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Abstract We consider the behavior of a stochastic system composed of several identically

distributed, but non independent, discrete-time absorbing Markov chains competing at each

instant for a transition. The competition consists in determining at each instant, using a given

probability distribution, the only Markov chain allowed to make a transition. We analyze the

first time at which one of the Markov chains reaches its absorbing state. When the number

of Markov chains goes to infinity, we analyze the asymptotic behavior of the system for an

arbitrary probability mass function governing the competition. We give conditions for the

existence of the asymptotic distribution and we show how these results apply to cluster-based

distributed systems when the competition between the Markov chains is handled by using a

geometric distribution.
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1 Introduction

Competing Markov chains generally compete over a set of resources, see for instance [2] and the

references therein. The resulting process is then a multidimensional Markov chain based on the

Cartesian product of the states spaces and on competition rules over resources. In this paper,

the Markov chains do not compete for resources but for transitions. More precisely, we consider

a stochastic system composed of n identically distributed, but non independent, discrete-time

absorbing Markov chains competing at each instant for a transition. The competition consists

in determining at each instant, using a given probability mass function of dimension n, the only

Markov chain allowed to make a transition.

For this system, we analyze the first time Θγ
n at which one of the n Markov chains reaches

its absorbing state, when the probability mass function is γ(n). The distribution of this random

variable has already been studied in [1] in particular when the probability mass function γ(n)

handling the competition is uniform. In that case, we exhibited the asymptotic behavior of the

system when the number n of Markov chains goes to infinity and we applied these results to

the analysis of large-scale distributed systems.

We propose here the study of the asymptotic behavior of the system when the number n of

Markov chains goes to infinity, for an arbitrary probability mass function γ(n) governing the

competition. More precisely, we give conditions on probability mass function γ(n) governing

the competition for the existence of the limiting distribution of Θγ
n. We apply these results

to the case where the competition is governed by a geometric distribution and we study the

effects of this distribution on a model of a cluster-based systems distributed, when the number

of clusters increases.

The remainder part of the paper is organized as follows. In the next section, we describe

the model, the notation and we give the transient state distribution of the global Markov chain

composed of the n joined identically distributed local Markov chains. We also extend a result

obtained in [1]. This result is a recurrence relation that allows us not only to compute the
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distributions of Θγ
n but also to compute the limiting distribution, when it exists, of Θγ

n. In

Section 3, we study the asymptotic behavior of the system when n goes to infinity and we give

conditions on the probability mass function γn governing the competition for the existence of

the limiting distribution of Θγ
n. We also show how to compute this limiting distribution. We

apply these results in Section 4 to case where the probability mass function γn governing the

competition is a geometric distribution. Section 5 is devoted to an application of these results

to a model of a cluster-based distributed system.

2 Transient Analysis

We consider a homogeneous discrete-time Markov chain X = {Xk, k ≥ 0} with finite state

space S composed of a set of transient states denoted by B and an absorbing state denoted by

a. The transition probability matrix P of can thus be decomposed as

P =

 Q v

0 1

 ,

where Q is the submatrix of dimension |B| × |B| containing the transitions between states

of B. In the same way, v is the column vector with |B| entries representing the transitions

from the transient states to the absorbing state. We suppose that the initial state is in B, i.e.

P{X0 ∈ B} = 1, and we denote by α the row vector of dimension |B| containing the initial

probability distribution, i.e. for every i ∈ B, αi = P{X0 = i}. We denote by Θ1 the total time

spent in B before reaching the absorbing state or equivalently the first instant at which the

absorbing state a is reached. We have

Θ1 = inf{k ≥ 0 | Xk = a}.

The complementary cumulative distribution function of Θ1 is easily derived as, see for instance

[4] or [3],

P{Θ1 > k} = P{Xk ∈ B} = αQk1, (1)
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where 1 is the column vector of dimension |B| with all entries equal to 1 and I is the identity

matrix of the right dimension. Since all the states of B are transient the matrix I − Q is

invertible and the expectation of Θ1 is given by

E(Θ1) = α(I −Q)−11. (2)

Let us now consider, for n ≥ 1, n Markov chains denoted by X(1), . . . , X(n) identical to X,

i.e. with the same state space S, the same transition probability matrix P and the same initial

probability distribution α. These n Markov chains are in competition at each instant to make

a transition using the probability mass function γ(n) = (p1,n, . . . , pn,n).

From these n Markov chains, we construct a new Markov chain denoted by Y = {Yk, k ≥ 0}

as follows. The state space of Y is equal to Sn and Yk = (X
(1)
k , . . . , X

(n)
k ). A transition in the

Markov chain Y corresponds to a transition in only one of the Markov chains X(1), . . . , X(n), all

the others staying in the same state. The Markov chain that makes the transition is chosen with

the probability mass function γ(n), which means that Markov chain X(`) makes the transition

with probability p`,n. We suppose without any loss of generality that, for every ` = 1, . . . , n,

we have 0 < p`,n < 1.

The transition probability matrix of Y is detailed in [1] where we give the proof of the

following theorem giving the transient distribution of the Markov chain Y . For every k ≥ 0 and

` ≥ 1, we introduce the set Sk,` defined by

Sk,` = {k = (k1, . . . , k`) ∈ N` | k1 + · · ·+ k` = k}.

Theorem 1 For every k ≥ 0, n ≥ 1 and (j1, . . . , jn) ∈ Sn, we have

P{Yk = (j1, . . . , jn)} =
∑

k∈Sk,n

k!

k1! · · · kn!

n∏
r=1

(pr,n)krP{Xkr = jr}. (3)

The following corollary, which is proved in [1], provides the distribution of the first instant

Θγ
n at which one of the n Markov chains X(1), . . . , X(n) gets absorbed when the probability

mass function is γ(n). More formally, this instant denoted by Θγ
n is defined as

Θγ
n = inf{k ≥ 0 | ∃r such that X

(r)
k = a}.
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When n = 1 we have γ(1) = 1 and, thus Θγ
1 = Θ1.

Corollary 2 For every k ≥ 0 and n ≥ 1, we have

P{Θγ
n > k} =

∑
k∈Sk,n

k!

k1! · · · kn!

n∏
r=1

(pr,n)krαQkr1. (4)

Clearly the complexity for the computation of P{Θγ
n > k} using relation (4) is exponential.

A solution to this problem is given by the following theorem which generalizes a previous result

obtained in [1].

Theorem 3 For every k ≥ 0, n ≥ 2 and h = 1, . . . , n, we have

P{Θγ
n > k} =

k∑
`=0

(
k

`

)
(ph,n)` (1− ph,n)k−` αQ`1P{Θγ′

n−1 > k − `}, (5)

where the probability mass distribution γ′(n− 1) = (p′1,n−1, . . . , p
′
n−1,n−1) associated with Θγ′

n−1

is defined, by

p′r,n−1 =
pr,n

1− ph,n
for r = 1, . . . , h− 1 and p′r,n−1 =

pr+1,n

1− ph,n
for r = h, . . . , n− 1.

Proof. For every k ≥ 0 and n ≥ 2, we fix a value of h with 1 ≤ h ≤ n. In Relation 4, we

extract in the multiple sum indexed by k ∈ Sk,n the index kh, we rename it ` and next, if h < n,

we perform the variable changes kh+1 := kh, . . . , kn := kn−1. We thus obtain

P{Θγ
n > k} =

k∑
`=0

(ph,n)` αQ`1

`!

∑
k∈Sk−`,n−1

k!

k1! · · · kn−1!

h−1∏
r=1

(pr,n)kr αQkr1

n−1∏
r=h

(pr+1,n)kr αQkr1.

Multiplying and dividing respectively by (k − `)! and (1− ph,n)k−`, we get

P{Θγ
n > k} =

k∑
`=0

(
k

`

)
(ph,n)` (1− ph,n)k−` αQ`1

×
∑

k∈Sk−`,n−1

(k − `)!
k1! · · · kn−1!

h−1∏
r=1

(
pr,n

1− ph,n

)kr
αQkr1

n−1∏
r=h

(
pr+1,n

1− ph,n

)kr
αQkr1.

If the probability mass function γ′(n − 1) = (p′1,n−1, . . . , p
′
n−1,n−1) associated with Θγ′

n−1 is

defined by

p′r,n−1 =
pr,n

1− ph,n
for r = 1, . . . , h− 1 and p′r,n−1 =

pr+1,n

1− ph,n
for r = h, . . . , n− 1,
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we obtain, from Relation (4),

P{Θγ
n > k} =

k∑
`=0

(
k

`

)
(ph,n)` (1− ph,n)k−` αQ`1

∑
k∈Sk−`,n−1

(k − `)!
k1! · · · kn−1!

n−1∏
r=1

(
p′r,n−1

)kr αQkr1
=

k∑
`=0

(
k

`

)
(ph,n)` (1− ph,n)k−` αQ`1P{Θγ′

n−1 > k − l},

which completes the proof.

This result shows that the computation of P{Θγ
n > k} can be done using a simple recurrence

with a polynomial complexity. The expectation of Θγ
n is then obtained by

E(Θγ
n) =

∞∑
n=0

P{Θγ
n > k}. (6)

3 Asymptotic Analysis

This section is devoted to the analysis of the distribution on Θγ
n when n is large. This is

generally the case in practice for large-scale distributed systems which are studied in the last

section. We consider the following transform. For every n ≥ 1 and x ∈ R, we introduce the

function Fn(x) defined by

Fn(x) =
∞∑
k=0

xk

k!
P{Θγ

n > k}.

The function Fn is defined for every x ∈ R and an explicit expression is given in the following

theorem, which is proved in [1].

Theorem 4 For every n ≥ 1 and x ∈ R, we have

Fn(x) =

n∏
`=1

αeQxp`,n1, (7)

and, for every k ∈ N,

P{Θγ
n > k} = F (k)

n (0), (8)

where F
(k)
n is the k-th derivative of function Fn with respect to x.
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This result not only shows that P{Θγ
n > 0} = 1 as expected, but also that, for every n ≥ 1,

we have

P{Θγ
n > 1} = αQ1 = F ′n(0).

It also gives access to an expression of P{Θγ
n > k} for any k. Adopting this point of view,

our strategy in order to compute limn→∞P{Θγ
n > k} is to compute F (x) = limn→∞ Fn(x), an

analytic function of x, so as to deduce the value limn→∞P{Θγ
n > k} = F (k)(0).

In order to pass to the limit in a clean fashion, we need the following

Hypothesis (H) – Limiting value of the powers sums of the p`,n’s.

For any k ≥ 1, the following limit exists :

Vk := lim
n→∞

n∑
`=1

pk`,n.

Important remark. The above assumption is harmless. Indeed, introducing the quantities

Vn,k =
∑n

`=1(p`,n)k, it is clear that 0 ≤ Vn,k ≤ 1 for any value of n ≥ 1 and k ≥ 1. Therefore,

there exists a subsequence in n, say nj with nj → ∞ as j → ∞, such that Vnj ,k has a limit

as j → ∞ for any k ≥ 1. We are here merely assuming that the limit Vk is well defined

without refering to taking a subsequence in the original Vn,k’s. To give but an example, one may

imagine for instance that the p`,2n’s are uniformly distributed, i.e. p`,2n = 1/(2n), in which case

V2n,k = 1/(2n)k−1 → 0 whenever k ≥ 2, and V2n,1 = 1, while the p`,2n+1’s are geometrically

distributed with parameter b and truncation at step 2n+ 1, i.e. p`,2n+1 = (1− b)`−1b, for ` ≤ 2n

and p2n+1,2n+1 = (1− b)2n, in which case V2n+1,k → 1/(2k − 1). In that case it clearly does not

make sense to study the whole sequence Vn,k itself, and we need to separate the case when n is

odd and the case when n is even.

We assert here that this situation is generic, and that, up to extracting a subsequence, one

may always assume that the original sequence Vn,k itself possesses a limit Vk for any k.

With this assumption in mind, the following theorem gives the limit of the transform Fn(x)

when n goes to infinity.
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Theorem 5 Under hypothesis (H), the limit F (x) = limn−→∞ Fn(x) exists, whenever |x| <

ln 2, and the limit is uniform on compact subsets of {x | |x| < ln 2}. Besides, we have the

explicit value

F (x) = exp

∑
m≥1

∑
k1≥1
· · ·

∑
km≥1

(−1)m+1

m

αQk11 . . . αQkm1

k1! . . . km!
xk1+···+kmVk1+···+km

 .

Proof. Starting from Relation (7), we recover, expanding into power series in x, the value

ln (Fn(x)) =
n∑
`=1

ln
(
α eQxp`,n1

)
=

n∑
`=1

ln

1 +
∑
k≥1

αQk1

k!
xk(p`,n)k


Hence, using the fact that 0 ≤ αQk1 ≤ 1 whenever k ≥ 0, and deducing the bound∣∣∣∣∣∣

∑
k≥1

αQk1

k!
xk(p`,n)k

∣∣∣∣∣∣ ≤
∑
k≥1

|x|k

k!
= e|x| − 1 < 1,

whenever |x| < ln 2, we may expand further and obtain

ln (Fn(x))

=

n∑
`=1

∑
m≥1

(−1)m+1

m

∑
k≥1

αQk1

k!
xk(p`,n)k

m

=

n∑
`=1

∑
m≥1

(−1)m+1

m

∑
k1≥1
· · ·

∑
km≥1

αQk11 . . . αQkm1

k1! . . . km!
xk1+···+km(p`,n)k1+···+km

=
∑
m≥1

∑
k1≥1
· · ·

∑
km≥1

(−1)m+1

m

αQk11 . . . αQkm1

k1! . . . km!
xk1+···+km

(
n∑
`=1

(p`,n)k1+···+km

)
.

The above expansions clearly converge in any desirable sense whenever |x| < ln 2 (say, for

instance, uniformly in x on compact subsets of {x | |x| < ln 2}). The existence of the limiting

values Vk, together with the pointwise bound∣∣∣∣∣(−1)m+1

m

αQk11 . . . αQkp1

k1! . . . km!
xk1+···+km

(
n∑
`=1

(p`,n)k1+···+km

)∣∣∣∣∣ ≤ |x|k1+···+kmk1! . . . km!
,

a converging series whenever |x| < ln 2, therefore provides the limit

lim
n→∞

ln (Fn(x)) =∑
m≥1

∑
k1≥1
· · ·

∑
km≥1

(−1)m+1

m

αQk11 . . . αQkp1

k1! . . . km!
xk1+···+kmVk1+···+km , (9)
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and the above convergence is uniform on compact subsets of {x | |x| < ln 2}, which completes

the proof.

Armed with the above theorem, we are able to deduce the limiting behavior of P{Θγ
n > k}

in the following theorem.

Theorem 6 Under hypothesis (H), for every k ≥ 0, we have

lim
n−→∞

P{Θγ
n > k} = F (k)(0),

and

lim
n−→∞

E(Θγ
n) =

∑
m≥1

∑
k1≥1
· · ·

∑
km≥1

(−1)p+1

p

k!

k1! . . . kp!

(
αQk11

)
. . .
(
αQkp1

)
Vk1+···+kp .

Proof. The argument is standard. The function Fn(x) being clearly analytic on the disk

{z ∈ C | |z| < ln 2}, we may write, for any 0 < r < ln 2 and k ≥ 0, the relation

P{Θn > k} = F (k)
n (0) =

k!

2iπ

∫
|z|=r

Fn(z)

zk+1
dz.

Hence, using the above-mentioned uniform convergence of Fn towards F , we recover

lim
n→∞

P{Θn > k} = lim
n→∞

k!

2iπ

∫
|z|=r

Fn(z)

zk+1
dz =

k!

2iπ

∫
|z|=r

F (z)

zk+1
dz.

On the other hand, since the function F itself clearly is analytic on the disk {z ∈ C | |z| < ln 2}

as well, we may write similarly

k!

2iπ

∫
|z|=r

F (z)

zk+1
dz = F (k)(0),

which completes the proof.

We denote by Θγ the random variable having as distribution the limiting distribution of

Θγ
n. We then have, for every k ≥ 0,

lim
n−→∞

P{Θγ
n > k} = P{Θγ > k}.

The following corollary shows how to compute recursively the limiting distribution Θγ
n.
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Corollary 7 If, for a fixed h ≥ 1, we have lim
n−→∞

ph,n = b > 0, then, we have P{Θγ > 0} = 1

and, for every k ≥ 1,

P{Θγ > k} =
1

1− (1− b)k
k−1∑
`=0

(
k

`

)
(1− b)`bk−`P{Θγ > `}αQk−`1. (10)

Proof. Since P{Θγ
n > k} = 1 for every n ≥ 1, we have P{Θγ > 0} = 1. If, for a fixed h ≥ 1,

we have lim
n−→∞

ph,n = b > 0, then, using Theorem 3 and taking the limit in Relation (5), we get

P{Θγ > k} =

k∑
`=0

(
k

`

)
b`(1− b)k−`αQ`1P{Θγ > k − `}. (11)

Extracting the term containing P{Θγ > k}, which corresponds to index ` = 0, from the right

hand side, we get the desired relation.

Without any loss of generality, by renumbering the Markov chains, we take in the rest of

the paper h = 1. This means, from Theorem 3, that the probability mass function γ(n− 1) =

(p1,n−1, . . . , pn−1,n−1) associated with Θγ
n−1 is given, for r = 1, . . . , n− 1, by

pr,n−1 =
pr+1,n

1− p1,n
. (12)

For a fixed value of n ≥ 2, the computation of the distribution of Thetaγn with a given

probability mass distribution γ(n) necessites the computation of the distribution of Θγ
n with

the probability mass distribution γ(n − 1) given by Relation (12). Let ε be a predetermined

error tolerance. If we want to compute P{Θγ
n > k} for every k such that P{Θγ

n > k} > ε we

need to determine an integer K such that, for every i = 1, . . . , n, P{Θγ
i > K} ≤ ε and then

compute, for i = 1, . . . , n, the values of P{Θγ
i > k} for k = 0, . . . ,K − 1. The following lemma

will be used in the next theorem where we propose a value of K. An inequality between vectors

is meant entrywise.

Lemma 8 For every k ≥ 1, the vector function f(x) defined, for x ∈ [0, 1], by

f(x) = (xQ+ (1− x)I)k1

is decreasing.
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Proof. The function f is differentiable on the interval (0, 1) and its derivative f ′ is given by

f ′(x) = k(xQ+ (1− x)I)k−1(Q1− 1).

The matrix Q being substochastic, we have Q1 − 1 ≤ 0 with strict inequality for at least one

entry. We thus have f ′(x) ≤ 0 which means that fiunction f is decreasing on interval [0, 1].

For every n ≥ 1, we introduce the numbers mn defined by

mn = min
i=1,...,n

p1,i.

Theorem 9 For every n ≥ 1, for every ε ∈ (0, 1), we have

max
i=1,...,n

P{Θγ
i > k} ≤ ε for every k ≥ K,

where

K = inf
{
k ≥ 0

∣∣∣ α (mnQ+ (1−mn)I)k 1 ≤ ε
}
.

Proof. For every i = 1, . . . , n, we have

P{Θγ
i > k} =

k∑
`=0

(
k

`

)
p`1,i(1− p1,i)k−`αQ`1P{Θ

γ
i−1 > k − `}

≤
k∑
`=0

(
k

`

)
p`1,i(1− p1,i)k−`αQ`1

= α (p1,iQ+ (1− p1,i)I)k 1

≤ α (mnQ+ (1−mn)I)k 1 (from Lemma 8)

=

k∑
`=0

(
k

`

)
m`
n(1−mn)k−`αQ`1.

Note that matrix mnQ + (1 −mn)I is substochastic, i. e. (mnQ + (1 −mn)I)1 ≤ 1 with the

strict inequality for at least one entry. This means in particular that α (mnQ+ (1−mn)I)k 1

is decreasing with k and

lim
k−→∞

α (mnQ+ (1−mn)I)k 1 = 0,

So, for a fixed ε ∈ (0, 1) and by definition of integer K we have that for every i = 1, . . . , n,

P{Θγ
i > k} ≤ ε, for every k ≥ K,
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which completes the proof.

In the same way, we obtain a similar result for the computation of the expected values

E(Θγ
i ), for i = 1, . . . , n, for which the truncation of the series (6) is needed.

Theorem 10 For every n ≥ 1, for every ε ∈ (0, 1),

0 ≤ max
i=1,...,n

(
E(Θγ

i )−
L−1∑
k=0

P{Θγ
i > k}

)
≤ ε,

where

L = inf

{
k ≥ 0

∣∣∣∣ 1

mn
α(I −Q)−1 (mnQ+ (1−mn) I)k 1 ≤ ε

}
.

Proof. We introduce the notation

ri = E(Θγ
i )−

L−1∑
k=0

P{Θγ
i > k}.

We then have, for every i = 1, . . . , n,

ri =
∞∑
k=L

P{Θγ
i > k}

=

∞∑
k=L

k∑
`=0

(
k

`

)
p`1,i(1− p1,i)k−`αQ`1P{Θ

γ
i−1 > k − `}

≤
∞∑
k=L

k∑
`=0

(
k

`

)
p`1,i(1− p1,i)k−`αQ`1

=

∞∑
k=L

α (p1,iQ+ (1− p1,i)I)k 1

≤
∞∑
k=L

α (mnQ+ (1−mn)I)k 1 ( from Lemma 8)

= α (I − (mnQ+ (1−mn) I))−1 (mnQ+ (1−mn) I)L 1

=
1

mn
α(I −Q)−1 (mnQ+ (1−mn) I)L 1

≤ ε by definition of integer L2.

which means that maxi=1,...,n ri ≤ ε.
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It is easily checked, from Relation (11), that the same result holds for the limiting expected

value E(Θγ). More precisely, if lim
n−→∞

p1,n = b > 0, then, for every ε ∈ (0, 1), we have

0 ≤

(
E(Θγ)−

H−1∑
k=0

P{Θγ > k}

)
≤ ε,

where

H = inf

{
k ≥ 0

∣∣∣∣ 1

b
α(I −Q)−1 (bQ+ (1− b) I)k 1 ≤ ε

}
.

4 Geometric distribution

We suppose in the section that the probability mass distribution γ(n) is the geometric dis-

tribution with parameter b, with 0 < b < 1, truncated at step n, i.e. given, for n ≥ 2 and

r = 1, . . . , n− 1 by

pr,n = (1− b)r−1b and pn,n = (1− b)n−1.

From Relation (12), we have p1,i = b for every i ≥ 2 and thus lim
n−→∞

p1,n = b. We then have

from Theorem 3, for every n ≥ 2,

P{Θγ
n > k} =

k∑
`=0

(
k

`

)
b` (1− b)k−` αQ`1P{Θγ

n−1 > k − `},

IIIIIIIIIIIIIIIIIIIIIICCCCCCCCCCCCCCCCCCCCIIIIIIIIIIIIIIIIII

5 Application to cluster-based distributed storage

A cluster-based distributed storage peer-to-peer system guarantees durable access to large scale

applications such as file sharing, streaming, or video-on-demand. It is achievable by harnessing

the very large storage space globally provided by the many unused or idle nodes connected

to the network. A common approach to handle these nodes is by having nodes that are close

to each other according to a given proximity metric to self-organize into clusters. Specifically,

each object (e.g. data stream, file) is divided into k equal size fragments, and recoded into

a potentially unlimited number of independent check blocks through a rateless-erasure coding
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(also called Fountain) schema (e.g. [5]). Fundamental property of erasure coding is that one

may recover an initial object by collecting k′ distinct check blocks generated by different sources,

with k′ slightly greater than k. During the coding phase, each check block ci is generated by (i)

choosing a degree di from a particular degree distribution, (ii) randomly choosing di distinct

input symbols (called neighbors of ci) among the k input symbols, and (iii) combining the di

neighbors into a check block ci by performing a bitwise xor operation. The key idea of the

decoding process is to build the Tanner graph based on the set of received check blocks. Upon

receipt of check blocks, the decoder (i) finds any check block ci with degree equal to one (ii)

removes the edge between ci and ki in the Tanner graph, and (iii) executes a bitwise xor

operation between ki and any remaining check block cr that has ki as neighbor, and remove

the edge between cr and ki. These steps are repeated until all k input symbols are successfully

recovered. To guarantee the success of the decoding, the degree distribution is designed so that

as few as possible check blocks are needed to ensure minimum redundancy among them, and

the average degree is as low as possible to reduce the average number of symbol operations

to recover the original data. This amounts to generating check blocks so that in average no

more than 1/4 of them are degree one to start the decoding and to prevent a too high amount

of redundancy among these check blocks, 1/2 of them are of degree 2 so that combined with

degree 1 check blocks they allow to cover a large proportion of input blocks, and 1/8 of them

are of degree 3 so that the decoding process is unlikely to be get stuck. The repartition of the

other check blocks classically shows a steep decline, i.e. 1/2i of them are of degree i. These

check blocks are disseminated to the nodes of the system so that all the nodes that receive

degree 1 check blocks self-organize in a cluster, those that receive degree two check blocks self

organize in another cluster, and so on and so forth. Nodes can freely join and leave a cluster.

For scalability and reliability reasons the number of nodes in a cluster is constrained. When

the cluster size undershoots m nodes, then new check blocks are generated so that new nodes

will join the cluster. Similarly when it exceeds M then generation of check blocks is suspended.
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We model the effect of join and leave events using a homogeneous discrete-time Markov chain

denoted by X = {Xn, n ≥ 0}. Markov chain X represents the evolution of the number of

nodes in the system. The Markov chain X modeling the behavior of one cluster is depicted in

Figure ?? in which q = 1− p and p ∈ (0, 1).

gam.eepicMarkov chain model of one cluster.fig:gambler

The transition probability p means that a new peer joins the cluster while the transition

probability q means that a peer leaves the cluster. The transition from state m + 1 to the

absorbing state expresses that the cluster has reached its minimal size m and that the coding

process has to be activated. In the same way the transition from state M − 1 to the absorbing

state means that the cluster has reached its maximal size M and that the coding process has

to be suspended. The initial distributions α that we consider are the unit row vectors ej for

j = m+ 1, . . . ,M − 1. So, the initial distribution α = ej means that X0 = j with probability 1.

The matrix Q which gives the transitions between the transient states of X is thus a tri-

diagonal matrix where non-zero entries are Qi,i+1 = p and Qi,i−1 = q = 1− p. The probability

mass function π(n) is such that pi,n = 1/n, for every i = 1, . . . , n. With these values, the

limiting behavior of respectively the distribution and the expectation of Θn are given from

Theorem 6 for every k ≥ 0, by

lim
n−→∞

P{Θn > k} =



pk if X0 = Smin + 1

1 if X0 = j, for Smin + 2 ≤ j ≤ Smax − 2

(1− p)k if X0 = Smax − 1

and

lim
n−→∞

E(Θn) =



1

1− p
if X0 = Smin + 1

∞ if X0 = j, for Smin + 2 ≤ j ≤ Smax − 2

1

p
if X0 = Smax − 1.

For the numerical evaluations, we have chosen p = 1/2. With this value, we easily get, when

α = ej ,

E(Θ1) = (j − Smin)(Smax − j).
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We have also chosen Smin = 4 and Smax = 16 which implies that the number of transient states

is equal to 11.

α(I −Q)−1 = (1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1)

Figure 1: From bottom to the top: P{Θγ
1 > k}, P{Θγ

2 > k}, P{Θγ
3 > k}, P{Θγ

4 > k},

P{Θγ
5 > k}, P{Θγ > k} when X0 = 6 ou 10, as functions of k.

ε = 10−4.

E(Θγ
1) E(Θγ

2) E(Θγ
3) E(Θγ

4) E(Θγ
5) E(Θγ

6) E(Θγ
7) E(Θγ

8) E(Θγ)

36 42.2046 47.4027 50.6644 52.0177 52.3487 52.3928 52.3960 52.3961

Fig. 1: Values of k∗ for different values of ε and n.
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