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Abstract We study multifissuration and debonding phenomena of a thin film bonded to a stiff substrate using
the variational approach to fracture mechanics. We consider a reduced one–dimensional membrane model
where the loading is introduced through uniform inelastic (e. g. thermal) strains in the film or imposed dis-
placements of the substrate. Fracture phenomena are accounted for by adopting a Griffith model for debonding
and transverse fracture. On the basis of energy minimization arguments, we recover the key qualitative prop-
erties of the experimental evidences, like the periodicity of transverse cracks and the peripheral debonding of
each regular segment. Phase diagrams relate the maximum number of transverse cracks that may be created
before debonding takes place, as a function of the material properties and the sample’s geometry. The theo-
retical results are illustrated with numerical simulations obtained through a finite element discretization and
a regularized variational formulation of the Ambrosio-Tortorelli type, which is suited to further extensions in
two-dimensional settings.

Keywords Variational approach · Thin films · Fracture · Delamination · Energy minimization

1 Introduction

Thin film systems are widely present in today’s engineering solutions. Coatings, surface treatments, thermal
barriers and paintings are just to mention some. These systems are often characterized by the presence of a
substrate, whose duty is to support the structural loading, and one or several layers, somehow bonded to the
substrate, meant to impart a particular superficial behavior to the final assembly. The layer, or “film”, as it will
be called henceforth, and the substrate are often of very different material and geometric characteristics. Usu-
ally, the film is much thinner than the substrate and its stiffness and thermal expansion coefficients may differ
from those of the substrate by several orders of magnitude. Because of the assembly procedures of the final
system and multi-physical loadings under working conditions (e.g. thermal loads or humidity), this mismatch
may lead to significant stresses in the film and eventually lead to material failure, which can be manifested by
a plethora of different and complex modes of cracking.
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Ecole Polytechnique, Laboratoire de Mécanique des Solides, 91128, Palaiseau, France
E-mail: marigo@lms.polytechnique.fr



2

A detailed review of possible failure modes has been given in [1]. Isolated cracks or network of channel-
ing fractures may develop and propagate in the overlying film, cracks originating from within the film may
penetrate into the substrate, interfacial cracks may develop in the bonding layer. Specifically, multifissuration
and debonding are observed in a multitude of physical systems such as rocky materials and asphalts [2], mi-
croelectromechanical systems, or through drying of colloidal suspensions [3]. Considering that these systems
possess very different constitutive laws and characteristics lengths spanning multiple orders of magnitude,
one can argue that multifissuration and debonding are not specific to a particular material microstructure and
should be amenable to a macroscopic description. A common observation is that, under uniaxial loading of
the specimen, a periodic network of cracks appears [4] and debonding of the film eventually takes place start-
ing from the edges. With this starting assumption, numerous studies have been performed either with energy
minimization criterions or maximum-stress criterions. Multifissuration of thin films has been studied in [5]
without accounting for the non-linear interaction with the substrate that provokes delamination. In that work
identical mechanical properties for the film and substrate have been considered. Crack spacing for a pave-
ment layer has been studied in [2] using an elasto–plastic–cohesive–frictional model for the interface. In [6]
a critical stress threshold activates debonding, then an energy minimization argument is used to solve the
segmentation problem. A comparison of different constitutive laws that may activate debonding are studied
in [7]. In all those examples, residual friction remains where the film is debonded. The a priori knowledge of
the debonded area’s topology and of the crack spacing is also central to the analysis also in [8] and [9].

A proper description of the complex cracking phenomena observed in thin films demands to correctly
deal with complex crack geometries, crack nucleation and evolution, which eventually may turn out to be
non-smooth in space-time. These issues are known to be fundamental difficulties for the classical approach to
fracture, which is based on the analysis of the propagation of a single preexisting crack along a simple, and
usually pre-defined path. As a result, although thin film systems are of a great scientific and industrial interest,
a general and rigorous modeling framework able to provide accurate tools for their theoretical understand-
ing and predictive numerical simulation is still missing. A key reference for the linear fracture mechanics of
thin-film systems is the work of Xia and Hutchinson [10], where the authors use a reduced two-dimensional
membrane model for the film and the substrate stiffness is accounted for as an equivalent elastic foundation.
In this setting, the dimensionless parameters of the model are calibrated through finite element computa-
tions. The propagation of a single straight crack, that of an array of cracks (with the typical stop–and–go
phenomenon), curved and spiral cracks are found as particular solutions of the equation of the critical energy
release rate criterion, namely G = Gc.

The aim of our work is to study the problem of transverse cracking and debonding of a thin film elastically
bonded on a stiff substrate. To overcome the limits of classical linear fracture mechanics regarding crack
nucleation and its evolution in space–time, we adopt a variational point of view. We consider a reduced model
similar to that of [10], revisiting it in the framework of the variational approach to fracture mechanics as stated
in [11,12,13]. We postulate that the cracked state of the system is given by a unilateral global minimization
principle of a total energy functional consisting of the sum of a bulk contribution, due to the elasticity of
the film and the bonding layer, and surface terms associated to the energy required to create a transverse or
debonding cracks, according to Griffith model. We study the quasi-static evolution of the state of the film as
a function of a single loading parameters that may be interpreted as the inelastic mismatch strain between
the film and the bonding layer. We neglect rate-dependent phenomena such as inertial or viscoelastic effects,
but we account for the effect of the history through irreversibility conditions on the cracks. We focus here
on a 1D study, which includes both analytical and numerical results. Many of the assumptions that are often
postulated, namely the equidistribution of cracks, the topology of the debonded region, its activation from the
boundaries, are obtained as outcomings of the variational analysis. Details about the organization of the paper
and its main results are given in the following Section.

The present paper shares the key ideas of the stream of works on the variational analysis of nonlinear
continua, to which Professor Del Piero gave several fundamental contributions [14,15,16,17]. Our work is
heartily dedicated to him in occasion of his retirement.

2 Organization of the paper and main results

We start fixing some basic notation. We follow the convention of the journal to denote scalars, vectors and
tensors quantities (and analogously fields) with italic serif, bold serif and sans serif fonts like u, x and e,
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Fig. 1 2D: A cross-section of the 3D system: the film Ω f is bonded to a stiff substrate by the means of the bonding layer Ωb.
Transverse cracks Γf debonding cracks Γb may develop in the film and in the bonding layer. 1D reduction: in the reduced uniaxial
elastic bar of axis A , transverse and debonding cracks are identified with Γ and ∆ .

respectively. The derivative of a function of one variable will be indicated by a prime sign and the Gateaux
derivative of a functional E(u, . . .) in the direction v will be noted DuE(u, . . .)(v). To keep the notation as light
as possible, with an abuse of notation, we will sometimes denote different functions with the same symbol,
provided that the number of arguments is different. Finally, we denote #(·) and L (·) the cardinal number
(0-dimensional measure in RN) and the length (1-dimensional measure in RN) of a set.

We consider the system sketched in Figure 1, where a film is bonded on a stiff substrate through a thin
bonding layer. We study the appearance of transverse cracks Γ across the film’s cross–section and interfacial
cracks ∆ along the bonding layer. Denoting by the scalar field u the membrane displacement of the film
occupying the 1D domain A , we adopt a one–dimensional reduced model which assumes that the total energy
of the system is given by:

Et(u,Γ ,∆) :=
∫

A \Γ

1
2

K(u′(x)− ε̄t)
2 dx+

∫
A \∆

1
2

k(u− ūt)
2 dx+GΓ #(Γ )+G∆ L (∆), (1)

where K is its membrane stiffness, k is an equivalent stiffness of the bonding layer, GΓ is the energy required
to create a transverse crack (transverse fracture toughness), G∆ is the energy required to debond a unit length
interval (debonding toughness), #(Γ ) is the number of transverse cracks, and L (∆) is the total length of the
debonded regions. As common in thin-film systems, the loading is represented by inelastic strains ε̄t in the
film (e.g. thermally induced deformations) or an imposed displacement of the substrate ūt . We consider only
the case in which ε̄t is uniform and ūt varies at most linearly throughout the domain.

The model is briefly presented in Section 3. After a dimensional analysis, we show that the energy (1)
depends on two dimensionless parameters representing the geometric and the material properties, that we
choose as a scaled dimensionless film length L and a relative fracture toughness γ , and a single parameter
for the loading, which we take as a scaled inelastic strain ε̄t . A variational formulation of the quasi–static
evolution problem for (u,Γ ,∆) is given at the end of Section 3. It consists in requiring the conditions of uni-
lateral global stability, irreversibility, and energy balance, as usually postulated in the variational theories of
rate-independent processes [18].

Section 4 focuses on the static version of the variational problem, i. e. on looking for the energy minimizers
at a fixed load, without reference to any previous history or irreversibility condition. The solutions of the
quasi–static problem are illustrated in Section 5. They are obtained by applying the further selection criteria
of irreversibility and energy balance. We resume below the main qualitative results that are presented in the
analytical part of the work:

– The solution of the problem without debonding (i. e. for infinite debonding toughness) is in the form of
an equally spaced array of transverse cracks partitioning the film in n segments of length Li = L/n. We
give analytically the displacement field in each segment as well as the number of transverse cracks as a
function of the loading (Proposition 1). In a quasi–static evolution, because of the irreversibility condition,
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there is a cascade of fracture phenomena in which each segment splits in two parts by a transverse fracture
in its middle. Hence, the number of segments are in the form n = 2 j, j ∈ N (Section 5.1).

– In a film with finite debonding toughness divided in n regular segments by n− 1 transverse fractures,
debonding simultaneously takes place at (one or both) the ends of each segment. The critical loading
level at which this occurs is given analytically. The length of the single bonded interval of each segment
is univocally determined as a function of the loading. However, solutions obtained by transferring the
debonded regions from one end of a segment to any other end of any other segment are energetically
equivalent (Propositions 2 and 3).

– We illustrate the possible cracking scenarios with coupled transverse fractures and debonding for specific
values of the geometric and material parameters L and γ . For the static problem, we show that for low
values of the load the global minimizer of the total energy is a solution without debonding, while for high
values of the load debonding without transverse fracture is energetically preferred. Solutions with coupled
transverse fractures and debonding are energy minimizers for intermediate loadings (see Proposition 4
and Figure 7). In a quasi–static evolution, there is cascade of k transverse fracture phenomena after which
the film is split in n = 2k segments, followed by the debonding. After that debonded starts, no further
transverse fracture appears. A numerically evaluated phase diagram (Figure 13) gives the number k of
transverse fracture phenomena before debonding, as a function of L and γ .

Section 6 focuses on the numerical solution of the quasi–static problem. The numerical implementa-
tion is based on a regularized formulation of the variational problem and a finite element discretization,
which extends to the case of the thin film energy (1) the approach of [19,20]. The quasi–static evolutions
are numerically obtained by replacing the unilateral global stability principle, with a weaker unilateral local
stability condition. On one hand, this is done because global minimization of non convex functionals in high–
dimensional vector spaces is numerically out of reach. On the other hand, the corresponding solutions to the
evolution regularized model may be mechanically interpreted as those of a non–local damage model, where
the regularization parameter can be regarded as an internal length that influences the critical loads at which
fractures appear. The comparison of the solution of the quasi–static evolution problem obtained analytically
and numerically allows us to validate the numerical approach and identify some shortcomings.

3 Formulation of the problem

3.1 The three-dimensional system: geometry, materials and loadings.

We consider a thin film elastically bonded to the upper surface ω ⊂ R2 of a stiff substrate. Referring to the
sketch in Figure 1, we denote by Ω f = A × (−w/2,w/2)× (0,h f ) ⊂ R3 and Ωb = A × (−w/2,w/2)×
(0,−hb) ⊂ R3 the domains occupied by the film and the bonding layer in their reference configurations,
A = [0,L] being the central axis of the film/bonding layer interface. We suppose that both the film and the
bonding layer are isotropic linear elastic brittle materials, whose Young modulus, Poisson ratio and fracture
toughness are denoted by (E f ,ν f ,G f ) and (Eb,νb,Gb). We distinguish two families of possible cracks: (i)
debonding cracks Γb ⊆Ωb in the bonding layer and (ii) transverse cracks Γf ⊂Ω f inside the film. We suppose
that transverse cracks are in the form Γf ≡ (Γ ⊂A )× (−w/2,w/2)× [0,h f ], i.e. that they completely cut a
transversal cross-section of the film perpendicularly to the film/bonding layer interface. Similarly, we assume
that the debonding cracks develop throughout the width of the strip being in the form Γb ≡ (∆ ⊂ A )×
(−w/2,w/2)× (z ∈ (−hb,0)). In the following we identify them by the parts of the domain A that are
fractured (Γ ) or delaminated (∆ ).

We consider two types of loadings. The first one models the effect of the substrate through an imposed
displacement ū on the bottom surface of the bonding layer A × (−w/2,w/2)×{−hb}. Assuming that the
substrate is infinitely stiff compared to the film, the displacement ū may be obtained from the solution of
the elastic problem on the substrate under structural loads when neglecting the presence of the film. Inelastic
strains ē in the film are a second type of loads. They may be defined as the deformations that the film would
attain if left free from the substrate and internal compatibility constraints. The inelastic strain may rise in the
system as a consequence of thermal loading, drying, or other multi-physical couplings. In the following we
assume that ū(x) = ū(x)e1, ē(x) = ē(x) I, I being the identity matrix.
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3.2 Energy functional of the one–dimensional model

We represent the system in Figure 1 as an elastic bar on an elastic foundation. We assume that the axis of
the film undergoes axial displacement only in the form u(x) = u(x)e1. Hence, to each displacement field
u : x ∈A 7→ R, fracture set Γ , and debonding set ∆ , we associate the following elastic energy:

Pt(u,Γ ,∆) :=
∫

A \Γ

1
2

K(u′(x)− ε̄t)
2 dx+

∫
A \∆

1
2

k(u− ūt)
2 dx, (2)

where the loadings ε̄t and ūt are parameterized by a single scalar parameter t. The first term of the energy
represents the elastic energy of the film and the integral excludes regions with transverse cracks across the
film. The second term accounts for the elastic energy of the bonding layer and the integral excludes the
debonded regions. The constitutive constants K and k in (2) represent the stiffness of the film and the bonding
layer. An estimate of their values as a function of the material and geometric parameters of the 3D model may
be obtained by assuming a state of uniaxial stress in the film and that the bonding layer undergoes pure shear.
In this way one obtains:

K = E f h f w, k =
µbw
hb

=
Ebw

2(1+νb)hb
, (3)

where µb = Eb/2(1+νb) is the shear modulus of the bonding layer. Adopting a Griffith model for the fracture
energy, we associate to the cracks the surface energy

S (Γ ,∆) := GΓ #(Γ )+G∆ L (∆), (4)

where #(Γ ) is the number of transverse cracks and L (∆) is the total length of the debonded regions. The
constants GΓ = G f h f w and G∆ = Gbw are the energy required to create a single transverse crack and the
debonding energy per unit of length, respectively. The total energy is

Et(u,Γ ,∆) := Pt(u,Γ ,∆)+S (Γ ,∆). (5)

Without loss of generality we may consider the case ūt = 0. This may be easily seen by applying the change
of the variable u∗(x) = u(x)− ūt(x) and ε̄∗t (x) = ε̄t(x)− ū′t(x). In the sequel we focus on the homogeneous
case, for which all the material constant and the loading ε̄ are constant in space and ū = 0.

Remark 1 The derivation of the one–dimensional energy above as the limit of a three-dimensional energy
when hb and h f approach 0 can be rigorously obtained —under suitable scaling hypothesis on the thicknesses
and material properties— by Γ –convergence. The proof is technical by nature and beyond the scope of this
paper but will be presented in a future work.

3.3 Dimensional analysis

Introducing a length scale x0 and a scale for the displacements u0, we are able to define the dimensionless
variables x∗ := x/x0, u∗ := u/u0 and denoting by A ∗, Γ ∗ and ∆ ∗ the corresponding rescaled axis and crack
sets, one finds

Et(u∗,Γ ∗,∆ ∗)
k u2

0x0
=

K
2kx2

0

∫
A ∗\Γ ∗

(
u∗′(x∗)− ε̄tx0

u0

)2

dx∗+
∫

A ∗\∆∗
u∗(x)2

2
dx+

GΓ

k x0 u2
0

#(Γ ∗)+
G∆

k u2
0
L (∆ ∗).

By choosing the free scaling parameters x0 and u0 as x0 =
√

K
k , u0 =

√
GΓ

4√Kk
one obtains

E ∗t (u
∗,Γ ∗,∆ ∗) :=

∫
A ∗\Γ ∗

1
2
(
u∗′(x∗)− ε̄

∗
t
)2 dx∗+

∫
A ∗\∆∗

1
2

u∗(x)2 dx∗+#(Γ ∗)+ γ L (∆ ∗), (6)

with

ε̄
∗
t = ε̄t

4

√
K3

G2
Γ

k
, γ =

√
K
k

G∆

GΓ

, (7)

and E ∗t := Et/GΓ . Three dimensionless parameters determine uniquely the energy function (6): the dimen-
sionless length of the bar L∗ = L (A )/x0, the relative bonding toughness γ , and the loading intensity ε̄∗t .
Henceforth we will use the non dimensional form of the energy (6) but we will drop the ∗ for the sake of
conciseness.
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3.4 Quasi–static evolution problem

We consider a film free at its ends. For a given transverse fracture set Γ , the set of admissible displacement
fields is independent of the debonded region ∆ and belongs to the space C (Γ ) = H1(A \Γ ) of square
integrable displacement fields with square integrable first derivatives on A \Γ . The displacements may be
discontinuous across the transverse cracks Γ . In this context, we start giving the following definition of quasi–
static evolution, which is common in the variational theory of rate independent processes [21,18].

Definition 1 (quasi–static evolution) Given a loading path ε̄t for t ∈ [0, tmax], a function t→ (ut ∈C (Γt), Γt ⊂
A , ∆t ⊆A ) is a quasi–static evolution (or “the solution of the quasi–static evolution problem”) if it satisfies
the Continuous Evolution Law (CEL), given by the following items:

(IR) Irreversibility of the crack evolution: The functions (Γt ,∆t) must be non-decreasing with t, more pre-
cisely:

Γt ⊇ Γs, ∆t ⊇ ∆s, ∀ 0≤ s≤ t. (8)

(GST) Unilateral global stability: At every time t the state (ut ∈ Ct(Γt),Γt ,∆t) is the global minimizer of the
total energy among all admissible states:

Et(ut ,Γt ,∆t)≤ Et(u,Γ ,∆), ∀u ∈ Ct(Γ ), ∀Γ ⊇ Γt , ∀∆ ⊇ ∆t . (9)

(EB) Energy balance: The function E(t) := Et(ut ,Γt ,∆t) is absolutely continuous in t and satisfies:

E(t)−E(0) =−
∫ t

0

∫
A

σt
dε̄t

dt
dxdt, (10)

where σt := K(u′t(x)− ε̄t).

In the present work we study the quasi-static rate-independent evolution under Monotonically Increasing
Loads (MIL), i.e. loadings ε̄t that are monotonically increasing functions of the time t. Henceforth we consider
homogeneous proportional loadings functions of the type

ε̄t = t. (11)

For MIL loadings, this is without any loss of generalization, because the evolution of a rate independent
system is defined up to a monotonic reparametrisation of the time [18]. In this context, it is a common abuse
of language to refer to the loading parameter t as “time”.

Remark 2 The quasi-static evolution defined above accounts for the role of time and history because of the
irreversibility condition (IR). However, it neglects rate-dependent phenomena, as inertial or viscous effects.
We assume that the loading rates, i.e. the derivative of ε̄t with respect to t, are sufficiently small so that the
system is at the static equilibrium at each loading level.

4 Solution of the static problem: energy minimizers at fixed load

Before looking for the solutions of the evolution problem, we study the crack states that are energy minimizers
for a given loading, without involving any notion of history or irreversibility. We refer to this problem as the
static problem. Formally it consists, for a given loading parameter t, in finding ut ∈ C (Γt),Γt ∈ A ,∆t ∈ A
that verify the condition below:

(GM) Global minimality:

Et(ut ,Γt ,∆t)≤ Et(u,Γ ,∆), ∀u ∈ Ct(Γ ), ∀Γ ∈A ,∀∆ ⊆A . (12)

Remark 3 The condition (GM) given in Equation (12) is stronger that the condition (GST) given in Equa-
tion (9). In (GST), the admissible transverse cracks and debonded sets must satisfy the irreversibility condi-
tions Γ ⊇ Γt , ∆ ⊇ ∆t .

In the sequel, we focus first on the purely elastic case (without transverse cracks or debonding), on the
uncoupled cases (transverse cracks only, then debonding only), an finally on the fully coupled model.
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4.1 Elastic solution

We look for the elastic solution for a sound film, i.e. the displacement field that verifies (12) for ∆ = Γ = /0.
The solution is unique because of the convexity of the elastic energy (linear elasticity). It must belong to C ( /0)
and satisfy the the first order local minimality condition:

DuE (u, /0, /0)(v) =
∫

A

((
u′(x)− t

)
v′(x)+u(x)v(x)

)
dx = 0, ∀v ∈ C ( /0), (13)

where DuE (u, ·, ·)(v) denotes the Gateaux derivative of the functional E (u, ·, ·) with respect to u along the
direction v. After integration by parts, and applying standard arguments of the Calculus of Variation, one
obtains that (13) implies:

−u′′(x)+u(x) = 0 ∀x ∈ (−L/2,L/2), u′(−L/2) = u′(L/2) = t, (14)

which are the strong formulation of the equilibrium equations plus the natural boundary conditions. They may
be integrated to get

ut(x) = t
sinh(x)
cosh(L)

. (15)

The elastic displacement field is plotted in Figure 2. The total energy corresponding to this solution is

Et(L) := E (ut , /0, /0) = t2F(L), with F(L) =
(

L
2
− tanh

(
L
2

))
. (16)

�L�2 L�2
x

u

�L�2 L�2
x

u

Fig. 2 Elastic displacement (left) and deformation (right) for a sound film of dimensionless length L = 6

4.2 Solution for a perfectly bonded film subject to transverse cracks only

We now assume that transverse cracks are free to appear everywhere, but debonding is proscribed (∆ = /0).
The topology of the cracks in the one dimensional setting is simple. A general state with n− 1 cracks is
sketched in Figure 3. The domain A is split into n parts, the crack set being the set of n− 1 points Γ (n) =
{−L/2 < xi < L/2}n−1

i=1 .

x i x i+1-L/2 L/2

L1 L2 Ln-1 LnLi

Fig. 3 A 1D film split into n pieces thus with n−1 transverse cracks.
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Fig. 4 Total energy for transverse fracture without debonding for different number of cracks. The cracks are equally spaced.
The optimal crack number for a given loading is that of the curve attaining the lowest energy level, this last indicated by the
continuous stroke.

Each part can be seen as a sound domain of (dimensionless) length Li = xi− xi−1, where x0 =−L/2 and
xn = L/2. Hence, using the results of section 4.1 and equation (16), the total energy of the system may be
written as the following function of the number of parts n and the length of each part Li:

Et(n;L1, . . . ,Ln) = t2
n

∑
i

F(Li)+(n−1). (17)

For a fixed number of crack n, finding the optimal crack lengths L1, . . . ,Ln according to (12) consists in solving
the following minimization problem

min
L1,...,Ln

Et(n;L1, . . . ,Ln), with
n

∑
i=1

Li = L, Li > 0, (18)

which is an optimization problem for a function of n scalar variables with linear constraints. Observing that
∂ 2Et/∂Li∂L j = δi jt2F ′′(Li), where δi j = 1 for i = j and δi j = 0 for i 6= j, and being

F ′′(Li) = 4sinh(Li/2)4/cosh(Li)
3 > 0, ∀Li > 0,

we conclude that the energy is a strictly convex function of Li. Hence the minimization problem (18) admits
a unique solution, which is given by

Li =
L
n
, ∀i = 1, . . . ,n. (19)

This shows that the optimal crack arrangement is that of an equally distributed array of cracks throughout the
film, recovering experimental evidence of periodicity of the cracks [22], without making any a priori assump-
tion on the topology of the crack set.

The total energy of a system with n−1 equally spaced transverse fractures is:

E(n)
t = t2

n

∑
i

F (L/n)+(n−1). (20)

In Figure 4, we plot E(n)
t as a function of t for different values of n. By (GM), the optimal number of cracks for

a given load is that of the curve attaining the lowest energy. The corresponding critical loadings t(n) in Figure 4
may be found analytically by looking for the intersections between E(n)

t and E(n+1)
t . Hence we conclude with

the following result.
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Proposition 1 The solution of the problem (12) without debonding is that of an equally spaced array of cracks
partitioning the film into n regular segments of length Li = L/n. The displacement in each regular segment is
in the form (15) with L = Li and the total energy of the system is given by (20). The solution with n−1 cracks
is optimal for

t(n−1) < t < t(n), with t(n) =
1√

(1+n) tanh
L

2(1+n)
−n tanh

L
2n

, t(0) := 0. (21)

Remark 4 (A limit model for long films) When the film is very long it may be consistent to describe the system
in terms of a “fracture density” rather than by the absolute number of fractures. In such setting, fracture density
may be thought of as a macroscopic characterization of a damaging process. A limit model for long films is
deduced from the total energy of Equation (20) replacing the discrete variable n with the continuous density
of fractures defined by α := n/L. Minimizing the energy (20) seen as a function of α for α > 0, we recover
the envelope of the family of energies E(n)

t , n ∈ N as Figure 5 shows. The total energy for the limit model
is displayed in Figure 5(a) with a black solid line, enveloping the family of energies Ē(n)

t . In Figure 5(b) we
compare the discrete number nt of cracks with the crack density αt , in the long film regime. Both figures
relate to a film of dimensionless length L = 20. Note that long films with transverse cracks can be regarded as
an example of continua with structured deformations and modelled within the framework developed in [14].

4.3 Solution for a perfectly elastic film subject to debonding only

Introducing the characteristic function of the debonded part of the domain ∆ defined as

χ∆ (x) : x ∈A 7→ {0,1}, χ∆ (x) =

{
1, if x ∈ ∆

0, otherwise

the total energy (6) is rewritten as follows

Ẽt(u,Γ ,χ∆ ) :=
∫

A \Γ

(
1
2
(
u′(x)− t

)2
+

1
2

u(x)2(1−χ∆ )+ γ χ∆

)
dx+#(Γ ). (22)

The energy density, for a fixed point x ∈ A is linear in χ∆ . The optimality with respect to χ∆ gives a local
debonding condition depending on the value of 2γ/u(x)2, namely:

χ∆ (x) =

{
1, if |u(x)| < uc

0, if |u(x)| ≥ uc
, (23)

0 1 2 3 4 5
0

10

20

30

40

t

T
ot

al
E

ne
rg

y

(a)

0 1 2 3 4 5
0

1

2

3

4

5

t

lo
gH

Α
tL

,l
og

Hn
tL

(b)

Fig. 5 Energy and fracture density curves in the “long film” regime. Thick lines show the results of the limit model, they are
compared with the discrete family of energies (20). The limit model can macroscopically characterize high fracture density
regimes with a “damage”-like parameter.
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where uc =
√

2γ is the critical displacement threshold for debonding. The elimination of χ∆ according to (23)
allows us to rewrite the energy, and thus reformulate the problem, in terms of u and Γ alone, as follows:

Ẽt(u,Γ ) :=
1
2

∫
A \Γ

(
u′(x)− t

)2
+ f (|u(x)|)dx+#(Γ ), (24)

where we introduced the non–smooth and non–convex energy density

f (δ ) =

{
δ 2, if δ < uc =

√
2γ

γ, if δ ≥ uc =
√

2γ
,

which accounts for both the elastic contribution of the bonding layer and the surface energy related to debond-
ing. The energy density in (24) is non–convex with respect to u and not differentiable in u at the critical
threshold uc. According to the global minimality principle (GM), the problem of finding the solution with
debonding and without transverse fractures (i.e. Γ = /0) is formulated as follows:

min
u∈Ct ( /0)

Ẽt(u, /0). (25)

Unlike in the purely elastic case (Section 4.1), here the solution for the displacement cannot be derived using
the Euler–Lagrange equations associated to the first order local minimality condition for Ẽt(u, /0), because
of the non-differentiability of the energy density for u = uc. However, the local minimizers of Ẽt(u, /0) are
characterized by the following fundamental properties, whose proofs are given in Appendix. Note that the
present problem and the results below are very similar to those presented in [23].

Lemma 1 If a field u ∈ Ct( /0) is a local minimum of Ẽt(u, /0), then u is a monotonic function of x.

Lemma 2 Let f : R 7→ R be a continuous function. If a field u ∈ Ct( /0) is a local minimum of Ẽt(u, /0), it
satisfies the following first integral and boundary conditions:

∃C ∈ R : u′(x)2− t2− f (|u(x)|) =C, ∀x ∈ [0,L], (26a)

u′(−L/2) = u′(L/2) = t. (26b)

The monotonicity of the solution implies that the maximal values of |u| are attained at the ends of the
domain. Hence, in view of the debonding condition (23), if debonding takes place, the non–debonded part of
the domain is an interval. and the debonded domain is of the form:

∆ = [−L/2,−L/2+D1]∪ [L/2−D2,L/2], with D1,D2 ≥ 0, D := D1 +D2 ≤ L. (27)

Using Equations (26), one may compute explicitly the solution with debonding, which is in the form (see
Figure 6(b))

u(x) =


t(x+L/2−D1 + tanh((L−D)/2)), −L/2≤ x≤−L/2+D1

t
sinh(x− x0)

cosh((L−D)/2)
, −L/2+D1 ≤ x≤ L/2−D2

t(x−L/2+D2 + tanh((L−D)/2)), −L/2−D2 ≤ x≤ L/2

, (28)

where x0 = (D1−D2)/2 is the coordinate of the center of the bonded domain. In particular, the debonded
regions are stress free and the elastic energy vanishes there. Hence, denoting by D the total debonded length
and B := L−D the length of the bonded interval, the total energy of the system is a function of B alone and
reads as

Ẽt(B) := Et(B)+ γ(L−B) = t2F(B)+ γ(L−B), (29)

where Et is given by (16). For a fixed loading t, the optimal size of the debonded region solves the following
problem:

min
0≤B≤L

Ẽt(B), (30)
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which is the minimization of a strictly convex function of B with inequality constraints and admits a unique
solution for the optimal bonded length 0≤ B∗ ≤ L. This solution has to satisfy the following first order local
minimality condition

Ẽ ′t (B
∗)(B−B∗)≥ 0, ∀ 0≤ B≤ L, with Ẽ ′t (B) = t2 tanh2(B/2)/2− γ. (31)

By the properties of convex functions, the unique minimum is attained in B∗ = 0 if and only if E ′(0)≥ 0, in
B∗ = L if and only if E ′(L) ≤ 0, and in 0 < B∗ < L such that Ẽ ′t (B

∗) = 0 otherwise. The first case B∗ = 0 in
impossible because Ẽ ′t (0) = −γ < 0. The second case B∗ = L corresponds to a solution without debonding.
It is obtained if and only if t ≤

√
2γ or L ≤ 2arctanh

√
2γ/t2. For t >

√
2γ and L > 2arctanh

√
2γ/t2, the

solution is such that Ẽ ′t (B
∗) = 0, that is B∗ = 2arctanh

√
2γ/t2. This latter case corresponds to solutions with

debonding.

We resume the results of the debonding of a film of length L without transverse fracture in the following
Proposition:

Proposition 2 For a fixed loading t, the solution of the problem (GM) with debonding and without transverse
fractures (Γ = /0) is in the form (28). The displacement field u is a monotonic function of x, the bonded domain
is an interval and debonding, if present, takes place at the ends of the domain. The debonded domain ∆ has
the form (27). The total debonded length D is uniquely determined, but the lengths D1 and D2 are arbitrary.
The optimal length of the bonded interval is

Bt(L) =

{
L for L≤ Lb(t,γ)
Lb(t,γ) for L > Lb(t,γ)

, (32)

where

Lb(t,γ) :=

{
∞ for t ≤ tc =

√
2γ

2arctanh
√

2γ/t2, for t > tc
, (33)

In particular, for t ≤ tc =
√

2γ there is no debonding, independently of the film length. For t > tc the film
debonds if and only if it is suffciently long (L > Lb(t,γ)) or, equivalently, the load is sufficient high, i. e.
t > tb(L,γ), with

tb(L,γ) :=
√

2γ coth
L
2
. (34)

The energy of the optimal solution is

Êt(L) := Ẽt(Bt(L)) =

{
t2 (L/2− tanh(L/2)) for L≤ Lb(t,γ)

γ L+2 t2
(
(1−2γ/t2)arctanh

√
2γ/t2−

√
2γ/t2

)
for L > Lb(t,γ)

. (35)

The main results are graphically illustrated in Figure 6, which shows a phase diagram for the bonded length
B as a function of (L, t), and a snapshot of the displacement field for a partially bonded film.

4.4 Solution for a film subject to coupled transverse cracks and debonding

We now consider the case in which transverse fracture and debonding may take place at the same time in a
film of length L. Suppose that the film is subdivided by n−1 transverse fractures into n segments of lengths
{L1, . . . ,Ln}. Given the segment length Li, the solution for the displacement in the i-th segment is that of a
film with possible debonding and without transverse fracture, which is resumed in Proposition 2. Hence, the
total energy of the system may be written as follows:

Êt(n;L1, . . . ,Ln) :=
n

∑
i

Êt(Li)+(n−1),
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Fig. 6 Solution of (GM) for a film with debonding and without transverse fracture. Figure 6(a): phase diagram of the optimal
size of the bonded domain, as function of the film length and load intensity, where Lb(t,γ) is given in Equation (33). Figure 6(b):
displacement field for the partially bonded film, see Equation (28).

where Êt(Li), defined in equation (35), is the sum of the elastic and the debonding energy of the i-th segment.
As in Section 4.2, for a fixed number of transverse cracks, the problem of finding the optimal segment lengths
Li’s may be formulated as the following constrained optimization problem:

min
L1,...,Ln

Êt(n;L1, . . . ,Ln), with
n

∑
i=1

Li = L, Li > 0. (36)

For t < tc the energy is strictly convex with respect to the Li’s. As in Section 4.2, the solution is in the form
of periodic transverse cracks without delamination, with Li = L/n and the displacement field in each segment
is as in equation (15) and Figure 2 (with L = Li).

For t > tc the energy is not convex anymore with respect to the Li’s. Introducing the Lagrange multiplier
λ associated to the equality constraint ∑

n
i=1 Li = L, the first order optimality conditions for (36) reads as

Ê ′t (Li) = λ for i = 1 . . .n and
n

∑
i=1

Li = L. (37)

The derivative of the energy of a single segment, Ê ′t (Li), is strictly monotonic, increasing from 0 to γ , for
0≤ Li < Lb(t,γ) and constantly equal to γ for Li/n > Lb(t,γ). Hence, we may classify the solution of (37) in
two types as a function of the optimal value of λ :

(i) λ < γ (solutions without debonding). In this case Ê ′t (Li) = λ admits a unique solution, which is the same
for each Li. All the crack lengths must be the equal and, from ∑

n
i=1 Li = L, we find Li = L/n. This is

the case of periodic cracking without debonding, as in Section 4.2. This solution is admissible only if
Li = L/n≤ Lb(t,γ), i.e. for t < tb(L/n,γ), where is the tb(L,γ) is the critical load for debonding a film of
length L given by Equation (34).

(ii) λ = γ (Solutions with debonding). In this case the problem (37) admits infinitely many solutions with
Li ≥ Lb(t). Even if the Li’s are not uniquely determined, being Li ≥ Lb(t) debonding is necessarily present
in each segment. The length of the bonded part in each domain is B = Lb(t,γ) and the displacement field
in each segment is in the form (28) (see Proposition 2). Being L = ∑

n
i=1 Li ≥ nLb(t,γ), this solution is

possible only for t > tb(L/n,γ). Note that only the length of the bonded interval of each part is uniquely
determined. The lengths Li’s are not uniquely determined because, for each part, all the solutions obtained
transferring debonded regions from one end of to the other, without changing the bonded length, are
energetically equivalent.
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Hence we may conclude with the following proposition which gives the static solution with n−1 transverse
fractures and with free debonding as a function of t.

Proposition 3 The solution of the problem (GM) for a film of total length L and relative fracture toughness
γ with possible debonding and with n−1 transverse cracks is as follows:

(i) For t < t(n)d := tb(L/n,γ) there is not debonding and the cracks are equally spaced with Li = L/n.

(ii) For t ≥ t(n)d , there is debonding. The solution for the displacement field in each segment of the film is
in the form (28) with L = Li, D1 = D1,i and D2 = D2,i. The length of the bonded interval is Lb(t,γ) in
each segment. The total debonded length is D := ∑

n
i=1 D1,i +D2,i = L−nLb(t,γ). However, the length of

the debonded parts of each segment are not uniquely determined, because all the solutions obtained by
varying Di,1,Di,2 and keeping constant the total debonded length D have the same energy.

The total energy of the solution is

Ê(n)
t :=

{
t2 (L/2n− tanh(L/2n))+(n−1) for t ≤ t(n)d

(γ L−1)+n(1− t2ϕ(
√

2γ/t)) for t > t(n)d

, (38)

where ϕ(x) = x+(x2−1)arctanh(x).

In order to close the problem, we must minimize Ê(n)
t for a given load t. We are not able to provide a complete

analytical solution of the latter, however we illustrate a typical scenario for specific values of the numerical
parameters with the help of the energy plot. In Figure 7 we show the total energy vs t for different values of n,
for the coupled transverse fracture–debonding problem for γ = 2.2,L = 6. The right figure is a zoom on the
gray shaded region. We can identify each of the curves with the corresponding value of n noticing that for a
vanishing load, the energy reduces to the number of cracks n−1. The dashed lines in the figure distinguished
the states in which debonding has been activated. We reconstruct the optimal state of the system by comparing
the energy levels in Figure 7. For t < t(4)d the optimal solution is with transverse fracture without debonding.
The critical loads t(n), defining the range of optimality for a solution with n−1 cracks, are those defined by
Equation (21). Moreover, there exists a critical load t∗ beyond which the optimal solution is always that of a
single delaminated segment of length Lb(t,γ) given by Equation (33). Indeed, for t > t∗ the lowest energy is
always attained with n = 1. Such critical load is the (unique) solution of the equation: 1− t2ϕ(

√
2γ/t) = 0,

where ϕ(x) has been defined in Proposition 3. The critical time t∗ is indicated in Figure 7 with a solid vertical
line. The range of loading parameter for which there is a true coupling between debonding and transverse
fracture is t(4) ≤ t ≤ t∗. To better illustrate the solution, we report in Figure 8 the optimal displacement field
for the following three representative loadings:

– t = 3.00, Figure 8(a): the minimum of the energy is attained on the energy curve relative to n = 4, at the
point A in Figure 7. The load is below the debonding threshold t(4)d = 3.22 associated to n = 4. The film
is in the periodic multifissuration regime, with three transverse fractures.

– t = 3.30, Figure 8(b): the minimum energy is attained at the point B of Figure 7 on the energy branch
for which debonding is active (dashed line). The energy curve is associated to n = 4, and the value of the
bonded domain size, for each of the four segments into which the film is split is Bt = 1.16.

– t = 4.51, Figure 8(c): the global energy minimizer is the state without transverse fractures denoted by the
point C in Figure 7. The film is bonded on a domain of size Bt = 1.08.

This result may be extended to generic values of L and γ as follows.

Proposition 4 For a film of length L and relative debonding toughness γ , let n̄ be the smallest (positive
integer) value of n for which t(n)d < t(n+1) and let t∗ be the (unique) root of 1− t2ϕ(

√
2γ/t) = 0. Then the

solution of the static problem (GM) with free transverse fracture and debonding is in the following form:

– For t < t(n̄)d , it is with transverse fractures only, with n−1 equally spacedt cracks in each loading interval
t(n−1) < t < t(n) with n≤ n̄, as in Proposition 1.

– For t > t∗ it is with debonding only, as in Proposition 2.

The number n̄ is the minimum number of parts in which a film is split by transverse fractures when there
is debonding. The dependence of n̄ and t∗ on the the two dimensionless parameters L and γ is illustrated
numerically in Figure 9. The critical load t∗ is independent of L.
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For loadings in the interval t(n̄)d < t < t∗, there is a non-trivial coupling between transverse fracture and
debonding and we cannot derive a general and simple result of what can happen for generic values of γ and
L.

(b)

0 1 2 3 4 5
0

2

4

6

8

10

E� t�n
�

t
t

t 2.4 3.0
5.5

6.0

6.5

7.0

7.5

8.0

8.5

t

E� t�n
�

t*

A

C

A

B

(a)
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Fig. 8 The optimal displacement fields for the states A, B, C of Figure 7. Debonded regions are indicated with a dashed line.

5 The time–continuous quasi–static evolution

We illustrate now some of examples of time–continuous evolutions t → (ut ∈ C (Γt), Γt ∈ A , ∆t ∈ A ) sat-
isfying the items (IR), (GST) and (EB) under a Monotonically Increasing Load (MIL) of the type of Equa-
tion (11). We will take as initial state at load t = 0 the uncracked solution (u = 0,Γ = /0,∆ = /0). The time–
continuous evolutions are constructed on the basis of the results of the static analysis of the previous Section,
by using the fact that all the static solutions a fortiori verify the (GST) condition (see the remark at the begin-
ning of Section 4). The (EB) condition is met by imposing the continuity of the total energy with respect to
the load t, a requirement which is verified also by the static solutions reported in Figures 4, 5, and 7. A major
novelty will be the introduction of the irreversibility condition (IR) of Equation 8.
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Fig. 9 Key properties of the solution of the static problem of a film of dimensionless length L and relative debonding toughness
γ (see Proposition 4). (a) Plot of n̄ as a function of L and γ , n̄ being the minimum number of pieces into which the film is split
by transverse fractures when debonding appear (b) Plot of t∗ as a function of the relative debonding toughness γ , t∗ being the
critical load beyond which the optimal solution is that of a debonded film without transverse fractures ( t∗ is independent of the
dimensionless length L of the film).

5.1 Perfectly bonded film subject to transverse cracks only

In the case without debonding (∆ = /0), the static analysis of Section 4.2 (Proposition 1) concludes that the
state with n−1 cracks partioning the domain in n regions of length L/n is optimal in the sense of the global
stability condition (GST) for the load t in the interval (t(n−1), t(n)), given by Equation (21). The critical loads
of Equation (21) are a strictly increasing sequence with respect to n, thus for an initially sound film, the first
critical load is t(2) and failure consists in one add–crack in the middle of the film. After the first crack, the
irreversibility condition (IR) imposes a restriction on the admissible crack sets. Since the arrangement of the
cracks is that of an equi–distributed array, the irreversibility condition turns out to restrict the number n−1 of
admissible cracks. The requirement for the admissible crackset to contain all the previous ones implies that,
after the first crack, the next possible crack set is the one with two added cracks in the middle of each segment,
and so on. In summary, the admissible crack sets must be of the form of n j−1 equally spaced cracks splitting
the film in n j pieces of length L/n j, with n j := 2 j, j ∈ {0,1,2, . . .}, i. e. the number of pieces has to be a power
of two. Hence, the time–continuous quasi–static evolution of the crackset of an initially sound film is found
specializing the results of Proposition 1 to this case. In particular, the solution of the evolution problem is
with n j−1 equally spaced cracks for loadings in the interval t(n j−1) < t < t(n j) with t(n j) = t f (L/n j), t(0) = 0,
where

t f (L) =
1√

2tanh
L
4
− tanh

L
2

, (39)

is the critical load for which a sound film of length L is split in two equal parts by a transverse crack in the
middle. The total energy of the solution obtained in this way and the number or segment n vs. the load t are
plotted in Figures 10(a) and 10(b), respectively. These figures emphasize how the irreversibility condition
introduces a further selection among the admissible energy minimizers.



16

1

3

7
8

10

t

E�
�
�n
� ,t
�

0

(a)

1

2

4

8

t

n

(b)

Fig. 10 quasi–static evolution without debonding: (a) Energy curves E(Γ (n), t) vs t for different n, where the thick solid line
denotes the global minimum corresponding to the solution of the evolution problem; (b) Number of parts n j of length L/n j vs t
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5.2 Perfectly elastic film subject to debonding only

After the static solution of the debonding problem without cracks, its quasi–static counterpart is quite trivial.
The irreversibility condition is a twofold requirement: on one hand the size of the debonded domain must be
non decreasing, on the other hand a stronger pointwise irreversibility must be ensured. This means that if at
point x the film is debonded at a time t, it has to be so for all τ > t. The first requirement is automatically
satisfied by the static solution given in Proposition 2. Indeed the bonded length Bt given in Equation (32) is
strictly decresing with t. The second condition is fulfilled provided that the lengths of the debonded intervals
D1(t) and D2(t), in the definition of the displacement field of Equation (28), are arbitrary non–decreasing
functions of t. Hence, the result synthesized in Proposition 2 holds for the quasi–static evolution for the
debonding problem replacing “D1 and D2 are arbitrary” with “D1(t) and D2(t) are arbitrary non–decreasing
functions of t” . In the case of a quasi–static evolution, these results may be interpreted saying that a bar of
dimensionless length L and relative cracking toughness γ , does not debond for t < tb(L,γ). At t = tb(L,γ) it
starts debonding and the length of the (unique) bonded interval is Lb(t,γ).

5.3 Film subject to coupled transverse cracks and debonding

The analysis of the static problem in the coupled case concludes with the Proposition of 3 and 4, which are
the starting point to construct solutions of the corresponding quasi–static problem. Irreversibility imposes
that the number of transverse cracks are in the form n j = 2 j − 1, with j ∈ N non decreasing with t, and
that the debonded domain is non decreasing with t. For an imposed number n− 1 of transverse cracks, the
static solution given in Proposition 2 may be directly transposed to the quasi–static setting. Debonding starts
appearing at the same time in each segment, at the critical load tb(L/n,γ) given by Equation (34). The energy
of the solution is given by Ê(n)

t of Equation (38). The length of the bonded part in each piece is L/n for
t < tb(L/n,γ) and Lb(t,γ)/n for t > tb(L/n,γ), with Lb(t,γ) given by Equation (33). This solution respects
the irreversibility because Lb(t,γ) is non-increasing with t. Of course, the lengths of the debonded domains
in each piece, D1,i and D2,i, must be non–decreasing functions of t.

The determination of the evolution of the optimal number of transverse cracks is not an easy problem, in
the general case. We illustrate here a typical quasi–static evolution for specific values of the film parameters
L and γ when starting from a sound film at t = 0. We trace for each admissible value of n in the form n j = 2 j

the corresponding total energy as a function of the loading t, according to Equation (38) (gray lines in Figure
11(a)). The evolution of the film satisfying the (GST) and (IR) conditions is the one corresponding to the
lowest value of the energy and marked with a thick black stroke in Figure 11(a). This evolution satisfies also
the energy balance (EB) because of the continuity of the energy and is therefore a well–defined solution of
the quasi–static evolution problem. The corresponding displacement fields of the film are illustrated in Figure
12. Figure 11(b) reports the evolution of bonded length in each segment (thick black stroke). At t = 0, it is
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equal to the total length of the sound bar. At the point A, which corresponds to the intersection with the curve
t f (B) given by Equation (39) and marked with a thin solid gray stroke in Figure 11(b), the film breaks in n = 2
parts without debonding. Then, the bonded length in each segment is B = L/2, till the next intersection with
the line t f (B) at point C, where each part further splits in two totally bonded segments of length B = L/4. At
point D the load reaches the critical debonding time tb(B,γ) of Equation (34). Here, the film split into n = 4
pieces starts debonding. No further transverse crack appears for higher loading.

More in general, there may be a cascade of j̄ transverse cracks followed by debonding. An interesting
property of the solution is the number n j̄, which is the maximum number of pieces (of equal length) in which
the film splits before delamination. As done in the static problem, this number is obtained by looking for the
smallest integer value of j for which tb(L/n j,γ)< t f (L/n j). Figure 13 reports a phase diagram giving the n j
obtained in this way as a function of the relevant parameters L and γ .
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Fig. 11 quasi–static evolution of an initially sound thin film of length L = 6, with γ = 2.2. (a) In gray, total energies calculated
according to Equation (38) as a function of the load t for different number of film pieces, the bonded states being marked by the
dashed stroke. In black, the energy of the quasi–static evolution respecting (GST), (IR) and (EB). (b) In black, the length B of
the bonded interval in each film piece as a function of the load t. The continuous and dashed gray lines are the critical loads for
transverse cracking and debonding of a sound film of length B given by t f (B) and tb(B,γ), respectively.
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Fig. 12 Snapshots of the displacement field for states O, A, C, D of Figure 11(a). The debonded region is indicated with a thicker
dashed line.
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Fig. 13 Phase diagram for the coupled transverse cracking and debonding problem. For a quasi–static evolution, to each couple
of parameters (L,γ) the phase diagram associates the (maximum) number of parts n into which the film is split before debonding
takes place. We point out with a white dot the couple of parameters of the evolution illustrated in Section 5.3, with a red dot the
couples of parameters referring to the numeric experiments detailed in Section 6.

6 Numerical experiments

6.1 Implementation

The numerical approach we use is derived from the one presented in depth in [12,13]. It is based on a vari-
ational approximation of the total energy Ẽt in (6) by elliptic functionals, originally proposed in [19,20] for
the approximation of the Mumford-Shah problem in image processing. In the setting of [12,13], one can in-
troduce a function α taking its values in [0,1] and representing in some sense the crack set, a regularization
parameter η homogeneous to a length, and a regularized energy depending on the parameter η . It is then pos-
sible to show that this energy converge in the sense of Γ –convergence to the fracture total energy, from which
one derives convergence of global minimizers (see [24] for instance for more details on the construction of
the regularized energy). This analysis can then be carried out for the time evolution as shown in [25].

Here, we proceed by induction. We modify the regularized functional originally used in [12] to account
for the inelastic strain and the debonding terms. For any u, α , and any function δ with values in {0,1}
representing the debonded area, we consider a regularized energy in the form

Ẽt,η(u,α,δ ) :=
∫

A

1
2
(1−α(x))2 (u′(x)− t

)2
+

1
2

u(x)2(1−δ (x))+γ δ (x)+
3
8

(
α(x)

η
+ηα

′(x)2
)

dx. (40)

The surface energy term 3
8
∫
A

α

η
+ηα ′2 dx differs from the one used in [12] while still falling with the more

general scope of [24]. A comparison of the properties of both approximations can be found in [26].
We approach the time–continuous quasi–static evolution (CEL) by a time discretized regularized evolution

law by considering a discrete set of loads ti, and iteratively seeking global minimizers (ui,αi,δi) of Ẽti,η under
the crack growth condition αi ≥ αi−1 and δi ≥ δi−1. This time–discrete minimization problem is in turn
discretized in space by means of linear finite elements, following the lines of past work cited above. We made
no attempt at proving the convergence of the regularized model or its discretization to the continuous evolution
law, a technical task beyond the scope of this article and under current investigation. Still, we expect that as
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η → 0, the solution of the time–discrete regularized model converge to that of the continuous time evolution,
and in particular that the function α converges to 1 “along the cracks” and to 0 “away from the cracks”, that the
bulk term 1

2
∫
A (1−α)2 (u′− t)2 dx converge to 1

2
∫
A \Γ (u

′− t)2 dx, and that 3
8
∫
A

(
α

η
+ηα ′2

)
dx converges

to the number of cracks in the domain.
The numerical minimization of the regularized energy is challenging as it is non–convex and stiff. For

each loading parameter ti, we take advantage of the fact that Ẽt,η is separately convex in the variables u, α

and δ and alternate minimization with respect to u, δ , and α until convergence. Minimization with respect
to the displacement field u is a straightforward unconstrained optimization problem implemented using a
preconditioned conjugated gradient algorithm. Following Lemma 1, we know that for any ti, the optimal δi
is a characteristic function (i.e. no relaxation phenomenon takes place), and moreover that for a given u and
α the optimal function δ (x) is such that δ (x) = 1 if u(x)≥

√
2γ and 0 otherwise. Finally, minimization with

respect to α is a box constrained problem.
It is well known that such an algorithm applied to a non–convex energy may not converge to a global

minimizer, but only to a critical point. In the case of the uncoupled problems (transverse fracture or debonding
only), this can me mitigated by implementing a backtracking algorithm, relying on a necessary condition
for optimality with respect to the time evolution, and a construction of an evolution which satisfies it (see
[27]). In the current situation, when the competition takes place between three terms in the energy, a similar
optimality condition can be written, but the construction of an evolution satisfying it is not as straightforward,
and the results presented in the sequel do not use a backtracking algorithm. Note however that the results of
Lemma 1 and 2 about the general properties of solutions with debonding only require that first order optimality
conditions be satisfied and therefore hold for local minimizers and critical points of the total energy. Finally,
note that there is always a debate surrounding global minimality as the proper framework. In short global
minimality may sometimes lead to unphysical evolutions, but local minimality typically forbids transverse
crack initiation without singularity, the essence of the one–dimensional model. We do not take part in this
debate, but notice that in most cases, in our experiments, transitions between energy-minimizing states are
driven by the loss of their stability, which in turn is sensitive to the parameter η , (see [26]).

We conclude the description of the numerical approach by two remarks. First, as we focus here on the
simple one–dimensional situation, our numerical experiments do not illustrate one of the strengths of our
approach, its ability to handle complicated crack geometries and topologies. In the one–dimensional setting,
there are methods based on dynamic programming that are guaranteed to converge to global minimizers of
the total energy. Of course, this is at the cost of versatility as these do not generalize easily to the multi–
dimensional case. In contrast, our approach is suited to the numerical simulation of real two–dimensional
problems, in situations where complicated crack and debonding geometries are expected, a strength that is
not fully exploited in the present work. Secondly, the regularized energy (40) is similar to a non–local damage
model where α is a damage parameter and η an internal length. In the current study however, we see this as
a mere coincidence. We only think of of η as a numerical regularization parameter and of Ẽt,η(u,α,∆) as an
approximation of (6), taking place as η → 0.

We propose to use this numerical approach to illustrate the various results presented in the previous sec-
tions, starting with quasi–static transverse fracture and debonding separately, then coupling both fracture
modes. In addition to the scaling (7), we modify the toughness γ in order to account for the interaction be-
tween the mesh discretization and regularization parameters as in [13].

For each experiment we present, we use the following convention: in the energy plots, the total energy is
plotted in bold solid line, the energy associated with the transverse cracks in dashed lines, that associated with
the debonding in dot–dashed lines, and the elastic energy in thin solid lines. When applicable, the total energy
of the closed form solution is also plotted in light dashed lines, and the relevant critical loads indicated by
vertical dashed lines. When we plot the displacement and the α field representing the cracks, the displacement
is depicted in thick solid lines and α as a thin line. When we plot the displacement and the debonding charac-
teristic function δ , the displacement is depicted in thick solid lines and δ as a thin line. The displacements are
normalized so that they take values in (−1,1). The debonded area corresponding to δ (x) = 1 is highlighted
in light gray.

6.2 Numerical simulation of a perfectly bonded film subject to transverse cracks only

We focus first on the case of a perfectly bonded film studied in Section 4.2 where only transverse cracks are
allowed. This is achieved by forcing δ ≡ 0 in our numerical scheme. We consider a domain of length L = 6,
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decomposed into 600 linear finite elements (h = 10−2). The load history [O,Tmax] is discretized with 600 time
steps of equal length. The regularization parameter η is set to 5.510−2.

Figure 14 presents the outcome this experiment. The snapshot of the displacement and damage fields in
Figure 14(b) is taken at the last time step of the load path. The equi–distributed fracture pattern is correctly
captured, indeed the peaks of the damage field representing the location of cracks occur at x = −1.5,0,1.5
in Figure 14(b). Moreover, the damage field has continuous derivative except at its peaks and decays rapidly
to 0. In the energy plot, the first branch of parabola corresponds to the elastic loading of the sound film. At
t = 1.78 the first transverse fracture appears at the center of the film, which leads to a sudden increase of the
surface energy at the expense of elastic energy. As the loading increases, the system follows the second branch
of parabola, i. e. the elastic loading of the two pieces into which the original film is split. The second critical
load t = 2.60 corresponds the opening of two cracks along the center of each film piece. The final snapshot
of the fracture profile is shown in Figure 14(b). As hinted above, the mechanisms leading to bifurcation
between branches of energy is the loss of stability and is η–dependent leading us to overestimate the value
of the critical loads. In this situation, a backtracking algorithm would have allowed the reconstruction of the
proper energy profile. We also note that in this situation, the displacement field is not perfectly antisymmetric
with respect to the center of each of film pieces as expected. This is due to the fact that whereas the free
boundary condition is exactly satisfied at the end point of the domain, it is only asymptotically satisfied as
η → 0 along the crack. Indeed, in Figure 14(b), one can see that the the displacement magnitude is slightly
at the boundary of the domain that at the cracks edges. As we will see below, this will have an effect on the
debonding evolution in coupled simulations.
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(a) Evolution of the system total (thick line), elastic (thin line)
and surface energies (dashed). The total energy of the crack
states studied in Section 4.2 is shown in light dashed curves.
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(b) At the end of the loading phase three transverse cracks are
obtained, represented by the localization teh field α on a nar-
row zone. In our regularized formulation, discontinuities of the
displacement are replaced with zones with very high gradient.

Fig. 14 Uncoupled numerical experiment allowing only transverse cracks.

6.3 Numerical simulation of a perfectly elastic film subject to debonding only

We continue our numerical investigations by focussing on the situation considered in Section 5.2 where only
debonding is allowed. Again, this is easily achieved by skipping the minimization with respect to α and forc-
ing α ≡ 0 throughout the domain. The discretization parameters are identical to that above, and the parameter
γ arbitrarily set to 0.5. Figure 15 presents the outcome of our numerical experiments. The fields u and δ at
the last time step are shown in Figure 15(b). The area where δ (x) = 1 is highlighted in gray. As predicted
in Proposition 2, the debonded area consists in two segments originating from each end of the domain. Al-
though the analytic solution is not unique, our numerical solution seems to favor a symmetric solution. On the
debonded domain, the displacement is linear and the deformation gradient is identically equal to the imposed
inelastic strain.

The energy plot is shown in Figure 15(a). The critical load of 1.01 at which debonding takes place in the
closed form solution in (33) is denoted by a vertical thin line. The critical load we obtained in the numerical
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experiment is 1.04, a relative error of 3%. The comparison of the total size of the debonded domain yields
B = 5.66 using Equation (32), and Bh = 5.67 for the numerical experiment, a relative error of 0.1%. The
surface energy related to debonding increases as L−Lb(t). The total energy grows asymptotically to reach a
value of γL of a fully debonded film.

The obtained evolution matches perfectly that obtained in Section 5.2. This is not really a surprise as the
solution is given by the first order optimality conditions (31) which are implemented in the minimization
algorithm.
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(a) Energy plot for the uncoupled debonding experiment. Af-
ter an elastic loading phase, the film undergoes debonding.
The total energy has an horizontal asymptote that corresponds
to the energy of the totally debonded film.
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(b) Plot of the displacement field and the debonded do-
main (shown shaded in light gray) shaded field. As expected,
debonding initiates at the edge of the domain and propagates
towards its center. The displacement is linear on the debonded
domain.

Fig. 15 Uncoupled numerical experiment allowing only debonding.

6.4 Numerical simulation of a film subject to coupled transverse cracks and debonding

We finally present two numerical experiments implementing the fully coupled model. In the first one, the
geometry and spacial discretization parameters are unchanged. The load increment is set to 10−2 and the
parameter γ to 2.2, matching the example from Figure 11 in Section 5.3. In the numerical experiment, we
observe the nucleation of a transverse crack at the center for a load t = 1.59, instead of the predicted t = 1.04.
Again, this is due to the fact that in the numerics, the bifurcation from the uncracked configuration to the
cracked one is governed by loss stability of the elastic solution, and not global minimality. For similar rea-
sons, we do not observe the initiation of cracks on each of the ligaments as predicted in Section 5.3. However,
as expected, debonding expanding from the crack tip occurs at a load of t = 1.98 (an error of .2% compared to
the theoretical value), and the evolution of the total debonded length follows the one predicted in Figure 11.
In particular, the size of the debonded domain at the end of the loading phase is 7.34, matching the predicted
value within 3%. The value of the first critical load could be improved using a backtracking argument. How-
ever, since we do not observe nucleation of secondary cracks, but instead directly detect debonding, a simple
backtracking argument will not suffice to identify the missed bifurcation.

In order to qualitatively recover the richness of the evolution described in Section 5.3, we consider a
second numerical simulation of a domain of length 8, discretized into elements of size 1.6 ·10−2.

In this situation, we first obtain a centered transverse crack a t = 1.56, followed by the simultaneous initia-
tion of two cracks, centered around each piece of film at a critical load t = 2.04. Only at this point is debonding
of the film taking place. As hinted in Section 6.2, the displacement field is not perfectly antisymmetric in the
first and last ligament, causing debonding to initiate there slightly earlier that at the film’s cracks. This can
be seen in Figure 17(c) where the debonded region is not symmetric in the outmost film pieces (−4,−2) and
(2,4). The energy evolution we recover matches the prediction with a bonded area decreasing as Lb(t) and a
debonding energy proportional to L−Lb(t,γ) as in Equation 33.

The numerical critical debonding load is 3.12 it underestimates the critical load for debonding tb(L/4) =
3.24 computed with Equation (34).
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(a) Energy plot of the evolution, after a sound loading phase, the
system jumps to the fractured state with one crack. The energy
is discontinuous at the transition load. Then debonding starts re-
specting energy continuity.
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(b) Plot of the displacement and damage field. The crack ap-
pears in the middle of the film.
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(c) Plot of the displacement and the debonded domain. It is
symmetric with respect to the center of the film.

Fig. 16 Coupled experiment #1: transverse fracture and debonding. One transverse fracture and then delamination.

7 Conclusions

We applied the variational approach to fracture mechanics to study fracture and debonding of a thin film
bonded on a stiff substrate. Our analysis is based on a 1D reduced model where transverse cracks and debond-
ing are introduced through a surface energy of the Griffith type, the bulk energy being assumed to be linear
elastic up to failure. The presence of the substrate is accounted for by an equivalent elastic foundation. We
made no attempt here to present a rigorous justification of the model starting from the 3D description, but
instead we performed a detailed analysis of its solutions and their qualitative properties.

In the reduced model transverse and debonding cracks appears with a different geometric nature. Whereas
the first are of geometrical co-dimension 1 (points in 1D and surfaces in 2D), the second are of co-dimension
0 (segments in 1D and surfaces in 2D). Only transverse cracks introduce discontinuities in the displacement
fields. This difference entails a distinct mathematical and numerical treatment and solutions with disparate
qualitative properties. This point has been emphasized by presenting separately the solutions of the transverse
fracture and debonding problems, before tackling the more complex coupled case. For debonding without
transverse cracks, the main result is that the bonded part of the domain is a single connected segment, which
is uniquely determined as a function of the loading. Equivalently, debonding may appear only at the ends of
the domain. Moreover, this is a property is true of all local minima of the energy.

The modeling of transverse cracks requires us to formulate problem in terms of global minimization, as
customary in the variational approach to fracture mechanics with a Griffith–type surface energy. We showed
that transverse cracks are equally spaced and lead to periodic solutions. This behavior was only postulated in
previous studies. The coupling of transverse fracture and debonding produces an interesting and rich behavior
even in the 1D setting. Through analytical results and phase diagrams, we unveiled the dependence of the key
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(a) Energy plot shows an evolution consisting in three subsequent
transverse fractures and debonding. Boundary layer effects appear
during the very first phase of debonding, as the linear growth of the
debonding energy in the very first debonding phase indicates.
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(b) Plot of the displacement and damage fields, the film ex-
hibits three transverse cracks at the end of the loading phase.
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(c) Plot of the displacement and debonded domain (shaded in
light gray). The latter is not symmetric for each part of the bar
since the total energy is insensitive to the arrangement of the
debonded domain.

Fig. 17 Coupled experiment #2: transverse fracture and debonding. Three transverse fractures and debonding.

qualitative properties of the solutions on the two non–dimensional parameters of the model. In the numerical
part, we proposed a finite elements implementation of a regularized model. Our numerical approach is used to
illustrate key properties of the model identified in the analysis section. A natural extension of this work is to
tackle the 2D case, which is known to lead to intriguing complex crack and debonding patterns, like fracture
networks, parallel crack arrays with stop and go phenomena, or spirals. The extension of the numerical model
to 2D is straightforward. It is under active development and the analytical results presented here will be
used for its verification. The rigorous derivation of the thin film model with fracture and debonding, starting
from a 3D variational model with Griffith surface energy is pending. Preliminary Γ –convergence results are
available and will be reported in a forthcoming paper. Our final aim is to compare the analytical and numerical
findings to experimental evidences. Collaborations with experimentalists in the thin film domain are currently
in progress.

A Appendix

Proof (of Lemma 1) We consider a sound bar Γ = /0 and let u be a local minimizer of Ẽt(u, /0).
Let us first prove that there exists x ∈ [−L/2,L/2] such that |u(x)| < uc, by contradiction. Let us consider the following

family of admissible displacement fields vh = u+hv with h > 0 and v ∈ C ( /0). Since vh converges to u as h→ 0, we must have
for h sufficiently small

0≥ Ẽt(u, /0)− Ẽt(vh, /0) =
∫ L/2

−L/2

(
2h(u′− t)v′+h2v′2 + f (|u(x)|)− f (|vh(x)|)

)
dx. (41)
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Since f (|u(x)|) = γ ≥ f (|vh(x)|), one gets 0 ≥
∫ L/2
−L/2

(
2h(u′− t)v′+h2v′2

)
dx. Dividing by h and passing to the limit as h→ 0,

one obtains
∫ L/2
−L/2(u

′−t)v′dx = 0, equality which must hold for every v∈C ( /0). It is possible only if u′ = t. Inserting this relation
into (41) leads to a contradiction. Therefore there exists x ∈ [−L/2,L/2] such that |u(x)|< uc.

Then, let us prove that u has (at least) a zero in [−L/2,L/2], still by contradiction. Suppose that u has the same sign on
[−L/2,L/2], say ε =±1. For h ∈ (0,min |u|), let us consider the following family of admissible displacement fields vh:

vh(x) = u(x)− εh.

Since vh converges to u as h→ 0, we must have for h sufficiently small

0≥ Ẽt(u, /0)− Ẽt(vh, /0) =
∫
[0,L]

f (|u(x)|)− f (|vh(x)|)

But since |vh(x)| < |u(x)| and since f is strictly increasing in the interval [0,uc], the above inequality can be satisfied only if
|u(x)| ≥ uc for all x. But we have proved before that it is impossible. Therefore u has at least a zero.

We are now in a position to prove that u is monotonic, by contradiction. If u(x) is not monotonic, then it has a positive
local maximum or a negative local minimum in (−L/2,L/2) and we can find U ∈ R such that there exist −L/2≤ a < b≤ L/2
verifying:

u(a) = u(b) =U and |u(x)| > |U | , ∀x ∈ (a,b)

For h ∈ (0,1), let us consider the following family of admissible displacement fields vh:

vh :=
{

u(x), if x /∈ (a,b)
(1−h)u(x)+hU if x ∈ [a,b]

Since vh converges to u as h→ 0, we must have for h sufficiently small

0≥ Ẽt(u, /0)− Ẽt(vh, /0)

=
∫
[a,b]

(u′(x)− t)2 + f (|u(x)|)dx−
∫
[a,b]

(u′(x)(1−h)− t)2− f (|vh(x)|)dx

=
∫
[a,b]

u′2(x)(1− (1−h)2)dx−2h
∫
[a,b]

tu′(x)dx+
∫
[a,b]

f (|u(x)|)− f (|vh(x)|)dx

=
∫
[a,b]

u′2(x)(1− (1−h)2)dx+
∫
[a,b]

f (|u(x)|)− f (|vh(x)|)dx

Since both the integrands are non negative, for the inequation to be satisfied both the integrands must vanish. This leads to
u′(x) = 0 in (a,b) and since u(x) =U for x = a,b and u must be continuous, one should have u(x) =U in (a,b) which contradicts
|u(x)| > |U | in (a,b). Then u(x) is monotonic. ut

Proof (of Lemma 2) Let v ∈ C∞
0 ([−L/2,L/2]) and h ∈ R. When |h| is sufficiently small, then ϕh(x) := x + hv(x) is a C∞-

diffeomorphism on [−L/2,L/2]. Let u ∈W 1,2[−L/2,L/2], and define uh := u◦ϕ
−1
h . One has limh→0 uh(x) = u(x) pointwise. If

u is a local minimizer then I(u)≤ I(uh) for some sufficiently small h. We compute

I(uh) =
∫ L

0

((
u′(y)
ϕ ′h(y)

− t
)2

+ f (|u(y)|)

)
ϕ
′
h(y)dy

The last quantity is differentiable with respect to h, attaining its minimum value for h = 0, u being a minimizer. We therefore
require that the first derivative with respect to h vanishes for h = 0

0 =
dI(uh)

dh

∣∣∣∣
h=0

=
∫ L

0

(
−(u′2(x)− t2)+ f (|u(x)|)

)
v′(x)dx, ∀v ∈C∞

0 ([−L/2,L/2])

We easily infer the prime integral: u′(x)2− t2− f (|u(x)|) =C, ∀x ∈ [−L/2,L/2]. Let’s compute the boundary conditions. Define
xh = L/2(1−h) for h ∈ (0,1) and ∀ϑ ∈ R construct a test field vh as follows

vh(x) :=
{

u(x), if x ∈ [−L/2,xh]

u(x)+ϑ(x− xh) if x ∈ [xh,L/2]
(42)

Such a test field is admissible and vh→ u pointwise for h→ 0. Let u be a minimizer, then we can write the following inequality

0≤ Ẽt(vh(x), /0)− Ẽt(u, /0)

=
∫
[xh,L]

(u′(x)− t)2 + f (|u(x)|)dx−
∫
[xh,L]

(u′(x)+ϑ − t)2− f (|vh(x)|)dx

=
∫
[xh,L]

ϑ
2 +2ϑu′(x)−2ϑ t +( f (|vh(x)|)− f (|u(x)|)) dx



25

dividing the last equation by h and passing to the limit for h→ 0, the term in parentheses vanishes grace to the pointwise
convergence vh→ u and the inequality

0≤ ϑ
2 +2ϑ(u′(L)− t)

has to be verified ∀ϑ ∈ R. This leads to the desired boundary condition: u′(L/2) = t. Symmetrically we can construct test fields
to retrieve the boundary condition on x = 0 as follows

vh(x) :=
{

u(x)+ϑ(x− xh) if x ∈ [−L/2,xh]

u(x), if x ∈ [xh,L/2]
(43)

where now xh = h. We have the same pointwise convergence as above and we derive the boundary condition u′(−L/2) = t. ut
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