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Abstract
The human medial temporal lobe is an important phtie limbic system, and its substructures play k
roles in learning, memory, and neurodegeneratitve. Medial temporal lobe includes the hippocampus,
amygdala, parahippocampal cortex, entorhinal codar perirhinal cortex — structures that are cempl
in shape and have low between-structure intensityrast, making them difficult to segment manuaily

magnetic resonance images.

This paper presents a new segmentation methodctimbines active appearance modeling and
patch-based local refinement to automatically segrapecific substructures of the medial temporaklo
including hippocampus, amygdala, parahippocampakxpand entorhinal/perirhinal cortex from MRI
data. Appearance modeling, relying on eigen-decaitipa to analyze statistical variations in image
intensity and shape information in study populatisrused to capture global shape characteristieach
structure of interest with a generative model. Pd&i@sed local refinement, using nonlocal means to
compare the image local intensity properties, @iagd to locally refine the segmentation resultsalthe
structure borders to improve structure delimitatibnthis manner, nonlocal regularization and globa

shape constraints could allow more accurate se@tiens of structures.

Validation experiments against manually-definedela demonstrate that this new segmentation

method is computationally efficient, robust and wuaate. In a leave-one-out validation on 54 normal



young adults, the method yielded a mean Rioé 0.87 for the hippocampus, 0.81 for the amygdala3

for the anterior parts of the parahippocampal gyamorhinal and perirhinal cortex), and 0.73 foe t

posterior parahippocampal gyrus.

Keywords: segmentation, appearance modeling, nahlowans, label fusion, medial temporal lobe

structures.



1 Introduction

The medial temporal lobes (MTL) are an important p&the limbic system in humans and include the
hippocampus (HC), amygdala (AG), and the parahigppal gyrus with its substructures entorhinal
cortex (ERC), perirhinal cortex (PRC), and parabiggmpal cortex (PHC). These structures play
important roles in learning, memory, and neurodegaiion (LeDoux, 1989; Barense et al., 2005; Baxter
2009). The HC is the most frequently investigatechgonent of the MTL because of its role in memory
and contextualisation. The AG is strongly involvedemotional and social processing, in particuleay

and anxiety. The ERC is the main interface betwkerHC and the neocortex and plays an importagt rol
in the formation and optimization of spatial memasri The PRC is involved in visual perception and
memory, and the PHC is involved in scene recogmiéiod social context. Recently, MTL structures have
received considerable attention due to their ingrare in neurological diseases and disorders (Cetdes
al., 1993; Mori et al., 1997). For example, chanigekippocampal volume have been shown to be an
important marker of the early stages of Alzheimelisease and temporal lobe epilepsy (Jack Jr.. et al
1992, 1997; Fox et al., 1996; Duzel et al., 2005ewise, the parahippocampal gyrus, especially its
substructures ERC and PRC, has been argued asditiorzal, possibly even superior, marker of
neurodegeneration and dementia (Xu et al., 200Qjoftunately, research evidence is sparse possibly
due to the fact that manually segmenting substrastaf the parahippocampal gyrus is complex and tim
consuming while automated techniques are not giyerailable. Because of the importance of these
structures in neurodegeneration and the high timestment in performing manual segmentation, tlsere
significant interest in developing accurate, robasid reliable segmentation techniques to autoaigtic

extract these structures from magnetic resonan€® {Maging for volume and shape analyses.

Manual segmentation is considered highly accueatd treated as the current gold standard.
However, the technique is time consuming, requaregomical expertise, and requires constant cootrol

inter- and intra-rater variability. Hence, it idfaiult to apply manual segmentation in studiesoiwing



large numbers of subjects. To overcome the lintiteti of manual segmentation, many automatic
segmentation techniques have been proposed, wigt model-based segmentation techniques falling
into the following three categories: deformable eled(Shen et al., 2002), appearance-based models
(Cootes et al., 1998; Klemencic et al., 2004; RPatde et al., 2011), and atlas-based techniquesh{feés

al., 2002; Collins et al., 1995).

Deformable models use parametric or nonparametethoas to initialize contours or surfaces and
then match them to the object boundaries (Gharali,et998; Shen et al., 2002). To avoid the misimat
between the model edge and the multiple edgesimtage, Chupin et al. (2007, 2009) applied stmectu
specific morphometric rules based on prior knowéed§anatomical features derived from training data
to segment the HC and AG. Cootes et al. (1995)rpawrated a statistical parameterization into the
deformable shape model. The statistical paramat@siz can be derived from training data but it ofte
imposes global shape constraints, suggestinglieanbdel can be deformed only in ways implied ty th
training data. This idea of incorporating the stédal shape model into the deformable shape tdaawpla
resulted in active-shape models (Cootes et al. 1@@He the idea of building up both statisticabple
and intensity models for shape and intensity leca¢tve appearance models (Cootes et al., 1998;
Duchesne et al., 2002). To avoid the manual idieatibn of landmarks in training data (Cootes et al
1998), we (Hu and Collins, 2007; Hu et al., 20Xitpgrated the level-set method into the appearance
modeling and further integrated multi-contrast MRages into the segmentation to improve its
robustness and accuracy. Recently, a similar meltagdbeen also proposed by Toth and Madabhushi
(2012), where instead of multi-contrast MR images|tiple features derived from T2 MR images were
integrated into the appearance modeling. Patenatidd. (2011) placed appearance models within a

Bayesian framework to better capture the probatailielationship between shape and intensity.

Atlas-based segmentation techniques have attrattetion for their high levels of accuracy (Fisch
et al., 2002; Collins et al., 1995). Atlas-basechteques use a template (i.e., MR image with manual

segmentation) as prior information to assist invigtimg automatic labels. Unlike the work of Collies



al. (1995), where the manual labels in the templedéee propagated to the target image through an
inverse spatial transformation, Fischl et al. (0@2veloped another automatic label assigning igcien
based on the probabilistic information derived frimmplates. To avoid potential bias from using only
one template, Heckemann et al. (2006) and Aljabat. €2009) proposed multi-atlas based methods wit
label fusion. They further improved segmentatidiceincy by selecting several similar templatedeas

of all templates from a given library. Inspired liyeir work, Collins and Pruessner (2010) also
incorporated label fusion into the multi-atlas wagpand achieved very accurate results for autankd
segmentation. Wang et al. (Wang et al., 2011) tisednulti-atlas technique with error correctioryield

the best-published results for HC segmentation wegpect to the manual labels. Nevertheless, these
techniques are sensitive to registration error sgldction of the templates, as they generally adsig
same weight to all templates in the segmentatiacquure. More recently, Coupé et al. (2011) used a
nonlocal means patch-based label fusion approaeleight the expert manual segmentation in a library
of templates based on the intensity similarity ket patches. Since its introduction, this methasl ha
been extended to the multi-scale framework (Eskitdst al., 2012), the multi-point approach (Rougsea
et al., 2011) and regression-based strategies (\Waalg, 2011b). Moreover, patch-based label fub@as
been used in different contexts such as Alzheiméeisease detection (Coupé et al., 2012) and
neurosurgical planning (Haegelen et al., 2012). ¢gkendetailed review of segmentation methods can be
found in Table 1. Note that neither atlas-based paich-based methods explicitly incorporate global

shape constraints into the segmentation.

To integrate global shape constraints into thensggation and increase the local structure fitting,
developed a new fully automatic segmentation mettied combined the active appearance model
(AAM) and patch-based technique into a general stame segmentation framework. In the first-stage
segmentation, the AAM is used to capture the siedischaracteristics of shape and intensity infation
in the training data. Although the AAM does, in tfatake into account local geometry, its ability to

recover fine details at structure borders is lichitey the number of principal components used in the



model. Thus, there is often some “blurring” of tteucture shape. This issue can be addressed by the
nonlocal means patch-based technique, which is @mglas a second-stage segmentation to locally
refine the tentative segmentation results from firg-stage segmentation. To impose coarse global
constraints and also to limit the number of voXelslocal segmentation refinement, the second-stage
local refinement is performed only on a structusariary area identified by the first-stage segntamta

In this manner, global shape constraints and al loegularization can be well integrated and this
integration can better enable accurate structugeneetations. In addition, the structure boundasaar
identified by the first-stage segmentation can gisatly reduce the search area for the structoréel

and greatly reduce the computational complexityhim second-stage segmentation as otherwise a large
number of voxels requiring the local refinement Wobe needed and the computational complexity
would be extremely high. Finally, it is importamt hote that while there have been a large number of
publications describing different methods for HQl &G segmentation (see Table 1), we are aware of
only one paper that addresses automatic segmantatithe PHC (Heckemann et al., 2006), and to the
best of our knowledge, no methods have been pu@aiglith validated automatic segmentation results on
the entorhinal and perirhinal cortex (EPC), twosttlctures of the parahippocampal gyrus. This might
have to do with the complex anatomical variatiorunfd between subjects in the area of the
parahippocampal gyrus: essentially all of the suissires of this gyrus develop around the collatera
sulcus, a highly variable fold in the MTL that che interrupted, branched, or fused with neighbaurin
occipitotemporal and rhinal sulci (Pruessner et 2002). However, developing accurate automated
segmentation techniques for this structure woulldwalfor a more systematic investigation and
assessment of the contribution of the substructofethe parahippocampal gyrus to memory and

neurodegeneration.

The main contributions of this paper are as folow) A two-stage segmentation to combine the
appearance model and nonlocal means patch-baséodniet capture the global shape variation and to

locally refine the segmentation by weighting thealosigned distance functions; 2) Application oé th



proposed two-stage segmentation method to segriavifTa structures. In comparison to the HC and
AG, other MTL structures, like the PRC and PHC,éhawich greater anatomical variability and their
segmentation has been considered difficult. Heme, ttivo-stage segmentation method is shown to
outperform the appearance modeling method alonpatech-based local refinement method alone in
segmenting those structures; 3) Characterizatiomohfme properties of all MTL structures in healthy

young adults against hemisphere, age, and gender.

2 Method

2.1 Appearance Model-based Segmentation

Appearance model (AAM)-based segmentation apphieseigen-decomposition technique to gray-scale
MR images and shape data to capture the statisticadtions of the intensity and shape informatdn
the training data. To minimize the differences iiresorientation, and position between subjectsh bo
training and test MR images are linearly and themlinearly registered (Collins and Evans, 1997aro
unbiased nonlinear average template (ICBM152 20@®d¢inear asymmetric 1x1x1 mm template (Fonov
et al., 2011)) within the volume of interest sumding the MTL structures. Based on the eigenvectors
derived from the training data, the final shape gray level can be given by

p=9+PQ W, c
_ (1)

gtl - gtl + ngtngrtlc
where (_0 is the mean of the signed distance functions eftthining shapesg, is the mean gray-level

(intensity-level) of the normalized T1-weighteditiag images, P, and ngtl are the eigenvectors

derived from the training shapes and training gregle images, respectivelfd , and ngtl are the
appearance eigenvectors as ways of jointly paraipeig a set of intermediate shape and intensity

parameters.v_vs_1 is a standard deviation balancing factor. To becsj, if we consideM training



images, theé-th shape and gray-scale training images can lresepted as a linear combination of their

corresponding eigenvectors, i.e.,

@= a + PJ)@i (2)
9, =0, * Py by

whereb ,; is a vector of intermediate shape parametersevihyl, ; is a vector of intermediate intensity

parameters.

We can define two intermediate parameter matri<£é¢§=[b i=1,2,...,M] and Bg’tlz[b

@i gty

i=1,2,...,M] and further group them into a supemtnimaB in this form

W_B
g = e [V o (3)
Bgyﬁ ngtl

where W =diag(w,,,W,,,...,W,, ) is used to balance the sets of intermediate shapeintensity

parameters in deriving the parameter eigenvectdrixn& = [Q;,Q;tl]T. Of the matrix W, thei-th

o

S,i?

diagonal elementy,; is set tog a ratio between an intermediate intensity levaiameter

gtLi

standard deviatiorg,,; and an intermediate shape parameter standardtidevia,;. The standard

deviation balancing factoTvs‘1 in Eq.1 is set to the inverse of the mean W&,i{’ i=1,2,...,M}. In EQ.3,

C is a matrix with each column being a vector oé&incombination weight coefficients, also known as
model parameters. For theh pair of shape and gray-scale training imagasiy tcorresponding model
parameter vector is theh column vector ofC . Eq.1 is a generic representation withas a set of model
parameters. By adjusting the model paramegterdifferent MR images and their corresponding skape

can be synthesized.



The segmentation for a given T1-weighted test MRge | , Is achieved by minimizing the gray-

level difference between the test image and thegyénsynthesized from Eq.1. The cost function in the

least square measure can be written as:
NP
— 2
€= (I, =9, (4)
i=1

where ltl,j is the intensity of thgth voxel of the T1-weighted test MR imagg:, g, ; is the intensity of
thej-th voxel of the synthesized T1-weighted image, expressed as a function ofgiven by Eq.1, and

N, is the total number of voxels in each image. Thecessing pipeline for the AAM-based

segmentation is shown in Figure 1, and the segrientmethod was described in detail in our previous

work (Hu and Collins, 2007).

2.2 Nonlocal Means Patch-based Segmentation
To label a voxel in a test image, the nonlocal megatch-based segmentation procedure compares a
small image patch from the test image to corresipgngdatches in a series of pre-labelled images in a

template library. The label is obtained from a gied average of the template labels. The method

described here is the same as in Coupé et al.1}2Diparticular, for a voxek, in the test image and a

voxel X ; in a training imags, the Weightw()g,xS’j) , can be calculated by a nonlocal means filter as:

lIpCa)=p(xs, I3

wix.x,;)=e " (5)
where p(x;) is a cubic patch centered at vox¢lin the test imagep(x; ;) is a cubic patch centered at
voxel X ; in thes-th training image, and ||.i a normalized intensity distance between twalpeg, and

h? is a controlling parameter which can be set tortfi@imum of || p(x ) - P(X | )IF of all selected

training patchesp(x; ;) for a given test patch(x;) (Coupé et al., 2011).



To simplify computation, not all patchgs(X; ;) need to be compared (X ) . We defineV; as
a cubic neighbourhood in the training image, cautet the location corresponding to positign Only

the patches centered on the voxrls that are part of theearch window V; are considered.

The training patch centered at each voxg| is further considered in a pre-selection process f

weight calculation. Basically, to further improvensputational efficiency, all patches are pre-seléct
before calculating the weights to discard the padalthose mean and variation are far away (in tefms
intensity) from the test-patch. The pre-selectisasuthe structural similarity measure (SSIM) (Wahg

al., 2004) and can be defined as:

_ 21 Dzai Os

SSM
2 2 2 2
:ui +:us,j Ji +Js,j

(6)

where excluding the subscripts,is the mean and is the standard deviation of patch@gx,) and
p(xs,j) '

The final label of the voxek;, denoted byL (X), is a weighted average of all labeled samples

inside the search windows around voxelg {, j UV;;,s=1,2,...,M }from M training images, i.e.,

LX) = DD, WOG X L0 )
' Z's\llzlz:juv&i W()g’xs,j)

where X ; is thej-th voxel in the search windoW,;, Li(X,;) is the manual label for voxet, ;, and

(7)

W(X,Xs;) is the weight assigned to a pair of patches: ést patchp(X;) and the training patch

p(xs,j) '

10



2.3 Combining Appearance Modeling and Nonlocal MeRatch in Segmentation

Although AAM-based segmentation may be good atwapy the global shape variation, it might not be
sensitive enough to account for small local shdg@ages. The local details of the image might berétl
because of the limited training data size, thetBohinumber of eigenvectors derived from the tranin
data, and the limitation of using the linear sp&rigenvectors to capture variations. Also, the A4V
not able to generate the local geometrical vamati@t does not exist in the training data. Madgdaby
the concept of patch-based label fusion taking aidge of anatomical pattern similarity (Coupé et al
2011), we combine these two methods into a twoestsggmentation to improve the segmentation
accuracy. In this segmentation, the AAM-based segatien is employed as a first-stage segmentation t
identify a coarse contour and its neighbouring aaea the nonlocal means patch-based segmentation i
employed as a second-stage segmentation to loedihe the segmentation for voxels in the idendifie
neighbouring area of the coarse contour. The fdaligwis a summary of the proposed two-stage

segmentation:

» First-stage: Perform AAM-based segmentation andinbthe segmented distance functign

Then, define a local refinement ar®anamely, the set of voxels inside the distancgedadl,

d2] of ¢.

« Second-stage: For each voxel insideR, recalculate the patch similarity function gf (X )

using the nonlocal means patch-based refinemerttadetescribed in Sec. 2.2. Instead of using
the manual labels in Eq.7, the signed Euclideatadi® functions of the manual labels are

integrated into the equation:

S W) A0)
2‘4:1:12‘41'5%i W(Xi ! Xs,i)

@(X) = (8)
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where qos(xs’j) is a signed distance function for voxg|; in training images. The distance

averaging in the segmentation was also used byfiRgland Maurer (2005), where they showed

that the distance averaging outperformed the hattéhg.

« The final segmentation is achieved by thresholdingx; ) .

3 lllustrative Experiments and Results

The proposed two-stage segmentation algorithm ywphbeal to segment human MTL structures in high-
resolution MR images. Two datasets were used eKperiments, with one being a subset of the other
The first dataset comprised 152 healthy adults fi&o 35 years of age acquired in the contexhef t
International Consortium for Brain Mapping (ICBMjgpect (Mazziotta et al., 2001). In the experiments
we applied our method to this dataset to studyvtiiames of MTL structures in the group of healthy
young adults. The second dataset was a subse¢ difsh and was used to validate the method. Tdrme
here the MTL database, the second dataset comphsdiist 54 subjects from the ICBM dataset, a&srth
manual labels were available for use as a referémrcealidation. All MR data were acquired at the
Montreal Neurological Institute on a Philips Gyrasc(Best, Netherlands) 1.5T scanner. The T1-
weighted scans were acquired with a three-dimeasi@D) spoiled gradient echo sequence with TR =

18 ms, TE = 10 ms, flip angle =3@nd resolution of 1 mhvoxels.

The manual labels of the MTL structures (HC, ARG PRC, PHC) of the 54 subjects in the MTL
database were identified following the protocoliced by Pruessner et al. (2000, 2002) using the
software tool “Display” developed at the MontreaéuMological Institute. The inter- and intra-rater
variation of the manual labels were evaluated Isatnlass correlations (Shrout and Fleiss, 1978 T
inter-rater correlation (left - right hemisphereasv0.86-0.94 for HC, 0.83-0.84 for AG, 0.93-0.9% fo
ERC, 0.9-0.92 for PRC, 0.88-0.9 for PHC, while thiga-rater correlation (left - right hemisphereasv
0.91-0.94 for HC, 0.91-0.95 for AG, 0.91-0.96 foRE, 0.92-0.94 for PRC, 0.91-0.93 for PHC. The

automatic segmentation results were compared Wwebket manual labels. The similarity between the two

12



labels is measured by calculating the Dice kappa@ice, 1945)k =2 * (V (M n A)/(V (M) + V

(A))], where V is the volume, M is the manual lakeid A is the automatically segmented label.

In all experiments below, T1-weighted MR imageseavased for both AAM-based segmentation
and patch-based local refinement. As nonlinearsteggion could provide a better alignment and help
improve the AAM based segmentation performance @dual., 2011), we considered nonlinear
registration in the two-stage segmentation. Foatiatal simplicity, we named the space for scanned
images as theative space, the space for linearly registered imagdbesource space, and the space
after nonlinear registration as thedel space. The ANIMAL-based nonlinear registration|{i@s et al.,
1995) was employed to transform all shape and gcaje images from thgurce space to thenodel
space. The two-stage segmentation was conductiée model space. The final results were converted
back to thesource space via the inverse nonlinear spatial transfoomalt was in thesource space where
the automatic segmentation results were comparéld these manual labels. The validation of the

proposed method and volume characterization werduied as follows.

» Validation: The validation was performed on the Mdataset, a subset of the ICBM dataset. The
MTL dataset had 54 subjects. In the validationsBHjects were partitioned into 4 groups with 14
subjects in each of the first three groups andubfests in the last group. To test one subject in a
given group, 40 subjects from the other three gsompre selected to build a set of appearance
models for the first-stage segmentation. For the sd simplicity, the common set of appearance
models were used to test each of the remainingestshjn the given group. As for the patched-
based local refinement in the second-stage segtimmthowever, the best 30 out of 53 subjects

(excluding the test subject from 54 subjects) vesilected.

« Volume characterization: The volume characterizatieas conducted on the ICBM dataset,
which included the MTL dataset used for validatitira test subject from the ICBM dataset was

not in the MTL dataset, all 54 subjects from the IMJataset were used in building the set of
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appearance models and 30 of 54 subjects were aeglfxtthe local patch refinement. Otherwise,

the segmentation was done as described in theati@lidbullet above.

In both the validation and volume characterizatithre local refinement area was limited to an area
formed by voxels with distance range [-2.5, 2.5]ggfwhere ¢ was the segmentation resulted from the
first-stage AAM segmentation. The threshold fori@$alue in Eq. 6 was set to 0.95 in all experiments

The distance range fag and the SSIM value were empirically selected basesimulations. The effects

of the distance range @f and SSIM value on the performance of segmenting A& EPC, and PHC
are shown in Figs 2 and 3. Here, the EPC standthéento-/peri-rhinal cortex (EPC = ERC + PRC).
From Fig. 2, we can see that the best median keglpas measured from 14 subjects (shown as a red ba
for each distance range) were obtained by usirtgriie range [-2.5, 2.5] fag, while from Fig. 3 we can
see the procedure is quite stable with SSIM vahess 0.95 (from the segmentation of three randomly

chosen subjects shown).

3.1 Effect of Patch Size on Segmentation Performanc

As mentioned earlier, patch-based local refinenagrtlyzes the local intensity similarity betweerest t
patch and each of training patches and then assigmsight based on the intensity similarity to each
patch pair. Accordingly, patch sizes may directffeet the segmentation performance. To study the
impact of different patch sizes on segmentationuaay, we segmented the HC, the EPC, and the PHC
using different patch sizes. Tleresults of 14 test subjects using different paizles are presented in
Fig. 4. From the figure, we can see that the bestiamk values are with a patch size of 7x7x7 for all
structures. The medianvalues using & 5X5 neighbourhood are very close to those frofi7X 7 but

the latter are slightly better. These results iatiichat a too-small patch size might not be ablepture

the local geometry, while a too-big patch size rhiglil to find the best matched patches in thenirgj

data. In the experiments that follow, a patch sizéx<7<7 is used.

14



3.2 Effect of Search Window Size on Segmentatiafof@ance

As mentioned in Sec.2.2, for a given voxel reqgranlocal refinement, a cubic neighbourhood in each
training image is defined to search for trainingchas. The cubic neighbourhood size is also knava a
search window size. The impact of different seamthdow sizes on segmentation accuracy was also

analyzed for the HC, EPC, and PHC. khealues of 14 test subjects are given in Fig. & f@sults show
that the best media values are with a search window size of 5x5x5. Kivalues from K7X7 are
shown very close to those fromx% X5 but the latter are slightly better. The searchdeiv size of
5x5x5 (with the best performance here) is sligbtiyaller than the size of>77X7 chosen by Coupé et
al. (2011). A possible explanation is that Coupé@le(2011) used linear registration, while we used
nonlinear registration, which was considered capablproviding a better alignment. In other wonds,
think a better alignment among subjects can halpae the search window size. In the following, the

search window size is set to<® X 5.

3.3 Validation of Segmentation Accuracy on MTL $8tures

We used the proposed two-stage segmentation mé&shgebment both left and right HC, AG, EPC, and
PHC from the MTL dataset of 54 subjects using adezne-out method. Table 2 shows the segmentation
performance in terms a&f values for the AAM-based method alone, the pat$ed method alone, and
the proposed combined AAM-based segmentation atah{iesed local correction. These experiments

show the following:

» For all MTL structures, the meanvalues from the combined AAM and patch-based nuktre
higher than those from the AAM-based method alarth® patch-based method alone, indicating
a combination of the global shape constraints fritthm AAM and the sensitivity to local

geometrical change from the patch-based localeefent improves the segmentation accuracy.

* The mixed-factor model repeated measure analydisg usiultivariate analysis of variance

(MANOVA) (Cochran and Cox, 1957) shows a statislycaignificant effect ork for all three
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segmentation methods (p < .001). To further analyeadifference between any two methods, a
matched-pair post-hoc t-test was applied. The spoeding p-values are shown in Table 3. Here
we refer to being statistically significant as p08. When the AAM- and patch-based methods
were compared, the patch-based method providedrbesults in segmenting the HC and EPC
(see Table 2). The difference inbetween the two methods is statistically signiitcdor AG
segmentation, the AAM-based method provided betsults than the patch-based method (see
Table 2), and the difference iris also statistically significant. There is naotistigcally significant
difference for PHC segmentation (p = .282 for RBtC and p = .805 for right PHC), although the
meank for the patch-based method is slightly higher ttzat for the AAM-based method as
shown in Table 2. For all MTL structures, the meaalues for the combined AAM and patch-
based method are higher than those from eitherAthil- or patch-based method, and the

differences are statistically significant (p < .05)

The overlap between the automatic segmented lamelsmanual labels was also evaluated with a
Jaccard index, shown in Table 4. Note that the Raggpa k) and Jaccard (J) index are directly related,
i.e.,, J =K [/ (2k) (Shattuck et al., 2001). When the overlap isgmrfboth Dice kappa and Jaccard index
will be 1.0. When there is an overlap discrepaniog, discrepancy will be mapped to a larger dynamic
range in the Jaccard index as compared with the Képpa, suggesting that the Jaccard index is more

sensitive to the overlap discrepancy.

The improvement in segmentation accuracy of the-stage combined AAM and patch-based
segmentation method can be also observed in Fighére three example segmentations on the striscture
of interest are shown and the corresponainglues provided by the two-stage segmentatiorhigteer
than other two automatic segmentation methods. df further compare the automatic results with

corresponding manual labels, the automatic lalrelsamewhat smoother than the manual ones.
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One might be interested in the cases where thestage segmentation results did not match well
with the manual labels. Two examples on the segatient of the left HC are shown in Fig. 7, where
there are two rows (one for each example) showiagegmentation on 4 sagittal slices. In the upper
(example#1), we can observe an obvious mismataheeet the automatically segmented contour and the
manual contour in both slice#l and #2 at the meubatler of the HC. In the lower row (example#2),
discrepancies can be observed between the autafhasegmented contour and the manual contour at
the bottom-right corner of the HC. These might loe ¢o the low tissue contrast along the structure

boundary, which makes the segmentation difficult.

As a further check on the two-stage segmentagsults, we estimated the linear regression on V(A)
and V(M), where V is the volume, M is the manudidh and A is the automatically segmented label
(from the two-stage segmentation). We also caleulde intra-class correlations (ICC) between V(A)

and V(M) as a second measure on how V(A) and V@8gmble each other. The linear regression results
together withR? (R square) and ICC values are shown in Figs 8%fml AG, HC, EPC, and PHC, for

both left and right sides. We can sBé= 0.890 and 0.850 for the left and right AG, 0.0 0.927 for
the HC, 0.806 and 0.867 for the EPC, and 0.780(an62 for PHC, respectively. The ICC values are
0.904 and 0.885 for the left and right AG, 0.93@ arB44 for the HC, 0.879 and 0.921 for the EP@, an
0.839 and 0.818 for PHC, respectively. These valndgate extremely good agreement between
automatic and manual labels for AG and HC, verydgagreement for EPC and good agreement for PHC.
Note that the slope of linear regression modelsoisexactly equal to 1.0. There appears to beghtsli
over-estimation of smaller structures, and a slightler-estimation of larger structures that may
correspond to a regression to the mean. To fudheck if there is a bias between the automaticraek
(from the two-stage segmentation) and manual vodraepaired t-test was performed for each MTL
structure, and results are listed in Table 5. Galyespeaking, for each MTL structure, the mearuus
from the two-stage segmentation is slightly big¢jfesn that of the manual labels, but the volume

difference from the paired t-test is not statidtgignificant (p > .05).
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Further experiments to check the segmentationdspeee performed and the results showed that the
proposed two-stage segmentation method (AAM + phéded method) was able to quickly segment a
new subject due to the fact that the first-stageMAlfased segmentation greatly reduced the local
refinement area for the second-stage patched-bafie@ment. To be specific, a rough bounding box
around the HC represents a volume of 90000 80 x 50) voxels per image and the number of voxels
in the border search region on average is fourltetaround 9000 voxels per image, a reduction of 90%
voxels that represents an equivalent reductiommputational expense for the patch-based segmamtati
step. The detailed execution time of each stephénttaining and execution phases of the proposed
method are compared with the pure patch-based itgghrand are shown in Table 6. Since the patch-
based method of Coupé et al. (2011) used only dinegistration, we included the execution time for
linear pre-alignment as well. From Table 6, we saa that with nonlinear pre-alignment, the runtisme
~7.5 minutes for the proposed AAM+Patch method -ah@ minutes for the patch-based method, while
with linear pre-alignment, the runtime is ~1.5 mawsifor the proposed method and ~10 minutes for the
patch-based method. When segmenting a new sutkjeatyverall runtime of the proposed method is more
than 50% faster when using nonlinear registratarstibject pre-alignment, and 80% faster when using

only linear registration, compared to the pure pdtased method (Coupé et al. 2011).

Since the run time reduction in the linear registn case is significant, one might be interested
the segmentation performance with linear regisiratiHere, by “linear registration”, we mean both
training and segmentation are done in the lineacap As a check, we tabulate in Table 7xivalues of
segmenting the HC by all three aforementioned nusthvath only linear registration. Thevalues from
nonlinear registration are also listed for comparisThe results show that in the linear registratiase,
both patch-based method and the combined methoe $iavlar segmentation performance and each
method can provide a significant performance impme&nt over the AAM method as tkevalues are
raised to ~0.85 (for patch-based or combined mgtfroch ~0.75 (for the AAM method). On the other

hand, the use of nonlinear registration can halpeimse the& values, especially for the AAM method, due
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to the fact that the nonlinear registration careioi better structure alignment, which may render t
eigen-decomposition analysis used in the AAM methetter. As for the patch-based method and the
combined method, their performance is also enhaftdtle nonlinear registration case. Overall, the
segmentation performance with nonlinear registrat®found better than that with linear registratio

Thus, we will continue using nonlinear registratiorour segmentation.

3.4 Volume Analysis of Medial Temporal Lobe Struetiin Healthy Young Adults

The integrity of MTL structures is considered asimportant marker in the onset and progression of
many neurological and neurodegenerative diseasekiding Alzheimer’s disease and temporal lobe
epilepsy. Analyzing the volumetric characteristafsMTL structures in a normal population can thus
contribute to a better understanding of the neuhmpagical changes that may characterize these
diseases, and in distinguishing patients from hgahdividuals in the early stage of a diseasethia
experiment, we used the MTL database with exidilid. segmentations (54 subjects) as training data to
segment the MTL structures of 152 subjects in thelEBM database; more specifically using a leave-
one-out method for the first 54 subjects and thenfull library of training data for the remaini®§

subjects.

The mean volumes of MTL structures of 152 heajthyng adults from the automatic segmentation
are summarized in Table 8. Statistical analysigaad a significantly larger right HC volume (p04.3)
and a significantly larger left PHC volume (p <100but no significant difference in AG volume. Apa
from the above findings, we found that the left ER&S significantly larger than the correspondirgnti

side (p = .005).

No statistically significant differences were faufor the HC, AG, and EPC in terms of gender for
both left and right hemispheric volumes (p > .2leafstereotaxic normalization. The left PHC was
significantly larger in females (2,480 myrthan in males (2,284 mijn but there was no significant

difference for the right PHC.
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Statistical analysis on the volume of MTL struesiagainst age and gender was further performed
using MANOVA and the resulting r and p-values alewen in Table 9. The results indicate the

following:

* In females, the left AG volume is weakly positivelgrrelated with age (r = .249, F = 5.309, p =
.025), and the right EPC volume is strongly poslihcorrelated with age (r = .648, F = 10.610, p
= .002). No significant interaction effect betwesmge and volume in females was observed for

other MTL structures.

* In males, the left EPC volume is weakly positivetyrelated with age (r = .228, F = 5.176, p =
.026). No significant interaction effect betweerm @mnd volume in males was observed for other

MTL structures.

4 Discussions and Conclusions

In this paper, we present a novel segmentationrithgo that combines appearance modeling and
nonlocal means patch-based local refinement irgereeral two-stage segmentation framework. During
segmentation, the first-stage appearance moddinged to capture the global shape variation, bad t
second-stage nonlocal means patch-based methsddsta improve the local fitting of the segmentatio
result. The proposed method was applied to segthentortical structures of the medial temporal fobe
in healthy young adults, and the experimental tesiémonstrated the feasibility, good performance,

robustness of this algorithm in 3D image segmeutati

As demonstrated in the experimental results, tbpgsed combination of the AAM and patch-based
local refinement did improve the segmentation a@cyiin comparison to either the AAM-based method
or the patch-based method alone. In addition, tlupgsed method is able to quickly complete the
segmentation of individual subjects. Once the data aligned (6 minutes per subject for nonlinear
registration), only 1 minute is required to proctsstraining data from 54 subjects in 3D with arage

size of 70 x 120 x 70 voxels to cover the volumentérest. Segmentation of a new subject requires a
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total of ~7.5 minutes (6 minutes for nonlinear stgition, less than 30 s for AAM, and ~1 minutes fo
patch-based local correction using the best 30 e selected from the 54 training subjects) drba
GHz Linux PC. This result is much faster than thbel fusion procedure proposed by Collins and

Pruessner (2010) and the patch-based segmentgtidaupé et al. (2011).

We validated the proposed method using a subséteofCBM database comprising 54 healthy
young adults. The leave-one-out experiments dematest the segmentation accuracy of the combined
AAM and patch-based methods (meanf 0.87 for HC, 0.81 for AG, 0.73 for EPC, and®fér PHC).

In order to apply this technique to a differentdstpopulation such as very young pediatric subjeesy

old healthy aging or to disease populations suckpiigpsy or Alzheimer's disease where the medial
temporal lobe structures are affected, it may lmes®ary to extend the training library to includbjects
from the population to be studied. This way, theme space spanned by the principal components will
better cover the range of the population studieEdrthermore, these new template examples will bette
represent the intensities used in the patch-bafetkment step. Despite these limitations, thegdore
presented here enables automatic segmentation dfaimeemporal lobe structures in the normal
population, and thus is applicable to many streefunctional studies where such segmentations are

needed.

We like to further point out that in our two-stagggmentation method, the first-stage segmentation
can impose a global model constraint on the loefshement area for the second-stage to performea fi
local label fusion. This constrained local refinenarea greatly reduces the number of voxels rigpir
the local refinement as otherwise the local refieetrfor a large set of voxels would be needed hed t
resulting computational complexity would be extrgmgigh. On the other hand, this constrained local
refinement area may also help the segmentatioerfonn robustly in regions with low tissue contramst
adjacent structures. To be specific, the localllfdson explores intensity change patterns of lpegcas a
patch inside a segment contour of interest maybéxan intensity change pattern different from &pa

outside of the segment contour. The different igitgrchange patterns can help assign weights itairg
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patches for a given test patch according to Eqffereiin favour of the training patches inside their
corresponding contours or in favour of those owtsid their corresponding contours. With that, the
weighted average for the final segmentation catebetetermine whether the central voxel of the test
patch should be placed inside or outside of theatonIn regions with low tissue contrast in adjatce
structures, the intensity change patterns may lmeogeneous regardless of the training patches being
inside or outside of their segment contours, aedoirformance of the local label fusion may degrade
that case, a constrained local refinement aredircéirthe area where the local label fusion mayf@en

poorly to avoid potential segmentation performatiegradation.

The above argument is partly supported by thelteeBuTable 2, where as compared with the patch-
based method, the combined method can provide aagaperformance for the HC but a larger
improvement for the AG, EPC, and PHC. In other \gofdr structure boundaries with low tissue coritras
in certain regions, such as for the AG, EPC, an@ RHe imposed global constraints in terms of @dch
local refinement area along the coarse contourtiitkxh by the first-stage segmentation may helpitlim
the low-tissue contrast structure boundary areaevtiee local label fusion may not perform well. o
HC, whose structure boundary area in general hénghetissue contrast, the constrained local refiert
area might not help too much on the segmentaticiomeance but it definitely helps reduce signifitgn

the computational complexity as the area requiaithgcal refinement is greatly reduced.

Direct comparison between our technique and otlershe literature is difficult because of
differences in the anatomical definitions of theustures of interest, types of input data, and iguaf
manual segmentations. Still, our results are antbagest of previous publications for the HC and AG

(for details, see Table 1). In particular,

* For HC segmentation, some recently published metiijtemencic et al., 2004; Chupin et al.,
2007; Lijn et al., 2008; Morra et al., 2008; Moretyal., 2009; Aljabar et al., 2009) reported a
value greater than 0.8. Even more recently, sevee#thods (Collins and Pruessner, 2010; Coupé

et al., 2011; Wang et al., 2011) used template ivgrand label fusion to achieve a higlvalue
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of greater than 0.88. Our method yielded a meah0.87 for the HC, which is comparable to the

results of those published methods.

* For AG segmentation, most recent methods (Heckeratiah, 2006; Chupin et al., 2007; Morey
et al., 2009; Aljabar et al., 2009; Lotjonen et @D10; Babalola et al., 2009; Patenaude et al.,
2011) reported & value of below or equal to 0.8. Only two metho@sl{ins and Pruessner,
2010; Sabuncu et al., 2010) based on the labebriusichnique achievedavalue of around
0.82. Our method obtained a maeanf around 0.81 for the AG, with a significant irogement

in speed of segmentation over that from Collins Bngessner (2010).

* As for other MTL structures, there are no publisheslilts available with which to compare our

findings.

Besides th& values, in this paper, we also provided the Jactatex for the segmentation of the
AG, HC, EPC and PHC. For some MTL structures, @necdrd index values were reported at 0.796 for
HC and 0.703 for AG by Collins and Pruessner (20lBere an atlas-based label fusion technique was
used. Our Jaccard index values for the HC and A@vehin Table 4 are on average ~0.02 worse than
those reported by Collins and Pruessner (2010pbutethod has a much shorter segmentation runtime.
In particular, the atlas-based label fusion techaigsed 11 atlases for the label fusion procedudefa
we consider 6 minutes for nonlinear registration gias, the resulting runtime would be 6 x 11 = 66

minutes, while our runtime is 7.5 minutes as disedsearlier.

The structure volumes reported here are slighifierént from those published previously by
Pruessner (2000, 2001, 2002). This is due intpahe varying numbers of subjects. In Pruessrgddp
a manual segmentation protocol for HC and AG wdmeed and applied to 40 subjects (20 male and 20
female) from the ICBM dataset acquired at the MMNI.Pruessner (2001), this protocol was used to
identify the HC and AG in 80 subjects from the ICRMtaset, selected to match for age and gender. In

Pruessner (2002), a new manual segmentation ptote defined for the temporopolar cortex, PRC,
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ERC and PHC, and used to identify these structomethe same set of 40 subjects used in the Pruessne
(2000) paper. Here we applied our automated teadkertiq 54 subjects from the ICBM dataset acquired at

the MNI, where 40 of these subjects are the santeoae used in the Pruessner (2000) and (2002)ysape

Overall, the automatic volumes here are slighthalker than those previously published manual
volumes, but this is not significant for HC or A@s was the case for the manual labels (Prues€1@sr, 2
2001), the automatic labels found here showedttiwateft HC was smaller than the right, and that¢h
was no difference between left and right AG. Thens observation on a smaller left HC was also
reported by other researchers (Watson et al. 1d82boun et al. 1996; Kidron et al. 1997; Mori et al
1997) for healthy adults, and patients with Alzheits disease. Note that however, for patients with
epilepsy, Ashtari et al. (1991), and Cook et 89@) reported the left HC being bigger than thétrid\s
for the AG, the finding of no hemispheric differeschas been reported by many researchers (Soiginen
al. 1994; Mori et al. 1997; Strakowski et al., 1R9owever, Watson et al. (1992) found that thétrig
AG was slightly bigger than the left side. While aependency on age was found for AG for either male
or females by Pruessner et al. (2001), we findghtsincrease of left AG volume with age for woners
.249, p = .025) probably due to the increased nurabsubjects. Pruessner (2001) found that age was
negatively correlated with HC volume in men. Wd dot find any significant associations with age fo
HC for either men or women, allowing to speculateether the eighty randomly chosen subjects studied
by Pruessner et al. (2001) had systematic charstitsr that created the previously reported age

correlation.

For the automatic segmentation of the PHC, asthasase for the manual labels (Pruessner 2002),
the automatic results showed that the left PHC igger than the right. Although no sex differencasw
reported for ERC, PHC and PRC in the manual lab&K0 subjects (Pruessner 2002), the automatic
results of 152 subjects showed that women hadatgei left PHC than men (p = .019). On the other
hand, for the PRC, Pruessner (2002) found thawagepositively correlated with the right PRC volume

in women when the volume was not corrected by tilateral sulcus (CS). In our case, we segmented
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ERC and PRC jointly and termed it EPC. We found tha left EPC was bigger than the right. Also, the
results showed that in women the volume of thetri€fAC was strongly positively correlated with age (

.648, F = 10.610, p = .002); while in men theuwoé of the left EPC was weakly correlated with @ge

228, F = 5.176, p = .026). These positive aggetations observed in manual and automatic
segmentations only in women are intriguing as tpeghaps point to a systematic sex difference that
warrants further investigation. Their inconsistappearance with regard to substructure and hemisphe

however prevents any firm conclusion at this pairtime.

Taken together, the above results provide the tingpéor future studies in which the two-stage
segmentation method could be routinely applied #® d&ta from various populations to investigate the

association of these structures with various cihamd neuropsychological parameters.
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Table 1 Review of segmentation methods

Author Method summary Test data Result in terms ok
HC AG PHC
Fischl et al., 2002 FreeSurfer 70 healthy young 0.8 0.75-0.78
Klemencic et al., 2004  Appearance model 0.8
Heckemann et al., 2006 Multiatlas based 30 normal 0.82 0.8 0.81*
Chupin et al., 2007 Seeding + morphology 16 healthy young 0.84 0.8
region growing 8 AD 0.84 0.76
Powell et al., 2008 Machine learning 15 subjects 0.85
based classification
van der Lijn et al., 2008 Multiatlas + 20 older adults 0.858
graph cuts
Morra et al., 2008 Auto context model 21 AD 0.835-0.859
+adaboost
Morey et al., 2009 FSL/FIRST 20 healthy 0.79 0.73
Aljabar et al., 2009 Multiatlas + image 275 subjects 0.84 0.78
similarity selection from 4 to 83
years old
Lotjonen et al., 2010 Multiatlas + 1,000 AD, 0.82-0.88 0.77
intensity modeling MCIl and CN
Babalola et al., 2009 CFL* 270 subjects 0.84 0.78
EMS from 4 to 83 0.77 0.71
PAM years old 0.77 0.67
BAM 0.79 0.73
Collins and Pruessner, Multiatlas + 80 healthy 0.887 0.826
2010
label fusion young adults
Benavides et al., 2010  FreeSurfer 41 healthy older adults 0.78
23 MCI /AD
Sabuncu et al., 2010 Label fusion 28 healthy 0.82~0.87 0.8~0.82
11 MCI/AD
Coupé et al., 2011 Nonlocal means 80 healthy 0.884

young adults
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Table 1 Review of segmentation methods (cont.)

Author Method summary Test data Result in terms ok
HC AG PHC
Bishop et al., 2011 FMASH CMA: 9 normal 0.82
and 8 AD

BPSA:16 BPand (g

16 normal

Patenaude et al., 2011 Bayesian appearance 336 subjects both  0.81 0.74
normal and

pathological brain

Khan et al., 2011 Multiatlas + 69 middle-aged 0.833
spatially local selection 37 older adults 0.853
Wang et al., 2011 Multiatlas + 57 normal 0.908
error correction 82 MCI 0.893

* Parahippocampal + ambient gyri;

*CFL: classifier fusion and labeling; EMS: expedtst-maximization using a brain atlas; PAM: profiletise appear-

ance models; BAM: Bayesian appearance models.
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Table 2 Mearx values from AAM-based, patch-based, and AAM+dadtled methods

AAM Patch AAM + patch
Left Right Left Right Left Right
HC 0.851(0.028)  0.862 (0.020)  0.862 (0.028)  0.€6622)  0.867 (0.025)  0.873 (0.019)
AG 0.800 (0.048)  0.792 (0.055)  0.790 (0.048)  0.@®058)  0.812(0.043)  0.803 (0.053)
EPC 0.711 (0.068)  0.697 (0.083)  0.720 (0.066) B(M082)  0.735(0.066)  0.714 (0.082)
PHC 0.696 (0.067)  0.707 (0.060)  0.691 (0.058) O0(NE52)  0.730 (0.048)  0.739 (0.047)
Notes: Values are meanvalues shown with standard deviations in paremtbes
Table 3 Matched-pair t-test results between different segmeniagitirods
(threshold for significancp < .05)
AAM vs. Patch AAM vs. AAM + Patch Patch vs. AAM + Patch
Left Right Left Right Left Right
HC < 0.001 0.039 < 0.001 < 0.001 0.016 < 0.001
AG 0.046 0.018 < 0.001 < 0.001 < 0.001 < 0.001
EPC 0.040 0.026 < 0.001 < 0.001 < 0.001 < 0.001
PHC 0.282 0.805 < 0.001 < 0.001 < 0.001 < 0.001

Notes: Values are p-values of t-test.
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Table 4 Dice Kappa and Jaccard index for MTL segmentation of theictedhAAM and patch-based

method
Dice Kappa Jaccard index
Left Right Left Right
AG 0.812 (0.043) 0.803 (0.053) 0.686 (0.058) 0(6371)
HC 0.867 (0.025) 0.873 (0.019) 0.766 (0.038) 0@TR9)
EPC 0.735 (0.066) 0.714 (0.082) 0.587 (0.080) 0863)
PHC 0.730 (0.048) 0.739 (0.047) 0.578 (0.057) 0(B8%7)

Notes: Values are meanvalues shown with standard deviations in paremthes

Table 5 Statistical analysis on the MR volumes of medial temhjmive structures (volumes normalized in

the stereotaxic space)

Two-stage segmentation Manual segmentation Paired t-test (two-stage vs manual)
(volume) (volume) (p-value)
Left Right Left Right Left Right
AG 1496 (218) 1478 (254) | 1448 (299) 1435 (274) ®.08 0.089
HC 3083(486) 4107(556) |  3901(528)  4072(596) 0.092 103.
EPC 3163(720) 3080(810)|  3125(848)  3020(926) 0.481 3140
PHC 2279(461) 2047(348)|  2199(419 1989(350) 0.064 .0570

Notes: Volume values are mean volumes in units mifr, with standard deviations in parentheses.
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Table 6 Segmentation runtime comparison for the proposed AZeth method and the patch-based
technigue running on a 1.5 GHz Linux PC.

Processing steps

AAM + patch

(Nonlinear registration)

Patch alone

(Nonlinear registration)

AAM + patch

(Linear registration)

Patch alone

(Linear registration)

Training time

Training image nonlinear

S 6 minutes per subject 6 minutes per subject 0 0
registration
AAM tralnlng (40 1.5 minutes 0 1.5 minutes 0
training subjects)
Patch training
(pre-calculate meanand | 2 minutes 2 minutes 2 minutes 2 minutes
variance for each training
patch)
Run time
Tes.t |m§ge nonlinear 6 minutes 6 minutes 0 0
registration
AAM-based
segmentation Less than 30 seconds 0 Less than 30 seconds 0
(Least square solution)
Template selection 1 second 1 second 1 second ordsec
~1 minute ~10 minutes ~1 minutes ~10 minutes
Patch-based refinement
(on average ~9000 voxels)| (90000 voxels) (on average ~9000 voxels)| (90000 voxel)
Inverse non]mear 3 seconds 3 seconds 0 0
transformation
Total runtime ~7.5 minutes ~16 minutes ~1.5 mgwte ~10 minutes
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Table 7 Segmentation performance comparison ingefmDicek

registration

for the HC with linear and nonlinear

Methods Reqgistration Left HC Right HC
AAM alone (T1 images) Linear 0.746 (0.061) 0.75848)
AAM alone (T1 images) Nonlinear 0.851 (0.028) 0.6560220)
Patch-based segmentation alone Linear 0.843 (0.050) 0.848 (0.040)
Patch-based segmentation alone Nonlinear 0.8628(0.0 0.866 (0.022)
AAM (T1 images) + Patch based method Linear 0.84136) 0.845 (0.038)
AAM (T1 images) + Patch based method Nonlinear BH25) 0.873 (0.019)

Notes: Values are meanvalues shown with standard deviations in paremthes

Table 8 MR volumetry of medial temporal lobe structures inthggbung adults (volumes normalized in
the stereotaxic space)

Left Right t-test (Left vs. Right)
(volume) (volume) p-value
AG 1455 (199) 1422 (217) 0.186
HC 3945 (430) 4072 (454) 0.013
EPC 3260 (736) 3023 (737) 0.005
PHC 2369 (507) 2092 (435) < 0.001

Notes: Volume values are mean volumes in units mifr, with standard deviations in parentheses.

Table 9 r and p values from statistical analysivolnmes in the stereotaxic space of MTL structures
against age according to the gender in 152 hegtihyg adults

Females (n=66) Males (n=86)
Left Right Left Right
AG 0.249 (0.025) -0.011 (0.626) 0.084 (0.530) 0.110 (0.181)
HC 0.155 (0.215) 0.194 (0.116) -0.071 (0.441) -0.(M324)
EPC 0.104 (0.194) 0.648 (0.002) 0.228 (0.026) -0.011 (0.990)
PHC -0.023 (0.851) -0.014 (0.914) 0.010 (0.939) 020.(0.842)

Notes: Values arevalues, with p-values in parentheses.
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Mean image

Training images

Eigen images

Synthesized image

Figure 1: Processing pipeline for the appearanceeirizased segmentation
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Test Tlw tmaga Manual labels AAM-based segmentation Patch-based segmentation AAN+Patch-based sepmentation

Figure 6: Two-dimensional visualization of 3D seguagion results of three test subjects with average
value: one test subject per row, and columns fieftrtd right for test image and segmented contours
from manual label and three automatic segmentatiethods K values shown under each graph. The
segmented contours of different structures rendenetdp of the corresponding T1-weighted test MR

image with this color coding: purple for HC, blwg AG, sky blue for EPC, and white for PHC.

Slice#1 Slice#2 Slice#3 Slice#4

Figure 7: Two examples showing the two-stage setgtion mismatching the true structure boundary of
the left HC: One example per row — upper row faaraple#1, lower row for example#2; Each example
shows 4 sagittal slices through the medial temdota. Color coding -- purple for the manual labele

contour; sky blue for the automatically segmentectaur.
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Figure 8: Volumetric comparison between the tw@stsegmentation results and manual labels for the
HC and AG (volumes normalized in stereotaxic space)
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