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Abstract We investigate quasi-explicit time-integration schemes for solving dy-
namic fracture problems with set-valued cohesive zone models. These schemes
combine a central difference time-integration scheme and a partially implicit and
lumped treatment of the cohesive forces. At each time step, the displacements of
the nodes in the interior of the domain are computed in an explicit way, while
the displacements of each node at the interface are computed by solving a local
nonlinear problem. The method provides a general and robust way of treating the
set-valued cohesive zone model while keeping a moderate computational cost.

Keywords cohesive zone model - finite elements - time-integration scheme

1 Introduction

Cohesive zone models have been introduced in the late 50s [1,2,11]. They can be
applied to a large range of materials (concrete, steel, etc...) and fracture processes
(brittle fracture, ductile fracture, fatigue, dynamic fracture) and they can be easily
enriched with more complex physical behaviors (contact and friction after deco-
hesion, corrosion, etc...). Moreover, cohesive zone models fit quite well within the
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framework of finite elements. For all these reasons, they are now widely used in
engineering simulations. A cohesive zone model can describe the mechanical forces
along a fracture — it can be simply viewed as a boundary condition. The interface
forces depend at least on the opening (displacement jump at the interface). In
a typical cohesive zone model, the separation occurs at the interface only after
a critical stress has been reached. When the separation has occurred, cohesive
forces remain. These forces decrease when the opening increases and tend to van-
ish (softening behavior). Physically, the cohesive forces represent the weakening
of the material in the fracture process zone ahead of the crack tip. Furthermore,
real cracks cannot experience self-healing in general. To take into account this ir-
reversibility, one can introduce a history parameter, such as the maximal opening.
For quasi-static fracture, cohesive zone models depending on opening and maxi-
mal opening are well established and in good agreement with experiments. In the
dynamic case, numerical simulations with such cohesive zone models predict of-
ten crack speeds far higher than those observed in the experiments. For instance,
for mode-I fracture in brittle materials, numerical crack tip speeds are close to
the Rayleigh wave speed, while experimental crack tip speeds nearly reach half
of this value (see for instance [22,20]). To remedy this, cohesive zone models de-
pending on the opening rate have been designed [21,27]. Such models are called
rate-dependent.

Since the crack tip speed is high, typically of the same order as the wave
speeds, small time steps are needed to capture accurately the fracture phenomenon.
Therefore, it seems natural to consider an explicit time-integration scheme. For
cohesive zone models in which the interface forces are related to the opening by a
classical function, the use of an explicit time-integration scheme is straightforward
[26]. However, in most cohesive zone models, the interface forces are not related
to the opening by a classical function, but by a set-valued map. Indeed, most
cohesive zone models feature perfect initial adhesion, contact or rigid unloading.
There are two main difficulties in using fully explicit schemes in such a context.
Firstly, the interface forces are not defined for negative normal opening (see Figure
1, left). Secondly, the interface tangential forces are discontinuous with respect to
the tangential opening (see Figure 1, right), and this can cause oscillations. A
first option consists in regularizing the set-valued map to turn it into a single-
valued map. Unfortunately, the regularization of a non-interpenetration condition
deteriorates substantially the stability condition of explicit schemes (the penalty
contact condition introduces in the model an artificial stiffness larger than the
material stiffness). Moreover, replacing a discontinuity by a very stiff slope does not
really solve the problem. Alternatively, ad hoc procedures have also been developed
to treat a few specific cases of set-valued interface forces: allowing the separation
only after a failure criterion has been reached [5,19,12], a posteriori enforcement of
the non-interpenetration condition [5,12], tolerance parameter on the tangential
opening [12]. For complex cohesive zone models with several set-valued parts,
the combined use of these procedures generally becomes quite intricate, or even
unfeasible.

In the present work, we focus on dynamic fracture models where the mate-
rial can only crack along a prescribed surface (fracture interface). In other words,
the crack path is known in advance. This assumption may appear as a limitation.
However, fracture models predicting the crack path are still quite challenging for in-
dustrial applications. Moreover, for a large range of applications (interfacial crack,
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small propagation crack), postulating a priori the crack path is reasonable (see [16]
for further discussion). We assume that the bulk behavior is governed by the linear
elastodynamic equations and that the separation process at the fracture interface
obeys a cohesive zone model. We consider a generic cohesive zone model depending
on the opening, the opening rate, and the maximal opening. This generic model
encompasses most of the usual cohesive zone models. Space semi-discretization
is achieved using P: finite elements. We propose time-integration schemes that
combine a central difference scheme with a partially or fully implicit treatment of
the interface forces. The central difference scheme is a standard scheme for elas-
todynamics [15]. The implicit treatment of the interface forces provides a general
and robust way of treating the set-valued cohesive zone model. In order to keep a
moderate computational cost, we use lumping techniques for the mass term and
the interface forces. We thus obtain quasi-explicit methods: at each time step, the
displacements of the nodes in the interior of the domain are computed in an ex-
plicit way, while the displacements of each node at the interface are computed by
solving a small nonlinear problem (this can generally be achieved in an analytical
way). First, we consider a fully implicit treatment of the interface forces. However,
staggering in time the force at the fracture interface can have a sizeable effect
on the energy behavior and the accuracy of the time-integration scheme. Conse-
quently, we propose a second time-integration scheme, in which the interface forces
are split into a set-valued monotone part and a single-valued softening part. The
former is treated in an implicit way, the latter in an explicit way. This improves
the accuracy and the energy behavior. Note that some of the ad hoc procedures
described above can be loosely interpreted as an implicit treatment of the set val-
ued part of the cohesive zone model (failure criterion, a posteriori enforcement of
the contact condition).

We begin by presenting the generic cohesive zone model and examples which
fit into this framework (Section 2). We then formulate the continuous problem of
dynamic fracture (Section 3). Sections 4 and 5 are devoted to the finite element
discretization in space and to the time-integration schemes, respectively. We dis-
cuss the implementation of the schemes in Section 6. Finally, numerical results are
presented in Section 7, and conclusions are drawn in Section 8.

2 Cohesive zone model

We consider a generic cohesive zone model. The forces at the fracture interface
are described by a set-valued map which depends on the opening, the opening
rate, and the maximal effective opening (the notion of effective opening is defined
below).

2.1 Generic model

Let (-,-) denote the usual scalar product in R™ (n > 1) and let | - | denote the
corresponding Euclidean norm. Let P(R"™) denote the set of all subsets of R”. In a
d-dimensional problem (d = 2 or d = 3), the cohesive zone model is characterized
by a set-valued map R : R x RY x RY — P(R?). The arguments of R are the max-
imal effective opening, the opening rate, and the opening, respectively. For each
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triplet (9, z, p), the map R(J, z, p) yields a set of vectors, which are the admissible
interaction forces. The first component of A € R(4, z, p) is the normal force at the
interface and the second and third ones are the tangential forces. For an opening
p € R® (resp. p € R?), the effective opening is defined as 6(p) = (p1, |p2], [p3|)
(resp. 6(p) = (p1,[p2]))-

Since a cohesive zone model describes a softening behavior, the set-valued map
R is not monotone with respect to the opening. However, the slope of the softening
part of R is assumed to be bounded. This assumption is, in particular, useful to
establish the well-posedness of our first time-integration scheme (see Proposition
1).

Assumption 1 The operator R satisfies the following one-sided Lipschitz condition:
there is a real number C, such that, for all § € R?, for all z € R?, for all p, ¢ € RY,

(>‘P - >\q7p - q) Z *CL ‘p - Q|27 VAP € R(5: va)a VAQ € R((Sa Z7q)' (1)

The present generic model encompasses for instance the Camacho-Ortiz law
[5] and the Talon-Curnier law [23], but not the rectangular law (because of the
infinite slope of the softening part).

Remark 1 In most cohesive zone models, the operator R(J, z, -) is built as the dif-
ferential (in a generalized sense) of an energy. This operator being non-monotone,
the associated cohesive energy is non-convex.

Remark 2 After decohesion, contact closure can lead to friction phenomena at the
interface, which can play an important role in the fracture process. Cohesive zone
models including friction have been proposed for instance in [18]. The friction
force is generally a monotone set-valued function of the tangential velocity at the
interface and could be easily added to our generic model.

2.2 Examples

This section collects some examples of cohesive zone models fitting the above
framework. The first two examples can be viewed as simplified variants of the
Camacho-Ortiz law [5].

A reversible triangular model with uncoupled normal and tangential forces This
model depends on the opening and prescribes uncoupled normal and tangential
interface forces. It relies on two parameters: o, the maximal cohesive force, and d,
the critical opening. It can be represented by a set-valued map R : R — P(Rd)
whose components are independent. The normal component R1 : R — P(R) is
such that

(—00,0¢] if p=0,

Oc 1 -2 lf 0 < S dc,
Ri(p) = ( dc) o oF

0 if de < p,

] if p<0.
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Fig. 1 Triangular model with uncoupled normal and tangential forces. Normal force (left).
Tangential force (right).

For simplicity, in the definition of cohesive zone models, a singleton {z} is simply
denoted z. The tangential components Rz : R — P(R) and R3 : R — P(R) are
such that

0 if p < —do,

_UC<1+d%) if —de<p<Q0,
Ra(p) = R3(p) := { [~0oc, 0c] if p=0,

O'c( fd%) if0<p<d,,

0 if de < p.

This model is represented in Figure 1. It is easy to check that this model satisfies
Assumption 1 with Cp, = o./d.. Moreover, energies ¥ : Rt -5 R, ¥ : R — R,
and Y3 : R — R can be associated with this model, namely

Loed, if de < p,

oep(1—2) if0<p<de,
@1 (p) ::{ p( 2‘16) =P=
2

and

%acdc if p < —de,
—oep (14 55) if —de <p<0,
op(1-55) if0<p<d,
%Ucdc if de < p.

Pa(p) = ¥s(p) :==

An irreversible triangular model with only normal force This model depends on the
normal opening p and maximal effective normal opening § and prescribes only the
normal force. Moreover, it is irreversible with a linear unloading. As the previous
model, it involves two parameters: o., the maximal cohesive force, and d., the
critical opening. It can be represented by the set-valued map RY™" : R x R — P(R)
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Oc Oc

Fig. 2 An irreversible triangular model with only normal force. Linear unloading (left). Rigid
unloading (right).

such that

(—00,0¢] ifo =p=0,
(—00, 0] if0=p<é,
oc yf% L oif0<p<6<de,

R"(8,p) = {0 (1- 2 if0<6<p<de,
0 if d, < p, 0<6,
0 if d, < 8,0 < p,
0 otherwise.

This model is represented in Figure 2, left. It satisfies Assumption 1 with Cp =
oc/de. A common variant of this model consists in replacing the linear unloading
with a rigid unloading (Figure 2, right). An energy ¥{"" : R* x RT — R and a
dissipated energy @f” : RT™ — R can be associated with the irreversible model
with linear unloading. They are defined as follows:

Oc —%—Fp—%) ifo0<d<p<d,,

5 2 .
i (5.p) i Jcl—z)% if0<p<6<d.,
%Ucdc ifde <p, § =0,
0 if do < 6,0 < p,

G (5) = 106 if0<6<d.,
P  boede it de <6

A rate-dependent triangular model with only normal force [27] This model depends
on the normal opening p and the normal opening rate z, and prescribes only the
normal interface force. It relies on three parameters: 0., the maximal cohesive
force, dc, the critical opening, and 7, a viscosity parameter. It can be represented
by the set-valued map RY**“: R x R — P(R) such that

(—o00, 0¢] if p=0,

1] otherwise,

Ry (z,p) o=
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Oc

Fig. 3 A rate-dependent triangular model with only normal force (d. := de(1 +nzt)).

where 21 denotes the positive part of z. This model is represented in Figure 3. It
satisfies Assumption 1 with Cr, = o¢/de.

2.3 Link with Griffith’s model

It is possible to make a link between cohesive zone models and Griffith’s models.
When cohesive forces act over a sufficiently short range, the stress fields near the
crack tip are equivalent in both models. Furthermore, the material parameter used
in Griffith’s model, the fracture toughness G, is equal to the energy needed to
completely open the crack in the cohesive zone model. A formal argument for this
asymptotic analysis can be found in [25] and a rigorous proof for a simple model
in [17]. The fracture toughness corresponding to the rate-independent triangular
models (presented above) is
1

Gc = §O-Cdc.

In the rate-dependent triangular model, the fracture toughness increases with the
opening rate.

3 Continuous problem

We now formulate the governing equations of the dynamic fracture problem.

3.1 Geometry

We consider a domain 2 € R? (d = 2 or d = 3) and we assume that the crack
can only appear on a (d — 1)-dimensional smooth surface I' (see Figure 4). We
call I" the fracture interface. We set 2 := 2\ T". We can fix an orientation and
define two sides for I', a positive side and a negative side. Let v : 2 — R? be
a displacement field. The trace of v on the positive side is denoted v, the trace
on the negative side is denoted v~. We denote v the unit normal vector to I’
pointing to the positive side. We define two tangential unit vectors 71 and 72, so
that (v, 71, 72) forms a local direct orthonormal basis (obviously, for d = 2, only
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Fig. 4 Geometric setup.

one tangential vector is considered). The displacement jump of v at the interface
is defined as

[v] =0t —v™. (2)
To define the interface forces, we take into account the local orientation of the
interface by introducing the rotation matrix @ transforming the canonical basis of
R? into (v, 1, 72).

3.2 Governing equations

The material is supposed to be linear isotropic elastic with Young modulus F,
Poisson ratio vp, and mass density p. The elasticity tensor is denoted .A. An
external load f is applied to the body. Let u : 2 (0,T) — R%, e(u) : 2% (0,T) —
R4 and o(u) : 2 x (0,T) — R%“ be the displacement field, the linearized strain
tensor, and the stress tensor, respectively. Denoting time-derivatives by dots, the
momentum conservation equation reads

pii —dive = f, o=A:g e:%(Vu—l—TVu) in 2x(0,T). (3)

The boundary 942 of {2 is partitioned into two disjoint subsets I'? and I'" . Dirich-
let and Neumann conditions are prescribed on I'? and IV, respectively,

w=up onI'® x(0,T), c-v=fn onIYN x(0,7). (4)
On I', the cohesive law is enforced
ow ) v=—c@") - v=X  Xe QR Q[], Qu]). (5)
The maximal effective opening ¢ is defined, for ¢t > 0, by
8(t) = sup 6(Q[u(s)]). (6)
s€[0,t)

At the initial time, the displacement, the velocity, and the maximal effective open-
ing are prescribed:

uw(0)=u", a(0)=+", §(0)=4". (7)

Equations (3)-(5) can be written in a variational form: seek u such that, for all
test function v,

/ﬁpﬂ-v—i—/ﬁe(u):A:e(v):/fzf(t)-U—Q—/FNfN(t)m—/F)\-[[v]], (8)
where \ € "QR(6, Q[u], Q[u]).
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3.3 Mathematical aspects

The mathematical analysis of Problem (3)-(7) is beyond the scope of the present
work. However, let us mention some related results.

— In the quasi-static case with a reversible cohesive zone model (with perfect
adhesion or not), the existence is proven. The solution is in general not unique
[10].

— In the quasi-static case with an irreversible cohesive zone model, the existence
of a solution is proven in [8,4].

— In the dynamic case, it should be possible to prove, using compactness ar-
guments similarly to [9], existence for a visco-elastic material and a reversible
cohesive law with perfect adhesion, and even to prove existence and uniqueness
for an elastic material and a regularized cohesive law.

3.4 Length and time scales

In order to capture accurately a phenomenon with numerical simulations, it is
important to choose a time step and a mesh size which resolve its time and length
scales. In a dynamic fracture problem, the relevant length scale is the length l..p
of the cohesive zone (the part of the interface which is not completely cracked and
where cohesive forces act). The relevant time scale is the crack tip speed divided
by the cohesive zone length. Several methodologies have been proposed in the
literature to estimate the cohesive zone length; see [24] and references therein.
They all yield, in the case of plane strain and triangular cohesive zone models, an

estimation of the form
E G
lco = Miia 9
h 1— 1/123 o2 9)
where M is a parameter close to 1. For an isotropic linear elastic material and a
Griffith model of fracture, a theoretical analysis predicts that the limiting crack
tip speed for a mode-I fracture is the Rayleigh wave speed [13,3]. For mode-1I and
mode-III fractures, the limiting speeds are the dilatational wave speed and the
shear wave speed, respectively [13,3]. The dilatational and shear wave speeds are
given by the following formulae:

. E(l — I/p) . E
“= \/pu o -2p) T\ 20 v (10)

The Rayleigh wave speed can be estimated by the following expression [13]

0.862 + 1.14vp

11
T or (11)

CR =~ Cs

Rate-dependent cohesive zone models involve an additional time scale, linked to
the opening rate and generally smaller than the time scale linked to the crack tip
speed. At least in the quasi-static evolution, analytical estimations of the opening
time are provided in [7].
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4 Finite element discretization

In this section, we describe the space approximation of the dynamic fracture prob-
lem. Linear finite elements are used together with lumping of the mass term and
the interface forces.

4.1 Finite element spaces

In 2D (resp. in 3D), the domain (2 is approximated by a polygon (resp. a poly-
hedron) §2;, and the interface I" by a polygonal curve (resp. a polygon) I'. The
domain (25, is meshed with triangles (resp. tetrahedra) conforming to the interface
I'},. Let Ty, denote the mesh over §2;, and let F}, collect the faces located on I7},. Let
Qn = 2 \I},. Let {z;};cnr be the nodes of the mesh 7 where A collects the node
indices. Let NP be the indices of nodes where a Dirichlet condition is enforced
and by AV¢ the indices of nodes lying on I'},. The displacements are approximated
with P; finite elements:

Vi = {vn € C%(20)%; vpr € (B1)?, VT € Th, and vy (2;) =0, Vi € NP}

Note that functions in V} can be discontinuous across I},. We consider the La-
grange nodes of V}, and denote them {&;};cnrr where N/ L collects the correspond-
ing node indices. The Lagrange nodes are not exactly the mesh nodes {z;}icn
because of the discontinuity at the interface. Specifically, for each mesh node x;
lying on I}, there are two Lagrange nodes &+ and &;—. For all i € N, for all
vp € Vy, we set

on(€e) = o (@), (&) = oy, () (12)
The cohesive forces are also approximated by P finite elements,
Ly, ={x € CO(T)% Anjr € (P1)?, VF € Fi}.

At each node x; lying on I},, we define normal and tangential unit vectors (v;, 71:, T2:)
forming a direct orthonormal basis. Let @); be the associated rotation matrix. We
define also the set-valued operator R;:

4.2 Lumping of the mass term and the cohesive term

The mass term and the cohesive forces term are lumped. Mass lumping is usual
with explicit time-integration schemes. It yields an easy-to-invert mass matrix at
each time step, while improving the CFL condition [15]. A way of lumping the
mass term is to evaluate it with an approximate quadrature whose Gauss points
are the nodes of the finite element space. For P; finite elements, it is usual to use
the following quadrature formula (in dimension d)

d+1
T

JREDIF =t (14
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where |T| is the measure of the simplex T and {o;}1<i<q+1 its vertices. This
quadrature is second-order accurate. The lumped mass term my, : Vi X Vi — R is
built with this quadrature by setting

i (Onwn) = > pivn(&) - wa (&), (15)

ieENT

where

p= 3 AITI/ @+ 1), (16)

TeT;

Ti being the set of elements for which ; is a vertex. The lumped cohesive term
by : Ln X Vi — R is such that

b wn) = Y Bidn(aa) - (vg (2) = vif (@) (17)

iENC

where

= 3 IRl (18)

FeF;

Fi being the set of faces for which z; is a vertex and |F'| the measure of the
face F'. Finally, the stiffness term ap : Vi, X Vi, — R and the external force term
I : [0,T] X Vi, — R are built in a standard way, namely

ap(vp, wy) = /fz e(vp) + A e(wn), (19)

n(t, vm) ;:/ﬁ f(t)~vh+/FN Fa(t) - on, (20)

up to quadratures for [;,. We define the matrices Mh, Ky, and Bh associated with
the bilinear forms myp, ap, and Bh, respectively. We also define Lj(t) to be the
column vector associated with the linear form [y (¢, -). For up € Vy, we define Uy,
as the column vector whose components are the coordinates of uy in the finite
element basis. We denote Ny the size of U. We denote U ; the d-dimensional
sub-vector associated with the Lagrange node &;. Similarly, for A\, € L}, we define
Ap, as the column vector whose components are the coordinates of Ay in the finite
element basis. We denote N, the size of Aj. We denote Ay, ; the d-dimensional
sub-vector associated with the node x;. Finally, we define, for all i € N¢,

Uh,i+ + Uh,i_

[[Uh]]z - Uh,i+ - Uh,i* and {Uh}z = 5

(21)
For each 7 € NL, we denote respectively Mh,i and Kj ; the d x d sub-matrices of
M,, and K, associated with the Lagrange node &;. For each i € N¢, we denote
Bh,i the d x d sub-matrix of B, associated with the node x;. We define the set-
valued operator Ry, : R4 x RV x RM4 — P(R™4) such that for all A, € RM4,
Iy € ]RNA7 P € RN",

Ay, € Rh(Ah, Zh, Ph) < Ah,i S Ri(Ah,i, Zh,i7 Ph,i) Vi € N€. (22)
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The space semi-discrete problem takes the form

MU (t) + KpUpn(t) = Ly (t) + BrAn(t), (23)
An(t) € Ru(An(t), [Us ()], [UR (D], (24)
Api(t) = gl[tpt) Qi [Un(s)]4), Vi e N€. (25)

Remark 8 In the present work, we consider P; finite elements. Other types of
finite elements can be used, provided an accurate lumping technique is available.
For instance, this is the case for Q1 elements (see [15]). For Py and Qj elements
with & > 2, the lumping techniques are more subtle (see for instance [6] and
references therein).

Remark 4 Because of lumping, even when the nodes of the interface are in the
perfect adhesion regime, our discretization is not equivalent to a discretization
without interface. Consequently, small spurious wave reflections can occur at the
interface in the perfect adhesion regime.

5 Time-integration schemes

It remains now to discretize the problem in time. The time-integration schemes we
propose are based on the central difference scheme. To begin with, let us recall the
main properties of this scheme in the linear elastodynamic case. We then describe
and analyze two schemes for the dynamic fracture problem.

5.1 Central differences for elastodynamics

For simplicity, the interval [0,7] is divided into equal subintervals of length At.
We set t" = nAt and denote U;! the approximation of Uy at time t"™. For the
central difference scheme, the discrete velocity and the discrete acceleration are
defined respectively as

n+1 n—1
_U U
2At

. Un+1 _ 2U’n Un—l
and Uj = —L Atg* h (26)

Uy -

At each time step of the central difference scheme, one seeks U} 1 such that
1

At?

The central difference scheme exhibits a stability condition (CFL condition) of the
form

My (U —2Up + U™ + KpUR = L (t7). (27)

cgAt < O(hmin)a (28)

where hpmin is the smallest mesh element diameter. An admissible value of the
constant in the CFL condition can be specified in 1D and for structured meshes
in higher dimension. The elastic energy, the kinetic energy, and the total energy
of the discrete system at time t™ are respectively defined by

1 1/~ o0
fi= 5 BGURUR), Bl =5 (MWUR,UR), B = Eli+ By (29)
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In linear elastodynamics with no forcing term Ly, (t™), the central difference scheme
does not preserve the energy. Nevertheless, the scheme preserves the following
quadratic form, referred to as a shifted energy,

g = B — %tg (MhU;:, U;;) . (30)

With a forcing term, the following shifted energy balance holds true:

n n 1 n n n n
gntl_gn = 5 (Lt Y+ L), Ut —up. (31)

5.2 Scheme A (fully implicit interface forces)

The scheme A combines a central difference scheme with an implicit treatment of
the interface forces. More precisely, the interface forces are implicit in the opening,
while they are explicit in the opening rate and in the maximal effective opening.

Scheme A. Seek Ut € RMV and A7 € RN such that

1 9 n n n— n n » n
ﬁMh(Uh—i_l —2U +Uh 1)+KhUh :Lh(t )+Bh/1h+17 (32)
g e Ry (AR, Zp, U], (33)

where, for all i € N,

n Uy [ Un_l 7 n n—1 ¢ n
zio= ORI L oy — maxaps@ior). 60

A way of implementing this scheme will be described in Section 6.1. We now
prove that, at each time step, the problem is well-posed under a mild restriction
on the time step. We observe that condition (36) below is indeed mild, since for
he and Ay of the same size and small enough, the stability condition (28) of the

central difference scheme imposes a more stringent limit on the time step than the
well-posedness condition (36).

Proposition 1 (Well-posedness) Problem (32)-(34) has a unique solution un-
der the conditions

Z'\Z; >20LB; and Zi{z >20L8;, Vie N°, (35)

where the coefficients p; and B; are defined by (16) and (18). For a quasi-uniform
mesh, the above condition can be rewritten as

At?
he

<C, (36)

where he is the mesh size at the interface and C' a constant independent of the
mesh size.
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Proof The relations (32)-(33) can be recast as an inclusion : seek Uyt € RMV
such that 1
At?
where FJ' := (1/At*)M,(2U} — U™ — KpUp + Lp(t") and Rp (UMY =
Ry (AR, Z3, [[U,?Jrl]]). We are now going to prove that the set-valued operator in-

volved in this inclusion is strongly monotone for At small enough. Let U, € R™MV
and let Vi, € RNV, Let Ay, € Ry (Up) and Oy, € Rj(V3,). Observe that

MU — By Ry (UMY 5 By (37)

—(BrAp — BrOn, Uy, — Vi) = Z Bi(Bh,iAn,i — Br,iOn,i, [Unli — [Vn]i)-
ieNe

Using the one-sided Lipschitz condition (1) and the properties of the rotation
matrices Q;,

—(BnAp — BrOw, Uy, — Vi) > — Z BiCLI[Un]i — [Valil?,

iENC
> — Z 28:CL(|[Un.i+ — Vit > + [Uni- = Viie ).
iENC
(38)
By definition of the mass matrix,
o - 2
(MpUp — Mp Vi, Up = Vi) > Z wilUn,i — V™. (39)
ieNL
Collecting inequalities (38) and (39) yields
1 - . . .
@(MhUh — My Vi, Up — Vi) — (Bodn — BpOp, Uy — Vi) >
Z K Un,i — Vil — Z 2B;CL(|Un i+ — Vit |° + [Un - — Vii- ). (40)
At?
ieENL iENC

Therefore, a sufficient condition for the set-valued operator to be strongly mono-
tone is given by (35). For a quasi-uniform mesh, we can rewrite the condition as
(36).

It is straightforward to derive the energy balance for Scheme A.

Proposition 2 (Energy balance)

1

. . 1
gttogn =2 (BhAZ+2 4 BpAPt Ut - U;:)+

5 (Tn@ Y + L), U

(41)

With this scheme, the work of the interface forces can be positive or negative. As
a consequence, we cannot prove the same CFL condition as in the linear elasto-
dynamic case, although we did observe numerically the same CFL condition (see
Section 7.1). Perhaps more importantly, it turns out (see again Section 7.1) that
decentering in time the interface forces can have an unfavorable impact on the
energy behavior and the accuracy of the time-integration scheme. To remedy this,
we propose another time-integration scheme in the next section.

_U}?
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A A

o,

Fig. 5 A decomposition of Ri. P (left) and x1 (right).

5.3 Scheme B (implicit set-valued part)

The key idea is to split the interface forces into a set-valued monotone part and
a single-valued softening part. The former is treated in an implicit way, the latter
in an explicit way.

Assumption 2 There exist P : R x R* x R* — P(R?) and y : R x R? x R — R
such that
R=P+x. (42)

Moreover, the operator P is monotone with respect to the opening: for all § € R%,
z€RY peRY g eRY,

(>‘P - >\117p - Q) 2 Oa VAP € P((;,Z,p), VAQ € P(5a27Q)7 (43)

and the function x is Lipschitz continuous with respect to the opening : there
exists C, € R such that for all § € R%, z e RY, p € R, g € R?,

Of course, the decomposition (42) of R is not unique. In Figures 5, 6, and 7, we
present examples of the decomposition (42) for the cohesive zone models presented
in Section 2.2. Similarly to (13), the set-valued operator P; and the single-valued
function x; are defined by

Scheme B. Seck U;;“H e RM and AZ"H € RV such that

1 9 n n n— n n > n ® n
EMh(Uh+1 —2UR +Up ™) + KpUR = Lp(t") + By AR + BrOy,  (46)
Ay e Po(AR, 20, U], (47)

where, for all i € N°¢,
@Z,i = Xi(AZ,i’ Z}?m IIU;”]Z)’ (48)

while Z7} and A}, are defined by (34).

Proposition 3 (Well-posedness) Problem (46)-(48) has a unique solution un-
conditionally on the time step.
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Oc Oc

-0,

-0

Fig. 6 A decomposition of Ry. P> (left) and x2 (right).

Fig. 7 A decomposition of Ri™™. Pj"" (left) and xi"" (right).

Proof As in the proof of Proposition 3, the problem is recast as a differential
inclusion with a strongly monotone operator. Since the operator P is monotone,
contrary to the operator R, there is no condition on the time step to prove the
strong monotonicity.

It is straightforward to derive the energy balance for Scheme B.

Proposition 4 (Energy balance)

gt —en =2 (Buay ™ + Buayt uptt - Up)

_1
)
n (Bh(a;“ + Brop,uptt - U;;) 4 (Lh(t"+1) S+ Ly, U - U,’;) .

(49)

N[~

1
2

6 Numerical implementation

This section briefly describes the main steps to implement Schemes A and B.

6.1 Scheme A

Step 1 : Computation of the interior components of U;Z"H (explicit step).
Owing to the lumping of the mass matrix, the components of U}?'H corresponding
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to the interior nodes and the components corresponding to the interface nodes can
be computed independently. We begin by seeking U} *1 such that

1
At?
This is the standard step in the central difference scheme. Since the mass matrix
is lumped, it only requires a matrix-vector multiplication and vector additions.
After this step, the interface components of U}?'H are not correct, they will be
corrected in the next step. Note that this step uses the standard data structures.

My (U = 2UR + U ™Y) + KU = L (1), (50)

Step 2 : Computation of the interface components of U;;‘+1 (implicit step).
Owing to the lumping of the cohesive forces, the computation of the interface
displacements can performed independently at each node. For each i € N°¢, we
seek U;L’J{f and U;L”,rl such that

N2

1 .
Tthh,ﬁUg;rl + Fy i = Bh,i/lz,—’i_l7 (51)
1 n n -~ n
EM;L,Z‘— Uh’—:,l + Fh,i’ == —Bhﬂ'Ah:‘gl, (52)
Ayt e RI(IULLEY, (53)

where R}'(-) = Ri(A} ;, Zp,,+) and F}' = (1/A*) My, (207 — U™ ") — KpUR +
Ly (t"). Problem (51)-(53) amounts to seeking [U;**']; and {U;"'}; such that

1 1 -1 -1 -1 —1 4\ A 1
th[[U}?Jr ]]z + Mh,ﬁF}?,ﬁ - Mh,i—Fl?,z‘— € (Mh,ﬁ + Mh,r)Bh,iR?([[U}?Jr ]]Z)a
(54)
1
At?
The inclusion can generally be solved in an analytical way. For instance, for the

normal component of an irreversible triangular model, we have to solve, at each
node, a scalar inclusion of the form: seek x € R such that

1
My, i+ My i {URT Y + i(Mh,ﬁF}?,r + My, - Fp'+) = 0. (55)

a

At?

where a and b are given real numbers. Since R; is non-monotone, this problem
may have in general several solutions (Figure 8, left). However, for a time step
satisfying the condition (35) (thus stiffening the dotted line as in Figure 8, right),
the solution is unique.

z+be Ri(x), (56)

Step 3 : Update of AZJFI and Z,?J“l using the explicit formulae (34).

6.2 Scheme B

Step 1 : Computation of the interior components of U}?H (explicit step).
We begin by seeking U}’ *1 such that

1 ) n n n— n n > n
EMh(Uh“ — U + U Y + KpUp = Li,(t™) + BrO}. (57)
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Fig. 8 Computation of the interface components for Scheme A.

Step 2 : Computation of the interface components of U"'H (implicit step).
For each i € N, we have to seek U"JC,1 and U™ such that

i
At2 ——5 My, i+ Uh Z+ + F}Zﬁ = Bh,iAZi‘_la (58)
Ao M Up 4 B = = BaAn?, (59)
Aptt e PI([UL]), (60)

where PJ'(-) = Pi(Ap;, Z1;,-) and Ff == (1/At*) My, (207 — U™Y) — KpUR +

Ly, (t") 4 B, O} . Problem (58)-(60) amounts to seeking [U;T']; and {U}**'}; such

that

[0 'L+ My b e — Myl B € (Ml + My, ) BP0 1)),
(61)

At?

1
A —5 M+ My, - {U, Y+ i(Mh,ﬁFﬁi— + My, - Fyi+) = 0. (62)
The inclusion can generally be solved in an analytical way. For instance, for the
normal component of an irreversible triangular model (decomposed as in Figure 5),
we have to solve, at each node, a scalar inclusion of the form: seek € R such that

— e +be Pia), (63)

where a and b are given real numbers. Since P; is monotone, there is a unique
solution to this problem (Figure 9).

Step 3 : Update of A7t and Z;'™! using the explicit formulae (34).

7 Numerical simulations

We perform numerical simulations on 2D examples with the purpose to illustrate
the effectiveness of the quasi-explicit time-integration schemes and to investigate
their properties (stability condition on the time step, accuracy). For the first prob-
lem, we test the quasi-explicit time-integration schemes A and B, and a fully ex-
plicit scheme with a regularized cohesive zone model. For the other problems,
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Fig. 9 Computation of the interface components for Scheme B.

we only test Scheme B, which emerges as the most efficient scheme on the first
problem. All the simulations have been performed using FREEFEM++ [14].

7.1 Mode I fracture

We consider a mode-I fracture problem (Figure 10). The domain is the rectangle
2 =(0,Ly) x (—Ly, Ly). The fracture interface is the line I" = (0, L) x {0}. The
cohesive zone model is a reversible triangular model with fracture toughness G.
and critical stress o.. A constant displacement load is prescribed at the bottom
and top edges (uy = up at the top edge and uy = —up at the bottom edge, with
up = e€Ly). At the initial time, a precrack of length Ly,e is inserted at mid-height
on the left edge. Unless otherwise specified, the parameters are L, =100 mm, L,
= 10 mm, Lpre = 10 mm, € = 0.003, 7" = 14 us, E = 200 GPa, vp = 0, p =
7800 kg-m_3, e = 1.2 GPa, and G. = 16 000 N-m~!. The material parameters
are representative of those of a steel (except the Poisson ratio which is taken to
be zero to facilitate the determination of the initial condition). The wave speeds
associated with the above parameters are cq = 5064 m-s~ !, ¢; = 3581 m-s~!, and
cr = 3086 m-s~'. The estimated cohesive zone length and the critical opening are
leon= 1.963 mm and d.= 0.0267 mm.

uy(x, Ly) = up
rp
_______ r 2Ly
Lpre D
Iy
uy(z, —Ly) = —up

Ly

Fig. 10 Mode I fracture. Geometric setup.

Owing to symmetry, numerical simulations are performed only on the upper
half part of the domain. This half-domain is uniformly meshed with half-square
triangles. We denote n,esn the number of elements on the large edge of the do-
main and by Az the length of the elements on this edge. The time step is then
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Fig. 11 Mode I fracture. Crack tip advance (left) and energy evolution (right). Scheme B
(nmesh = 800, vc = 1)‘
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Fig. 12 Mode I fracture. Deformed configuration (enlarged 50 times) and stress oy, at time
T. Scheme B (n,,esn = 800, v = 1).

determined by fixing a value for the Courant number defined as v¢ := cdﬁ%.
We are interested in the following quantities: crack length, crack tip speed, and
energy. We denote lcr(t) the length of the crack at time ¢ and by vcr(t1,t2) the
average crack tip speed between times ¢; and t2. To localize the crack tip, we
consider that the interface is cracked when the opening exceeds 0.1d.. We denote
E.i(t), Erin(t), Econ(t), and Fiot(t), the elastic, kinetic, cohesive, and total energy
at time t, respectively. The cohesive energy is defined as

Eeon(t) :== Y Bil1([Un(t)]i1). (64)
iENe

The total energy is defined as the sum of the elastic, kinetic, and cohesive energy.
In the continuous problem, the total energy is expected to be constant (although
there is no rigorous proof of this fact). In the different simulations, we observe the
following qualitative behavior: the precrack opens, and there is a stress concen-
tration around the precrack tip; as soon as this stress reaches the cohesive critical
stress, the crack starts growing; the crack tip speed quickly reaches a limit value
(lower than the Rayleigh wave speed). This behavior is illustrated in Figure 11
(crack tip advance and energy evolution) and Figure 12 (deformation and stress
fields at time T).

We investigate the properties of the quasi-explicit time-integration schemes A
and B, and a fully explicit scheme with a regularized cohesive zone model (the
penalty parameter for the regularization of the non-interpenetration condition
is denoted p.). First of all, we examine the stability condition. We observe nu-
merically that Schemes A and B exhibit the same CFL condition as the central
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pc/CL 10 100 1000
stability condition | vo <0.88 | vo <0.33 | veo <0.11

Table 1 Mode I fracture. Observed stability condition for a fully explicit scheme with regu-
larized cohesive zone model (n,esn = 200).

difference scheme on the problem without cohesive zone, namely ve < 1. On the
contrary, a fully explicit treatment of a regularized cohesive zone model deterio-
rates the CFL condition (Table 1).

Now we compare the accuracy of the different schemes. We choose a mesh size
equivalent or finer than the estimated cohesive length. With vc = 1, we observe
that Scheme A is not very accurate (Table 2). In particular, the energy balance is
quite poor. Since the total energy should remain constant at the value 1800 for the
present parameter choice, we infer a relative error of 17.4% for n,espn = 200. By
taking a smaller Courant number, the results are improved, leading to a relative
error of 5.1% for v = 0.4 and 0.9% for vc = 0.1. In contrast to Scheme A,
Scheme B yields accurate results with vc = 1 (Table 3), with, in particular, a
relative error on the total energy of 0.7% for n,esn = 200. Moreover, for the crack
length and the average speed of the crack tip (for which analytical values are
unknown), we observe that, as the grid is refined, the computed values converge
faster for Scheme B than for Scheme A, with three significant digits reached by
Scheme B for n,esp = 400 for the crack length and ng,esp, = 200 for the average
speed. Finally, the results of the fully explicit scheme with regularized cohesive
zone model are relatively accurate (Table 4), where the lowest relative error on
the total energy is 1.3% for p./Cr, = 1000 and vc = 0.11. However, in addition to
a more restrictive stability condition than Scheme B, this scheme does not enforce
a perfect adhesion on the sound part of the interface (Figure 13).

Mmesh vc lCOh/A‘r ler (T) Ver (T/27 T) Eep (T) Ekin (T) Econ (T) Eiot (T)
100 1 1.963 0.04495 2930 1388 352.3 560.1 2301
200 1 3.927 0.04376 2956 1301 275.1 537.3 2113
400 1 7.854 0.04197 2845 1239 194.6 510.4 1944
800 1 15.71 0.04052 2723 1226 148.7 485.7 1860

Nmesh vc lcoh/Al' ler (T) Ver (T/27 T) Ee (T) Egin (T) Econ (T) Eiot (T)
200 0.4 3.927 0.04071 2737 1240 163.8 488.9 1892
200 0.2 3.927 0.0395 2619 1233 133.2 472.3 1839
200 0.1 3.927 0.03897 2581 1232 120.3 464.1 1817

Table 2 Mode I fracture. Numerical results. Scheme A.

Finally, we investigate the influence of the parameters. The crack tip speed
depends on the displacement load and the fracture toughness. It increases with
the displacement load and decreases with the fracture toughness (Tables 5 and 6).
If the load displacement is too small or the fracture toughness too large, the crack
does not propagate. We observe that, with about 4-8 elements in the cohesive
zone, the crack tip speed is accurate to about 1%.
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Nmesh vc lcoh/Aw ler (T) Ver (T/Q, T) Ey (T) Egin (T) Eecon (T) Eiot (T)
100 1 1.963 0.03645 2282 1274 132.2 418.1 1825
200 1 3.927 0.03844 2528 1235 123.3 454.4 1813
400 1 7.854 0.03877 2556 1231 116.7 457.2 1805
800 1 15.71 0.03876 2556 1231 113.8 456.5 1801

Table 3 Mode I fracture. Numerical results. Scheme B.

pc/CL vc ler (T) Ver (T/2, T) Ee (T) Ekin (T) Econ (T) Eiot (T)
10 0.88 | 0.03918 2561 1294 146.3 465.3 1905
100 0.33 | 0.03944 2593 1229 149.2 470.3 1848
1000 0.11 0.03942 2594 1216 138.8 468.9 1824

Table 4 Mode I fracture. Numerical results. Fully explicit scheme with regularized cohesive
zone model (nyesp = 200).

0.035

T
quasi-explicit
pc=10*cs -------
pc=100*cs --------
pc=1000*cs

003 [
0.025
0.02

0.015

normal opening (mm)

-0.005 L L L
30 35 40 45 50

X (mm)

Fig. 13 Normal opening around the crack tip at time 7. Quasi-explicit scheme B and fully
explicit schemes with regularized cohesive zone model (n,esn = 200).

Nmesh | VO | leon/A ler (T) ver (T/2,T) | Eq(T) | Egin(T) | Econ(T) | Erot(T)
100 1 1.963 0.04196 2720 1690 281.8 512.2 2484
200 1 3.927 0.04341 2823 1660 273.1 535 2468
400 1 7.854 0.04373 2860 1647 273.1 538.8 2458
800 1 15.71 0.04371 2862 1646 270.4 537.4 2454

Nmesh vc lcoh/Az ler (T) Ver (T/Q, T) Eel(T) Eyin (T) Eecon (T) Eiot (T)
200 1 3.927 0.02112 493.7 1242 54.16 167.5 1464
400 1 7.854 0.02209 618.2 1230 44.45 181.8 1457
800 1 15.71 0.02229 639 1228 40.55 184.7 1453

Table 5 Mode I fracture. Numerical results for different displacement loads. Scheme B. € =
0.0035 (top). € = 0.0027 (bottom).

7.2 Mode I fracture with a rate-dependent cohesive zone model

We still consider the same mode-I fracture problem except that the cohesive zone
model is now a triangular rate-dependent cohesive zone model with only normal
force (the viscosity parameter is denoted 7). The notation and the parameters are
the same. As expected, the introduction of a viscosity parameter slows down the
crack tip (Figure 14 right, and Table 7). We observe a certain variation in the crack
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Nomesh vc lcoh/Aw lcr(T) UCT‘(T/27 T) Eel(T) Ekzn(T) Econ (T) Etot (T)
100 1 0.9817 0.04195 2686 1308 253 256 1817
200 1 1.963 0.04494 2865 1266 266.8 280 1813
400 1 3.927 0.04614 2944 1240 276.5 288.4 1805
800 1 7.854 0.04648 2969 1230 281.5 291.7 1803
1600 1 15.71 0.04654 2982 1226 283.6 292.1 1802

Mmesh vc lcoh/Aw ler (T) Ver (T/27 T) Ee (T) Egin (T) Econ (T) Etot (T)
50 1 1.963 0.03326 1922 2336 237.2 722.2 3296
100 1 3.927 0.03516 2089 2258 195.7 7717 3225
200 1 7.854 0.03554 2157 2247 168.4 784.4 3199
400 1 15.71 0.0357 2168 2246 153.7 787 3187

Table 6 Mode I fracture. Numerical results for different fracture toughness. Scheme B. 0. =
1.2, G. = 8000, ¢ = 0.004 (top). oc = 1.2, Ge = 32000, ¢ = 0.004 (bottom).

tip speed for n = 0.01 and 1 = 0.02. Indeed, in these cases, the crack tip speed is
sufficiently low so that the mechanical waves generated by the crack growth and
reflected on the boundary can perturb the crack tip advance. Note that the total
energy is not preserved in this problem since the rate-dependent cohesive zone
model is dissipative.

40

35+ E

30 - T

crack advance (mm)
N
&
T

20

15

10 L

Fig. 14 Mode I fracture with a rate-dependent cohesive zone model. Crack tip advance for
different viscosity parameters.

n ler (T) Ver (T/27 T) Ee (T) Ekin (T) Econ (T) E(T)
0 0.03877 2556 1231 116.7 457.2 1805
0.005 0.0345 2083 1289 83.43 384.6 1757
0.01 0.02926 1453 1379 74.61 299.7 1754
0.02 0.0244 953 1471 60.24 220 1751

Table 7 Mode I fracture with a rate-dependent cohesive zone model. Numerical results for
different viscosity parameters (Scheme B, n,esp = 400, vo = 1).

The rate dependence of the cohesive zone model introduces a new time scale in
the problem, linked to the opening rate. This time scale is smaller than the time
scale linked to the crack tip speed and requires therefore smaller time steps to be
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resolved. For instance, we observe small oscillations on the crack tip advance when
a too coarse discretization is used.

7.3 Mode II fracture

In this section, we consider an example of mode-II fracture (Figure 15). The do-
main is the rectangle 2 = (0, L) X (—Ly, Ly). The fracture interface is the line
I' = (0, Ly) x {0}. The cohesive zone model is a reversible uncoupled triangular
model with a fracture toughness G. and a critical stress o.. A constant shear force
is prescribed at the sides of the interface (fses, is enforced at the top side and
—fseq at the bottom side, with fs = 0./2). At the interface, the normal opening
is enforced to zero, so that the fracture is in pure mode II. At the initial time, a
precrack of length Ly, is inserted at mid-height on the left edge.

Ssex r 2Ly

Lpre -fsex

Ly

Fig. 15 Mode II fracture. Geometric setup.

Owing to antisymmetry, numerical simulations are performed only on the up-
per half part of the domain. This half-domain is uniformly meshed with half-square
triangles. The parameters and the notation are the same as in the previous prob-
lems, except for the obvious change in the definition of the cohesive energy as

Eeon(t) == Y Bil([Un(t)]i,2)- (65)

iENC

The sum of the kinetic, elastic, and cohesive energy is expected to be equal to the
work of the shear force (denoted Wegt).

This simulation of mode-II fracture exhibits the same kind of behavior as the
simulation of mode-I fracture. The precrack opens by sliding, and there is a stress
concentration around the precrack tip; as soon as this stress reaches the cohesive
critical stress, the crack starts growing; the crack tip speed reaches quickly a limit
value, slightly lower than the dilatational wave speed. The deformation and stress
fields at time T are represented in Figure 16.

The observed stability condition is vo < 0.98. With a mesh resolving the
estimated cohesive zone length and vo = 0.98, the numerical results obtained
with Scheme B are very accurate (Table 8) with a relative error on the energy
balance less than 0.1% even for n,esn, = 100, while two significant digits for crack
length and average speed are reached for n,,csp, = 400.
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Fig. 16 Mode II fracture. Deformed configuration (enlarged 20 times) and stress oz, at time
T. Scheme B (nyesn = 800, vo = 0.98).

MNmesh ve lcoh/Ax ler (T) Ver (T/Q, T) Ee (T) Ein (T) Econ (T) Eiot (T) — Wezt (T)
100 0.98 1.964 0.06542 4721 6637 13383 881.9 -18.6
200 0.98 3.93 0.06687 4804 6686 14267 907.3 -8.8
400 0.98 7.86 0.06765 4852 6714 14675 920.7 -4.8
800 0.98 15.71 0.06789 4878 6706 14768 923.8 -2.9

Table 8 Mode II fracture. Numerical results. Scheme B.

7.4 Mode I fracture with contact

This last problem involves mode-I fracture and contact (Figure 17). The domain
is the rectangle 2 = (0, L) X (—Ly, Ly). The fracture interface is the line I" =
(0, L) x {0}. There is a precrack of length Lpr. at mid-height on the left edge.
The cohesive zone model is an irreversible triangular model with linear unloading.
A constant displacement load is prescribed at the upper left edge and lower left
edge (uy = ugq at the upper edge and uy, = —ugq at the lower edge, with uqg = eLy).
The initial state corresponds to the static equilibrium with Neumann condition on
the precrack and Dirichlet condition on the rest of I" (Figure 19, top).

“y(ovy) =up

uy(0,y) = —up Ly

Fig. 17 Mode I fracture with contact. Geometric setup.

Owing to symmetry, numerical simulations are performed only on the upper
half part of the domain. We use an unstructured triangular mesh. The parameters
are the same as in the previous problems except the precrack length (Lpre = 40
mm), the displacement load (e = 0.09), and the simulation time (7" = 100 us). The
notation is essentially the same. We change the definition of the cohesive energy
and define a dissipated cohesive energy as

Ecoh(t) = Z ﬁil*pfrr(A(t)h,i,lv [[Uh(t)]]iwl)v (66)
iENe
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Eeon(t) == Y Bl (A()n,i0)- (67)
iENC
The total energy is defined as the sum of the elastic, kinetic, cohesive, and dissi-
pated cohesive energy. In the continuous problem, the total energy is expected to
be constant.

For this problem, we observe the following behavior. At the initial time, there
is a stress concentration around the precrack tip so the crack starts immediately
growing (not uniformly). After a while, the crack stops growing and contact phe-
nomena occur near the crack tip. This behavior is illustrated in Figure 18 (crack
tip advance and energy evolution) and Figure 19 (deformation and stress fields at
time 7T'/2).

60 600 T T T T
elastic energy ———
kinetic energy -------

500 [ cohesive energy -------- -
dissipated cohesive energy

55 | 4 total energy ———-

400

300
50 Bl

energy

200

crack advance (mm)

100 |- 4
45 4 ) -

40 L L L L L L L L L 100 L L L L L L L L L
] 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

time (us) time (us)

Fig. 18 Mode I fracture with contact. Crack tip advance (left) and energy evolution (right).
Scheme B (nyesh = 800, vo = 0.8).
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Fig. 19 Mode I fracture with contact. Deformed configuration (enlarged 5 times) and stress
ozz at initial time (top) and time 7'/2 (bottom). Scheme B (nesn, = 800, vo = 0.8).

The observed stability condition is v < 0.8. With a mesh resolving the es-
timated cohesive zone length and v¢ = 0.8, the numerical results obtained with
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Scheme B are again very accurate (Table 9) with typically two significant digits
reached for n,,espn = 400.

Mmesh vc lcoh/Ax ler (T) Ee (T) Ekin (T) Econ (T) Econ (T) Etot (T)
100 0.8 1.963 0.05364 199.9 11 1.66 208.7 421.3
200 0.8 3.93 0.05257 202 13.7 2.073 194.8 412.5
400 0.8 7.86 0.05197 204.6 10.82 1.988 185.8 403.2
800 0.8 15.71 0.0519 205.1 10.67 1.86 184.9 402.5

Table 9 Mode I fracture with contact. Numerical results. Scheme B.

8 Conclusions

We have proposed and analyzed two quasi-explicit time-integration schemes for
solving dynamic fracture problems with set-valued cohesive zone models. These
schemes combine a central difference time-integration scheme and a partially im-
plicit and lumped treatment of the cohesive forces. The numerical results presented

in

Section 7 on mode-I and mode-II fracture problems on various two-dimensional

settings indicate that the present methodology provides a robust way of treating
the set-valued cohesive zone model while keeping a moderate computational cost.
Future work should include testing these schemes on three-dimensional configura-
tions.
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