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ABSTRACT
In this paper we present an in-depth study of the dynamicity
and robustness properties of large-scale distributed systems,
and in particular of peer-to-peer systems. When design-
ing such systems, two major issues need to be faced. First,
population of these systems evolves continuously (nodes can
join and leave the system as often as they wish without any
central authority in charge of their control), and second,
these systems being open, one needs to defend against the
presence of malicious nodes that try to subvert the system.
Given robust operations and adversarial strategies, we pro-
pose an analytical model of the local behavior of clusters,
based on Markov chains. This local model provides an eval-
uation of the impact of malicious behaviors on the correct-
ness of the system. Moreover, this local model is used to
evaluate analytically the performance of the global system,
allowing to characterize the global behavior of the system
with respect to its dynamics and to the presence of mali-
cious nodes and then to validate our approach.

1. INTRODUCTION
The adoption of peer-to-peer overlay networks as a build-

ing block for architecting Internet scale systems has firstly
raised the attention of making these systems resilient to
nodes-driven dynamics. This dynamics —that represents
the propensity of thousands or millions of nodes to con-
tinuously join and leave the system, and which is usually
called churn— if not efficiently managed, quickly gives rise
to dropped messages and data inconsistency, and thus to an
increasing latency and bandwidth due to repairing mecha-
nisms. The other fundamental issue faced by any practical
open system is the inevitable presence of malicious nodes [1,
2, 3]. Guaranteeing the liveness and safety of these systems
requires their ability to self-heal or at least to self-protect
against this adversity. Malicious nodes can devise complex
strategies to subvert the system. In particular these attacks
aimed at exhausting key resources of hosts (e.g., bandwidth,
CPU processing, TCP connection resources) to diminish
their capacity to provide or receive services [4]. Different
approaches have been proposed to face adversarial setting,
each one focusing on a particular adversary strategy. Re-
garding eclipse attacks, a very common technique, called
constrained routing table, relies on the uniqueness and im-
possibility of forging nodes identifiers. It consists in selecting
neighbors based on their identifiers so that all of them are
close to some particular points in the identifier space [1].
Such an approach has been implemented into several over-
lays (e.g., [5, 6, 7]). To prevent messages from being mis-

routed or dropped, the seminal works on routing security
by Castro et al. [1] and Sit and Morris [8] combine routing
failure tests and redundant routing as a solution to ensure
robust routing. Their approach has then been successfully
implemented in different structured-based overlays (e.g., [9,
10, 11]). However all these solutions assume that malicious
nodes are uniformly distributed in the system. Actually, ma-
licious nodes may concentrate their power to attack some
region of the overlay [12, 13]. These targeted attacks re-
quire additional mechanisms to be tolerated or at least to
be confined. Actually, it has been shown [14] that struc-
tured overlays cannot survive targeted attacks if the adver-
sary may keep sufficiently long its malicious peers at the
same position in the overlay. Indeed, once malicious peers
have succeeded in sitting in a focused region of the overlay,
they can progressively gain the quorum within this region
by simply waiting for honest peers to leave their position,
leading to the progressive isolation of honest peers. The
two fundamental properties that prevent peers isolation are
the guarantee that the distribution of peers identifiers is ran-
dom, and that peers cannot stay forever at the same position
in the system [12].

In the present work, we present an in-depth study of the
dynamic and robustness aspects of large-scale distributed
systems. We investigate adversarial strategies that aim at
isolating honest nodes in cluster-based overlays. We pro-
pose an analytical model of the local behavior of clusters,
based on Markov chains. This local model provides an eval-
uation of the power of malicious behaviors. We use this
local model to evaluate analytically the performance of the
global system, allowing to characterize the global behavior
of the system with respect to its dynamics and to the pres-
ence of malicious nodes and then to validate our approach.
Our analysis shows that i) by gathering nodes in clusters,
ii) by preventing nodes to stay infinitely long at the same
position in the overlay and iii) by introducing randomness
in the operations of the overlay, the impact of the adversary
on the cluster correctness is very limited. In particular we
show that the adversary has no incentive to trigger topolog-
ical operations on the system which confines its impact on
particular regions of the system.

The current work extends the study done in [13], where
the focus was placed on the local behavior of a cluster rather
than on the global behavior of the system as done in the
present work. Specifically, [13] studies according to different
levels of adversity in the cluster, the impact of randomized
operations on the time spent by a cluster in safe and cor-
rupted states, and on the proportion of clusters that split or
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merge in a safe or corrupted state. The main lessons drawn
from that study is that a small amount of randomization
is sufficient to defend against malicious nodes, even when
they collude together to increase their power. This result
is interesting because it notably decreases the complexity of
the overlay operations.

The remainder of this paper is as follows: In Section 2, we
briefly present the main features of structured based over-
lays. In Section 3 we present an analytical model of the local
behavior of a cluster based on Markov chains. Section 4 uses
this model to evaluate the performance of the global over-
lay. This analysis is applied to a large scale dynamic system
presented in Section 5. Section 6 concludes.

2. CLUSTER-BASED SYSTEMS

2.1 Self-organization of Nodes
We consider a dynamic system populated by a large col-

lection of nodes in which each node is assigned a unique and
permanent random identifier from an m-bit identifier space.
Node identifiers (simply denoted ids in the following) are de-
rived by applying some standard strong cryptographic hash
function on nodes intrinsic characteristics. The value of m
(160 for the standard SHA1 hash function) is chosen to be
large enough to make the probability of identifiers collision
negligible. Each application-specific object, or data-item, of
the system is assigned a unique identifier, called key, selected
from the same m-bit identifier space. Each node p owns a
fraction of all the data items of the system. The system is
subject to churn, which is classically defined as the rate of
turnover of nodes in the system [15]. For scalability reasons,
each node locally knows only a small set of nodes existing
within the system. This set is typically called the node’s
local view or the node’s neighborhood. The particular algo-
rithm used by nodes to build their local view and to route
messages induces the resulting overlay topology. Structured
overlays (also called Distributed Hash Tables (DHTs)) build
their topology according to structured graphs (e.g., hyper-
cube, torus). Specifically, nodes self-organize within the
structured graph according to a distance function D based
on their ids, plus possibly other criteria such as geographi-
cal distance. Finally, the mapping between nodes and data
derives from the same distance function D.

In cluster-based overlays, clusters of nodes substitute for
nodes at the vertices of the structured graph. Each vertex of
the structured graph is composed of a set or cluster of nodes.
Clusters in the overlay are uniquely identified. Cluster size
s evolves according to join and leave events. However for
robustness and scalability reasons, s is both lower and upper
bounded. The lower bound Smin satisfies some constraint
based on the assumed failure model, while the upper bound
Smax is typically in O(logN) where N is the current number
of nodes in the overlay. Nodes join the clusters according
to distance D. For instance in PeerCube [10], p joins the
(unique) cluster whose identifier is a prefix of p’s identifier.
Once a cluster size exceeds Smax, this cluster splits into
two smaller clusters, each one populated with the nodes that
are closer to each other according to distance D. Nodes
can freely leave their cluster. Once a cluster undershoots
its minimal size Smin, this cluster merges with the closest
cluster in its neighborhood.

In the following we assume that join and leave events
have an equal chance to occur in any cluster.

2.2 Malicious Behaviors
We assume the presence of malicious nodes (also called

Byzantine nodes in the distributed computing community)
that try to subvert the whole system by exhibiting unde-
sirable behaviors [8, 16]. In our context this amount to
devising strategies to take the control of clusters so that
all the queries that go through these controlled clusters can
be deviated toward malicious nodes (this refers to eclipse
attacks [1, 8]), and all the data objects stored at these clus-
ters can be manipulated. They can magnify their impact by
colluding and coordinating their behavior. We model these
strategies through a strong adversary that controls these
malicious peers. A strong adversary is an adversary allowed
to deviate arbitrarily far from the protocol specification. We
assume that the adversary has large but bounded resources
in that it cannot control more than a fraction µ (0 < µ < 1)
of malicious nodes in the whole network. Note that in the
following we make a difference between the whole system
and the overlay. The system U encompasses all the nodes
that at some point may participate to the overlay (i.e, U
contains up to 2m nodes), while the overlay N contains at
any time the subset of participating nodes (i.e, N size is
equal to N ≤ 2m). Thus, while µ represents the assumed
fraction of malicious nodes in U , the goal of the adversary
is to populate the overlay with a larger fraction of malicious
nodes in order to subvert its correct functioning. Finally, a
node which always follows the prescribed protocols is said
to be honest. Note that honest nodes cannot a priori dis-
tinguish honest nodes from malicious ones.

2.3 Operations of the Overlay
From the application point of view, two key operations are

provided by the system: the join operation that enables a
node to join the closest cluster in the system to itself accord-
ing to distance D, and the leave operation, indicating that
some node leaves its cluster. Note that other operations are
also provided to the application (e.g., the lookup(k) opera-
tion that enables a node to search for key k, and the put(x)
operation, which allows it to insert data x in the system),
however they have no impact on the dynamic of the system
and a minor one on its robustness. Thus we only concentrate
on analyzing and evaluating the dynamics and robustness of
the system through the join and leave operations. Now,
from the topology structure point of view, two operations
may result in a topology modification and thus must be
taken into account to evaluate the dynamics of the system,
namely the split and the merge operations. When the size
of a cluster exceeds Smax, this cluster splits into two new
clusters, and when the size of a cluster goes below Smin, this
cluster merges with other clusters to guarantee the cluster
resiliency. Note that for robustness reasons, a cluster may
have to temporarily exceed its maximal size Smax before be-
ing able to split into two new clusters. This guarantees that
resiliency of both new clusters is met, i.e., both clusters
sizes are at least equal to Smin. For the time being, we do
not need to go further into the details of these operations,
however Section 5 will precise them.

3. MODELING THE CLUSTER BEHAVIOUR
We model the effect of join and leave events in a cluster

using a homogeneous discrete-time Markov chain denoted
by X = {Xn, n ≥ 0}. Markov chain X represents the
evolution of the number of honest and malicious nodes in
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the cluster. The impact of malicious nodes on the cluster
correctness is application dependent. For instance a neces-
sary and sufficient condition to prevent agreement among
a set of nodes is that strictly more than a third of the
population set is malicious [17]. In this Section, the con-
ditions under which cluster correctness holds are lumped in
predicate correct. This predicate will be explicit in Sec-
tion 5 where the application is described. Thus we define
the state of a cluster as safe if predicate correct holds,
while it is defined as attacked otherwise. Markov chain
X alternates between the set of all the safe states, de-
noted by S, and the set of all the attacked states, denoted
by A, until entering the absorbing state (cf. Figure 1).

S A

a

1

Figure 1: Aggregated view
of Markov chain X.

This state, denoted by a,
represents the logical dis-
appearance of a cluster
from the graph. This
occurs when the cluster
either splits into two
smaller clusters (i.e., it has
reached its maximal size
Smax) or merges with its
closest neighbor (i.e., it
has reached its minimal
size Smin).

The transition matrix of
X, denoted by P , is partitioned with respect to the decom-
position of the state space Ω = S ∪A ∪ a

P =

(
PS PSA PSa

PAS PA PAa

0 0 1

)
where PUV is the sub-matrix of dimension |U | × |V | con-

taining the transitions from states of U to states of V , with
U, V ∈ {S,A, a}. We simply write PU for PUU . In the same
way, the initial probability distribution α is partitioned by
writing α = (αS αA αa), where αa = 0 and the sub-vector
αU contains the initial probabilities of states U ∈ {S,A}.

4. MODELING THE OVERLAY NETWORK

4.1 Notations
We consider an overlay populated with n clusters denoted

by D1, . . . ,Dn and subject to join and leave events. Each
cluster Di implements the same join, leave, split and
merge operations. We assume that join and leave events
are uniformly distributed throughout the overlay. Specifi-
cally, when a join or leave event occurs in the overlay it
affects cluster Di with probability pi = 1/n. Thus we con-

sider, for n ≥ 1, n Markov chains X(1), . . . , X(n) identical
to X, i.e., with the same state space Ω, the same transi-
tion probability matrix P and the same initial probability
distribution α. However these chains are not independent
since, at each instant, only one Markov chain, chosen with
probability 1/n, is allowed to make a transition.

We denote by N
(n)
S (m) and N

(n)
A (m) the respective num-

ber of safe and polluted clusters just after the m-th join or
leave event, i.e., the respective number of Markov chains
that are in set S and in set A at instant m. More formally,
these random variables are defined, for m ≥ 0, by

N
(n)
S (m) =

n∑
h=1

1{X(h)
m ∈S} and N

(n)
A (m) =

n∑
h=1

1{X(h)
m ∈A},

where notation 1{A} represents the indicator function, which
is equal to 1 if condition A is true and 0 otherwise. We de-
note by 1S (resp. 1A) the column vector of dimension |S∪A|
whose ith entry is equal to 1 (resp. 0) if i ∈ S and 0 (resp.
1) if i ∈ A. We denote by T the sub-matrix of P containing
the transitions between the states of S ∪A, i.e., the matrix
obtained from P by removing the row and the column cor-
responding to the absorbing state a. The dimension of T is
thus |S ∪ A|. Finally, we define αT = (αS αA). In [13], we

studied the expectations of both random variables N
(n)
S (m)

and N
(n)
A (m). In what follows we focus on their joint distri-

bution.

4.2 Focus on the First Topological Change
We study the evolution of the n Markov chains in the

set of safe states and in the set of polluted states at time m
respectively when none of the n Markov chains are absorbed
at time m.

For v = 0, . . . , n, we are interested in the probability

p
(n)
v (m) defined by

p(n)
v (m) = P{N (n)

S (m) = n− v,N (n)
A (m) = v},

which represents the probability that v Markov chains are in
polluted states at time m and none of the n Markov chains
are absorbed at time m.

For every m ≥ 0 and ` ≥ 1, we define the set Sm,` as

Sm,` = {m = (m1, . . . ,m`) ∈ N` | m1 + · · ·+m` = m}.

The probability p
(n)
v (m) is given by the following theorem

where, as usual, we take as convention that an empty prod-
uct is equal to 1. We introduce the notation

qS(k) = P{Xk ∈ S} = αTT
k
1S

and

qA(k) = P{Xk ∈ A} = αTT
k
1A.

Theorem 1. For every m ≥ 0 and v = 0, . . . , n, we have

p(n)
v (m) (1)

=

(
n

v

)
1

nm

∑
m∈Sm,n

m!

m1! · · ·mn!

v∏
r=1

qA(mr)

n∏
r=v+1

qS(mr).

Proof. We introduce the set H = {1, . . . , n} and, for
v = 0, . . . , n, the setH(v) of all subsets ofH with v elements,
i.e.

H(v) = {C ⊆ H | |C| = v}.

It is easily checked that |H(v)| =

(
n

v

)
. With this notation,

we have

p(n)
v (m) =

∑
C∈H(v)

P{X(r)
m ∈ A ∀r ∈ C,X(r)

m ∈ S ∀r ∈ H\C}.

The probability mass distribution, used to choose at each
instant the Markov chain that has to do a transition, being
uniform, all the probabilities in the above sum are equal.
We thus have, by taking C = {1, . . . , v} and using Theorem
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1 of [18],

p(n)
v (m)

=

(
n

v

)
P{X(1)

m ∈ A, ...,X(v)
m ∈ A,X(v+1)

m ∈ S, ...,X(n)
m ∈ S}

=

(
n

v

)
1

nm

∑
m∈Sm,n

m!

m1! · · ·mn!

v∏
r=1

qA(mr)

n∏
r=v+1

qS(mr),

which completes the proof.

Theorem 2 gives a recurrence relation to compute the

probabilities p
(n)
v (m) with a polynomial complexity.

Theorem 2. For every v = 0, . . . , n− 1, we have

p(n)
v (m)

=
n

n− v

m∑
`=0

(
m

`

)(
1

n

)`(
1− 1

n

)m−`

qS(`)p(n−1)
v (m− `),

and, for v = n,

p(n)
n (m) =

m∑
`=0

(
m

`

)(
1

n

)`(
1− 1

n

)m−`

qA(`)p
(n−1)
n−1 (m−`).

Proof. Extracting in the sum (1) the index mn, renam-
ing it ` and using Theorem 1 for integers n − 1 and m − `,
we get, for v = 0, . . . , n− 1,

p(n)
v (m)

=

(
n

v

)
1

nm

m∑
`=0

(
m

`

)
qS(`)

×
∑

m∈Sm−`,n−1

(m− `)!
m1! · · ·mn−1!

v∏
r=1

qA(mr)

n−1∏
r=v+1

qS(mr)

=

(
n

v

)
1

nm

m∑
`=0

(
m

`

)
qS(`)

(n− 1)m−`(
n−1
v

) p(n−1)
v (m− `)

=
n

n− v

m∑
`=0

(
m

`

)(
1

n

)`(
1− 1

n

)m−`

qS(`)p(n−1)
v (m− `).

The second part of the proof is obtained similarly.

Let Θn be the first instant at which one of the n Markov
chains X(1), . . . , X(n) gets absorbed. This random variable
is defined by

Θn = inf{m ≥ 0 | ∃r such that X(r)
m = a}.

The random variable Θn has been studied in [18]. In partic-
ular we have shown that its distribution is given for every
k ≥ 0 and u = 1, . . . , n− 1 by

P{Θn > k} =

k∑
`=0

(
k

`

)(u
n

)` (
1− u

n

)k−`

×P{Θu > `}P{Θn−u > k − `}.

By taking n = 2m and u = 2m−1, we have

P{Θ2m > k} =
1

2k

k∑
`=0

(
k

`

)
P{Θ2m−1 > `}P{Θ2m−1 > k−`}.

(2)

Relation (2) is particularly interesting for very large values
of n. Indeed, the complexity for the computation of the
distribution and the expectation of Θn is in O(log2 n). Note
also that this relation can be split into 2 identical sums plus
the central term corresponding to ` = k/2 when k is even.

We study here the expected number of Markov chains
which are in a safe state and in an attacked state at time m
respectively when none of the n Markov chains are absorbed
at time m.

The quantity E(N
(n)
S (m)1{Θn>m}) is the expected num-

ber of Markov chains that are in a safe state at time m, for
Θn > m. In the same way, we define the expected value

E(N
(n)
A (m)1{Θn>m}) for attacked states.

Remark that, for every v = 0, . . . , n, we have

(N
(n)
S (m) = v,N

(n)
A (m) = n−v)⇔ (N

(n)
S (m) = v,Θn > m).

Using this remark, we obtain the following result.

Theorem 3. For every m ≥ 0, we have

E(N
(n)
S (m)1{Θn>m}) (3)

= n

m∑
`=0

(
m

`

)(
1

n

)`(
1− 1

n

)m−`

qS(`)P{Θn−1 > m− `}.

E(N
(n)
A (m)1{Θn>m}) (4)

= n

m∑
`=0

(
m

`

)(
1

n

)`(
1− 1

n

)m−`

qA(`)P{Θn−1 > m− `}.

Proof. From the previous remark, we get

E(N
(n)
S (m)1{Θn>m}) =

n∑
v=1

vP{N (n)
S (m) = v,Θn > m}

=

n∑
v=1

vp
(n)
n−v(m)

=

n−1∑
v=0

(n− v)p(n)
v (m).

Using the first relation of Theorem 2, this leads to

E(N
(n)
S (m)1{Θn>m})

= n

m∑
`=0

(
m

`

)(
1

n

)`(
1− 1

n

)m−`

qS(`)

n−1∑
v=0

p(n−1)
v (m− `).

Since

n−1∑
v=0

p(n−1)
v (m− `)

=

n−1∑
v=0

P{Θn−1 > m− `,N (n)
S (m− `) = n− 1− v}

= P{Θn−1 > m− `},

we get the desired result. Relation (4) is obtained using the
same lines.

It has been shown in [18] that for all k ≥ 0

lim
n−→∞

P{Θn > k} = (αTT1)k
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where 1 is the column vector containing only ones with ap-
propriate dimension determined by the context. Using this
result and Relations (3) and (4) we get

lim
n−→∞

E(N
(n)
S (m)1{Θn>m})

n
= qS(0)(αTT1)m = αS1(αTT1)m

lim
n−→∞

E(N
(n)
A (m)1{Θn>m})

n
= qA(0)(αTT1)m = αA1(αTT1)m.

5. APPLICATION
Internet growth in recent years has motivated an increas-

ing research in peer-to-peer systems to implement differ-
ent applications such as file sharing, large scale distribu-
tion of data, streaming, and video-on-demand. All these
applications share in common large data and the necessity
of durable access to them. Implementing these applications
over a peer-to-peer system allows to potentially benefit from
the very large storage space globally provided by the many
unused or idle machines connected to the network. This
has led for the last few years to the deployment of a rich
number of large scale storage architectures. Typically, reli-
able storage amounts to replicating data sufficiently enough
so that despite adversarial behaviors replicas are still reach-
able. Given the specificities of the P2P paradigm, the repli-
cation schema must guarantee a low message overhead (one
cannot afford to store many copies of very large original
data), and low bandwidth requirements (upon unpredictable
join and leave of nodes it is eventually necessary to recreate
new copies of the data to keep a certain number of repli-
cas). Rateless erasure coding [19, 20, 21] (also called Foun-
tain coding) meets these constraints. Specifically, an object
is divided into k equal size fragments, and recoded into a
potentially unlimited number of independent check blocks.
Fundamental property of erasure coding is that one may re-
cover an initial object by collecting k′ distinct check blocks
generated by different sources, with k′ = k(1 + ε) with ε
arbitrarily small.

We propose to take advantage of cluster-based overlays to
store these check blocks. Specifically, each of these pieces of
data is assigned a unique identifier, called key, selected from
the same m-bit identifier space as nodes one (cf. Section 2).
Each piece of data o is then disseminated to the cluster Di

whose label is closer to o key. To take advantage of the
natural redundancy present in each cluster while efficiently
handling the churn of the system, the population of each
cluster is organized into two sets: the core set and the spare
set. Members of the core set are primarily responsible for
handling messages routing, and clusters operations. Man-
agement of the core set is such that its size is maintained
to constant Smin. This constant is defined according to the
assumed proportion of malicious nodes in the system. Spare
members are the complement number of nodes in the clus-
ter. Size s of the spare set is such that 0 ≤ s ≤ Smax−Smin.
For scalability reasons, Smax is in O(logN) where N is the
current number of nodes in the overlay. In contrast to core
members, spare members are not involved in any of the over-
lay operations, however they are in charge of data storage.
To handle malicious behaviors, robust join, leave, split

and merge operations are designed as detailed in Section 5.1.
In addition to robust operations, we propose to limit the

lifetime of node identifiers and to randomize their compu-

tation. This is achieved by adding an incarnation number
t0 to the fields that appear in the node certificate (certifi-
cates are acquired at trustworthy Certification Authorities
(CAs)), and by hashing this certificate to generate the ini-
tial node identifier id0. The incarnation number limits the
lifetime of identifiers and thus the position of the nodes in
the overlay. The current incarnation k of any node p can be
computed as k = d(t − t0)/`e, where t is the current time,
and ` is the length of the lifetime of each node incarnation.
Thus, the kth incarnation of node p expires when its local
clock reads t0 + k`. At this time p must rejoin the system
using its (k + 1)th incarnation. By the properties of hash
functions, this guarantees that nodes are regularly pushed
toward unpredictable and random positions of the overlay.
At any time, any node can check the validity of the identifier
of any other node q in the system, by simply calculating the
current incarnation k of q and generating the corresponding
identifier. This leads to the following property.

Property 1 (Limited Sojourn Time). Let Di be some
cluster of the system and p some peer in the overlay. Then
q belongs to Di at time t if and only if idq matches the label
of Di according to distance D (we say that q is valid for Di).

5.1 Robust Operations
To protect the system against the presence of malicious

nodes in the overlay, we propose to take advantage of nodes
role separation at cluster level to design robust operations.
Briefly, the join operation is designed so that brute force
denial of service attacks are discouraged. The Leave opera-
tion impedes the adversary from predicting what is going to
be the composition of the core set after a given sequence of
join and leave events triggered by its malicious nodes. Fi-
nally, as both merge and split operations induce topologi-
cal changes in the overlay, and more importantly may have
an influence on the subset of the identifier space the ad-
versary may gain control over1, these operations have been
designed so that the adversary has, in expectation, no inter-
est to trigger them. Specifically, these four operations make
up the overlay protocol and are specified as follows

• join(p): when a node p joins the system, it joins
the spare set of the closest cluster in the system (ac-
cording to distance D). Core members of this cluster
update their spare view to reflect p’s insertion (note
that the spare view update does not need to be tightly
synchronized at all core members).

• leave(p): When a node p leaves a cluster either p be-
longs to the spare set or to the core set. In the former
case, core members simply update their spare view to
reflect p’s departure, while in the latter case, the core
view maintenance procedure is triggered. This proce-
dure consists in replacing p with one node randomly
chosen from the spare set.

• split(Di): when a cluster Di has reached the con-
ditions to split into two smaller clusters Dj and Dk,
core sets of both Dj and Dk are built. Priority is given

1Indeed, a merge operation doubles the subset of the identi-
fier space a cluster is responsible for, while a split operation
divides it per two.
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Probabilities Value Meaning of the probability

µ ratio of Byzantine peers in the universe U
Smax maximal size of a cluster
Smin size of the core set of a cluster (Smin is a system parameter)
∆ Smax − Smin

s current size of the spare set
x number of malicious peers in the spare set
y number of malicious peers in the core set

d
probability that the lifetime of a given peer identifier
has not expired (per unit of time)

pj (resp. p`) 1/2 join (resp. leave) event probability
pc Smin/(Smin + s) probability for a peer to belong to the cluster core set
pm µ probability that the joined peer is malicious
pmc x/Smin probability for a core member to be malicious
pms y/s probability for a spare member to be malicious

1− dx probability that Property 1 is satisfied in the core set
during one unit of time

1− dy probability that Property 1 is satisfied in the spare set
during one unit of time

1{A} 1 if condition A is true, 0 otherwise represents the indicator function

Figure 2: Transition diagram for the computation of the transition probability matrix P .
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to core members of Di and completion is done with
randomly chosen spares in Di. This random choice is
handled through a Byzantine-tolerant consensus run
among core members of Di. Spares members of Dj

(resp. Dk) are populated with the remaining spares
members of Di that are closer to Dj than to Dk (resp.
closer to Dk than to Dj).

• merge(Dj ,Dk): when some cluster Dj has reached the
conditions to merge (i.e., its spare set is empty), it
merges with the closest cluster Dk to Dj . The created
cluster Di is composed by a core set whose members
are the core set members of Dk and by a spare set
whose members are the union of the spare members of
Dk and the core set members of Dj .

5.2 Specification of the Adversarial Behavior
Based on the operations described here above, we inves-

tigate how malicious nodes could proceed to compromise
clusters correctness. Correctness of any cluster Di is jeop-
ardized as soon as Di core set is populated by more than a
quorum c of malicious nodes where c = b(Smin − 1)/3c.

As a consequence of assigning an initial unique random
node id to nodes and of periodically pushing them to ran-
dom regions in the overlay, the strategy of the adversary to
increase the global representation of malicious identifiers is
a combination of the following two actions

• maximizing the number of malicious nodes that sit in
the whole overlay, and

• minimizing the likelihood that any attacked cluster Di

switches back to a safe state.

Note that there is a trade-off between these two strate-
gies. Indeed, while in the former case, the adversary aims
at triggering as many join operations as possible for its
malicious nodes to be present into the clusters, in the lat-
ter case, the adversary has no interest to let clusters grow
in such a way that these clusters will undergo a split op-
eration (cf. Section 5.1). Indeed, the outcome of a split

operation cannot increase the subset of identifiers space the
adversary has gained control over—at best, it keeps it the
same. Thus when an attacked cluster Di is close to split,
the adversary does not trigger anymore malicious join op-
erations that would lead malicious nodes to join Di, and
prevents honest nodes from joining Di whenever the size s
of the spare set satisfies s > 1. This guarantees that Di will
not grow because of honest peers, while minimizing the like-
lihood that Di undergoes a merge operation as well. The
reason is that by construction of the merge operation (cf.
Section 5.1), when Di triggers a merge operation with its
closest neighbor then all the members of Di are pushed to
the spare set of the new created cluster which clearly deters
the adversary from triggering merge operations. This leads
to the following rule

Rule 1 (Adversarial Join Strategy). Let Di be a clus-
ter such that at time t its core set contains ` > c valid ma-
licious nodes. Any join event issued by node q and received
at Di at time t is discarded if (q is honest and s > 1) or
(s = Smax − Smin − 1).

To summarize, the strategy of the adversary is to max-
imize the whole subset of the identifiers space it has gained

control over. This is achieved by first never asking its ma-
licious peers to leave their cluster except if Property 1 does
not hold, and second by having the maximal number of ma-
licious peers join the system except if Rule 1 holds.

5.3 Modeling the Evolution of the Cluster
We can now instantiate Markov chain X = {Xn, n ≥ 0}

(introduced in Section 3), with the specificities of our ap-
plication context. Specifically, for n ≥ 1, the event Xn =
(s, x, y) represents the state of a cluster after the n-th transi-
tion (i.e., the n-th join or leave event), so that the size of the
spare set is equal to s, the number of malicious peers in the
core set is equal to x and the number of malicious peers in
the spare set is equal to y. The state space Ω of X is defined
by Ω = {(s, x, y) | 0 ≤ s ≤ ∆, 0 ≤ x ≤ Smin, 0 ≤ y ≤ s},
where ∆ = Smax − Smin. Predicate correct holds iff x ≤ c.
The subset of safe states S is defined by S = {(s, x, y) | 0 <
s < ∆, 0 ≤ x ≤ c, 0 ≤ y ≤ s}, while the subset of attacked
states A is defined by A = {(s, x, y) | 0 < s < ∆, c + 1 ≤
x ≤ Smin, 0 ≤ y ≤ s}. Computation of transition matrix
P is illustrated in Figure 2. In this tree, each edge is la-
belled by a probability and each leaf represents the state
of the cluster. This figure shows all the states that can be
reached from state (s, x, y) and the corresponding transition
probabilities. Transition probabilities depend on i) the type
of event that occurs (join or leave event from the core or
the spare set), ii) the type of nodes involved in this oper-
ation (honest or malicious), and iii) the ratio of malicious
nodes already present in the core set. The probability asso-
ciated with each one of these states is obtained by summing
the products of the probabilities discovered along each path
starting from the root to the leaf corresponding to the target
state. For instance, the branch on the very right of the tree
corresponds to the situation in which cluster Di is attacked
and one of its malicious core member p is no more valid.
By Property 1, p leaves Di, however as Di is attacked, the
adversary bias the core management procedure by replac-
ing p with another malicious peer from Di spare set. State
(s− 1, x, y − 1) is reached.

Modeling and computation of Property 1 is as follows.
Let d be the probability (per unit of time) that the limited
lifetime of some peer p has not expired. Hence d is homoge-
neous to a frequency, and d×∆t represents the probability
that the lifetime of a given peer identifier has not expired
during ∆t units of time. Then the probability that for all
the peers belonging to a set of size z Property 1 holds is
equal to dz.

5.4 Initial Distributions
In the experiments conducted for this work, we consider

two initial probability distributions. The first one, denoted
by α(1), is such that the cluster starts from a median size
and from a failure free state. Namely,

α
(1)

(s,x,y) =

{
1 if (s, x, y) = ( ∆

2
, 0, 0)

0 otherwise.

The second probability distribution, denoted by α(2), is
such that the cluster starts from a median size and the num-
ber of malicious nodes in both the core and spare sets follow
a binomial distribution. We have

α
(2)

(s,x,y) =


(

Smin
x

)
µx(1− µ)Smin−x

(
s
y

)
µy(1− µ)s−y

for ( ∆
2
, x, y) ∈ S ∪A

0 otherwise.
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Figure 3: P{Θn > m} (Relation (2)) as a function of m, n, d and for the two initial distributions α(1) and α(2)

5.5 Experimental Results
In the remaining of this Section, experiments are con-

ducted with a proportion µ = 25% of malicious nodes in
the system (cf. Section 2), a core set size Smin ∈ {7, 10},
a maximal cluster size Smax ∈ {14, 20}, and a number n of
clusters ∈ {256, . . . , 4096}. Regarding the sojourn time d of
nodes, it varies from 0% (nodes have to leave when they are
asked to do so) to 99.9% (nodes can stay almost infinitely
long at the same position in the system, even if they receive
a request to leave).

We first show in Figure 3 the distribution of the first in-
stant at which one of the n Markov chains gets absorbed
as a function of m, for different values of n, and starting
from different initial states. In Figure 3(a), Smin = 7 and
Smax = 14, which gives a number N of nodes in the system
varying in [1792, 57344], while in Figure 3(b), Smin = 10
and Smax = 20 leading to N ∈ [2560, 81920]. In both Fig-
ures 3(a) and 3(b), the distribution of Θn is plotted for the

two initial distributions α(1) and α(2) and the sojourn time
d of nodes is set to 30%. As expected, the total number m of
join and leave events that need to be triggered before the
first cluster splits or merges increases with the size of the
system. This is easily explained by the fact that events are
uniformly distributed over the clusters and thus the proba-
bility for an event to reach a particular cluster decreases as

the system size grows. The second observation concerns the
very low impact of the initial probability distribution on the
distribution of Θn. This result, while intuitively surprising,
is justified by the fact that d is relatively small (d = 30%)
which prevents malicious nodes from staying infinitely long
in the same cluster. Consequently, the natural churn of the
system overpasses the influence of malicious nodes. Finally,
by comparing both Figures 3(a) and 3(b), we observe that
a small increase in ∆ (i.e., from ∆ = 7 to ∆ = 10) signifi-
cantly augments the first instant at which the first topolog-
ical change occurs (i.e., a split or merge operation), which
is very interesting because it provides a trade-off between
the cost implied by the management of core sets and the
one implied by topological operations. A deeper investiga-
tion into the influence of the initial distribution α on the
distribution of Θn is shown in Figures 3(c) and 3(d). The

first remark is that for α = α(1) all the curves obtained for
the different values of d coincide, meaning that even if ma-
licious nodes may take advantage of longer sojourn times in
the same cluster, it takes too much time for them to suc-
cessfully attack the cluster (due to the design of the robust
join and leave operations), and thus they cannot prevent
the cluster from splitting and/or merging in response to
the natural churn of the system (cf. Section 5.1). Now for

α = α(2), the impact of d on the distribution of Θ(n) is
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Figure 4:
E(N

(n)
S

(m)1{Θn>m})

n
as a function of m and d. All these experiments are run with n = 4097 clusters

significant. Indeed, as clusters start from a failure-prone
state, this helps the adversary in reaching more quickly an
attacked state, and thus in preventing topological changes
from occurring.

Figure 4 depicts the expected proportion of safe clus-
ters after the m-th transition for a large number of clus-
ters (n = 4096), for a sojourn time d varying from 0% to
99.9%, and for both initial distributions α. Let us observe
first that when α = α(1) (cf. Figures 4(a)) and 4(b)), the ex-
pected proportion of safe clusters is very high, even for very
large values of d. This result combined with the previous
observed ones confirms the impact of the join and leave

operations on the incapability of the adversary to attack
clusters before the first topological change. Indeed, addi-
tional graphs (not shown here for space reasons) show that
the expected proportion of attacked clusters is very close to

0% which is validated by the relation
E(N

(n)
S

(m)1{Θn>m})

n
+

E(N
(n)
A

(m)1{Θn>m})

n
= P{Θn > m}. Now, when clusters

start in a failure-prone state, i.e., α = α(2), Figures 4(c)
and 4(d) first show that the initial proportion of safe clus-
ters is equal to 75% (which is in accordance with the initial
proportion µ of malicious nodes in the system). Second, if

we compare the curves got with α = α(1) and with α = α(2)

in presence of a very low induced churn (i.e., d ≥ 90%), then

we observe that for a given m, the expected proportion of
safe clusters is larger when the system starts from a failure-
prone environment (i.e., α = α(2)) than when it starts from
a failure-free one. While first intriguing, this result is ex-
plained by the fact that the population of malicious nodes
is initially larger and as none of the leave events requested
for them give rise to the corresponding leave operations, a
larger number of events need to be triggered before the first
cluster splits or merges. This is a very interesting result
as it says that combining robust operations with a very low
amount of induced churn is sufficient to keep the clusters in a
safe state despite the presence of a large proportion of mali-
cious nodes. Finally, and similarly to Figure 3, increasing ∆
(as shown in Figures 4(b) and 4(d)) augments significantly
the time before the first split or merge operation occurs.

6. CONCLUSION
In this paper we have investigated the power of malicious

nodes in their capability to subvert large scale dynamic sys-
tems. Given an adversarial objective, here maximizing the
whole subset of the identifier space malicious nodes succeed
in taking control over, we have analytically evaluated the
time (in terms of join and leave triggered events) it takes for
the adversary to corrupt part of the system prior to the first
topological event. Significance of such an analysis was to
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determine whether robust operations are capable to prevent
pollution from propagating to new clusters, which would
ineluctably lead to the progressive subversion of the sys-
tem. Restricting the analysis to the occurrence of the first
topological operation is justified by the fact that topologi-
cal events occurs rarely (i.e., they require a lot of join and
leave operations). It is also sufficient to accurately analyze
the behavior of the system as by construction of the pro-
posed robust operations, the adversary has no incentive to
provoke the triggering of topological operations. Results of
the analysis are extremely positive. First they show that
by simply increasing the difference between the core and
the spare sets, the time that elapses before the first topo-
logical operations is significantly augmented. Second they
demonstrate that pushing nodes to random positions in the
system, even very infrequently, splits adversarial coalitions.
Finally, they show that even when the adversary has suc-
ceeded in attacking a cluster, the adversary is incentivized
to keep their density low. Thus, pollution cannot propagate
to safe clusters in their vicinity.

As a future work, we intend to extend the proposed anal-
ysis by considering any kind of graphs, imposing solely that
the graph formed by correct nodes is connected. One of the
issues that we will have to address is the construction of a
uniform node sampling algorithm that guarantees that any
correct node in the graph has an equal probability to appear
in any routing table of any other correct node. The pres-
ence of an omniscient adversary makes the issue challenging
essentially because such an algorithm cannot rely anymore
on the uniform distribution of node identifiers.
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