average stock volatility (equal to 0.5), a risk-free rate r (kept at 0.06), and 

a time-until-option expiration T (kept at 1). Moreover, all traders have the same coefficient of 
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absolute risk aversion  (kept at 0.8). Their expectations 
i

F are modeled as a normal 

distribution, with its mean equal to 0.5 and its standard deviation equal to 0.05. Moreover, we set 

at 0 the time at which a buyer sells her holdings. In our model, this implies that a trader buys an 

option at time t to sell it at time step t + 1. The average option price *( )iC K , as expected by 

noise traders, is drawn from a uniform distribution that ranges between 0.6 and 0.4. This gives a 

two-dimensional parameter that yields 18 different experimental conditions.

In order to keep results of the different scenarios comparable, we make a transformation of 

the ( , )K axis. Movements in the underlying contract are measured on a logarithmic scale, and 

the relationship between the exercise price of an option and the current underlying price is 

expressed as the logarithm of the future price divided by the strike price. Thus, it makes sense to 

express the x axis as ln( / )rTx se K . Furthermore, we still need to consider that the implied 

volatility may occupy different positions not only in two different scenarios but also in the same 

scenario at different time steps. In order to generalize the volatility scale ( )y axis , we then 

express all volatilities in terms of the volatility of a theoretical at-the-money option (i.e., 

 ( ) / ( )rTy K se  ) (see Natenberg, 1994).

Fig. 1 shows, on the normalized ( , )x y plane, that the implied volatility curve for the Black-

Scholes scenario ( 0  ) has a striking congruence to a symmetric U-shaped function, with its 

minimum located in the neighborhood of the at-the-money point (i.e., the point at which

rTK se ). On the contrary, if we turn to the noise scenario, the variance of the implied volatility 

data is considerably high, and the derived implied volatility curve tends to have an irregular 

shape. Moreover, it must be noticed that for values of  between 0 and 0.60, the resulting 

interpolating function still tends to resemble the U-shape. As soon as  becomes greater than 

0.67, the U-shape vanishes. Therefore, the “smile” appears as an inevitable equilibrium outcome 

akin to a single basin of attraction, as long as a sufficient number of agents consists of Black-

Scholes traders.
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------------------------------------

Insert Fig. 1 about here3

------------------------------------

For the Black-Scholes scenario ( 0  ), we further investigate the effect on the emergence of 

the implied volatility smile caused by the heterogeneity of traders’ beliefs regarding the true 

stock volatility. Given the other parameters, experiments are then repeated by considering a 

market with moderate heterogeneity (i.e., average and standard deviation of traders’ beliefs range 

uniformly across the population between 0.375 and 0.625, and 0.0375 and 0.0625) extreme 

heterogeneity (i.e., average and standard deviation range uniformly between 0.125 and 0.875, 

and 0.0125 and 0.0875), and a situation of very extreme heterogeneity (i.e., average and standard 

deviation of traders’ beliefs range uniformly across the population between 0.125 and 4, and 

0.0125 and 0.0875).4

Fig. 2 indicates that all the resulting curves are upward sloping and exhibit a curvature that is 

much higher for in-the-money options than for out-of-the-money options. Moreover, as the 

degree of heterogeneity in beliefs is increased, the curve becomes steeper, indicating a skew that 

becomes increasingly pronounced. But, it is interesting to note that as the level of heterogeneity

passes from an extreme to a very extreme level, a gently asymmetric U-shape tends to appear

(i.e., see curve 1 in Fig. 2). Because of the presence of abnormal expectations, many agents are 

driven out of the market, with only a few who remain and express a valid demand for the 

available option. Heterogeneity is then reduced and the implied volatility tends to regain a more

symmetric shape. Therefore, the relation between the initial level of traders’ heterogeneity and 

the magnitude of the skew in the implied volatility function is curvilinear, with the presence of a 

gently asymmetric U-shape that is likely to emerge in those markets in which traders tend to 

                                                
3 The data presented are taken at the 140th day after the option is launched and represent an average of 100 
simulation runs. The solid line (1) represents the noise scenario; the dotted line (2) represents the Black-
Scholes scenario.
4 Considering a European call option with a log-moneyness (kept at 0), a current stock price s (kept at 10), 
a risk-free rate r (kept at 0.06), and a time-until-option expiration T (kept at 220), the difference between 
the highest and the lowest expected option price is equal to $0.614 for the simulated scenario with a 
moderate level of heterogeneity; $1.839 for the scenario with an extreme level of heterogeneity; and 
$7.565 for the scenario with a very extreme level of heterogeneity. Note that for the S&P 500 index 
options, in the period that extends from June 1, 1996, through May 31, 2000, the average bid-ask 
difference for at-the-money options is equal to $1.441. 
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have either almost the same or very distant and abnormal expectations about the underlying 

stock volatility.

------------------------------------

Insert Fig. 2 about here5

------------------------------------

Thus, as has been observed in the financial markets, the implied volatility presents strong U-

shaped patterns, with the deepest in-the-money call-implied volatilities taking the highest values 

(e.g., Bakshi et al., 1997). From a theoretical point of view, it is also important to observe that 

the proposed model not only replicates the volatility patterns that have been observed in financial 

markets, but it relates the emergence of the implied volatility smile directly to the behavior of 

boundedly rational individuals who rely on their subjective beliefs to estimate the stock volatility 

and use these beliefs to price options according to the widely accepted Black-Scholes formula. 

This direct relationship remains without any explicit assumption on the correlation between the 

volatility and the stock price (e.g., Brigo and Mercurio, 2002), on the shape of the state-price 

density function, or of the underlying stock-volatility density function (e.g., Ziegler, 2002), and 

with the underlying stock volatility considered as the sole source of uncertainty.

3.2. The adjustment of traders’ beliefs over time

The model also enables us to follow the dynamics of the volatility smile over time. Toward 

this aim, we allow the possibility that aspects of the model structure may change from time to 

time, as traders learn about the true stock volatility from information acquired from the 

surrounding environment (e.g., see Grossman and Stiglitz, 1980; Routledge, 1999; Barlevy and 

Veronesi, 2000). Arthur (1994) stated that “as feedback from the environment comes in, we may 

strengthen or weaken our beliefs in our current hypotheses, discarding some when they cease to 

perform, and replacing them as needed with new ones” (p. 407).

In formal terms, we propose that Black-Scholes traders react to the oncoming flow of 

information in terms of existing rules by employing a kind of belief-adjustment procedure that 

                                                
5 The data presented are taken at the 140th day after the option is launched and represent an average of 100 
simulation runs. The long dashed line (1) represents a scenario with very extreme heterogeneity; the bold 
line (2), a scenario with moderate heterogeneity; the dotted line (3), a scenario with extreme heterogeneity.
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resembles that of a servomechanism often used in production control (Simon, 1957; see also 

Routledge, 1999). This is similar to the first-order response to experience that Cyert and March 

(1963) called the “problemistic search.” At each time t, traders acquire from the market both the 

updated stock volatility t and the implied stock volatility  ( )t K , and, accordingly, revise their 

own beliefs about the value of the underlying stock volatility at time t + 1 (see also Jean-Marie 

and Tidball, 2006). The following equation describes this behavior for trader i :

1 2
, 1 , , ,( ) ( ) ( ( ) ( )) ( ( ))ti t i t i t t i tK K K K K             1,...,t T (5)

with  ( )t K the implied volatility derived from the price of the option with the strike price K 

at time t, t the updated underlying stock volatility as evaluated by traders directly from stock 

market data at time t, and 1 , 2 the adjustment factors. In this equation, , ( )i t K is compared 

with both the implied volatility and the underlying stock volatility, and both are regarded as 

separate (i.e., the stock market is not influenced by the dynamics of the option market) and 

assumed to have a path that depends only on the aggregate behavior of the system. Their 

differences, then, are fed back into the Eq. (5) to alter the output in the direction of reducing the 

difference between traders’ beliefs and market beliefs. From (5), we also see that a high (low) 

degree of 1 and of 2 is conducive to producing a relatively fast (slow) adjustment in traders’

beliefs. In other words, at each stage, traders act from their beliefs; they detect a match or 

mismatch of outcome to expectation that confirms or refutes their beliefs. In the case of 

refutation, traders activate single-loop learning, since they move from error detection to error 

correction as proposed in Eq. (5).

Given the simulated data, for each combination of the two parameters 1 and 2 (that vary 

from 0 to 1 with steps of 0.01), holding the other parameters constant, we run a constrained, 

quadratic interpolation on the resulting implied volatilities over the considered levels of K,

imposing the coefficient of the highest order to be greater than zero. We derive the parameters of 

the model, measure the R-squared value between the predicted and the observed data, and 

calculate the curvature, which indicates the extent to which the derived implied volatility curve 

tends to display a U-shape.
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------------------------------------

Insert Fig. 3 about here6

------------------------------------

Assuming moderate values for 1 and 2 , and a moderate level of heterogeneity of traders’ 

beliefs, Fig. 3 shows, on the normalized ( , )x y plane, how the passing of time affects the shape 

of the implied volatility curve.7 As soon as the expiration date is approached, we can see not only 

that the variance accounted for (i.e., R-squared) remains close to 1, the curvature increases, and 

the region of concavity around the moneyness shrinks (see Sircar and Papanicolaou, 1999), but 

also the curve tends to regain a symmetric U-shape. The latter effect holds in all except extreme 

levels of traders’ heterogeneity.

In addition, how quickly the implied volatility curve converges on a “smile” depends on the 

way traders learn from the flow of information that the market provides. The role of learning was 

then investigated by evaluating how different combinations of the two adjustment factors ( 1

and 2 ) of traders’ volatility expectations (i.e., the one based on the implied volatility and the 

other on the stock volatility) affect the emergence of the implied volatility smile. 

------------------------------------

Insert Fig. 4 about here8

------------------------------------

Considering a moderate level of heterogeneity of traders’ beliefs, Fig. 4 shows that the 

volatility smile is likely to emerge in a market in which traders prefer to update their beliefs 

                                                
6 The solid line (1) represents an option with time to maturity equal to 360 (R2=0.96, curvature=0.15), the 
dotted line (2) an option with time to maturity equal to 180 (R2=0.98, curvature=0.45), the long dashed 
line (3) an option with time to maturity equal to 90 (R2=0.98, curvature=0.71), and the dashed-dotted line 
(4) an option with time to maturity equal to 30 (R2=0.98 curvature=0.75). Note that the curvature is 
evaluated at-the-money. It goes without saying that the higher the value of the curvature, the more the 
implied volatility function deviates from being flat.
7 The pattern we derive from our artificial market can also be found in real markets. A trader confessed to 
us that “it is natural that implied volatility often tends to be higher for out-the-money and in-the-money 
options compared to at-the-money, because there is an increased risk of potentially very large movements 
in the underlying […]; to compensate for this risk we ask for a higher price. Moreover, as maturity is 
approached, this risk may be even greater, because if something happens, you might not have the time to 
secure your position” (interview with a trader).
8 The data presented are taken at the 80th day after the option is launched and represent an average of 100 
simulation runs. In the figure, the solid line (1) represents the scenario with 1=0 and 2=1 (R2=0.12, 
curvature=0.05), the long dashed line (2) the scenario with 1=0.5 and 2=0.5 (R2=0.87, curvature=0.45), 
the dotted line (3) the scenario with 1=1 and 2=0 (R2=0.98, curvature=0.76). As before, note that the 
curvature is evaluated at the at-the-money point.
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according to the implied volatility, instead of relying on the volatility that they may have derived 

directly from the stock market. Note that curve 1, whereby it can be seen that traders refer to the 

stock volatility to update their beliefs, is substantially flat, with an R-squared that tends to be 

close to zero. Conversely, curves 2 and 3 indicate that as soon as traders refer to the implied 

volatility to update their beliefs, the implied volatility curve takes on the U-shape.

Hence, it is possible to observe that the volatility smile is fueled by traders’ tendency to 

become accustomed over time to the idea that the skew is not only a constant in the face of 

changing market conditions, but also that it contains useful information that can be incorporated 

into the decision-making process.9 On the one hand, this implies that the more traders who use 

the implied volatility curve do so to update their beliefs, the faster the implied volatility curve 

tends to converge to a well-defined U-shaped curve.

3.3. Adjustment of beliefs over time and traders’ wealth

We have intentionally not invoked the problem of which trading strategy is best suited to 

guarantee a higher level of wealth to a trader. However, as observed by Rubinstein (1994), due to 

the uncertainty of the underlying stock volatility, a single free-option price no longer exists. So, 

it is theoretically possible to gain from the smile by making arbitrages. But in practice there is no 

way of knowing in advance the true value of the underlying stock volatility. The model proposes 

a first approach that once developed can be used to derive the beliefs (distribution function) 

traders have used to price options. If one assumes that these beliefs do not change dramatically 

over time, a “smart trader” can use these derived beliefs to increase her ability to forecast the 

“true stock volatility” and accordingly to predict options prices. Eventually, she can even use this 

information to make arbitrages and to generate higher profits.

A first step in understanding whether rules followed by traders in pricing options contribute to 

their wealth is to manipulate the form of agent learning. In doing so, we can create a variety of 

                                                
9 As reported by MacKenzie and Millo (2003: p. 131): “When experienced traders…move to a different 
pit…say they’re trading [options on] telephone [stocks] and now they’re going to trade AOL [America 
Online], the first thing they want to know when they walk into a pit is, ‘What’s the skew like?’ To them 
that tells them a lot. And it’s the most vital information, more than what’s the potential earnings of AOL.” 
Apart from this reference and besides the numerical results we obtain from our simulation model, to our 
knowledge, there has been no discussion in the empirical literature as to how the smile curve depends on 
the way in which traders update their beliefs over time.
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models. Here, we concentrate our analysis on four simple variants. The first three variants focus 

on situations in which traders use the Black-Scholes model to price options and either update 

their beliefs with the implied volatility (i.e., 1 1  and 2 0  ), or with the historical volatility 

(i.e., 1 0  and 2 1  ), or with a mixture of both (i.e., 1 0.5  and 2 0.5  ). In the fourth 

variant, we consider noise traders who attempt to price options by following a random rule. This 

last variant provides a nice contrast to the previous three.

A simulation was run by setting for each group of traders ( ) 1N K  , the initial trader’s wealth 

at 100, the current stock price at time 0 equal to 10, and its dynamics are assumed to follow a 

Brownian motion, with constant stochastic volatility equal to 0.3. The strike price ranges 

between 8 and 13. The coefficient of absolute risk aversion  is kept at 0.8. Traders’ 

expectations 
i

F are modeled as a normal distribution, with its initial mean equal to 0.3 and its 

standard deviation equal to 0.05. Lastly, since the demand function is normalized to one, in our 

model we have, for the sole trader, that ( )i K is either 0 or 1 if the expected option price 

, ( )iC K is either lower or higher than the equilibrium price  0 ( )C K .

Results are divided into two categories, according to traders’ behavior in updating their 

beliefs or moneyness. Regarding the latter, a call option is then said to be at-the-money if the 

ratio between the current price of the underlying assent S and the strike price K is between 0.97 

and 1.03; out-of-the-money if the ratio is less than or equal to 0.97; and in-the-money if the ratio 

is greater than or equal to 1.03 (see Bakshi et al., 1997). To appreciate the difference among 

traders’ wealth across the level of moneyness, the maximum wealth traders can earn in each 

scenario is calculated and used to normalize the mean, the maximum, and the standard deviation 

of the resulting traders’ wealth. Furthermore, to verify the stability of results, we change some of 

the initial parameters of the simulation (i.e., number of agents, initial traders’ wealth, and form 

of traders’ expectations), and we observe that our findings still hold.

From the data, we note that Black-Scholes traders retain a higher level of wealth than noise 

traders. The former present an average normalized wealth of 0.353 and standard deviation of 

0.121; and the latter, an average wealth of 0.167 and a standard deviation of 0.154. This result 
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suggests that it is always possible for the “smart” trader to come in and take advantage of the 

“dumb” (boundedly rational) trader in order to generate higher profits. The analysis was further 

refined by considering, for Black-Scholes traders, how different rules for updating agents’ 

beliefs affect traders’ wealth.

------------------------------------

Insert Table 1 about here

------------------------------------

For out-the-money and at-the-money options, Table 1 highlights that those traders who 

update their beliefs with the implied volatility exhibit a higher increase in their wealth than do 

those who refer to the historical volatility. This result holds if we refer either to the average or to 

the maximum wealth. It must be observed that these results are consistent with extant literature. 

It is well-established that the implied volatility is an upward-biased forecast, but it dominates the 

historical volatility rate in terms of ex ante forecasting power (e.g., Schmalensee and Trippi, 

1978; Fleming, 1998). However, the literature has observed that either the implied volatility has 

virtually no explanatory power, or its dominance over the historical volatility depends mostly on 

the type of data, the kind of option, and the averaging period used to calculate the volatility 

(Canina and Figlewski, 1993).

Accordingly, Table 1 shows that the implied volatility is a better predictor of the future 

volatility than the historical volatility in all but in in-the-money options. For the latter options, 

Black-Scholes traders who rely on implied volatility to update their beliefs tend to experience an 

increase of their wealth that is slightly higher than the increase of wealth gained by traders who 

refer to the historical volatility. Yet, the difference between the wealth of the two types of traders 

is statistically insignificant.

This analysis was further extended by considering a financial (derivative) market composed 

of multiple traders ( ( ) 100N K  ) with an increasing level of heterogeneity (i.e., from an extreme 

to a moderate level) and of the two adjustment factors 1 and 2 (i.e., from 0 to 1 with steps of 

0.25). Results show that as the level of traders’ heterogeneity increases, the mean and the 

maximum level of the wealth of traders who refer to the implied volatility for updating their 
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beliefs diminishes. This is explained by the fact that as heterogeneity of traders’ beliefs 

increases, the skew in the implied volatility curve exacerbates and, in turn, the upward bias 

induced by the traders’ use of the implied volatility for pricing options becomes more severe. 

Nevertheless, this induced bias can be attenuated, and Black-Scholes traders can reach a higher 

level of wealth if they are able to somehow temper their drive for updating their beliefs with the 

implied volatility and rely more on the historical volatility. Thus, for in-the-money options 

traded in financial (derivative) markets composed by heterogeneous traders, a moderate 

obsession for the implied volatility is one way that allows traders to improve their ability to 

correctly forecast the future option price and, in turn, to reach a higher level of wealth. Models 

that incorporate both the implied volatility and the historical data thus show a great deal of 

promise for pricing options.

4. Robustness

The robustness of the simulation results can be seen from different perspectives (e.g., see 

Axelrod, 1997; Moss and Davidsson, 2001). In this section, we concentrate on three issues.

The first concerns how the presented runs of the model are representative of other possible 

realizations of the model that might emerge as a result of different runs. Since the simulation 

results are based on the average of 100 different runs, keeping constant the common set of 

parameter values, the likelihood of significantly different realizations is very low.

The second concerns the stability of the results. Since our model involves some kind of 

uncertainty (random inputs are used to generate Black-Scholes traders’ beliefs about the 

underlying stock volatility, noise traders’ expectation about options prices, and the values of 

underlying stock price over time), we performed a bootstrap analysis to verify that the mean (or 

variance) of a series generated by a simulation experiment is equal to the mean (or variance) of 

another corresponding series obtained by using different sets of random numbers. Using samples 

of 2,500 observations extracted randomly from the total population of 5,000 replications for each 

scenario, we noticed that the difference between the means of the implied volatility across two 

subsamples of each scenario analyzed is insignificant, in general, in the case considered. The

same result is also obtained using subsamples of various sizes. Therefore, our results are stable, 
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with moments (mean and variance) holding across diverse replications of the simulation, and, in 

turn, any given replication of the simulation is likely to be fairly representative of the population 

of the potential simulation output. Lastly, despite the arbitrariness in the particular selection of 

parameters, we find our initial choices do not alter the findings when we vary the coefficient of 

risk aversion, the type of distribution function of traders’ beliefs, the number of traders, and the 

time at which a buyer sells her holdings.10

The third issue concerns how the model is able to capture the reality of financial (derivative) 

markets and, specifically, how the results from the simulated experiments match the results from 

real financial markets. This is a tedious point, involving some complex analyses that can be 

carried out in different ways (e.g., see Naylor and Finger, 1967, with the attached critiques; Van 

Horn, 1971; and more recently, Nelson, 2004). Thus, we compare the simulation model outputs 

(i.e., option prices and the implied volatility curve) with the empirical data, assuming that inputs 

of the model are representative of inputs used by traders to price options in financial markets.

We consider the simplest case of a financial (derivative) market composed of two types of 

Black-Scholes traders. In other words, the set of N Black-Scholes traders is divided into two 

disjoint subsets A and B, with ( ) ( ) ( )A BN K N K N K  and for each  1,...,i N ,  ,iE  is equal 

either to  ,AE  or to  ,BE  depending on whether i A or i B . Similarly, we have that either 

, ,( ) ( )i AK K   or , ,( ) ( )i BK K   . We also assume that for trader in A,  has a distribution 

A
F , while for traders in B,  has a distribution 

B
F . Both distributions are modeled as a 

generalized inverse Gaussian distribution (GIG) with parameters 0a  , 0b  and q R . As 

observed in the pioneering paper of Eberlein and Keller (1995), this assumption on the 

distribution of traders’ beliefs implies that Black-Scholes traders suppose a generalized 

hyperbolic distribution (which is a mixture of normals) for daily returns instead of a normal 

distribution (as in the standard Black-Scholes price). Note that by using such a hyperbolic 

distribution, a modified version of Black-Scholes can be obtained to price options. Finally, for 

                                                
10 Data and tests results are here omitted and are available on the JEBO website.
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the sake of simplicity, we propose that traders’ beliefs do not change over time ( 1 2 0   ), 

and that all traders share the same coefficient of absolute risk aversion ( A B    ).

This version of our model was calibrated to S&P 500 call option data, which have been the 

focus of many existing investigations (e.g., Rubinstein, 1994). The sample period extends from 

June 1, 1996, through May 31, 2000. As proposed in Bakshi et al. (1997), options with less than 

six days till expiration and quotes that do not satisfy the arbitrage restriction are excluded from 

the sample. The closing bid-ask quotas for S&P 500 call options are collected from Compustat. 

Following Jackwerth and Rubinstein (1996), nominal interest rates are recovered from “put-call 

parity.” Moreover, the annualized payout return d at a given date for a given option with years-

to-expiration y is calculated as [1 ( / )]yd D S  , where D is the simple sum of the actual 

S&P 500 daily dividend amounts associated with ex-dividend dates between the given date and 

the given expiration date, and S the S&P 500 spot index level. In Table 2, we report the average 

bid-ask mid-point price, the average implied volatility which is shown in parentheses, and the 

total number of observations (in braces) for each moneyness-maturity category.

------------------------------------

Insert Table 2 about here

------------------------------------

In order to reduce the number of parameters to be estimated, we directly derive the constant 

absolute risk aversion from risk-neutral and physical-state probabilities. Following Kliger and 

Levy (2003), risk-neutral probabilities ,v tP and physical-state probabilities ,
a

v tP are estimated 

over the possible state of nature V, with 1,...,v V . Coefficients of absolute risk aversion are 

then evaluated according to the following expressions:

, , , , , ,( / ) / ( / ) /a a
v t t v v t v t t v v tP S P P S P        ,

with ,t vS  the vth state index level at time t  (see also Hansen and Singleton, 1982). Using 

prices sampled on a monthly basis, we obtain an average coefficient of absolute risk aversion 

of 28.28 with a standard deviation of 86.88. We also have that  114.13,10.54,86.88  for 

values of  0.2,0,0.2x   .
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From our data set, we extract M option prices on the same index, taken from the same day, for 

any M greater than or equal to 1, plus the number of parameters to be estimated. For each 

1,...,m M , let  ( , , )m m mC t T K be the observed price and  ( , , )m m mC t T K


be the estimated price as 

determined by our model, with S and r taken directly from the financial market. Therefore, the 

difference between  ( , , )m m mC t T K and  ( , , )m m mC t T K


is assumed to be a function of the value 

taken by  , , , , ,A A A B B Ba b q a b q  . Thus, for each m we define

 [ ] ( , , ) ( , , )m mm m m m mg C t T K C t T K


  

and find the parameter vector  to solve

2

1

( ) inf [ ]
M

m
m

SSE t g




  (6)

Implementing the above procedure, we use all call options available at each given day as 

inputs to estimate that day’s spot volatility and relevant parameters. The group in Table 3 reports 

the average and the standard deviation for each parameter implied by all options in the sample, 

by all short-, medium-, or long-term options. The daily average sum of squared errors (SSE) and 

the out-of-sample percentage pricing errors are also reported. Note that percentage errors are 

obtained using the parameters implied by the previous day’s options of a given maturity to price 

the current day’s options of the same maturity.

------------------------------------

Insert Table 3 about here

------------------------------------

Given the characteristic of the GIG function, confronting the average parameter values 

implied by each day’s short-term calls with their counterparts implied by all options of each 

given day, the result is that traders believe the underlying stock volatility increases slightly, as 

the time to maturity is approached. The average of the stock volatility for a given option, as 

expected by all traders, is equal to 0.1510, while for short-term options it is equal to 0.1523, for 

medium-term options it is equal to 0.1520, and for long-term options it is equal to 0.1449. We 

also observe that the highest level of heterogeneity of traders’ beliefs is recorded for short-term 

options. As reported in Table 3, the absolute difference between the average value of the 
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underlying stock volatility as expected by traders A and traders B is equal to 0.003 for short-term 

options, while it is equal to 0.0005 for medium-term options, and to 0.0004 for long-term 

options. And finally, the in-sample fit (SSE) ranges between 18 and 37. These values are fairly 

acceptable, considering that Bakshi et al. (1997) reported for the Black-Scholes model an SSE of 

69.60 for all options and 28.09 for short-term options. We also find that the out-of-sample 

percentage pricing errors are reasonably acceptable, considering again that Bakshi et al. (1997) 

reported—for the Black-Scholes model—errors (maturity-based) extending between 1.18% and

–82.99%, with an average value of –7.93% for short-term options, –7.57% for medium-term 

options, and –4.52% for long-term options. In addition, for each given call option of date t, we 

compare the implied volatility patterns derived from financial markets with the implied volatility 

patterns derived from the simulated data across both moneyness and maturity. After repeating 

these steps for all options in the sample, we then obtain for each moneyness-maturity category an 

average implied volatility value. As it turns out, not only does the minimum of the simulated 

curve approach that of the empirical curve, but its shape also tends to resemble that of the 

empirical data during the option life cycle.

5. Discussion and conclusions

Let us now draw together the threads of our results. The problem posed at the outset was how 

to explain the implied volatility smile. We accomplished this task by proposing an extended 

computational model of option pricing using agent-based simulation techniques. Our model pays 

particular attention to issues of heterogeneity of traders’ beliefs, learning, and institutionalized 

norms, and inspects their implications for the emergence of the volatility smile. While most 

available accounts consider the option price decision as a mathematical problem, we underscore 

the fact that the story behind the problem is indeed much richer. In the proposed model, agents 

do not simply decide, arbitrarily, whether to buy or sell a given option at a given price; in an 

uncertain environment, they are guided by institutionalized norms, relying on their subjective 

beliefs and learning about the underlying stock volatility from the incoming flow of information 

the market provides over time. As North (1990) has noted: “Institutions are the humanly devised 
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constraints that shape human interaction. They reduce uncertainty by providing a structure to 

political, social, and economic exchange” (p. 182). In other words, institutions matter.

The results of our model suggest the following. We notice that the “smile” in the implied 

volatility curve is likely to emerge in an environment in which traders rely on their subjective 

beliefs to resolve their uncertainty about the underlying stock volatility and use the widely 

accepted Black-Scholes formula to price options. The smile effect emerges clearly from 

simulation data in the Black-Scholes scenario but not in the noise scenario. In the latter, the 

resulting implied volatility function is substantially different from that represented by a well-

defined U-shape. Moreover, heterogeneity of traders’ beliefs and the way traders update their 

expectations have nontrivial effects both on equilibrium prices and on the emergence of the 

implied volatility smile.

But this is not the only contribution to which we aspire. We offer a novel approach to 

modeling the processes of option pricing by considering a type of selective behavior and by 

relating it to certain concepts developed within the behavioral theory of human decision making. 

Thus, our paper also contributes to our understanding of these complex phenomena without 

rendering their subsequent analysis more difficult, and it can be expected to have important 

implications for asset pricing in general. Regarding the latter point, consider a financial market 

composed of N traders divided into  disjoint subsets, with each trader having a set of beliefs 

represented by a family of distribution functions that depends on H parameters. Given the 

empirical implied volatility function, the problem posed at the outset is how to find a consistent, 

quick, and robust way to estimate both the parameters of the distribution functions, which 

express traders’ beliefs, and the cardinality of  from the history of bid and ask prices available 

on the market.

Although we have focused our discussion on European call options, the basic ideas embodied 

in the model are much broader and can be quite useful to other kinds of options. Specifically, our 

model applies to and, accordingly, our explanation of the implied volatility smile extends to 

European put options, via the ‘put-call parity’, and to American call options, which are equal, in 

only a trivial manner, to European calls (see Ncube and Satchell, 1997; Björk, 2004). A similar 
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statement is not possible for American puts because there is no analytical formula to estimate

their price, which, in turn, is required to calculate the implied volatility. However, our agent-

based simulation model can be extended by considering a financial (derivative) market where 

traders deal with American puts, use simple rules of thumb, and follow their subjective 

expectations to resolve the uncertainty around the underlying stock volatility and the time at 

which it is convenient to exercise the right to sell the asset. This topic offers potential avenues 

for future research.

Appendix A. A mathematical explanation of the implied volatility smile

If we assume that 0t  , the current stock price 0S s , the free-risk interest rate r and the 

time-until-option expiration T are fixed, and call options are priced according to the Black-

Scholes model, we then have:11

. .( , ) ( , , , , )B Sv K C s r T K v 

The problem in using the latter formula is that the value of v is unknown to the trader. 

Nevertheless, it is well-established that:

 2log( / ) / 2
( , ) '

s K r v T
v K s T

v v T
 

    
   

  2
2log( / ) / 21 1

exp 0
22

s K r v T
s T

v T

            

(7)

and since expression (7)—which measures the sensitivity of option price to its implied volatility 

(i.e., vega)—is positive for each value of K, the function

: ( ) : ( , )K Kh v h v v K  (8)

is strictly increasing and therefore invertible. Thus, a first approach to understanding the value of 

 is to observe the market price of a call option ( )C K with strike price K. By inverting the 

option pricing formula, the trader can calculate the annual volatility implied by the market price. 

Nevertheless, the equilibrium market price does not follow the Black-Scholes model. As 

                                                
11 For the sake of simplicity we set t = 0, and therefore we drop from all formulas the dependence on t

(e.g.,  t will be denoted by  ). On the other hand, we use a generic time to maturity T.
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observed, the implied stock volatility varies as K varies. As a consequence of that variance, we 

have that the implied volatility is a quadratic function of K:

 1( ) ( ( ))KK h C K  (9)

The following proposition illustrates the characteristics of the function ( )K K and 

proposes a theoretical explanation for the emergence of the volatility smile effect.

Proposition 1. If we assume that traders are homogeneous (i.e., 
1 2

,...,
N

F F F     ), their 

beliefs do not change across strike prices (i.e., ., 1 ., 2 .,( ) ( ) ,..., ( )jK K K      ), ( )C K is 

evaluated as in (3), and ( )K is evaluated as in (9), then we have:

  2 2
1 2 1 2( ) ( ) (log( / ) ) (log( / ) )K K s K rT s K rT     

This is to say that  is an increasing function of 2(log( / ) )s K rT .

Proof. First of all, from Eq. (3) the equilibrium market price of the option is


, ,

1 1

1
( ) ( ) 2 ( )

N N
r

i i i
i i

C K C K e K
N


  

 

    
 
 

The above expression can be written as:

 ( ) ( )TotC K a b C K  

where

    ,0 0
1

1
( ) ( , ) ( , )

N

Tot i i
i

C K v K F dv v K F dv
N

 
 

 


  

Considering that ( )C K is a linear transformation of  ( )TotC K and since b is positive, it is 

possible to turn our attention to  ( )TotC K . In doing so, we write down the implied stock volatility 

as:

 1 1( ) ( ( )) ( [ ( )])TotK K KK h C K h E h    

The thesis is immediately achieved by using the general result of the following proposition.

Proposition 2. Set

  1 1

0

( ) ( [ ( )]) ( ( , ) )K K KK h E h h v K F dv 


 
    (10)
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with  as defined above, and F a generic nondegenerate distribution function, then we have: 12

  2 2
1 2 1 2( ) ( ) (log( / ) ) (log( / ) )K K s K rT s K rT     

Proof. First, note that the thesis is equivalent to

  2 2
1 2 1 2( ) ( ) ( ) ( )K K l K l K    ,

where ( ) log( / )rtl K se K is the so-called log-moneyness.

According to the theories of Nagumo (1930), Kolmogoroff (1930), and de Finetti (1931), 

given a stochastic variable X, and a strictly increasing and continuous function h:

1( ) : ( [ ( )])hM X h E h X

is an associative mean. Then the implied volatility ( )K is the associative mean of  with 

Kh h . Furthermore, as observed in de Finetti (1931), given a random variable X whose 

distribution function is defined in : supp( )D X , and two invertible and strictly regular functions 

h and g in D, we have:

1 1( ) : ( [ ( )]) ( ) : ( [ ( )])h gM X h E h X M X g E g X    (11)

if and only if

''( ) ''( )

'( ) '( )

h x g x

h x g x
 (12)

for all x that belong to D. The above property is equivalent to the convexity of the function 

1( (.))g h . The convexity is strict when the inequality in (11) is strict. In this case, then, the 

inequality in (12) is also strict, except in the degenerate case. To obtain the result of the 

proposition, it is enough to show that

1 2

1 2

'' ''

' '

( ) ( )

( ) ( )
K K

K K

h v h v

h v h v
 , 0v 

if and only if 2 2
1 2( ) ( )l K l K . The last statement is easily seen from the equality

'' 2 2 2

' 2

( ) ( ) ( / 2)

( )
K

K

h v l K v T

h v v T




                                                
12 A generic distribution function F is degenerate if there exists at least one value such that P(X=r)=1 for 
all . If the function is not degenerate, it is called nondegenerate.
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which is a straightforward consequence of the fact that:

2

' 1 1 ( )
( ) exp

2 22
K

l K v T
h v s T

v T

        
   

coincides with (7) (i.e., the vega).

Proposition 1 implies that there exists an increasing function Ff f


 such that 

 2( ) ( ( ))FK f l K


 . This function reaches its minimum in : rT
atK K se  (at-the-money), and if 

 is a nondegenerate random variable, the function f is also strictly increasing. This fact can 

already be considered as a simple theoretical explanation of the emergence of the volatility smile 

effect. Under some further mild conditions, one can obtain a new proof of the announced local 

convexity property for the implied volatility, as it is explained by the following remark.

Remark 1. Let Ff f


 , the increasing function of the proposition 1, be a 2 ([0, ])C  function 

with '(0) 0f  . Then the function ( )K is convex in a neighborhood around the future price 

Kat.

Proof. It is sufficient to show that in the neighborhood of rTse , the second derivative of 

the function 2( ) : ( ( ))g x f K  is positive. Posing 2
2 ( ) : ( )x K  , we have

' ' '
2 2

'' '' ' 2 ' ''
2 2 2 2

( ) ( ( )) ( )

( ) ( ( ))( ( )) ( ( )) ( )

g x f x x

g x f x x f x x



 

 

   

where

' 2
2

1
( ) (log( ) log( )) 2(log( ) log( ))rT rTd
x se x se x

dx x
       
 



22
'' 2
2 2 2

1 1
( ) (log( ) log( )) 2 2(log( ) log( ))rT rTd
x se x se x

dx x x
           
   



2

2
(1 log( ) log( ))rTse x

x
    
 

.

Since 2 ( )x and '
2 ( )x tend to 0 as x approaches rTse , and ''

2 ( )x tends to 
2 2

2
rTs e

>0 as x

goes to rTse , we have that:
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'' '' ' '
2 2 2 2

2 2
lim ( ) (0) 0 (0) (0) 0

rT rT rTx se
g x f f f

s e s e
       ,

and this concludes the proof.
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Fig. 1. The implicit volatility as function of the log-moneyness in a typical simulation run
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Fig. 3. The evolution of implied volatility smile over time for the Black-Scholes scenario with moderate 
levels of heterogeneity ( 1 2 0.01   )
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Fig. 4. Combined effect of beliefs adjustment based on implied volatility 1 and on stock volatility 2 on 
the volatility smile for the Black-Scholes scenario with moderate levels of heterogeneity
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Moneyness

Mean traders wealth Max traders wealth
Historical 
volatility

Implied 
volatility

Historical 
volatility

Implied 
volatility

out-of-the-money 
(S/K<0.97)

Mean 0.297 0.448 0.473 0.843

S.D 0.042 0.110 0.081 0.216

t-Stat. 0.041* 0.034*

at-of-the-money 
(0.97<S/K<1.03)

Mean 0.326 0.443 0.614 0.903

S.D 0.091 0.156 0.150 0.260

t-Stat. 0.021* 0.018*

in-the-money
(S/K>1.03)

Mean 0.309 0.313 0.605 0.623

S.D 0.169 0.172 0.184 0.189

t-Stat. 0.001 0.001

* Difference is significant at the 1% level.
Mean and max wealth are calculated over the option life cycle for each type of trader and 
normalized over the maximum wealth a trader can earn in each scenario. The significance of the 
difference in mean and maximum wealth values between different kinds of traders was tested using 
a two-sided paired t-test. 

Tab. 1 – Comparison of traders’ wealth for agents who use either the historical volatility or the implied 
volatility to update their beliefs
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Moneyness (S/K)

Days-to-expiration

<60 60-180 >180 Subtotal
<0.94 $1.387 $9.735 $30.151

(0.232) (0.187) (0.193)
{13,269} {13,572} {13,812} {40,653}

0.94-0.97 $7.282 $28.959 $72.282
(0.185) (0.195) (0.215)
{7,739} {5,227} {3,018} {15,984}

0.97-1.00 $18.806 $43.656 $88.001
(0.198) (0.206) (0.221)
{9,099} {5,886} {2,988} {17,973}

1.00-1.03 $37.483 $61.743 $105.474
(0.218) (0.217) (0.228)
{8,827} {5,789} {2,839} {17,455}

1.03-1.06 $59.983 $82.572 $124.203
(0.243) (0.231) (0.236)
{7,155} {4,865} {2,694} {14,714}

1.06 $220.969 $267.943 $300.577
(0.468) (0.331) (0.304)

{33,906} {32,991} {24,227} {91,124}

Subtotal {79,995} {68,330} {49,578} {197,903}
The cross-sectional time to expiration ranges from 8 to 360 days, with an average of 114.6. The free 
interest rate r ranges from 3.89 to 6.31, with an average of 5.4, and the annualized payout return d ranges 
from 0.82 to 2.38, with an average of 1.49. At-the-money volatility implied by the Black-Scholes price
ranges from 0.05 to 0.40, with an average of 0.20.

Tab. 2 – Sample properties of S&P 500 index options
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Parameters
All      

Options

Days-to-expiration

<60 60-180 >180
aA 0.1837

(0.1059)
0.1842
(0.138)

0.188
(0.0856)

0.1714
(0.0449)

bA 492.505
(369.137)

486.018
(417.325)

484.213
(329.729)

537.148
(333.842)

qA 1.1255
(0.2873)

1.1248
(0.3028)

1.1287
(0.3023)

1.1148
(0.2088)

aB 0.2046
(0.1595)

0.2124
(0.2329)

0.204
(0.0798)

0.1857
(0.0533)

bB 516.737
(402.469)

508.626
(473.003)

510.554
(338.878)

558.225
(354.997)

qB 1.1288
(0.9796)

1.106
(1.4704)

1.152
(0.3925)

1.1286
(0.2167)

SSE 18.026 9.468 19.492 37.551
Average out-of-sample percentage
errors -0.52% 0.96% -0.57% -4.20%

Nr. of observations {197.903} {79.995} {68.330} {49.578}

Tab. 3 – Implied parameters, in-sample and out-sample fits under maturity-based approach
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