Matching asymptotic method and nucleation of a defect at a notch

Thi Bach Tuyet Dang, Halpern Laurence, Jean-Jacques Marigo

To cite this version:

Thi Bach Tuyet Dang, Halpern Laurence, Jean-Jacques Marigo. Matching asymptotic method and nucleation of a defect at a notch. International Conference on Advances in Computational Mechanics (ACOME), Aug 2012, Ho Chi Minh Ville, Vietnam. sous presse. hal-00736783

HAL Id: hal-00736783

https://hal.science/hal-00736783

Submitted on 29 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MATCHING ASYMPTOTIC METHOD AND NUCLEATION OF A DEFECT AT A NOTCH

Dang Thi Bach Tuyet ${ }^{1}$, Laurence Halpern ${ }^{2}$ and Jean Jacques Marigo ${ }^{3}$
${ }^{1}$ Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau cedex, France
e-mail: tuyet@lms.polytechnique.fr
${ }^{2}$ LAGA (UMR 7539), Institut Galilée, Université Paris XIII, 93430 Villetaneuse, France
e-mail: halpern@math.univ-paris13.fr
${ }^{3}$ Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau cedex, France
e-mail: marigo@lms.polytechnique.fr

Abstract

In the present study, we use matching asymptotic expansion to treat the elastic problem associated with a small defect located at the tip of a notch. The use of such asymptotic methods is necessary because the presence both of small parameters and singularities leads to inaccurate computations by classical finite element methods. The method is applied here in an antiplane setting.

Key Words: Brittle fracture, cohesive model, asymptotic methods, singularities.

1. Introduction

A major issue in fracture mechanics is how to model the initiation of a crack in a sound material, see [1]. In particular, if one uses Griffith criterion like in [4], the main difficulty is to compute with a good accuracy the energy release rate associated with a crack of small length which appears at the tip of a notch, see [5]. The classical finite element method leads to inaccurate results because of the overlap of two singularities which cannot be correctly captured by this method: one due to the tip of the notch, the other due to the tip of the crack. A specific method of approximation based on asymptotic expansions is preferable because the singularities are then obtained explicitly. The present paper is devoted to the presentation of this asymptotic method in the more general case of a defect (and not only of a crack) located at the tip of a notch in the simplified context of antiplane linear elasticity. It turns out that many works have been devoted to the study of elliptic problems in corner domains, see for example [3] and [2]. But no proposes a comprehensive method to compute with a precision as large as it is needed the mechanical fields and all related physical quantities in such a situation. Accordingly, we present here the method of construction of the matched asymptotic expansions first in the general case and then to the particular case of a non cohesive crack. The numerical results are finally compared with those given by the classical finite element method.

2. The real problem

Here, we are interested to the case where a small geometrical defect of size ℓ (like a crack or a void) is located near the corner of a notch. The geometry of the notch is characterized by the parameter $\epsilon=\tan \left(\pi-\frac{\omega}{2}\right), \omega$ being the angle of the notch, see Figure 1. The tip of the notch is taken as the origin of the space and we will consider two scales of coordinates: the "macroscopic" coordinates $\mathbf{x}=\left(x_{1}, x_{2}\right)$ which are used in the outer domain and the "microscopic" coordinates $\mathbf{y}=\mathbf{x} / \ell=\left(y_{1}, y_{2}\right)$ which are used in the neighborhood of the tip of the notch where the defect is located. In the case of a crack, the

Figure 1. The domain Ω_{ℓ} for the real problem
axis x_{1} is chosen in such a way that the crack corresponds to the segment $(0, \ell) \times\{0\}$. The unit vector orthogonal to the (x_{1}, x_{2}) plane is denoted \mathbf{e}_{3}.

The natural reference configuration of the sound two-dimensional body is denoted by Ω_{0} while the associated body which contains a defect of size ℓ is denoted by Ω_{ℓ}. Accordingly one has

$$
\begin{equation*}
\Omega_{\ell}=\Omega_{0} \backslash \Gamma_{\ell} \tag{1}
\end{equation*}
$$

where Γ_{ℓ} denotes the boundary of the defect of size ℓ. (Γ_{ℓ} is contained in the disk of center $(0,0)$ and radius ℓ.) In the case of a crack, one has $\Gamma_{\ell}=(0, \ell) \times\{0\}$. The two edges of the notch are denoted by Γ^{+}and Γ^{-}, see Figure 1. When one uses polar coordinates (r, θ), the pole is the tip of the notch and the origin of the polar angle is the edge Γ^{-}. Accordingly, we have

$$
\begin{equation*}
r=|\mathbf{x}|, \quad \Gamma^{-}=\left\{(r, \theta), 0<r<r^{*}, \quad \theta=0\right\}, \quad \Gamma^{+}=\left\{(r, \theta), 0<r<r^{*}, \quad \theta=\omega\right\} . \tag{2}
\end{equation*}
$$

This body is made of an elastic isotropic material whose shear modulus is $\mu>0$. It is submitted to a loading such that the displacement field at equilibrium \mathbf{u} be antiplane, i.e.

$$
\mathbf{u}(\mathbf{x})=u^{\ell}\left(x_{1}, x_{2}\right) \mathbf{e}_{3}
$$

where the superscript ℓ is used in order to recall that the real displacement depends on the size of the defect. We assume that the body forces are zero and then u^{ℓ} must be an harmonic function in order to satisfy the equilibrium equations in the bulk:

$$
\begin{equation*}
\Delta u^{\ell}=0 \quad \text { in } \quad \Omega_{\ell} . \tag{3}
\end{equation*}
$$

The edges of the notch are free while Γ_{ℓ} is submitted to a density of (antiplane) surface forces. Accordingly, the boundary conditions on Γ_{ℓ} and $\Gamma^{ \pm}$read as

$$
\begin{equation*}
\frac{\partial u^{\ell}}{\partial \nu}=0 \quad \text { on } \quad \Gamma^{ \pm}, \quad \frac{\partial u^{\ell}}{\partial \nu}=\ell g(\mathbf{y}) \quad \text { on } \quad \Gamma_{\ell} . \tag{4}
\end{equation*}
$$

In (4), ν denotes the unit outer normal vector to the domain and we assume that the density of (antiplane) surface forces depends on the microscopic variable y and has a magnitude of the order of ℓ.

The remaining part of the boundary of Ω_{ℓ} is divided into two parts: Γ_{D} where the displacement is prescribed and Γ_{N} where (antiplane) surface forces are prescribed. Specifically, we have

$$
\begin{equation*}
u^{\ell}=f(\mathbf{x}) \quad \text { on } \quad \Gamma_{D}, \quad \frac{\partial u^{\ell}}{\partial \nu}=h(\mathbf{x}) \quad \text { on } \quad \Gamma_{N} . \tag{5}
\end{equation*}
$$

The following Proposition is a characterization of functions which are harmonic in an angular sector and whose normal derivatives vanish on the edges of the sector. It is of constant use thereafter.

Proposition 1. Let r_{1} and r_{2} be such that $0 \leq r_{1}<r_{2} \leq+\infty$ and let $\mathcal{D}_{r_{1}}^{r_{2}}$ be the angular sector

$$
\mathcal{D}_{r_{1}}^{r_{2}}=\left\{(r, \theta): r \in\left(r_{1}, r_{2}\right), \quad \theta \in(0, \omega)\right\} .
$$

Then any function u which is harmonic in $\mathcal{D}_{r_{1}}^{r_{2}}$ and which satisfies the Neumann condition $\partial u / \partial \theta=0$ on the sides $\theta=0$ and $\theta=\omega$ can be read as

$$
\begin{equation*}
u(r, \theta)=b_{0} \ln (r)+c_{0}+\sum_{n \in \mathbb{N}_{*}}\left(b_{n} r^{-n \lambda}+c_{n} r^{n \lambda}\right) \cos (n \lambda \theta) \tag{6}
\end{equation*}
$$

with $\lambda=\pi / \omega$, whereas the b_{n} 's and the c_{n} 's constitute two sequences of real numbers which are characteristic of u.

Proof. Since the normal derivative vanishes at $\theta=0$ and $\theta=\omega, u(r, \theta)$ can be read as the following Fourier series:

$$
u(r, \theta)=\sum_{n \in \mathbb{N}} f_{n}(r) \cos (n \lambda \theta) .
$$

In order that u be harmonic, the functions f_{n} must satisfy $r^{2} f_{n}^{\prime \prime}+r f_{n}^{\prime}-n^{2} \lambda^{2} f_{n}=0$, for each n. One easily deduces that $f_{0}(r)=b_{0} \ln (r)+c_{0}$ and $f_{n}(r)=b_{n} r^{-n \lambda}+c_{n} r^{n \lambda}$ for $n \geq 1$.

3. The matching asymptotic method

When the length ℓ of the defect is small by comparison with the characteristic length of the body (here, this characteristic length is equal to 1), then it is necessary to make an asymptotic analysis of the problem rather than to try to obtain directly an approximation by classical finite element methods. In the case of a crack for instance, because of the overlap of two singularities (one at the tip of the notch and the other at the tip of the crack), it is difficult and even impossible to obtain accurate results without using a relevant asymptotic method. Here we will use the matched asymptotic expansion technique which consists in making two asymptotic expansions of the field u^{ℓ} in terms of the small parameter ℓ. The first one, called the inner expansion, is valid in the neighborhood of the tip of the notch, while the other, called the outer expansion, is valid far from this tip. These two expansions are matched in an intermediate zone.

Figure 2. The domains Ω_{0} and Ω^{∞} for, respectively, the outer (left) and the inner (right) problems
3.1. The outer expansion. Far from the tip of the notch, i.e. for $r \gg \ell$, we assume that the real displacement field u^{ℓ} can be expanded as follows

$$
\begin{equation*}
u^{\ell}(\mathbf{x})=\sum_{i \in \mathbb{N}} \ell^{i \lambda} U^{i}(\mathbf{x}) \tag{7}
\end{equation*}
$$

In (7), even if this expansion is valid far enough from $r=0$ only, the fields U^{i} must be defined in the whole outer domain Ω_{0} which corresponds to the sound body, see Figure 2-left. Inserting this expansion into the set of equations constituting the real problem, one obtains the following equations that the U^{i}, s must satisfy:

The first outer problem $i=0$

$$
\begin{cases}\Delta U^{0}=0 & \text { in } \Omega^{0} \\ \frac{\partial U^{0}}{\partial \nu}=0 & \text { on } \Gamma^{+} \cup \Gamma^{-} \\ \frac{\partial U^{0}}{\partial \nu}=h(\mathbf{x}) & \text { on } \Gamma_{N} \\ U^{0}=f(\mathbf{x}) & \text { on } \Gamma_{D}\end{cases}
$$

The other outer problems $i \geq 1$

$$
\begin{cases}\Delta U^{i}=0 & \text { in } \Omega^{0} \\ \frac{\partial U^{i}}{\partial \nu}=0 & \text { on } \Gamma^{+} \cup \Gamma^{-} \\ \frac{\partial U^{i}}{\partial \nu}=0 & \text { on } \Gamma_{N} \\ U^{i}=0 & \text { on } \Gamma_{D}\end{cases}
$$

Moreover, the behavior of U^{i} in the neighborhood of $r=0$ is singular and the singularity will be given by the matching conditions.
3.2. The inner expansion. Near the tip of the notch, i.e. for $r \ll 1$, we assume that the real displacement field u^{ℓ} can be expanded as follows

$$
\begin{equation*}
u^{\ell}(\mathbf{x})=\ln (\ell) \sum_{i \in \mathbb{N}} \ell^{i \lambda} W^{i}(\mathbf{y})+\sum_{i \in \mathbb{N}} \ell^{i \lambda} V^{i}(\mathbf{y}) . \tag{10}
\end{equation*}
$$

In (10), even if this expansion is valid only in the neighborhood of $r=0$, the fields V^{i} and W^{i} must be defined in the infinite inner domain Ω^{∞}. The domain Ω^{∞} is the infinite angular sector \mathcal{D}_{0}^{∞} of the (y_{1}, y_{2}) plane from which one removes the rescaled defect of size 1, see Figure 2-right:

$$
\begin{equation*}
\Omega^{\infty}=\mathcal{D}_{0}^{\infty} \backslash \Gamma_{1} \tag{11}
\end{equation*}
$$

(In the case of a crack, one has $\Gamma_{1}=(0,1) \times\{0\}$.) Inserting this expansion into the set of equations constituting the real problem, one obtains the following equations that the V^{i} 's must satisfy:

The first inner problem $i=0$

$$
\begin{cases}\Delta V^{0}=0 & \tag{12}\\ \text { in } \Omega^{\infty} \\ \frac{\partial V^{0}}{\partial \theta}=0 & \\ \text { on } \theta=0 \text { and } \theta=\omega \\ \frac{\partial V^{0}}{\partial \nu}=g(\mathbf{y}) & \\ \text { on } \Gamma_{1}\end{cases}
$$

The other inner problems $i \geq 1$

$$
\left\{\begin{array}{l}
\Delta V^{i}=0 \quad \text { in } \Omega^{\infty} \tag{13}\\
\frac{\partial V^{i}}{\partial \theta}=0 \quad \text { on } \theta=0 \text { and } \theta=\omega \\
\frac{\partial V^{i}}{\partial \nu}=0 \quad \text { on } \Gamma_{1}
\end{array}\right.
$$

The W^{i} 's must satisfy, for every $i \geq 0$ the same equations as the V^{i} 's for $i \geq 1$. To complete the set of equations one must add the behavior at infinity of the V^{i},s and the W^{i}, This behavior will be given by the matching conditions with the outer problems.
3.3. Matching conditions. Since all the displacement fields U^{i} are harmonic in the sector $\mathcal{D}_{0}^{r_{2}}$ and satisfy an homogeneous Neumann boundary condition on the edges of this angular sector, we can use Proposition 1. Accordingly, in $\mathcal{D}_{0}^{r_{2}}$ the field U^{i} can read as

$$
\begin{equation*}
U^{i}(\mathbf{x})=b_{0}^{i} \ln (r)+c_{0}^{i}+\sum_{n \in \mathbb{N}_{*}}\left(b_{n}^{i} r^{-n \lambda}+c_{n}^{i} r^{n \lambda}\right) \cos (n \lambda \theta) . \tag{14}
\end{equation*}
$$

In the same way for the inner expansion, since all the displacement fields V^{i} and W^{i} are harmonic in the sector \mathcal{D}_{1}^{∞} of the \mathbf{y} plane and satisfy an homogeneous Neumann boundary condition on the edges of this angular sector, we can use Proposition 1 with the macroscopic coordinates \mathbf{x} and r replaced by the microscopic coordinates \mathbf{y} and $\rho=|\mathbf{y}|=r / \ell$. Accordingly, in \mathcal{D}_{1}^{∞} the fields V^{i} and W^{i} can read as

$$
\begin{align*}
& V^{i}(\mathbf{y})=B_{0}^{i} \ln (\rho)+C_{0}^{i}+\sum_{n \in \mathbb{N}_{*}}\left(B_{n}^{i} \rho^{-n \lambda}+C_{n}^{i} \rho^{n \lambda}\right) \cos (n \lambda \theta) \tag{15}\\
& W^{i}(\mathbf{y})=E_{0}^{i} \ln (\rho)+F_{0}^{i}+\sum_{n \in \mathbb{N}_{*}}\left(E_{n}^{i} \rho^{-n \lambda}+F_{n}^{i} \rho^{n \lambda}\right) \cos (n \lambda \theta) . \tag{16}
\end{align*}
$$

The outer expansion and the inner expansion are both valid in an intermediate zone $\mathcal{D}_{r_{1}}^{r_{2}}$ with $\ell \ll r_{1}<$ $r_{2} \ll 1$. Inserting (14) into the outer expansion (7) with $r=\ell \rho$ leads to

$$
\begin{equation*}
u^{\ell}(\mathbf{x})=\sum_{i \in \mathbb{N}} \ln (\ell) \ell^{i \lambda} b_{0}^{i}+\sum_{i \in \mathbb{N}} \ell^{i \lambda}\left(b_{0}^{i} \ln (\rho)+c_{0}^{i}+\sum_{n \in \mathbb{N}_{*}}\left(b_{n}^{i+n} \rho^{-n \lambda}+c_{n}^{i-n} \rho^{n \lambda}\right) \cos (n \lambda \theta)\right) \tag{17}
\end{equation*}
$$

with the convention that $c_{n}^{i-n}=0$ when $n>i$. Inserting (15) and (16) into the inner expansion (10) leads to

$$
\begin{align*}
u^{\ell}(\mathbf{x}) & =\sum_{i \in \mathbb{N}} \ln (\ell) \ell^{i \lambda}\left(E_{0}^{i} \ln (\rho)+F_{0}^{i}+\sum_{n \in \mathbb{N}_{*}}\left(E_{n}^{i} \rho^{-n \lambda}+F_{n}^{i} \rho^{n \lambda}\right) \cos (n \lambda \theta)\right) \\
& +\sum_{i \in \mathbb{N}} \ell^{i \lambda}\left(B_{0}^{i} \ln (\rho)+C_{0}^{i}+\sum_{n \in \mathbb{N}_{*}}\left(B_{n}^{i} \rho^{-n \lambda}+C_{n}^{i} \rho^{n \lambda}\right) \cos (n \lambda \theta)\right) . \tag{18}
\end{align*}
$$

Both expansions (17) and (18) are valid provided that $1 \ll \rho \ll 1 / \ell$. By identification one gets the following properties for the coefficients of the inner and outer expansions, see Table 1.

$E_{n}^{i}=0$	$i \geq 0, n \geq 0$
$F_{0}^{i}=b_{0}^{i}$	$i \geq 0$
$F_{n}^{i}=0$	$i \geq 0, n \geq 1$
$b_{n}^{i}=0$	$n>i \geq 0$
$B_{n}^{i}=b_{n}^{i+n}$	$i \geq 0, n \geq 0$
$C_{n}^{i}=0$	$n>i \geq 0$
$c_{n}^{i}=C_{n}^{i+n}$	$i \geq 0, n \geq 0$

Table 1. The relations between the coefficients of the inner and outer expansions given by the matching conditions

Remark 1. One deduces from Table 1 that the fields W^{i} are constant in the whole inner domain:

$$
\begin{equation*}
W^{i}(\mathbf{y})=b_{0}^{i}, \quad \forall \mathbf{y} \in \Omega^{\infty}, \quad \forall i \geq 0 \tag{19}
\end{equation*}
$$

Therefore, these fields will be determined once the constants b_{0}^{i} will be known.
3.4. The singular behavior of the $U^{i} \mathbf{s}$ and the $V^{i} \mathbf{s}$. We deduce from the matching conditions the behavior of U^{i} in the neighborhood of $r=0$ and the behavior of V^{i} in the neighborhood of $\rho=\infty$. In particular, one obtains the form of their singularities. Let us first precise what one means by singularity.
Definition 1. A field u defined in Ω_{0} is said regular in Ω_{0} if $u \in H^{1}\left(\Omega_{0}\right)$, i.e. $u \in L^{2}\left(\Omega_{0}\right)$ and $\nabla u \in L^{2}\left(\Omega_{0}\right)^{2}$. It is said singular otherwise.
A field u defined in the unbounded sector Ω^{∞} is said regular in Ω^{∞} if $\nabla u \in L^{2}\left(\Omega^{\infty}\right)^{2}$ and $\lim _{\rho \rightarrow \infty} u(\rho, \theta)=0$. It is said singular otherwise.

By virtue of the analysis of the previous subsection, the field U^{0} can be read in a neighborhood of the tip of the notch as

$$
\begin{equation*}
U^{0}(\mathbf{x})=b_{0}^{0} \ln (r)+\sum_{n \in \mathbb{N}} C_{n}^{n} r^{n \lambda} \cos (n \lambda \theta) . \tag{20}
\end{equation*}
$$

Since $\ln (r)$ is singular in Ω_{0} whereas $r^{n \lambda} \cos (n \lambda \theta)$ is regular (for $n \geq 0$) in Ω_{0} in the sense of Definition $1, b_{0}^{0} \ln (r)$ can be considered as the singular part of the field U^{0}. Accordingly, one can decompose U^{0} into its singular and its regular part as follows

$$
\begin{gather*}
U^{0}(\mathbf{x})=U_{S}^{0}(\mathbf{x})+\bar{U}^{0}(\mathbf{x}) \tag{21}\\
U_{S}^{0}(\mathbf{x})=b_{0}^{0} \ln (r), \quad \bar{U}^{0} \in H^{1}\left(\Omega_{0}\right) . \tag{22}
\end{gather*}
$$

In the same way, for $i \geq 1$, the field U^{i} can be read in a neighborhood of the tip of the notch as

$$
\begin{equation*}
U^{i}(\mathbf{x})=b_{0}^{i} \ln (r)+\sum_{n=1}^{i} b_{n}^{i} r^{-n \lambda} \cos (n \lambda \theta)+\sum_{n \in \mathbb{N}} C_{n}^{i+n} r^{n \lambda} \cos (n \lambda \theta) . \tag{23}
\end{equation*}
$$

Since $r^{-n \lambda} \cos (n \lambda \theta)$ is singular (for $n \geq 0$) in the sense of Definition 1, one can decompose U^{i} into its singular and its regular part as follows

$$
\begin{gather*}
U^{i}(\mathbf{x})=U_{S}^{i}(\mathbf{x})+\bar{U}^{i}(\mathbf{x}), \tag{24}\\
U_{S}^{i}(\mathbf{x})=b_{0}^{i} \ln (r)+\sum_{n=1}^{i} b_{n}^{i} r^{-n \lambda} \cos (n \lambda \theta), \quad \bar{U}^{i} \in H^{1}\left(\Omega_{0}\right) . \tag{25}
\end{gather*}
$$

For the fields V^{i} of the inner expansion, one has to study their behavior at infinity. By virtue of the analysis of the previous subsection, the field V^{i} for $i \geq 0$ can be read in a neighborhood of $\rho=\infty$ as

$$
\begin{equation*}
V^{i}(\mathbf{y})=b_{0}^{i} \ln (\rho)+\sum_{n=0}^{i} C_{n}^{i} \rho^{n \lambda} \cos (n \lambda \theta)+\sum_{n \in \mathbb{N}_{*}} b_{n}^{i+n} \rho^{-n \lambda} \cos (n \lambda \theta) . \tag{26}
\end{equation*}
$$

The field $\ln (\rho)$ as well as the fields $\rho^{n \lambda} \cos (n \lambda \theta)$, for $n \geq 0$, are singular in Ω^{∞} in the sense of Definition 1 (even the constant field 1 corresponding to $n=0$ is singular). Since the fields $\rho^{-n \lambda} \cos (n \lambda \theta)$ are regular when $n \geq 1, b_{0}^{i} \ln (\rho)+\sum_{n=0}^{i} C_{n}^{i} \rho^{n \lambda} \cos (n \lambda \theta)$ can be considered as the singular part of the field V^{i}. Accordingly, one can decompose V^{i} into its singular and its regular part as follows

$$
\begin{gather*}
V^{i}(\mathbf{y})=V_{S}^{i}(\mathbf{y})+\bar{V}^{i}(\mathbf{y}), \tag{27}\\
V_{S}^{i}(\mathbf{y})=b_{0}^{i} \ln (\rho)+\sum_{n=0}^{i} C_{n}^{i} \rho^{n \lambda} \cos (n \lambda \theta), \quad \nabla \bar{V}^{i} \in L^{2}\left(\Omega^{\infty}\right), \quad \lim _{|\mathbf{y}| \rightarrow \infty} \bar{V}^{i}(\mathbf{y})=0 . \tag{28}
\end{gather*}
$$

Remark 2. This analysis of the singularities shows that the singular parts of the fields U^{i} and V^{i} will be known once the coefficients b_{n}^{i} and C_{n}^{i} will be determined for $0 \leq n \leq i$.
3.5. The problems giving the regular parts \bar{U}^{i} and \bar{V}^{i}. We are now in position to set the inner and outer problems giving the fields V^{i} and U^{i}. Since, by construction, the singular parts of these fields are harmonic and satisfy the homogeneous Neumann boundary conditions on the edges of the notch, their regular parts must verify the following boundary value problems.

The first outer problem, $i=0$
Find \bar{U}^{0} regular in Ω_{0} such that

$$
\begin{cases}\Delta \bar{U}^{0}=0 & \text { in } \Omega^{0} \\ \frac{\partial \bar{U}^{0}}{\partial \nu}=0 & \text { on } \Gamma^{+} \cup \Gamma^{-} \\ \frac{\partial \bar{U}^{0}}{\partial \nu}=h-\frac{\partial U_{S}^{0}}{\partial \nu} & \text { on } \Gamma_{N} \\ \bar{U}^{0}=f-U_{S}^{0} & \text { on } \Gamma_{D}\end{cases}
$$

The first inner problem, $i=0$ Find \bar{V}^{0} regular in Ω^{∞} such that

$$
\left\{\begin{array}{llrl}
\Delta \bar{V}^{0}=0 & & \text { in } \Omega^{\infty} \\
\frac{\partial \bar{V}^{0}}{\partial \nu}=0 & & \text { on } \Gamma^{+} \cup \Gamma^{-} \\
\frac{\partial \bar{V}^{0}}{\partial \nu}=g-\frac{\partial V_{S}^{0}}{\partial \nu} & & \text { on } \Gamma_{1}
\end{array}\right.
$$

The other outer problems, $i \geq 1$
Find \bar{U}^{i} regular in Ω_{0} such that

$$
\begin{cases}\Delta \bar{U}^{i}=0 & \text { in } \Omega^{0} \tag{30}\\ \frac{\partial \bar{U}^{i}}{\partial \nu}=0 & \text { on } \Gamma^{+} \cup \Gamma^{-} \\ \frac{\partial \bar{U}^{i}}{\partial \nu}=-\frac{\partial U_{S}^{i}}{\partial \nu} & \text { on } \Gamma_{N} \\ \bar{U}^{i}=-U_{S}^{i} & \text { on } \Gamma_{D}\end{cases}
$$

The other inner problems, $i \geq 1$ Find \bar{V}^{i} regular in Ω^{∞} such that

$$
\begin{cases}\Delta \bar{V}^{i}=0 & \tag{32}\\ \text { in } \Omega^{\infty} \\ \frac{\partial \bar{V}^{i}}{\partial \nu}=0 & \\ \text { on } \Gamma^{+} \cup \Gamma^{-} \\ \frac{\partial \bar{V}^{i}}{\partial \nu}=-\frac{\partial V_{S}^{i}}{\partial \nu} & \\ \text { on } \Gamma_{1}\end{cases}
$$

Let us study first the outer problems. We have the following Proposition which is a direct consequence of classical results for the Laplace equation:
Proposition 2. Let $i \geq 0$. For a given singular part U_{S}^{i}, i.e. if the coefficients b_{n}^{i} are known for all n such that $0 \leq n \leq i$, then there exists a unique solution \bar{U}^{i} of (30) (or of (29) when $i=0$). Consequently, the coefficients C_{n}^{i+n} are then determined for all $n \geq 0$.

Let us consider now the inner problems. We obtain the following Proposition
Proposition 3. Let $i \geq 0$. For given C_{n}^{i} with $0 \leq n \leq i$, there exists a regular solution V^{i} for the i-th inner problem if and only is the coefficient b_{0}^{i} is such that

$$
\begin{equation*}
b_{0}^{0}=-\frac{1}{\omega} \int_{\Gamma_{1}} g(s) d s, \quad b_{0}^{i}=0 \quad \text { for } \quad i \geq 1 \tag{33}
\end{equation*}
$$

Moreover, if this condition is satisfied, then the solution is unique and therefore the coefficients b_{n}^{i+n} are determined for all $n \geq 0$.

Proof. The inner problems are pure Neumann problems in which no Dirichlet boundary conditions are imposed to the V^{i} 's. Consequently, they admit a solution (if and) only if the Neumann data satisfy a global compatibility condition. Let us re-establish that condition. Let Ω^{R} be the part of Ω^{∞} included in the ball of radius $R>1$, i.e. $\Omega^{R}=\Omega^{\infty} \cap\{\mathbf{y}:|\mathbf{y}|<R\}$. Let us consider first the case $i=0$. Integrating the equation $\Delta V^{0}=0$ over Ω^{R} and using the boundary conditions leads to

$$
\begin{equation*}
0=\int_{\partial \Omega^{R}} \frac{\partial V^{0}}{\partial \nu} d s=\int_{0}^{\omega} \frac{\partial V^{0}}{\partial \rho}(R, \theta) R d \theta+\int_{\Gamma_{1}} g(s) d s \tag{34}
\end{equation*}
$$

Using (26), one gets $R \frac{\partial V^{0}}{\partial \rho}(R, \theta)=b_{0}^{0}+\sum_{n \in \mathbb{N}_{*}} n \lambda\left(-B_{n}^{0} R^{-n \lambda}+C_{n}^{0} R^{n \lambda}\right) \cos (n \lambda \theta)$. Since $\int_{0}^{\omega} \cos (n \lambda \theta) d \theta=0$ for all $n \geq 1$, after inserting in (34) one obtains the desired condition for b_{0}^{0}.

One proceeds exactly in the same manner for $i \geq 1$ and one obtains the desired condition because the integral over Γ_{1} vanishes.
If the compatibility condition (33) is satisfied, then one proves the existence of a regular solution for \bar{V}^{i} by standard arguments. Note however that, since $\nabla \bar{V}^{i}$ belongs to $L^{2}\left(\Omega^{\infty}\right), \bar{V}^{i}$ tends to a constant at infinity and this constant is fixed to 0 by the additional regularity condition. As far as the uniqueness is concerned, the solution of this pure Neumann problem is unique up to a constant and the constant is fixed by the condition that \bar{V}^{i} vanishes at infinity.
Once V^{i} is determined, one obtains the coefficients b_{n}^{i+n} by virtue of Proposition 1 and (26).
Remark 3. If the forces applied to the boundary of the defect are equilibrated, i.e. if $\int_{\Gamma_{1}} g(s) d s=0$, then all the coefficients b_{0}^{i} vanish and hence the terms in $\ln (\ell)$ disappear in the inner expansion. There is no more logarithmic singularities in the U^{i} 's and the V^{i} 's.
3.6. The construction of the outer and inner expansions. Equipped with the previous results, we are in position to explain how one can determine the different terms of the two expansions. Let us explain first how one obtains the first terms.
(1) One obtains b_{0}^{0} by (34) and hence one knows U_{S}^{0}.
(2) Knowing U_{S}^{0}, one determines \bar{U}^{0} and hence U^{0} by solving (29), see Proposition 2.
(3) Knowing U^{0}, one calculates C_{n}^{n} for $n \geq 0$ as a regular part of U^{0}, see the next subsection for the practical method. Hence, one knows V_{S}^{0}.
(4) Knowing V_{S}^{0}, one determines \bar{V}^{0} and hence V^{0} by solving (31), see Proposition 3.
(5) Knowing V^{0}, one calculates b_{n}^{n} for $n \geq 1$ as a regular part of V^{0}, see the next subsection for the practical method. Hence, since $b_{0}^{1}=0$, one knows U_{S}^{1}.

Then one proceeds by induction. Let $i \geq 1$. Assuming that the following properties hold true,
H1 U^{j} and V^{j} have been determined for $0 \leq j \leq i-1$
H2 C_{n}^{j} is known for $0 \leq n \leq j \leq i-1$
H3 b_{n}^{j+n} and C_{n}^{j+n} are known for $0 \leq j \leq i-1$ and $n \geq 0$
H4 b_{n}^{j} is known for $0 \leq n \leq j \leq i$
let us prove that they remain true for $i+1$.
C1 Knowing b_{n}^{i} for $0 \leq n \leq i$, one knows U_{S}^{i}. Knowing U_{S}^{i}, one determines \bar{U}^{i} and hence U^{i} by solving (30), see Proposition 2.
C2 Knowing U^{i}, one calculates C_{n}^{i+n} for $n \geq 0$ as a regular part of U^{i}, see the next subsection for the practical method. Hence, one knows V_{S}^{i}.
C3 Since C_{0}^{i} is known and since $C_{n}^{i}=C_{n}^{j+n}$ with $j=i-n$, one knows C_{n}^{i} for $0 \leq n \leq i$.
C4 Knowing V_{S}^{i}, one determines \bar{V}^{i} and hence V^{i} by solving (32), see Proposition 3 .
C5 One knows that $b_{0}^{i}=0$. Knowing V^{i}, one calculates b_{n}^{i+n} for $n \geq 1$ as a regular part of V^{i}, see the next subsection for the practical method.
C6 Since $b_{0}^{i+1}=0$ and since $b_{n}^{i+1}=b_{n}^{j+n}$ with $j=i+1-n$, one knows b_{n}^{i+1} for $0 \leq n \leq i+1$.
This iterative method is summarized in the Table 2.
3.7. The practical method for determining the coefficients b_{n}^{i} and C_{n}^{i} for $0 \leq n \leq i$. The coefficients b_{n}^{i} and C_{n}^{i} can be obtained by path integrals (which are path independent) as it is proved in the following Proposition. Throughout this section, \mathcal{C}_{r} denotes the arc of circle of radius r starting on Γ^{-} and ending on Γ^{+}:

$$
\mathcal{C}_{r}=\{(r, \theta): 0 \leq \theta \leq \omega\} .
$$

b_{n}^{i} / C_{n}^{i}	$\mathrm{i}=0$	$\mathrm{i}=1$	$\mathrm{i}=2$	$\mathrm{i}=3$	$\mathrm{i}=4$
$\mathrm{n}=0$	$(33) /$ Outer 0	$0 /$ Outer 1	$0 /$ Outer 2	$0 /$ Outer 3	$0 /$ Outer 4
$\mathrm{n}=1$	0	Inner 0/Outer 0	Inner 1/Outer 1	Inner 2 / Outer 2	Inner 3 / Outer 3
$\mathrm{n}=2$	0	0	Inner 0/ Outer 0	Inner 1/ Outer 1	Inner 2 / Outer 2
$\mathrm{n}=3$	0	0	0	Inner 0 / Outer 0	Inner 1 / Outer 1
$\mathrm{n}=4$	0	0	0	0	Inner 0 / Outer 0

TABLE 2. Summary of the inductive method to obtain the coefficients b_{n}^{i} and C_{n}^{i} : in the corresponding cell is indicated the problem which must be solved

Proposition 4. Let $i \geq 0$ and let us assume that the $i^{\text {th }}$ inner and outer problems are solved and thus that \bar{V}^{i} and \bar{U}^{i} are known. Then
(1) For $n \geq 1, b_{n}^{i+n}$ is given by the following path integral over \mathcal{C}_{ρ} which is independent of ρ provided that $\rho>1$:

$$
\begin{equation*}
b_{n}^{i+n}=\frac{2 \rho^{n \lambda}}{\omega} \int_{0}^{\omega} \bar{V}^{i}(\rho, \theta) \cos (n \lambda \theta) d \theta \tag{35}
\end{equation*}
$$

(2) For $n \geq 0, C_{n}^{i+n}$ is given by the following path integral over \mathcal{C}_{r} which is independent of r provided that $0<r<r^{*}$:

$$
\begin{equation*}
C_{0}^{i}=\frac{1}{\omega} \int_{0}^{\omega} \bar{U}^{i}(r, \theta) d \theta, \quad C_{n}^{i+n}=\frac{2 r^{-n \lambda}}{\omega} \int_{0}^{\omega} \bar{U}^{i}(r, \theta) \cos (n \lambda \theta) d \theta \quad \text { for } \quad n \geq 1 \tag{36}
\end{equation*}
$$

Proof. The proofs are identical for the two families of coefficients and then one gives only the proof for C_{n}^{i+n}. By virtue of (23), the regular part \bar{U}^{i} of U^{i} is given by

$$
\bar{U}^{i}(r, \theta)=\sum_{p \in \mathbb{N}} C_{p}^{i+p} r^{p \lambda} \cos (p \lambda \theta)
$$

for $0<r<r^{*}$. Since $\int_{0}^{\omega} \cos (p \lambda \theta) d \theta$ is equal to ω if $p=0$ and is equal to 0 otherwise, one obtains the expression for C_{0}^{i}. For $n \geq 1$, since $\int_{0}^{\omega} \cos (p \lambda \theta) \cos (n \lambda \theta) d \theta$ is equal to $\omega / 2$ if $p=n$ and is equal to 0 otherwise, one obtains the expression for C_{n}^{i+n}.

4. CASE OF A CRACK

In this section, the method is applied to the case where the defect is a non cohesive crack. Specifically, let Ω be the rectangle $(-H, L) \times(-H,+H)$. We remove from Ω the following sector \mathcal{N}_{ϵ} where $0<\epsilon<1$:

$$
\mathcal{N}_{\epsilon}=\left\{\mathbf{x}=\left(x_{1}, x_{2}:-H<x_{1} \leq 0,\left|x_{2}\right| \leq \epsilon\left|x_{1}\right|\right)\right\} .
$$

We obtains so the notch-shaped body $\Omega_{0}=\Omega \backslash \mathcal{N}_{\epsilon}$. (Note that the case $\epsilon=0$ corresponds to a body with a crack of length H.) Finally we remove from Ω_{0} the segment line $\Gamma_{\ell}=(0, \ell) \times\{0\}$ and obtains the cracked body Ω_{ℓ}, see Figure 3.

The boundary Γ_{D} where the displacement are prescribed corresponds to the sides $D_{\epsilon}^{ \pm}$and Γ_{L}. Specifically, the boundary conditions read as

$$
u^{\ell}(\mathbf{x})=\left\{\begin{array}{lll}
+1 & \text { on } & D_{\epsilon}^{+}=\{-H\} \times(\epsilon H, H) \\
-1 & \text { on } & D_{\epsilon}^{-}=\{-H\} \times(-H,-\epsilon H) \\
0 & \text { on } & \Gamma_{L}=\{L\} \times(-H, H)
\end{array}\right.
$$

whereas the remaining parts of the boundary (including the lips of the crack) are free. Accordingly, we have

$$
\begin{equation*}
\frac{\partial u^{\ell}}{\partial x_{2}}=0 \quad \text { on } \quad \Gamma_{\ell} . \tag{37}
\end{equation*}
$$

FIGURE 3. The cracked notch-shaped body Ω_{ℓ}

We are in the case where $g=0$ on Γ_{ℓ}. Therefore, by virtue of Proposition 3, all the coefficients b_{0}^{i} vanish and there is no logarithmic singularities. Accordingly, the solution can be expanded as follows:

$$
\begin{array}{cc}
\text { Outer expansion } & u^{\ell}(\mathbf{x})=U^{0}(\mathbf{x})+\ell^{\lambda} U^{1}(\mathbf{x})+\ell^{2 \lambda} U^{2}(\mathbf{x})+\ell^{3 \lambda} U^{3}(\mathbf{x})+\ldots \\
\text { Inner expansion } & u^{\ell}(\mathbf{x})=V^{0}(\mathbf{y})+\ell^{\lambda} V^{1}(\mathbf{y})+\ell^{2 \lambda} V^{2}(\mathbf{y})+\ell^{3 \lambda} V^{3}(\mathbf{y})+\ldots \tag{39}
\end{array}
$$

with

$$
\lambda=\frac{\pi}{\omega}, \quad \omega=2 \pi-\arctan (2 \epsilon)
$$

Remark 4. By symmetry of the geometry and the loading, the real field u^{ℓ} is an odd function of x_{2}, i.e.

$$
u^{\ell}\left(x_{1},-x_{2}\right)=-u^{\ell}\left(x_{1}, x_{2}\right), \quad u^{\ell}(r, \omega-\theta)=-u^{\ell}(r, \theta) .
$$

Therefore, all the fields $U^{i}, \bar{U}^{i}, V^{i}, \bar{V}^{i}$ admit the same symmetry. One deduces from Proposition 4 that all the coefficients $C_{2 n}^{i+2 n}$ and $b_{2 n}^{i+2 n}$ vanish. We can also prove (but the proof is too long to be reproduced here) that all the odd terms of the outer expansion and all the even terms of the inner expansions vanish, i.e. $U^{2 i+1}=0$ and $V^{2 i}=0$ for all $i \in \mathbb{N}$.

The main goal of this section is to obtain an accurate value of the elastic energy stored in the cracked body, say \mathcal{P}^{ℓ}, for small values of ℓ by using the matched asymptotic method because it is difficult to evaluate the accuracy of its values obtained by a classical finite element method. By definition, the elastic energy is given by

$$
\mathcal{P}^{\ell}=\frac{1}{2} \int_{\Omega_{\ell}} \mu \nabla u^{\ell} \cdot \nabla u^{\ell} d x .
$$

By virtue of Clapeyron's formula and owing to the symmetry of u^{ℓ}, the elastic energy can also read as the following integral over D_{ϵ}^{+}:

$$
\mathcal{P}^{\ell}=-\int_{\epsilon H}^{H} \mu \frac{\partial u^{\ell}}{\partial x_{1}}\left(-H, x_{2}\right) d x_{2}
$$

which involves only the displacement field far from the tip of the notch. Accordingly, one can expand \mathcal{P}^{ℓ} by using the outer expansion of u^{ℓ}. That leads to

$$
\begin{equation*}
\mathcal{P}^{\ell}=\sum_{i \in \mathbb{N}} P^{2 i} \ell^{2 i \lambda} \quad \text { with } \quad P^{2 i}=-\int_{\epsilon H}^{H} \mu \frac{\partial U^{2 i}}{\partial x_{1}}\left(-H, x_{2}\right) d x_{2} \tag{40}
\end{equation*}
$$

An important quantity for the study of the propagation of the crack is the energy release rate \mathcal{G}^{ℓ} which is the opposite of the derivative of the elastic energy with respect to the length of the crack: $\mathcal{G}^{\ell}=-\frac{d \mathcal{P}^{\ell}}{d \ell}$, see [1, 4]. Its expansion can be immediately deduce from that of the energy:

$$
\begin{equation*}
\mathcal{G}^{\ell}=-\sum_{i \in \mathbb{N}_{*}} 2 i \lambda P^{2 i} \ell^{2 i \lambda-1} \tag{41}
\end{equation*}
$$

To obtain the $i^{t h}$ term of the expansion of \mathcal{P}^{ℓ} and \mathcal{G}^{ℓ}, one must determine both the singular part U_{S}^{i} and the regular part \bar{U}^{i} of U^{i}. The singular part involves the coefficients b_{n}^{i} for $1 \leq n \leq i$ which are obtained as the regular parts of the V^{j} 's for $j \leq i$, see Section 3.6. Therefore, one must also solve the inner problems and hence determine the coefficients C_{n}^{i} for $0 \leq n \leq i$. In practise, these coefficients are obtained by using Proposition 4 after the inner and the outer problems have been solved with a finite element method. The advantage is that those problems do not contain a small defect and the accuracy is guaranteed.

In the next tables are given the computed values of the first coefficients of the inner and outer expansions ($H=1, L=5, \mu=1$). They are necessary to compute the first terms of the expansion of the energy and of the energy release rate. The graphs of $\ell \mapsto \mathcal{P}^{\ell}$ and $\ell \mapsto \mathcal{G}^{\ell}$ obtained from these expansions are plotted on Figure 4. They are compared with the values obtained directly by the finite element code Comsol, see [5]. It turns out that Comsol is not able to give accurate results for small values of ℓ (here when $\ell<0.01$) whereas the matching asymptotic expansion is valid in this range of values (and even the smaller ℓ, the more accurate the asymptotic method). The two methods give the same results in the intermediate range of values $(0.01,0.1)$ of ℓ. Note however that the asymptotic method diverges from the finite element method for large values of ℓ. It is due to the fact that one has only computed the first terms of the expansion and one should compute more terms to obtain accurate results.

| ϵ | C_{0}^{0} | C_{1}^{1} | C_{2}^{2} | C_{3}^{3} | C_{4}^{4} | P^{0} | | C_{0}^{2} | C_{1}^{3} | C_{2}^{4} | C_{3}^{5} | C_{4}^{6} | P^{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | -0.7834 | 0 | -0.2059 | 0 | 0.6940 | | 0 | 0.2384 | 0 | 0.1058 | 0 | -0.4836 |
| 0.1 | 0 | -0.7482 | 0 | -0.2085 | 0 | 0.6606 | | 0 | 0.2091 | 0 | 0.0992 | 0 | -0.4413 |
| 0.2 | 0 | -0.7089 | 0 | -0.2081 | 0 | 0.6238 | | 0 | 0.1777 | 0 | 0.0905 | 0 | -0.3957 |
| 0.3 | 0 | -0.6657 | 0 | -0.2045 | 0 | 0.5847 | | 0 | 0.1451 | 0 | 0.0800 | 0 | -0.3486 |
| 0.4 | 0 | -0.6187 | 0 | -0.1977 | 0 | 0.5420 | 0 | 0.1125 | 0 | 0.0683 | 0 | -0.3005 | |

TABLE 3. The computed values of the coefficients C_{n}^{n} and C_{n}^{n+2} for $0 \leq n \leq 4$ and of the leading terms P^{0} and P^{2} of the expansion of the potential energy for several values of the angle of the notch

ϵ	b_{1}^{2}	b_{2}^{3}	b_{3}^{4}	b_{4}^{5}	b_{5}^{6}
0	-0.3930	0	0.0987	0	-0.0494
0.1	-0.3756	0	0.0943	0	-0.0472
0.2	-0.3559	0	0.0893	0	-0.0446
0.3	-0.3342	0	0.0838	0	-0.0418
0.4	-0.3106	0	0.0778	0	-0.0389

TABLE 4. The computed values of the coefficients b_{n}^{n+1} for $1 \leq n \leq 5$

Figure 4. Comparisons of the graphs of \mathcal{P}^{ℓ} and \mathcal{G}^{ℓ} near $\ell=0$ obtained by Matching Asymptotic Expansion or by the finite element code COMSOL for five values of the angle of the notch

5. Conclusion

We have presented here a general method based on matched asymptotic expansions which can be applied to determine the mechanical fields and all related mechanical quantities in the case of a defect located at the tip of a notch. Applying this method to the case of a non cohesive crack, it turns out that it is sufficient to solve few inner and outer problems to obtain with a very good accuracy the dependence of the energy and the energy release rate on the length of the crack. Moreover, this approximation can be used for very small values of the length of the crack and hence for determining the onset of the cracking whereas a classical finite element method gives rise to inaccurate results. The next step will be to apply this method in the case of a cohesive crack.

References

[1] B. Bourdin, G. A. Francfort, and J.-J. Marigo. The variational approach to fracture. Springer, 2008.
[2] M. Dauge, S. Tordeux, and G. Vial. Selfsimilar perturbation near a corner: matching versus multiscale expansions for a model problem. In Around the research of Vladimir Maz'ya. II, volume 12 of Int. Math. Ser. (N. Y.), pages 95-134. Springer, 2010.
[3] P. Grisvard. Elliptic problems in non smooth domains. Number 24 in Monographs and Studies in Mathematics. Pitman, 1985.
[4] J.-B. Leblond. Mécanique de la rupture fragile et ductile. Collection Études en mécanique des matériaux et des structures. Editions Lavoisier, Paris, 2000.
[5] J.-J. Marigo. Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization. Journal of Nonlinear Science, 20(6):831-868, 2010.

