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Introduction

Ethane is a key molecule owing to its highly symmetric geometry and peculiar internal rotation dynamics. It is also a relevant species in the applied research, because of its presence in the atmospheres of the Earth and outer planets, and in comets. For these reasons, the infrared active fundamental transitions of ethane have been extensively studied under high resolution, in spite of the particular complexity of the absorption spectrum, characterized by a high density of lines and anomalous rotation-torsion patterns generated by the interaction of several vibrational states, see

Ref. [1][2][3] to mention only the most recent contributions. One may think that a detailed knowledge of the infrared inactive fundamental vibrational states is by far less important, but it is not so: In fact, infrared inactive modes ("g"-vibrational states under D 3d , the point group of the "rigid" staggered conformations) also occur in combination states that are involved in the complex interaction mechanisms affecting the observable absorption spectrum. Thus an accurate knowledge of the infrared inactive modes is quite helpful in the study of these complex mechanisms.

Owing to the selection rule u↔g holding for electric dipole transitions, g-fundamental vibrational states cannot be reached from the vibrational ground state (which is a g-state), but only from lower u-states, in the so called difference transitions. The lowest u-vibrational state of ethane is the first excited torsional state ν 4 , about 289 cm -1 above the ground state, and this is the most favourable lower state for difference transitions, being the most populated u-state at the thermal equilibrium. Apart from the fact that the ν 4 state is less populated than the ground vibrational state, there is another factor that makes the difference transitions quite weak: they imply the change of two units (at the least) in the vibrational quantum numbers. Thus difference bands normally can be observed only in spectral regions free from stronger absorption, The spectral region of ethane between the high-frequency wing of the fundamentals ν 9 (centered at 823 cm -1 ) and the low-frequency wing of the fundamental ν 8 (centered at 1472 cm -1 ), approximately between 1000 and 1300 cm -1 , is quite free from absorption and then it is a favourable region for the observation of difference bands. There are two g-vibrational fundamentals observable in this spectral region, as upper states in difference transitions from ν 4 : They are ν 2 (about 1397 cm -1 ) with ν 2 -ν 4 = ~ 1108 cm -1 

Experimental details

The experimental laboratory work was carried out in the Infrared laboratory at the University of Oulu with the BRUKER IFS 120 HR Fourier spectrometer. A C 2 H 6 sample for laboratory use were obtained from Sigma-Aldrich. The studied weak absorption region from 940 to 1260 cm -1 required a very long recording time, 127 hours, with the sample at the pressure of 173 Pa in a multi-pass sample cell [4] with the absorption path length of 153.2 m. In the measurement the cell was provided with two potassium bromide (KBr) windows, a glowbar source was used, a germanium film on KBr was employed as a beam splitter and the infrared radiation was detected with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. The instrumental resolution due to the maximum optical path difference of the interferometer was 0.0016 cm -1 .

The aperture broadening was 0.0018 cm -1 at 1100 cm -1 . Together with the Doppler broadening these instrumental effects gave the final spectral resolution 0.002 cm -1 , near the lower wavenumber end of the spectral region, and 0.0029 cm -1 near the higher end. All the spectra were calibrated using the transitions of carbonyl sulfide (OCS) in the 2ν 2 band. [5].

Description of the spectrum

The dominant extended feature observed in the investigated spectral region, between 1040 and 1295 cm -1 , is a perpendicular band that can be easily identified as the difference band ν 11 -ν 4 . In fact, the spacing of its Q-sub-branches is compatible with the value of the ζ-Coriolis constant expected for ν 11 , and the differences of P, Q and R combinations sharing the same upper state correspond to the appropriate rotational energy differences in the ν 4 lower state. The J-structure of the Q-sub-branches degrades toward the high wavenumbers, because the B-rotational constant has a smaller value in the lower state, ν 4 . The torsional splitting of the transition lines is of the order of 0.2 cm -1 as in ν 4 , but with opposite sign, showing that ν 4 is the lower state and that the splitting in the upper state is considerably smaller. We could find and assign transitions of ν 11 -ν 4

with K"∆K from -17 to 14, denoting by K" the absolute value of the quantum number associated with the total angular momentum component on the quantization axis, in the lower state. The r Q 3 sub-branch, with its two torsional components, is shown in Fig. 1. The density of the spectral lines becomes quite low far in the low-wavenumber wing, so that we could observe and identify very weak features, down to K"∆K = -17. On the contrary, the line density remains high in the high-wavenumber wing, where the absorption due to the fundamentals ν 6 and ν 8 eventually starts. This is also due to the fact that "hot difference bands", mostly (ν 4 +ν 11 )-2ν 4 and (2ν 4 +ν 11 )-3ν 4 , occur at higher wavenumbers than ν 11 -ν 4 , due to the large anharmonicity of the torsional mode ν 4 . The fact that these "hot difference bands" are strong enough to be observed, can be understood by considering that the expressions for their transition probabilities, contain the square of the matrix element
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, with α = x or y, and then they are proportional to v 4 . Thus, assuming for ν 4 , 2ν We were able to identify several sub-branches of (ν 4 +ν 11 )-2ν 4 . They show a large torsional splitting, about 4 cm -1 , mostly due to the lower state. Fig. 2 shows the r Q 3 sub-branch of (ν 4 +ν 11 )-2ν 4 .

A few additional weaker Q-branches, which cannot be assigned to ν 11 -ν 4 nor to (ν 4 +ν 11 )-2ν 4 , are apparent at even higher wavenumbers. We believe that they belong to (2ν 4 +ν 11 )-3ν 4 , on the basis of the intensity consideration of above.

The ν 2 -ν 4 parallel band is very weak. Its Q-branch transitions occur as an irregular dense series of weak lines, between 1003 and 1007 cm -1 , but no line assignments could be done. However, several P-transition lines, activated by the x,y-Coriolis interaction of ν 2 and ν 11 near resonance, could be detected and identified for K between 10 and 15. This will be discussed in the next paragraph.

The energy matrix and perturbations.

In the analysis of the spectrum we considered for the upper state the vibrational levels ν 2 (mainly symmetric CH 3 umbrella vibration of the two methyl groups, of A 1s symmetry under the extended molecular group G 36 (EM), see Bunker and Jensen [START_REF] Bunker | Molecular Symmetry and Spectroscopy[END_REF]) and ν 11 (mainly degenerate symmetric CH 3 deformation of the two methyl groups, of E 2d symmetry under the extended molecular group G 36 (EM)). These two states are coupled by an x,y-Coriolis interaction, like the corresponding asymmetric modes ν 6 and ν 8 [2]. Later on we realized that an additional x,y-Coriolis interaction, between the states ν 11 and ν 3 +2ν 4 , helped to improve the fit.

Small torsional splitting in a given vibrational state was accounted for as usual by the oneparameter expression [START_REF] Susskind | [END_REF]8] 

ν 0 ( v r , Γ t ) = ν 0 -2(-1) v 4 X v cos(σ2π/6) . ( 1 
)
where v r represents the ensemble of vibrational quantum numbers, inclusive of the torsionalvibration quantum number v 4 , X v is a generally positive parameter whose value increases rapidly with v 4 , but depends also on the excitation of the small amplitude vibrational modes, and σ = 0, 1, 2, 3 for the components of torsional symmetries Γ t = A 1s (or A 3s ), E 3d , E 3s and A 3d (or A 1d ), using A s and E d vibrational basis functions. For larger splittings, a ν 0 -value has to be determined for each of the four torsional components. Note that the components A 1s and A 3d occur with the even values of v 4 , whereas the components A 3s and A 1d occur with the odd values of v 4 . The torsional splitting in the ν 2 state is rather anomalous and we had to use four different values ν 0 for the the different torsional components A 1s , E 3d , E 3s and A 3d , Diagonal matrix elements were given as usual by

E [( v r , Γ t , (±l ), J, K] = ν 0 ( v r , Γ t ) +(A-B)K 2 + BJ(J+1) -D J J 2 (J+1) 2 -D JK J(J+1)K 2 -D K K 4 m [2Aζ -η J J(J+1) -η K K 2 ]K (2) 
In the off-diagonal matrix elements, the torsional symmetries of interacting states depend on the specific states and on the shifts of quantum numbers. They can be determined following the procedures of Ref. [9].

The l-interaction with ∆k = ∆l = ±2, henceforth referred to as l(2,2), was taken into account within the state ν 11 , with matrix elements with matrix elements

1 , , 1 , t s v 1 , , 1 , t , s v m m r r k J l k J l = Γ ± ± = Γ H -2(F+ k 2 F K ){[ J(J+1)-k(k+1)] [J(J+1)-k(k-1)]} 1/2 (3) 
k J l k J l , , 0 , t , r v 1 , , 1 , t , s v = Γ ± ± = Γ r r H = ±2 1/2 [Z r,s + Z r,sJ J(J+1)][J(J+1)-k(k±1)] 1/2 (4) 
The l-type interactions with ∆l = ±2 and ∆k = m 1, henceforth referred to as l(2,-1), within the state ν 11 occurs with matrix elements 

± = × Γ ν ± = Γ ν k J l k J l m H = (E+k 2 E K ) (2k+1) [J(J+1)-k(k±1)] 1/2
(5) Fig. 3 shows the Coriolis interactions of ν 11 with the parallel vibrational states ν 2 and ν 3 +2ν 4 , in the region of the resonance. We could detect and assign P-transitions from ν 4 to ν 2 , enhanced by the mixing of ν 2 and the (-l )-side of ν 11 , in the region near the resonance (K from 10 to 15), see Fig. 4.

For K equal to 12 and 13 both stronger and weaker transitions to the split torsional components of ν 2 were observed.

Fig. 3 also shows that the levels of ν 11 which can be coupled by an interaction with ∆l=±2 and ∆k = m 1 (l(2,-1) coupling) are always rather close to each other. Their energy separation is also influenced by the effect of the concomitant x,y-Coriolis interactions.

Some peculiar effects on the spectrum of these Coriolis perturbations are opposite to those described by di Lauro and Mills [10], because of the asymmetry of the lower vibrational state ν 4 with respect to a reflection through a plane σ σ σ σ xz containing the molecular z-axis, and its bearing on selection rules. In fact, if we denote by ± the symmetrized vibration-rotation functions defined as interactions have no effect on the r R 0 and r P 0 sub-branches of ν 11 and a larger effect than elsewhere (by a factor 2 in the matrix elements) on the sub-branch r Q 0 , see also Ref. [2].

± = 2 / ) ( K,-l - l K, ± , (6) 
Fig. 5 shows the l-type interaction mechanisms acting within the ν 11 state. The l(2,2) interaction (∆k=∆l=±2) is always resonant for the l=k=±1 pair, causing its splitting into the symmetrized combinations as in Equation ( 6). This splitting is transmitted to the l= m 1, k=±2 pair by the l(2,-1) interaction (∆l=±2, ∆k= m 1), with the coupling selection rule +↔-. Thus the transition lines with K"∆K=-3, ending to the above levels, appear each with four components, owing to the simultaneous effects of torsional and K-splitting, see the p Q 3 -transitions in Fig. 6.

This interaction mechanism and the K-doubling of the K"∆K=-3 levels in ν 11 is quite similar to what has been observed in ν 8 , see Ref. [2]. However the effects on the spectrum are different, because in the present case the lower state is ν 4 (asymmetric with respect to the reflection through the mentioned symmetry plane σ σ σ σ xz ) instead of the ground state. In fact, in the present case the selection rules in the + and -labels are ±↔± for transitions with even ∆K+∆J, and +↔for transitions with odd ∆K+∆J, contrary to what holds for the ν 8 fundamental. The details are discussed in the Appendix of Ref. [2].

The l(2,2)-splitting in the l=k=±1 pair increases with J, and eventually its -component crosses the + component with k=±2 coupled to it by the l(2,-1) interaction, inverting the sign of the level displacements, see Fig. 5. This happens at J=15, and the most evident effect is a sudden change of the J-spacing from J=14 to J=15 (an increase of the spacing in the r Q 0 sub-branch, and a decrease in the K+ components of p Q 3 , see Fig. 6). Because of the effect of this crossing, K+ is higher than Kup to K=14 included, and then becomes lower, This can be easily checked in Fig, 6, because the K+ transitions are stronger for odd J and the K-transitions for even J, for each torsional symmetry.

The effect of the J-crossing between 14 and 15 is also detectable in the sub-branch r Q 0 , where the displacements of the levels with J= 14 and 15 are obviously opposite to those observed in p Q 3 , see Fig. 7. The strong level mixing near resonance can activate transitions with ∆K= ±2, an in fact we could observe three s Q 0 transitions (∆K= 2), at J=14 (for the stronger torsional component) and J=15 (for both torsional components), also shown in Fig. 7.

Analysis and results.

The body of data processed in an iterative least squares calculation, according to the Hamiltonian model of the previous paragraph, consisted of wavenumbers corresponding to 1386 different for K"∆K from 0 to 14, r Q 0 transitions, and three s Q 0 transitions, with a maximum J-value of 37)

and 109 wawenumbers of the ν 2 -ν 4 transition ( q P-transitions activated by the x,y-Coriolis resonance of ν 2 with ν 11 , for K from 10 to 15 and a maximum J-value of 28). As mentioned, we considered also the state ν 3 +2ν 4 , as a Coriolis perturber of ν 11 . The account for an anharmonic interaction of ν 2 and ν 3 +2ν 4 did not improve the fit, and this interaction was disregarded.

Eventually the iterative calculations converged to a root mean square (RMS) deviation of 2.52×10 -3 cm -1 , with the parameter values reported in Table 1.

Due to the lack of data relative to ν 3 +2ν 4 , we could determine only the values of ν°, X, A and B for this vibrational state.

The ν 11 state

The values of the parameters for this state (mainly symmetric deformation of the two methyl groups) are rather similar to those found for ν 8 (mainly asymmetric deformation of the two methyl groups) in Ref. [2]. This holds also for the l-type interaction parameters (F and E), and in fact these interactions are quite important in both vibrational states. However, the infrared active fundamental band ν 8 appears much more complex than the difference band ν 11 -ν 4 , because of the effect of the combination state ν 4 +ν 12 occurring quite close to ν 8 . Also in ν 11 the torsional splitting is considerably smaller than in non-degenerate states in the torsional lowest state (X=0.00110 cm -1 , against the ground state value of 0.00189 cm -1 ) as expected from theory, see [11] and references therein. The x,y Coriolis interaction between ν 11 and ν 2 is quite similar to that between ν 8 and ν 6 (ν 2 and ν 6 are mostly symmetric and asymmetric umbrella vibrations of the two methyl groups). The mechanisms generating the K-doubling of the levels k=±2, l= m 1 in Although the observation of transitions to the ν 2 state is limited to the K-range between 10 and 15, near the Coriolis resonance with ν 11 , the parameters of the ν 2 state could be determined quite well. In fact, it is worth to note that the body of observed p P-transitions to ν 11 brings information on ν 2 even beyond the mentioned K-range, because of the interaction of the two states.

The torsional splitting of ν 2 is rather complex, and cannot be accounted for by the simple oneparameter expression of Equation ( 1). In fact, we had to use four independent vibrational origins for the torsional components, see Table 1. The values determined for these four vibrational origins in ν 2 agree with their displacements predicted for the interaction with the torsional manifold correlating with 6ν 4 , as shown in Fig. 8.

The anomalous torsional pattern in ν 2 is generated by the same mechanism causing a similar effect in ν 3 , and explained by Bermejo et al. [13]. The mechanism involves the linear dependence of the torsional barrier parameter V 3 on the normal coordinate q 2 .

Using a simple approximation, we write the torsional Hamiltonian as

H tors. = H 0 +H ′ (7) 
with

H 0 = ) 1 6 (cos V ) 1 3 cos V 6 2 1 ( 2 1 0 3 - τ τ + + + 2 τ J A ( 8 
)
and

H ′ = ) 1 3 (cos q V 2 0 2 3 +         ∂ ∂ τ q (9)
assuming that the torsional angle τ is zero in the conformation of maximum energy (eclipsed).

A term ( 9) is allowed by symmetry for each totally symmetric normal coordinate (A 1s symmetry under the extended molecular group G 36 (EM), that is q 1 , q 2 and q 3 ). The anomalous torsional pattern in ν 2 is caused by the term ( 9), therefore we tried to determine the value of the barrier

derivative 0 2 3 q V         ∂ ∂ .
Starting with a free internal rotor basis, we calculated the torsional eigenfunctions of H 0 , for v 4 up to 8, with A=2.674677 cm -1 , V 3 =1013.28 cm -1 and V 6 =8.798 cm -1 . Using the eigenvectors, we also calculated the matrix elements of (cos3τ+1), needed in the final calculation, in the basis of the eigenfunctions of H 0 . Then we built up the final matrix, on the basis of the functions (v 2 =0,v 4 ,Γ t ), (v 2 =1,v 4 ,Γ t ) and (v 2 =2,v 4 ,Γ t ), with v 4 varying from 0 to 8. We assumed that the eigenvectors of these basis functions, in terms of the free internal rotor functions, were independent of the value of v 2 . The matrix factors into four blocks, corresponding to the different symmetry species Γ t , that is E 3s , E 3d , A 1s or A 1d , and A 3d or A 3s (A 1s and A 3d occur for even v 4 and A 1d and A 3s occur for odd v 4 ). Owing to the operator q 2 and its selection rules, the matrix elements of H ′ link the functions with v 2 =1 to those with v 2 =0 and v 2 =2. They contain the value of the derivative

0 2 3 q V         ∂ ∂
, to be determined. The vibrational origins,

) ( t Γ 2 ν - ) A ( 3s t × Γ 4 ν
, were calculated by diagonalization of the four matrix blocs, as eigenvalue differences E(v 2 =1,v 4 =0,Γ t ) -E(v 2 =0,v 4 =1,Γ t ×A 3s ). They were compared to the values determined from the analysis of the spectrum, and the value of the derivative

0 2 3 q V         ∂ ∂ was
iteratively adjusted by the least squares procedure.

Using a dimensionless normal coordinate q 2 , we eventually found

0 2 3 q V         ∂ ∂ = 127±10 cm -1
, the large uncertainty being mostly related to the approximations involved in the calculations.

This value is considerably smaller (in the absolute value) than the barrier derivative with respect to q 3 determined by Bermejo et al. [13], -276 cm -1 , in agreement with the theoretical predictions of Kirtman et al. [14]. We note that the relative shifts of the four components of ν 2 are actually determined by the interaction with the manifold 6ν 4 shown in Fig. 7, owing to the resonance conditions. However a considerable global shift toward the low energy is caused by the interaction with the levels (v 2 =2,v 4 =0, Γ t ), because of the large matrix elements.

"Hot" difference bands: (

ν ν ν ν 4 +ν ν ν ν 11 ) - -- -2ν ν ν ν 4 .
We could identify transitions from 2ν 4 to ν 4 +ν 11 , with K″∆K from -2 to 9. The bias of this range, in favour of the positive values, is due to the fact that the origin of the band (ν 4 +ν 11 )-2ν 4 is higher than that of ν 11 -ν 4 by about 34 cm -1 . Therefore the sub-branches of this "hot" difference band with positive values of K″∆K move to the high wavenumbers, far from the center of ν 11 -ν 4 , as K″ increases. On the contrary, the sub-branches with negative K″∆K move to the crowded center of the stronger ν 11 -ν 4 , and become hardly detectable. The line assignment, very difficult at the beginning, became easier when the values of the lower state J-structure parameters could be guessed from the line assignments already acquired. In Table 2 we report the values of the rotational constants for the different torsional components of the 2ν 4 state, eventually determined from the differences of the observed wavenumbers of transitions sharing the same rotation-torsion level of ν 4 +ν 11 . Pairs whose calculated and observed differences deviated by more than 0.001 cm -1 were disregarded.

We also calculated values of B, D J and D JK assuming that they were equal in all torsional components. They are reported in the last column of Table 2.

A simple explorative least squares fit calculation of the observed wavenumbers showed that the levels of the stronger torsional component of the ν 4 +ν 11 state with k= ±2, l= ±1 are heavily perturbed. Even excluding transitions to these levels from the body of data, we could obtain a fit of the observed data with a RMS deviation of 0.028 cm -1 , showing that a rather sophisticated model would be needed to try to analyze this state. We believe that the (ν 4 +ν 11 )-2ν 4 system would be conveniently analyzed together with the ν 4 +ν 11 combination transition, having a common vibrational upper state. The latter has been studied by Susskind [START_REF] Susskind | [END_REF], but under the resolution of a grating spectrometer.

Conclusions.

Although the ν 11 and ν 2 fundamentals of C 2 H 6 are infrared inactive, a high resolution rotationtorsion analysis of these vibrational states has been performed through the investigation of the relative difference bands from the ν 4 torsional state. The detailed knowledge of these states can be relevant also in the applied research, because they can occur in infrared active combinations perturbing the absorption regions of atmospheric and planetary interest. In particular, the detailed knowledge of the infrared inactive ν 11 and ν 2 , together with the corresponding active modes ν 8 and ν 6 , can be useful for the study of the 7 micron spectral region of 13 Table 1 Vibration-rotation-torsion parameters in cm -1 determined for the vibrational states ν 11 , ν 2 and ν 3 +2ν 4 . Numbers in parentheses are standard deviations in units of the last quoted digit. Component of torsional symmetry A 3d in the lower state (stronger torsional component) of the r Q 3 sub-branch of (ν 4 +ν 11 )-2ν 4 . The weaker torsional component, E 3d , occurs about 4 cm -1 at the higher wavenumbers. p Q 3 sub-branch, showing the effects of torsional and K-splitting. The split K + and K - components are defined according to Equation ( 6), applied to the upper state wavefunctions, see text and Fig. 5. The torsional splitting (A 1d and E 3d components in the lower state) is almost constant, whereas the K-splitting increases with the total angular momentum quantum number J.

Legends of Tables

The K+ and K-components show opposite intensity alternations with the parity of J, the former being stronger at the odd values and the latter at the even values. Note the small separation of the lines with J equal to 14 and 15 in K+, and the inversion of the relative positions of K+ and Kstarting at J=15. See text, and Fig. 5 and6.

Fig. 7 r Q 0 sub-branch of ν 11 -ν 4 , showing the torsional splitting (A 3s and E 3s torsional symmetries in the lower state) and the typical intensity alternation with the parity of J. These transitions occur to the components -of the l-doublets with k =l = ±1. Note the large separation between the lines with J equal to 14 and 15, caused by the J-crossing in a l(2,-1) resonance, and the s-type transitions (∆K=2), marked by a prime, activated by this resonance at J= 14 and 15. See text and Fig. 5 and7.

Fig. 8 Splitting induced in the ν 2 state by the interaction with the nominal 6ν 4 state, exhibiting large torsional splittings. The interaction matrix elements are represented by dotted lines, and the relative displacements induced on the torsional components of ν 2 (much exaggerated) are qualitatively represented by arrowed lines. The pattern of the torsional components of ν 2 , in the order of increasing energies, becomes E 3s , A 3d , A 1s , E 3d . See text. 
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