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Summary : In this report, we continue the study of higher order variances and quadrature
Gauss Jacobi. Recall that the variance of order j measures the concentration of a probability close
to j points xj,s with weight λj,s which are determined by the parameters of the quadrature Gauss
Jacobi. We shall study the normalized variances. We shall specify how to detect the parameters
of Gaussian mixtures

Summary : Dans ce rapport, nous poursuivons l’étude des variances d’ordre supérieur et la
quadrature de Gauss Jacobi. On rappelle que la variance d’ordre j mesure la concentration d’une
probabilité autour de j points xj,s avec des poids λj,s qui sont déterminés par les paramêtres de
la quadrature de Gauss Jacobi. On étudiera le comportement des variances normalisées et on
précisera comment détecter les paramêtres des mélanges gaussiens.

Key Words : Higher order variance, Gauss Jacobi quadrature, Central limit theorem, Higher
order regression. Gaussian mixtures.
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Chapter 1

Higher Order Variances

1.1 Introduction

Orthogonal polynomials have many interesting applications in Probability and Statistics. So they
have introduced higher order correlation coefficients and higher order variances (cf [3], [2], [5], [6],
[8], [7], [4]). They also have introduced new hypotheses for the central limit theorem (cf [4]). They
allow also to obtain the distributions of quadratic forms, Gaussian or not Gaussian, and simple
methods of calculation of these laws (cf [10]).

Higher order variances have been introduced in [7] and [8]. They generalize the classical
variance. Thus, variance of order 1 measures the concentration of a probability close to a point:
the expectation. Variance of order j measures the concentration close to j points which are the
zeros of the j-th orthogonal polynomial.

Notations 1.1.1 Let X be a random variable defined on (Ω, A, P ). Let m be the distribution of
X. Let P̃j be the j-th orthogonal polynomial associated to X such that P̃j(x) =

∑j−1
t=0 aj,tx

t + xj.
We set nm0 = dim

{
L2(R,m)

}
. Let Θ ⊂ N such that P̃j(x) exists if j ∈ Θ. We denote by Pj

the j-th orthonormal polynomial associated to X if there exists.

Remark that if m is concentrated in nm0 points when nm0 <∞, then Θ = {0, 1, ..., nm0 }. If not,
Θ = N if all moments exists, and Θ = {0, 1, ...., d} if

∫
|x|2d−1.m(dx) <∞ and

∫
|x|2d+1.m(dx) =

∞. In this case, Pj exist if
∫
|x|2d.m(dx) <∞.

For example, P̃0 ≡ 1, P̃1(x) = x − E{X}, P̃2(x) = x2 − M3−M1M2
M2−M2

1
(x − M1) − M2, where

Ms = E{Xs} and where E{.} is the expectation.

Now we know that the zeros of P̃j are real (cf th 5-2 page 27 [13])

Proposition 1.1.1 Let j ∈ Θ. Then, the zeros of P̃j are distincts and real. We denote them by
xj,s, s=1,2,....,j.

For example, x1,1 = E{X}, x2,s = M3−M1M2
2(M2−M2

1 )
± 1

2

√(
M3−M1M2
M2−M2

1

)2

− 4M2.

Now the zeros of orthogonal polynomials have stronger properties : in particular the Gauss-
Jacobi Quadrature.

Theorem 1 Let j ∈ Θ. There exists a single probability mj concentrated over j distincts points
such that

∫
xq.m(dx) =

∫
xq.mj(dx) for q=0,1,...,2j-1.

Moreover, the j points of concentration of mj are the j zeros of P̃j : xj,s, s=1,...,j, and the
probabilities λj,s = mj

(
{xj,s}

)
are the Christoffel numbers which check λj,s =

∫
`js(x).m(dx),

where `js(x) = P̃j(x)

(x−xj,s)P̃ ′j(xj,s)
when P̃ ′j is the derivative of P̃j .
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The proof is in [13] if j 6= nm0 . If j = nm0 , it is in [8] (cf also [9]).

For example, if j=2, `21(x) = x−x2,2
x2,1−x2,2

and `22(x) = x−x2,1
x2,2−x2,1

. Therefore, λ2,1 = M1−x2,2
x2,1−x2,2

and

λ2,2 = M1−x2,1
x2,2−x2,1

.

Now, we complete the definition of Gauss Jacobi quadrature by defining higher order variances.

Definition 1.1.2 Let j ∈ Θ . We call variance of order j, and we note it by σ2
j or σj(X)2 or

σj(m)2 the real σ2
j =

∫
|P̃j |2.dm .

Remark that P̃j = σjPj . Moreover, σ1(X)2 = M2 −M2
1 is the classical variance. Now, if j=2,

σ2
2 = M4 − (M3−M1M2)

2

M2−M2
1

− M2
2 .

Then, the variance of order j measure the concentration of X close to j distinct points.

Theorem 2 Let j ∈ Θ . Then, σj = 0 if and only if m is concentrated in j distincts points which
are the zeros of P̃j : the xj,t’s. Moreover the probability associated at each xj,t is equal at λj,t. In
this case, j = nm0 <∞ and P̃j = 0 in L2(R,m) .

Then, variances of higher order generalize the classical variance which one can call variance
of order 1. Indeed, classical variance measure the concentration close to expectation. For the
variance of order j, the zeros of P̃j plays this role. Moreover we know the weight associated : the
λj,t’s. All these properties justify well the name of variances of higher order.

We wonder then which applications are possible. We think immediately to Gaussians mixtures.
We are going to recall in this report that we can indeed apply these variances to solve this problem.

1.2 Some examples

In this section, we shall study some examples which allow to well understand the role which can
play higher order variances and Gauss Jacobi quadrature in the distribution of probability.

1.2.1 Bienayme-Tschbichev Inequality

At first, recall that the Bienayme-Tschbichev Inequality allows to specify more this concentration
autour de j points distincts.

Proposition 1.2.1 Let ε > 0 . Then, P
(
|P̃j | > ε

)
≤ σ2

j

ε2 .

In particular assume that σ2
j is small enough. Let ω such that |P̃j(X(ω))| ≤ ε. Then, with

a strong probability, there exists s such that |X(ω) − xj,s| ≤ ε. Then, the variance of order j
measures the concentration of a probability close to j distincts points.

For example, let us study P̃3(x) = (x− 0.95)(x− 0.5)(x− 0.1) : cf figure 1.1. In figure 1.1, we
see the points x such that |P̃3(x)| = |(x − 0.95)(x − 0.5)(x − 1)| ≤ 0.01 : they are the points of
real axis which belong to intervals I1, I2, I3 intersection of the 3 rectangles of the figure and of
the real axis. Then, P{X /∈ I1 ∪ I2 ∪ I3} = P

{
|P̃j(x)| > 0.01

}
≤ 104σ2

j = 0.1 if σ2
j = 10−5.

Then, if σ2
3 is small (here 10−5) P{X /∈ I1 ∪ I2 ∪ I3} is small also, i.e. X is concentrated close

to points x3,1 = 0.1, x3,2 = 0.5, x3,3 = 0.95.
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Figure 1.1: P̃3(x) = (x− 0.95)(x− 0.5)(x− 0.1)

We also notice that what teaches us the Bienayme Tchebicheff inequality is generally enough
limited. Indeed, it is necessary that σ2

3 is very small in order to be sure that X is concentrated
close to x3,1, x3,2, x3,3 : It is not surprising because this inequality is rather unrefined.

1.2.2 Examples

Indeed, when we study examples, we understand that higher order variances give better indications
than it. In a enough large number of case where the probability are rather concentrated around
certain points, we obtain results corresponding better to what we can hope.

Indeed, the following figures are clear enough to get an idea of density and weight λj,t ’s of
various probabilities.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Figure 1.2: x2,t =0.8691, 0.1473, λ2,t= 0.5944, 0.4056, σ2
2=0.0037
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Figure 1.3: Gaussian mixtures : x2,t=2.0330, -1.0330, λ2,t=0.5000, 0.5000, σ2
2=0.9200

Many other examples confirm these results : cf [9] section1.1.1 ( cf also section A).

Now, we see that concentrations of figures 1.2.2 and 1.2.2 are not so different. Nevertheless
the variances are completement different. It is due to the fact that figure 1.2.2 is concentrated in
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[0,1] and figure 1.2.2 is concentrated in [-5,5] (cf appendix A).
Then, one asks oneself if there exists a way for normalizing variances. Then, a normalization

can may be done by considering the number σ̂j = σj

||xj || which represents the sinus of the angle
between the polynomial xj and the subspace spanned by polynomials of degree strictly less than
j.

In appendix A, we understand that it is a good standardization. In particular, if we apply an
homothety, normalized variances do not change (cf proposition 1.3.8).

Unfortunately, it is insufficient because if a translation is done, variances do not change (cf
proposition 1.3.3), but standardized variances change. Finally if we want to standardize well the
variances, it seems that it is necessary to use at first the standardized variances σ̂2

j , and then, or
to center the random variable X, or to impose by translation that it is positive with a probability
very strong.

It seems that it is the good method. In that case, only in the value of the standardized variance
of order j, we shall know generally if there is concentration or not near j distincts points.

1.2.3 Theoretical examples

Now, we can also calculate the variances of the classic distributions. Here we give this result for
the normal laws. But we can find the variances of the other classic laws page 21 of [9].

Proposition 1.2.2 Let Ĥj(x) = ex
2 dj(e−x2

)
dx be a Hermite orthogonal polynomial. We suppose

that X has the N(m,σ2) distribution. We denote by Hmσ2

j and
(
σmσ

2

j

)2 the associated Hermite
orthonormal polynomials of order j and variances of order j. Then,

Hmσ2

j (x) =
(−1)jσj

2j/2
Ĥj

(x−m
σ
√

2

)
,

(
σmσ

2

j

)2 = j!σ2j .

For example for the distribution N(0,0.1), one can look at figure 1.2.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Figure 1.4: Distribution N(0,0.1), x2,t=0.6568, 0.3433, λ2,t=0.5000, 0.5000, σ2
2=0.0011

Let us remark that (
σ̂0σ2

j

)2 =
j!σ2j

2j!σ2j

2jj!

=
2j(j!)2

2j!
.

Then, for j=1,2,3,4,
(
σ̂0σ2

j

)2 ≈ 1, 0.666, 0.4, 0.228.

Then, even if σ2
j is small, σ2

j can mean not that there is a concentration close to j distinct
points. It is enough that the classical variance of a Gaussian distribution is small.
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Remark that, generally 2j(j!)2

2j! is bigger than the σ̂2
i ’s of the appendix A. Then, the σ̂2

j ’s seems
well to be good indicators of the concentration of a probability near j distinct points. Let us notice
that, in that case, we consider gaussian centered variables, what is one of means of standardization
of the variances which we envisage.

1.3 Some properties

Points of concentration of a probability can be detected using various properties of the Gauss
Jacobi Quadrature. The most important of these properties is the Stieltjes-Markov Inequality.

Proposition 1.3.1 Let FX be the distribution function of X. Then, for all k ∈1,2,..,j,∑
xj,s<xj,k

λj,s ≤ FX(xj,k − 0) and
∑

xj,s≤xj,k

λj,s ≥ FX(xj,k + 0) .

These results are proved pages 26-29 of [14] : equation 5.4. For example, in figure 1.5, we have
the distribution function of m and mj .

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.5: Stieljes-Markov Inequality

In particular, this inequality means that if FX has a point of discontinuity xj,k < x0 < xj,k+1,
then FX(x0 + 0)− FX(x0 − 0) = b > 0, i.e. m(x0) = b. Because this discontinuity is between two
zeros, we thus find λj,k + λj,k+1 ≥ b for all j.

On the contrary, if FX possess certain properties of continuity, mj d→ m. Moreover λj,k’s
converges regularly to 0 and distances of successive zeros xj,k converges to 0 (cf [14]). Some of
these properties are grouped together in [9] : http://hal.archives-ouvertes.fr/hal-00587108/fr/.

These theorems in particular means that if there is no point x0 such that m({x0}) > 0, the
distribution of zeros and weights is enough regular. Because this is not the case if m({x0}) > 0,
it will detect the existence of those discontinuities by a way enough simple.

In particular, there cannot be more than two zeros in an interval of measure zero.

Proposition 1.3.2 It can not be three successive zeros xj,s < xj,s+1 < xj,s+2 such that P{X ∈
[xj,s, xj,s+2]} = 0 if λj,s+1 > 0.

Proof By Stieljes Markov inequality, we know that
∑
xj,s<xj,k+2

λj,s ≤ FX(xj,k+2 − 0) and∑
xj,s≤xj,k

λj,s ≥ FX(xj,k + 0) . Then,

0 = FX(xj,k+2)− FX(xj,k) = FX(xj,k+2 − 0)− FX(xj,k + 0)

≥
∑

xj,s<xj,k+2

λj,s −
∑

xj,s≤xj,k

λj,s = λj,k+1 > 0 . �
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Now, the variance of order j is invariant by translation.

Proposition 1.3.3 Let a ∈ R. Let ma the translated probability : ma(B) = P (X + a ∈ B) . For
each j ∈ Θ, the (j+1)-th orthonormal polynomial associated at ma is P̃j(x − a) . Moreover, let
x′j,1, x

′
j,2, ...., x

′
j,j, the zeros of P̃j(x − a) , λ′j,1, λ

′
j,2, ...., λ

′
j,j, be the weights of associated Gauss-

Jacobi Quadrature, and σ′
2
j be the variance of order j associated at ma. Then, x′j,s = xj,s + a ,

λ′j,s = λj,s and σ′2j = σ2
j .

In order to prove this result, it is enough to remark that
∫
P̃j(x − a)P̃k(x − a).ma(dx) =∫

P̃j(x)P̃k(x).m(dx).

The following proposition results from the Gram-Schmidt Process

Proposition 1.3.4 The real σj is the distance in L2(R,m) of the polynomial x 7−→ xj to the sub-
space of L2(R,m) spanned by the polynomials of degree more little than j-1. Moreover, the mini-
mum of

∫ [
(x−t1)(x−t2)...(x−tj)

]2
.m(dx) when (t1, t2, ....., tj) ∈ Rj is reached for (t1, t2, ....., tj) =

(xj,1, xj,2, ....., xj,j) and is equal to σ2
j .

Now recall how to calculate practically the variance of order j.

Proposition 1.3.5 Let j ∈ Θ. Then,

σ2
j = M2j −

j−1∑
s=0

β2
j,s where βj,s =

∫
xjPs(x).mdx .

Proof We have

P̃j = xj −
j−1∑
s=0

E{XjPs(X)}Ps(x) .

Therefore,

σ2
j =

∫ (
xj −

j−1∑
s=0

E{XjPs(X)}Ps(x)
)2

m(dx)

=
∫
x2jm(dx)− 2

∫
xj
( j−1∑
s=0

E{XjPs(X)}Ps(x)
)
m(dx) +

∫ ( j−1∑
s=0

E{XjPs(X)}Ps(x)
)2

m(dx)

=
∫
x2jm(dx)− 2

j−1∑
s=0

E{XjPs(X)}2 +
j−1∑
s=0

E{XjPs(X)}2 . �

We specify now how the aj,t’s are obtained.

Proposition 1.3.6 For all j ∈ N, for all t ∈ {1, 2, ...., j},

P̃j(x) =
j∑
t=0

aj,tx
t =

j∑
t=0

Oj−t(X)xt ,

when Os(X) = Nr(X)
Dt(X) where r− t = s and where Nr and Dr mean any polynomial, function of the

Mi’s which are sum or difference of terms in the form Mn0
0 Mn1

1 Mn2
2 ......M

nq
q , 0n0 + 1n1 + 2n2 +

....+ qnq = r, ni ∈ N.

8



Proof Remark that, by our definition Nt(X)Ns(X) = Ns+t(X), Dt(X)Ds(X) = Ds+t(X),
Nt(X) +Nt(X) = Nt(X) and Dt(X) +Dt(X) = Dt(X). Therefore, Ot(X)Os(X) = Os+t(X) and
Ot(X) +Ot(X) = Ot(X).

Proposition holds when j=0,1,2. Thus, P̃0 ≡ 1, P̃1(x) = x−O1(X) = O0(X)x−O1(X) where
O1(X) = M1, and O0(X) = M0.

Moreover, P̃2(x) = x2 − M3−M1M2
M2−M2

1
(x − M1) − M2 = x2 − O1(X)(x − M1) − O2(X) =

O0(X)x2 −O1(X)x−O2(X).

Then, we suppose that P̃j(x) =
∑j
t=0Oj−t(X)xt for all j < J .

Therefore,

P̃j(x)2 =
j∑

t,t′=0

Oj−t(X)Oj−t′(X)xtxt
′

=
2j∑
t”=0

∑
t+t′=t”

Oj−t(X)Oj−t′(X)xtxt
′

=
2j∑
t”=0

∑
t+t′=t”

O2j−t”(X)xt” =
2j∑
t”=0

O2j−t”(X)xt” .

Therefore,∫
P̃j(x)2.m(dx) =

2j∑
t”=0

O2j−t”(X)
∫
xt”.m(dx) =

2j∑
t”=0

O2j−t”(X)Ot”(X) = O2j(X) .

Therefore, σj(X)2 = O2j(X).

Then,
P̃s(x)
σ2
s

=
s∑
t=0

Os−t(X)
O2s(X)

xt =
s∑
t=0

O−s−t(X)xt .

Therefore,
xJ P̃s(x)
σ2
s

=
s∑
t=0

O−s−t(X)xt+J .

Because Ps(x) = P̃s(x)
σs

, then,

E{XJPs(X)}
σs

=
E{XJ P̃s(X)}

σ2
s

=
s∑
t=0

O−s−t(X)Mt+J = OJ−s(X) .

Then, by the Gram-Schmidt Process and by recurrence,

P̃J(x) = xj −
J−1∑
s=0

E{XJPs(X)}Ps(x) = xj −
J−1∑
s=0

E{XjP̃s(X)}
σ2
s

P̃s(x)
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= xJ −
J−1∑
s=0

OJ−s(X)
[ s∑
t=0

Os−t(X)xt
]

= xJ −
J−1∑
s=0

[ s∑
t=0

OJ−t(X)xt
]

= xJ −
J−1∑
s=0

OJ−s(X)xs =
J∑
s=0

OJ−s(X)xs . �

We are now interested in the orthogonal polynomials associated to αX.

Proposition 1.3.7 We denote by Pαj =
∑j
s=0 c

α
j,sx

s the orthonormal polynomials associated to
αX, α ∈ R+. For all j ∈ N, j < nm0 , for all s ∈ {1, 2, ...., j}, we set cαj,s = αscj,s. Then,

Pj(x) =
j∑
t=0

cj,tx
t .

Proof Let Qj(x) =
∑j
s=0 cj,sx

s. Then,

δi,j = E
{
Pαj (αX)Pαi (αX)

}

= E
{[ j∑

t=0

cαj,t(αX)t
][ i∑

s=0

cαi,s(αX)s
]}

=
j∑
t=0

i∑
s=0

cαj,tc
α
i,sE

{
(αX)t+s

}

=
j∑
t=0

i∑
s=0

cj,tci,sE{Xt+s}

= E
{
Qj(X)Qi(X)

}
.

Then, the polynomials Qj(x) =
∑j
s=0 cj,sx

s are orthonormal with respect to the measure m.
Now orthonormal polynomials such that cj,j > 0 are determined by recurrence by the process of
Gram Schmidt and are unique (cf Corollary page 9 of [13]). Then, Qj = Pj .

For example, one can prove by recurrence that they are unique. One sets Q̃j(x) =∑j
s=0

cj,s

cj,j
xs =

∑j−1
s=0

cj,s

cj,j
xs+xj . By the orthogonality of the Qj ’s , −

∑j−1
s=0

cj,s

cj,j
xs is the orthogonal

projection of x 7→ xj onto the subspace spanned by x 7→ xs, s < j. This one is unique. Then, by
Gram Schmidt Process, Q̃j(x) = P̃j(x).

Then, 1 = E
{
Qj(X)2

}
= E

{
[cj,jQ̃j(X)]2

}
= E

{
[cj,jP̃j(X)]2

}
= c2j,jσ

2
j .

Therefore, c2j,j = 1
σ2

j
. Therefore, Qj(x) = Pj(x).

Therefore, Qj(x) =
∑j
s=0 cj,sx

s = Pj(x) where cαj,sα
s = cj,s. �

Exemple j=0 : In this case, cα0,0α
0 = c0,0 = 1 : Q0(x) = P0(x) = 1.

Exemple j=1 : In order to compare better, it is necessary to use the proposition 1.3.8 below.
Then, we remark that

E{X}
σ1

=
E{αX}
σα1

= cα1,0 = cα1,0α
0 def= c1,0 =

E{X}
σ1

,
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1
σ1

=
α

σα1
= cα1,1α

1 def= c1,1 =
1
σ1

Proposition 1.3.8 Let σj(αX)2 be the variance of order j associated to αX . Then,

σj(αX)2 = α2jσ2
j .

Proof We know that c2j,j = 1
σ2

j
, Qj(x) = Pj(x) and cαj,sα

s = cj,s.

Therefore,

Pαj (x) =
j∑
s=0

cαj,sx
s =

j∑
s=0

cj,s
αs

xs .

Therefore,

P̃αj (x) =
j∑
s=0

cαj,s
cαj,j

xs =
j∑
s=0

cj,sα
j

cj,jαs
xs =

j∑
s=0

cj,sα
j−sσjx

s .

Therefore,

σj(αX)2 = E
{
P̃αj (αX)2

}
=

j∑
s=0

j∑
t=0

cj,sα
j−scj,tα

j−tσ2
jE
{

(αX)s+t
}

= α2jσ2
j

j∑
s=0

j∑
t=0

cj,scj,tE
{ (αX)s+t

αt+s

}

= α2jσ2
j

j∑
s=0

j∑
t=0

cj,scj,tE
{
Xs+t

}
= α2jσ2

jE
{
Pj(X)2

}
= α2jσ2

j .

Therefore,
σj(αX)2 = α2jσ2

j . �

Now we are interested by the quadrature of Gauss Jacobi of αX.

Proposition 1.3.9 Let P̃αj (x) =
∑j
s=0 a

α
j,sx

s be the orthogonal polynomials associated to αX
such that aαj,j = 1. Let xαj,s and λαj,s, s=1,2,....,j, be the zeros and the weigths of the quadrature of
Gauss Jacobi associated to αX. Then for all j ∈ N∗, for all s ∈ {1, 2, ...., j},

xαj,s = αxj,s and λαj,s = λj,s .

Proof By proposition, 1.3.8,

j∑
s=0

aαj,sx
s = P̃αj (x) = σαj P

α
j (x) = αjσjP

α
j (x)

= αjσj

j∑
s=0

cαj,sx
s = αjσj

j∑
s=0

(cj,s/αs)xs = αj
j∑
s=0

aj,s
αs

xs .
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Therefore, aαj,s = αjaj,s

αs .

Therefore,
j∑
s=0

aαj,sα
sxsj,t =

j∑
s=0

αjaj,sα
sxsj,t

αs
= αj

j∑
s=0

aj,sx
s
j,t = 0 .

Therefore the zeros of P̃αj are the αxj,t’s.

In order to study the weigths `js(x),it is enough to study `j1(x) = (x−xj,2)(x−xj,3)...(x−xj,j)
(xj,1−xj,2)(xj,1−xj,3)...(xj,1−xj,j)

.
Indeed one deduces the other `js(x)’s by permuting the definition of the xj,t’s.

Therefore,

λj,1 =
∫

(x− xj,2)(x− xj,3)...(x− xj,j)
(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

m(dx) .

.
Moreover,

λαj,1 =
∫ (x− xαj,2)(x− xαj,3)...(x− xαj,j)

(xαj,1 − xαj,2)(xαj,1 − xαj,3)...(xαj,1 − xαj,j)
mα(dx)

.

=
∫ (x− xαj,2)(x− xαj,3)...(x− xαj,j)
αj−1(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

mα(dx)

.

=

∫ [
xj−1 − (xαj,2 + xαj,3 + ......+ xαj,j)x

j−2 + ..................+ (−1)j−1xαj,2x
α
j,3.............x

α
j,j

]
αj−1(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

mα(dx)

=
αj−1Mj−1 − (xαj,2 + xαj,3 + ......+ xαj,j)α

j−2Mj−2 + ..................+ (−1)j−1xαj,2x
α
j,3.............x

α
j,jα

0M0

]
αj−1(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

=
αj−1Mj−1 − α1(xj,2 + xj,3 + ......+ xj,j)αj−2Mj−2 + ..................+ (−1)j−1αj−1xj,2xj,3.............xj,jα

0M0

]
αj−1(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

=
Mj−1 − (xj,2 + xj,3 + ......+ xj,j)Mj−2 + ..................+ (−1)j−1xj,2xj,3.............xj,jM0

]
(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

= λj,1 . �
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Chapter 2

Estimation

We will see that one can easily estimate the higher order variances and the Gauss Jacobi quadra-
ture. We can also obtain their asymptotic distributions because we know the asymptotic distri-
butions of empirical orthogonal functions.

At first, we need empirical orthogonal polynomials.

Notations 2.0.1 Let h ∈ N such that P̃h exists. Let {X`}`∈N , X` ∈ R, be an IID sequence of
random variables where X0 = X.

For all n ∈ N∗, we denote by mn the empirical measure associated at the sample {X`}`=1,2,..,n.

Notations 2.0.2 Let {P̃nj }j=0,1,..,h and {Pnj }j=0,1,..,h be the family of orthogonal polynomials
associated to the empirical measure mn such that

∫
(Pnj )2.dmn = 1 if Pnj exists and P̃nj =∑j−1

s=0 a
n
j,sx

s + xj if P̃nj exists. If P̃nj does not exist, we set P̃nj = 0 and if Pnj does not exist,
we set Pnj = 0.

We deduce from theorem 6-4 of [2] that P̃ni is an estimator of P̃i.

Proposition 2.0.10 For all i ≤ h, we set P̃ni = P̃i +
∑i−1
s=0 α̃

n
i,sPs and Pni = Pi +

∑i
s=0 α

n
i,sPs.

Then, for all (i,s), α̃ni,s and αni,s converges almost surely to 0.

Now, one can define empirical Gauss Jacobi Quadrature and empirical variances of order j.

Notations 2.0.3 Let j ∈ N. We denote by (σnj )2 the variance of order j of mn, by xnj,1, x
n
j,2, ...., x

n
j,j

the zeros of P̃nj , by λnj,1, λ
n
j,2, ...., λ

n
j,j the weights of Gauss Jacobi quadrature, if these numbers

exists. If not, one defines theses variables by 0.

Remark that (σn1 )2 is the classical empirical variances. Moreover (σn2 )2 = Mn
4 −

(Mn
3 −M

n
1 M

n
2 )2

Mn
2 −(Mn

1 )2 −
(Mn

2 )2 , where Mn
j is the empirical moment of order j.

Clearly, these estimators converges almost surely if X` is IID.

Proposition 2.0.11 Under the previous assumptions, σnj
a.s.→ σj . Moreover, for all j=1,2,..,h,

for all s=1,2,..,j, xnj,s
a.s.→ xj,s and λnj,s

a.s.→ λj,s , respectively.

Proof For example, let us write P̃j(x) =
∑j
t=0 aj,tx

t and P̃nj (x) =
∑j
t=0 a

n
j,tx

t. Because
α̃nj,s

a.s.→ 0̃ and αnj,s
a.s.→ 0, then, anj,s

a.s.→ aj,s.
Now, by theorem page 24 of [12], we can write the following property. g(anj,0, a

n
j,1, ....., a

n
j,j)

a.s.→
g(aj,0, aj,1, ....., aj,j) if g is continous with P-probability 1. Now, for example, the zero xnj,s is
written in a form xnj,s = g0(anj,0, a

n
j,1, ....., a

n
j,j). Then, xnj,s

a.s.→ xj,s. �.

Now, by the theorem 6-9 of [2], we have the following theorem.
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Theorem 3 We suppose that E{X4h} <∞. Then, αni,s = −
∫
PiPs.dmn+op

(
n−1/2

)
if s < i and

αni,i = 1−
R
PiPi.dmn

2 + op
(
n−1/2

)
where Op and op are the sthocastics ”O” and ”o” 1.

Moreover, α̃ni,s = −
∫
P̃iPs.dmn + op

(
n−1/2

)
if s < i.

Then, one can generalize the result about the asymptotical distribution of empirical classical
variance.

Theorem 4 Under the previous assumptions,
√
n
[
(σnj )2 − σ2

j

]
has asymptotically a normal dis-

tribution with mean 0 and variance E
{
P̃j(X)4

}
− σ4

j .

Proof : It is easy to prove that
√
n
( ∫

P̃nj P̃
n
j .dmn −

∫
P̃jP̃j .dm

)
has asymptotically the

same distribution as
√
n
( ∫

P̃jP̃j .dmn − σ2
j

)
=
∑n
`=1

P̃j(X`)P̃j(X`)−σ2
j√

n
. Then, it is enough to use

the Central Limit Theorem. �

We obtain now the asymptotical distribution of the estimators of Gauss Jacobi Quadrature.

Theorem 5 For all s=1,2,...,j, we set xnj,s = xj,s + ηs . Then,
√
n{ηs}s=1,..,j has asymptotically

a normal distribution with mean 0 and covariance matrix {Gs,t}(s,t)∈{1,2,...,j}2 where

Gs,t = E

{[∑j−1
v=0 Pv(xj,s)Pv(X)Pj(X)

][∑j−1
v=0 Pv(xj,t)Pv(X)Pj(X)

]
P̃ ′j(xj,s)P̃

′
j(xj,t)

}
.

This theorem is deduced from the following lemma by using the CLT.

Lemma 2.0.1 For all s = 1,2,...,j,

ηs =
1

P̃ ′j(xj,s)

∫
P̃j(t)

( j−1∑
v=0

Pv(xj,s)Pv(t)
)
.mn(dt) + op(n−1/2) .

Proof We prove this lemma for s=1. First, one proves that
√
n η1 is asymptotically normal.

We know that

P̃nj = P̃j +
j−1∑
v=0

α̃nj,vPv .

Therefore, because P̃nj (xnj,1) = 0 ,

P̃j(xnj,1) = −
j−1∑
v=0

α̃nj,vPv(x
n
j,1) .

Therefore,
√
nP̃j(xnj,1) =

√
n(xnj,1 − xj,1)(xnj,1 − xj,2)....(xnj,1 − xj,j) is asymptotically normal.

Moreover (xnj,1−xj,2)−1....(xnj,1−xj,j)−1 converges almost surely to (xj,1−xj,2)−1....(xj,1−xj,j)−1.
Therefore, by the theorem of page 19 of [12]

√
n(xnj,1 − xj,1) is asymptotically normal, i.e.

√
n η1

is asymptotically normal.
By the same way, one proves that

√
n ηs is asymptotically normal for s=2,3,...,j.

1A sequence of random variable Xn is bounded in probability, if, for every ε > 0, there exists Mε and Nε such
that P{|Xn| ≤Mε} ≥ 1− ε for all n ≥ Nε . Then, one writes Xn = OP (1) . Moreover, we write Xn = OP (Zn) for

two sequences of random variable Xn and Zn, if Xn/Zn = OP (1) and Xn = oP (Zn) if Xn/Zn
p→ 0.
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Now one can prove the lemma. Indeed, one can write the following equalities :

P̃nj (x) = (x− xj,1 − η1)(x− xj,2 − η2)......(x− xj,j − ηj)

= (x− xj,1)(x− xj,2)......(x− xj,j)
− η1(x− xj,2)(x− xj,3)......(x− xj,j)
− η2(x− xj,1)(x− xj,3)......(x− xj,j)

...........................................................

− ηj(x− xj,1)(x− xj,2)......(x− xj,j−1) + op(n−1/2) .

Therefore,

P̃nj (xj,1) = −η1(xj,1 − xj,2)(xj,1 − xj,3)......(xj,1 − xj,j) + op(n−1/2) = −η1P̃ ′j(xj,1) + op(n−1/2) .

Now, by theorem 3,

P̃nj (xj,1) = P̃j(xj,1) +
j−1∑
v=0

α̃nj,vPv(xj,1)

=
j−1∑
v=0

α̃nj,vPv(xj,1)

=
j−1∑
v=0

(
−
∫
P̃jPvdmn

)
Pv(xj,1) + op(n−1/2) .

We deduce the lemma. �

Theorem 6 Let j ∈ N such that E{X4j} < ∞ . For all s=1,2,...,j, and for all u=1,2,..,j, we set
Ls(x) = P̃j(x)

x−xj,s
and hsu(x) = P̃j(x)

(x−xj,s)(x−xj,u) . We define Ds
u by

Ds
u =

j∑
r=1,r 6=s

(
hsr(xj,s)E{Ls(X)}

Ls(xj,s)
− E{hsr(X)}

)(
Pu(xj,r)

Ls(xj,s)P̃ ′j(xj,r)

)

−Pu(xj,s)E{Ls(X)}
Ls(xj,s)3

j∑
r=1,s6=r

hsr(xj,s) .

Then,
√
n{λnj,s − λj,s}s=1,..,j has asymptotically the normal distribution with mean 0 and co-

variance matrix {Os,t}1≤s,t≤j where

Os,t = E

{[
`s(X) +

j−1∑
u=0

Ds
uPu(X)P̃j(X)

][
`t(X) +

j−1∑
u=0

Dt
uPu(X)P̃j(X)

]}
− λj,sλj,t .

This theorem is deduced from the following lemma by using CLT.

Lemma 2.0.2 For all s ∈ {1, 2, .., j} ,

λnj,s =
∫
`s(t).mn(dt) +

∫ ( j−1∑
u=0

Ds
uPu(t)P̃j(t)

)
.mn(dt) + op(n−1/2) .
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Proof We prove this lemma for s=1. We simplify L1(t) in L(t) and h1
r in hr : L(t) =

(t−xj,2)(t−xj,3)....(t−xj,j) , h2(t) = (t−xj,3)(t−xj,4)....(t−xj,j) , h3(t) = (t−xj,2)(t−
xj,4)....(t− xj,j) etc. Moreover, we set Ln(t) = (t− xnj,2)(t− xnj,3)....(t− xnj,j) .

We know that

λj,1 =
∫
`1(x).m(dx)

=
∫

(t− xj,2)(t− xj,3)...(t− xj,j).m(dt)
(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

=
∫
L(t).m(dt)
L(xj,1)

and that

λnj,1 =
∫
`n1 (x).mn(dx)

=

∫
(t− xnj,2)(t− xnj,3)...(t− xnj,j).mn(dt)

(xnj,1 − xnj,2)(xnj,1 − xnj,3)...(xnj,1 − xnj,j)

=
∫
Ln(t).mn(dt)
Ln(xnj,1)

.

By proposition 2.0.11, we deduce easily that
∫
Ln(t).mn(dt) and Ln(xnj,1) converge almost

surely to
∫
L(t).m(dt) and L(xj,1) , respectively. Therefore,

λnj,1 − λj,1 =
∫
Ln(t).mn(dt)
Ln(xnj,1)

−
∫
L(t).m(dt)
L(xj,1)

=
∫
Ln(t).mn(dt) −

∫
L(t).m(dt)

Ln(xnj,1)
+

∫
L(t).m(dt)
Ln(xnj,1)

−
∫
L(t).m(dt)
L(xj,1)

=
∫
Ln(t).mn(dt) −

∫
L(t).m(dt)

L(xj,1)
−

[ ∫
L(t).m(dt)

][
Ln(xnj,1) − L(xj,1)

]
L(xj,1)2

+ op(n−1/2) ,

if
√
n
[ ∫

Ln(t).mn(dt) −
∫
L(t).m(dt)

]
and
√
n
[
Ln(xnj,1) − L(xj,1)

]
are asymptotically normal.

Then, we prove this result now. Indeed,∫
Ln(t).mn(dt) −

∫
L(t).m(dt)

=
∫

(t− xnj,2)(t− xnj,3)....(t− xnj,j).mn(dt) −
∫

(t− xj,2)(t− xj,3)....(t− xj,j).m(dt)

=
∫

(t− xj,2)(t− xj,3)....(t− xj,j).[mn −m](dt)

− η2

∫
(t− xj,3)(t− xj,4)....(t− xj,j).mn(dt)
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− η3

∫
(t− xj,2)(t− xj,4)....(t− xj,j).mn(dt)

− .......................................................

− ηj

∫
(t− xj,2)(t− xj,3)....(t− xj,j−1).mn(dt) + op(n−1/2)

=
∫
L(t).[mn −m](dt) − η2E{h2(X)} − η3E{h3(X)} − .....− ηjE{hj(X)}+ op(n−1/2) .

By the same way,

Ln(xn1 ) − L(xj,1)
= (xnj,1 − xnj,2)(xnj,1 − xnj,3)...(xnj,1 − xnj,j) − (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)
= (xnj,1 − xj,2)(xnj,1 − xj,3)...(xnj,1 − xj,j) − (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)
− η2(xnj,1 − xj,3)(xnj,1 − xj,4)...(xnj,1 − xj,j)
− η3(xnj,1 − xj,2)(xnj,1 − xj,4)...(xnj,1 − xj,j)
− ...................................................

− ηj(xnj,1 − xj,2)(xnj,1 − xj,3)...(xnj,1 − xj,j−1) + op(n−1/2)

= (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j) − (xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)
+ η1(xj,1 − xj,3)(xj,1 − xj,4)...(xj,1 − xj,j)
+ η1(xj,1 − xj,2)(xj,1 − xj,4)...(xj,1 − xj,j)
+ ...................................................

+ η1(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j−1)

− η2(xj,1 − xj,3)(xj,1 − xj,4)...(xj,1 − xj,j)
− η3(xj,1 − xj,2)(xj,1 − xj,4)...(xj,1 − xj,j)
− ...................................................

− ηj(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j−1) + op(n−1/2)

= η1
[
h2(xj,1) + ...+ hj(xj,1)

]
− η2h2(xj,1) − ....− ηjhj(xj,1) + op(n−1/2) .

Therefore,

λnj,1 − λj,1

=
∫
L(t).[mn −m](dt)

L(xj,1)

− η2
E{h2(X)}
L(xj,1)

− η3
E{h3(X)}
L(xj,1)

− ........... − ηj
E{hj(X)}
L(xj,1)

− η1
E{L(X)}
L(xj,1)2

[
h2(xj,1) + h3(xj,1) + ....+ hj(xj,1)

]
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+ η2h2(xj,1)
E{L(X)}
L(xj,1)2

+ .............+ ηjhj(xj,1)
E{L(X)}
L(xj,1)2

+ op(n−1/2)

=
∫

(t− xj,2)(t− xj,3)...(t− xj,j).[mn −m](dt)
(xj,1 − xj,2)(xj,1 − xj,3)...(xj,1 − xj,j)

− η1
E{L(X)}
L(xj,1)2

[
h2(xj,1) + h3(xj,1) + ....+ hj(xj,1)

]
+ η2

1
L(xj,1)

[
h2(xj,1)E{L(X)}

L(xj,1)
− E{h2(X)}

]

+ η3
1

L(xj,1)

[
h3(xj,1)E{L(X)}

L(xj,1)
− E{h3(X)}

]
+ ........................................................................

+ ηj
1

L(xj,1)

[
hj(xj,1)E{L(X)}

L(xj,1)
− E{hj(X)}

]
+ op(n−1/2)

=
∫
`1(x).[mn −m](dx)

−

(∫
P̃j(t)

[ j−1∑
u=0

Pu(xj,1)Pu(t)
]
.mn(dt)

)
E{L(X)}

P̃ ′j(xj,1)L(xj,1)2
[
h2(xj,1) + ....+ hj(xj,1)

]
+

(∫
P̃j(t)

[ j−1∑
u=0

Pu(xj,2)Pu(t)
]
.mn(dt)

)
1

L(xj,1)P̃ ′j(xj,2)

[
h2(xj,1)E{L(X)}

L(xj,1)
− E{h2(X)}

]

+

(∫
P̃j(t)

[ j−1∑
u=0

Pu(xj,3)Pu(t)
]
.mn(dt)

)
1

L(xj,1)P̃ ′j(xj,3)

[
h3(xj,1)E{L(X)}

L(xj,1)
− E{h3(X)}

]
+ ...........................................................................

+

(∫
P̃j(t)

[ j−1∑
u=0

Pu(xj,j)Pu(t)
]
.mn(dt)

)
1

L(xj,1)P̃ ′j(xj,j)

[
hj(xj,1)E{L(X)}

L(xj,1)
− E{hj(X)}

]
+ op(n−1/2)

=
∫
L(t).[mn −m](dt)

L(xj,1)

−

(∫
P̃j(t)

[ j−1∑
u=0

Pu(xj,1)Pu(t)
]
.mn(dt)

)
E{L(X)}
L(xj,1)3

[
h2(xj,1) + ....+ hj(xj,1)

]
+

∫ { j−1∑
u=0

[ j∑
r=2

(hr(xj,1)E{L(X)}
L(xj,1)

− E{hr(X)}
) Pu(xj,r)
L(xj,1)P̃ ′j(xj,r)

]
Pu(t)P̃j(t)

}
.mn(dt)

+ op(n−1/2) .

We deduce the lemma. �
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Chapter 3

Detection of points of
concentration

3.1 Introduction

The theorems about orthogonal polynomials of [14] show that in the case of sufficiently smooth
density, the distance of successive zeros xj,s converge to 0 and the same is true for weights λj,s
(cf [9]. cf also section 1.3). We can ask ourselves what happens when X has a density of this type
except at one point x0 where it has a nonzero measure : P{X = x0} = b > 0. We can easily have
a first answer thanks to Stieltjes Markov’s inequality.

But, for further details, it seems difficult to get them quickly by mathematical theorems. Then
the simplest is to make simulations : in all simulations which we have made, we found that the
properties of Section 1.3 remain true except near points of nonzero measure. That is to say that,
generally, xj,s+1 − xj,s → 0 and λj,s → 0 as j →∞.

But it is quite clear that it will be different for the points closest to x0 such that P{X = x0} =
b > 0. Indeed, suppose that two consecutive zeros check xj,k < x0 < xj,k+1 with P{X = x0} =
b > 0. Then, by Stieljes Markov inequality,

F (x0 + 0)− F (x0 − 0) ≤ F (xj,k+1 + 0)− F (xj,k − 0)

≤
∑

xj,s≤xj,k+1

λj,s −
∑

xj,s<xj,k

λj,s = λj,k + λj,k+1 .

Therefore, λj,k+λj,k+1 ≥ b. This means that there will always weights which are not too small
even if j is large whereas other weights λj,k′ converge to 0.

In fact, in some simulations which we have made, we found enough frequently some weights
λj,kj

→ b as j →∞. Moreover, xj,kj+1 ≈ x0 ou xj,kj
≈ x0 and xj,k+1 − xj,k → 0 as j →∞.

So it seems that in many cases, in order to find the non-zero measure in a point and its weight,
it suffices to find the zeros xj,kj

close to a x0 and weights λj,kj
≈ b.

This is what will confirm the following examples (For other examples cf [9]).

3.2 Example 1

In this example we chose a probability mixing a continuous density and a point x0 = 4 such that
P{X = x0} > 0. The continuous density is that of a Gaussian mixture centered in -3, -1, with
standard deviation 1, 2. The weights of the two Gaussian density and of the Dirac measure (in
-3, -1, 4) are the weights 2/9, 4/9, 1/3.
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We have calculated the xnj,t’s and the λnj,t’s empirically, i.e. we used a sample of this mixture.
Then the function histogram of Matlab for the empirical density is represented in Figure 3.1 1 .

0 100 200 300 400 500 600 700 800 900 1000
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1
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Figure 3.1: Gaussian mixture in -4,-3 and Dirac measure in 4

Then, the points and weights of Gauss Jacobi quadrature allows to detect the concentration
at the point x0 = 4. Indeed, the parameters of the Gauss Jacobi quadrature are given by the
following tables.

1 2 3 4 5 6 7 8
x1s -0.2274 0 0 0 0 0 0 0
x2s 3.4109 -3.2730 0 0 0 0 0 0
x3s 3.9011 -4.8453 -1.7292 0 0 0 0 0
x4s -6.3918 3.9776 -3.3357 -0.4282 0 0 0 0
x5s -7.7252 3.9960 -4.5646 -2.2141 0.6129 0 0 0
x6s -8.7553 -5.6417 4.0051 -3.2739 1.7758 -0.9448 0 0
x7s -9.5629 -6.5870 4.0981 3.8168 -4.1424 -2.0990 0.3619 0
x8s -10.2119 -7.4893 5.7010 3.9945 -5.0952 -3.1244 1.1844 -1.1042
x9s -10.6159 -8.2123 6.2676 -5.9674 3.9995 -3.9839 1.8163 -2.2345
x10s -10.8087 -8.6956 6.4217 -6.6345 -4.7074 4.0022 -3.0406 2.5305
x11s -10.8938 -9.0235 6.4882 -7.1783 -5.3689 4.0106 3.6130 -3.7158
x12s -10.9303 -9.2567 6.5310 -7.6459 -5.9684 4.6708 3.9965 -4.3445

9 10 11 12
x9s -0.2326 0 0 0
x10s -1.3096 0.6104 0 0
x11s -2.1612 1.4062 -0.4045 0
x12s 1.9751 -2.8888 -1.3550 0.3182

1Note that in this figure, it is simultaneously represented the curve of the density of mixture Gaussian and the
non-zero measure in x0 = 4. In order that graphs are consistent, it would be required that the Dirac measure is
infinite. Normally, it’s impossible.
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1 2 3 4 5 6 7 8
λ1,s 1.0000 0 0 0 0 0 0 0
λ2,s 0.4557 0.5443 0 0 0 0 0 0
λ3,s 0.3658 0.1791 0.4551 0 0 0 0 0
λ4,s 0.0317 0.3454 0.3893 0.2336 0 0 0 0
λ6,s 0.0052 0.3383 0.1696 0.3761 0.1108 0 0 0
λ6,s 0.0011 0.0557 0.3333 0.3348 0.0431 0.2320 0 0
λ7,s 0.0003 0.0176 0.1909 0.1529 0.2029 0.3218 0.1137 0
λ8,s 0.0001 0.0050 0.0002 0.3375 0.0821 0.3057 0.0579 0.2116
λ9,s 0.0000 0.0016 0.0000 0.0296 0.3355 0.1943 0.0298 0.2817
λ10,s 0.0000 0.0007 0.0000 0.0123 0.1010 0.3337 0.2708 0.0138
λ11,s 0.0000 0.0004 0.0000 0.0055 0.0484 0.3210 0.0175 0.2019
λ12,s 0.0000 0.0002 0.0000 0.0026 0.0232 0.0008 0.3351 0.1223

9 10 11 12
λ9,s 0.1273 0 0 0
λ10,s 0.1954 0.0723 0 0
λ11,s 0.2453 0.0383 0.1217 0
λ12,s 0.0208 0.2452 0.1740 0.0756

This shows that the measure nonzero in x0 = 4 with a weight 1/3 implies zeros close to 4 and
weights close to 0,333 while the other zeros and weights are much more varied.

Note that some weights are very close to 0. This is due to properties of pure Gaussian mixtures
(without Dirac measure): cf section 3.1.3 [9]

In order to better appreciate these results, in the following table, we shall group together the
zeros close to 4 and the associated weight by using the following convention.

Convention 3.2.1 In the tables giving the two zeros around points xs with measures m({xs}) > 0,
we are only interested by the zeros with significant weight. When there is an alone significant weight
we put a 0 for the following weight and we did the same thing for the zero.

There are then for the zeros close to x=4 and the associated weights the following table.

j xj,k xj,k+1 λj,k λj,k+1

3 3.9011 0 0.3658 0
4 3.9776 0 0.3454 0
5 3.9960 0 0.3383 0
6 4.0051 0 0.3333 0
7 4.0981 3.8168 0.1909 0.1529
8 3.9945 0 0.3375 0
9 3.9995 0 0.3355 0
10 4.0022 0 0.3337 0
11 4.0106 0 0.3210 0
12 3.9965 0 0.3351 0

By Stieljes Markov’s inequality, we know that the weight at x = 4, checks λj,k + λj,k+1 ≥
P{X = 4} when xj,k < 4 < xj,k+1. So we see that there is a weight of about 0,333 concentrated
around 4: indeed, P{X ∈ [4− a, 4 + a]} ≤ λj,k + λj,k+1 where a is small enough .
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Remark 3.2.2 One can find practical problems for calculating the elements of the Gauss Jacobi
quadrature. Indeed, it is known that the computation of orthogonal polynomials Pj can be difficult
when j increases a little. This is because the moments become very large or very small depending
on the case. The accuracy of calculations becomes delicate and one can sometimes find values
enough distant of real values.

3.3 Example 2

We choose uniform distributions on two intervals and a point of nonzero measure located inside of
their supports. Then we take an uniform mixture of the intervals [-3.0], [0,0.750] and a non-zero
measure in -1 with weights, respectively 0.3, 0.5, 0.2.
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Figure 3.2: One point with a nonzero measure

zeros close to -1 and the associated weights are given in the following table.

j xj,k xj,k+1 λj,k λj,k+1

5 -1.0055 0 0.3157 0
6 -1.3163 -0.7185 0.1797 0.2035
7 -1.0081 0 0.2852 0
8 -1.2715 -0.8540 0.1320 0.2036
9 -1.0145 0 0.2650 0
10 -1.2385 -0.9095 0.2067 0.0755
11 -1.0156 0 0.2521 0
12 -1.2521 -0.9544 0.0695 0.2228
13 -1.0389 0 0.2234 0
14 -1.0308 0 0.2310 0
15 -0.9705 0 0.2273 0
16 -1.0026 -0 0.2422 0

The points of concentration and weights appear clearly: they are the zeros close to x=0 and
the weights associated.
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Chapter 4

Application : mixtures

4.1 Some properties

At first we introduce the type of mixtures that we will study.

Notations 4.1.1 Let Y be a real random variable. We assume that there exists p ∈ N such that
Y =

∑p
r=1 δrZr, where Zr − zr = σrεr ∼ N(0, σ2

r), zr ∈ R , where the δr are random variables
such that δr = 0 or 1 ,

∑p
r=1 δr = 1 , and where (δ1, δ2, ...., δp), ε1, ε2, ...., εp are independent.

We assume that the zr’s , r = 1, 2, .., p, are distincts. We set P (δr = 1) = qr for r = 1, 2, ..., p.

One want to estimate the zr ’s and qr’s by using Gauss Jacobi Quadrature. Unfortunately,
the Gauss-Jacobi quadrature of Y does not give the zr ’s and qr’s directly. Indeed, let us denote
by yp,s and λ′p,s , the zeros and the weights of orthogonal polynomials associated to Y. Then,
generally, yp,s 6= zs and λ′p,s 6= qs.

It is true only when σp(Y ) = 0. In other cases, we have only approximations which are sharp
all the more as σp(Y ) is small.

Proposition 4.1.1 We denote by {Q̃j} the familly of orthogonal polynomials associated with∑p
r=1 δrzr : Q̃j(z) =

∑j
t=0 bj,tz

t where bj,j = 1. Then, the zr’s are the zeros zp,r of Q̃p .

Moreover, let `Sr (z) = Q̃p(z)

(z−zr)Q̃′p(zr)
. Then, qr =

∫
`Sr (z).mS(dz) for r = 1, 2...., p where mS is the

distribution of S =
∑p
r=1 δrzr.

Therefore, we have to use the Gauss Jacobi Quadrature not of Y but of S =
∑p
r=1 δrzr.

Therefore, we need to know moments of
∑p
r=1 δrzr . In this aim, one has the idea to use ”negative

variance” of Gaussian random variables ( cf Section V-2, page IV-28, [6]) .
Indeed, recall that this naming is based on the following property (cf lemma 1.1, (viii) [10] or

[9]).

Proposition 4.1.2 Soit G ∼ N(0, σ2), U ∼ N(0, 1) and ε ∼ N(0, 1) three independent random
variable. Then, for all q ∈ N,

E
{[
G+ iU

]q} = E
{[√

σ2 − 1 ε
]q}

Then, iU+G behaves like a Gaussian distribution with variance negative if σ2 < 1. Now, if
σ2 > 1, we find a usual Gaussian distribution. If σ2 = 1, the probability is concentrated in 0.

To use the negative variances in order to solve our problem, we will use the following property
which is a consequence of proposition 4.1.2 : cf [9].

23



Proposition 4.1.3 Let U ∼ N(0, 1) be a random variable independent with (δ1, δ2, ...., δp) and
(ε1, ε2, ...., εp). Then, for all q ∈ N,

E
{( p∑

t=1

(δtzt + σtεt) + isU
)q}

= E
{

(Ts)q
}
,

where Ts =
∑p
t=1 δt(zt +

√
σ2
t − s2εt).

Proof This proposition is proved by using equalities based on simple calculations : cf [9]. �

4.2 First application to mixtures

4.2.1 Method

Then, we can use the previous property in order to find the various parameters σ, zr and qr.
For example, if σr = σ for r=1,2,....,p, E

{
[Y + iσU ]q

}
= E

{
Sq
}

. Therefore if we choose s = σ,
Y + isU has the same moments as S =

∑p
r=1 δrzr. Then its variance of order p will be equal to 0.

Therefore, we can find s = σ by studying the variances of order p of isU + Y. When σ is obtained,
it suffices to calculate the parameters of the Gauss Jacobi quadrature which will be the associated
the zr’s and qr’s.

Then, we can use the negative variances of Gaussian distributions in order to obtain the
parameters of the mixture. Indeed, it is easy to prove the following proposition.

Proposition 4.2.1 We assume that σ2
r = σ2 for all r ∈ {1, 2, ..., p}. Then, Y =

∑p
r=1 δrzr + σε0

where ε0 ∼ N(0, 1).

Then, it is easy to find the parameters of this mixture by using the variances of higher order.

Indeed, assume that we want to estimate the zt’s and qt’s. We can estimate the moments of S
by using negative variances because

E
{( p∑

t=1

(δtzt + σεt) + isU
)q}

= E
{( p∑

t=1

δt
[
zt +

√
σ2 − s2 εt

])q}
.

It is thus enough to find s such that σ2 = s2 : in this case, the moments of
∑p
t=1(δtzt+σεt) + isU

have a variance of order p which is equal to zero. Indeed, it is the variance of order p of S which
is concentrated in p distinct points.

Then, to find s such that σ2 = s2 is easy. Indeed, if we take s increasing from 0,
∑p
t=1(δtzt +

σεt) + isU has the same moments as the real random variable Ts =
∑p
t=1(zt +

√
σ − s2 εt). We

can then calculate the variance of order p of Ts. When it vanishes, we know that s is reached.
Then we know the parameters searched s = σ and also the zr’s and qr’s by using Gauss Jacobi
quadrature.

Concretely, if we take s more and more large, variance of order p decreases to 0 and then
becomes negative. Then, it is not difficult to find s = σ by calculating the variance of order p for
any value of s.

Example In figure 4.1, The blue curve represents the real part of the variance of order 3 of a
sample of X + isU when X is a Gaussian mixture of components centered in -2,0,3, of standard
deviation 1,1,1 of weight 1/6, 2/6, 3/6 when s varies from 0 to 1. The red curve represents the
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imaginary part. We see that the variance vanishes near s = 1.
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Figure 4.1: Variance of order 3 of Ts

To calculate σ, we’ll take a curve defined over a smaller interval near the point where s = σ.
In the figure 4.2, then we represent the same curves for intervals much smaller. This allows to
conclude that s0 = σ = 0.996.
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Figure 4.2: Variance of order 3 of Ts

With the moments, we can then estimate the parameters of the Gauss Jacobi quadrature.
We estimate the zeros by -1.9735, 0.0653, 3.0232 (instead of -2,0,3) with weights 0.1776, 0.3274,

0.4950 ( instead of 0.1667, 0.3333, 0.5000).

Then, one thinks at an application : higher order regression (cf [9]). For example, if we have
the development of real estate prices resulting from two different regions, we shall obtain the
concentration around two curves. We shall treat this problem later.
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4.3 Second application to mixtures

4.3.1 Presentation

Now we apply Proposition 4.1.3 when the σr ’s are different : if s2 = Minr=1,...,p(σ2
r), Ts =∑p

t=1(δtzt+σtεt)+isU has the same moments as a Gaussian mixture with p components, including
one degenerate, i.e. with a point of nonzero measure in zt0 where σ2

t0 = Minr=1,...,p(σ2
r) : P{Ts =

zt0} = qt > 0. So we find σ2
t0 by applying a method of the same type as that described in chapter

3.
After we removed the points corresponding to the Gaussian component of the mixture and we

start again.

4.3.2 Example

One chooze a sample with size 100000 of a Gaussian mixture with components centered in -3,0,2,
with standard deviation 0,251,0.52,1, and with weights 0.4, 0.3, 0.3. (cf figure 4.3 : graph of the
function hist of Matlab).
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Figure 4.3: Function hist of Gaussian mixture with components centered in -3,0,2

4.3.3 Calculation of the first standard deviation

The first standard deviation which we can know by using the Gauss Jacobi quadrature is the
smallest standard deviation.

Now, for a sample, this is only estimation obtained thanks to a complex random variable.
Then, generally all the moments are not real and we can take the real part since the imaginary
part of the moments tend to 0 as the sample size tends to ∞.

Therefore one estimates the moments and then the elements of the Gauss Jacobi quadrature
with different s. In this report, we’ll do it for s = 1/5 and s = 1/4.

For sake of simplicity, in this section we denote always by λj,s and xj,s the weights and the zeros
of the Gauss Jacobi quadrature associated with the sample of the random variable Y + isU, that
is to say that the theoretical probabilities have the same moments as

∑p
r=1 δr

(
zr +

√
σ2
r − s2 εr

)
.
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Study of s=1/4 For s=1/4, for the zeros close to 2 and the associated weights we have the
following table 1.

j xj,j0 xj,j0+1 λj,j0 λj,j0+1

3 1.8229 0 0.3899 0
4 1.9695 0 0.3203 0
5 1.9932 0 0.3062 0
6 1.9991 0 0.3017 0
7 2.0010 0 0.2999 0
8 2.0014 0 0.2994 0
9 2.0014 0 0.2994 0
10 2.0658 2.0143 0.3533 0.0912
11 1.9053 2.0012 0.0000 0.2996
12 2.0019 0 0.2987 0
13 2.2172 1.9999 0.0000 0.3007
14 2.0062 0 0.2922 0
15 2.0691 1.9616 0.0942 0.2084
16 2.3039 1.9923 0.0048 0.2967

Study of s=1/5 Of course, in order to obtain the good value of s, we have to repeat this
calculations several times. For example, if s=1/5, for the zeros close to 2 and the associated
points, we have the following table.

j xj,j0 xj,j0+1 λj,j0 λj,j0+1

3 1.8420 0 0.3860 0
4 2.0039 0 0.3104 0
5 2.0427 0 0.2874 0
6 2.0721 0 0.2632 0
7 2.1145 1.5975 0.2128 0.1126
8 2.1680 1.8255 0.1415 0.1678
9 2.2072 1.9006 0.0976 0.2040
10 2.2346 1.9395 0.0729 0.2217
11 2.0854 1.7481 0.1950 0.1016
12 2.1919 1.8889 0.1099 0.1913
13 2.2038 1.9050 0.0986 0.2006
14 2.2019 1.9019 0.1005 0.1994
15 2.2042 1.9056 0.0982 0.2009
16 2.2181 1.9230 0.0861 0.2100

By Stieljes Markov’s inequality, we see that there is a weight of about 0.3 concentrated around
2. Indeed, let λj,j0 and λj,j0+1 and xj,j0 , xj,j0+1, xj,j0 < 2 < xj,j0+1, be the weights and the zeros
associated around 2. Then, P{G3 ∈ [2− a, 2 + a]} ≤ λj,j0 + λj,j0+1 where G3 represents the third
Gaussian component when a is small. Now there is no perfectly correct point in order to identify
it. We see only that it seems that there is a concentration close to 2.

This is normal because s is not well chosen. Indeed, at this point x=2, we have a Gaussian
distribution with a variance of about 1/16 − 1/25 = 0.225 . This means that the probability is
mainly concentrated on an interval of length 0.2 around 2. In order to be sure there are no points
of nonzero measure, we should therefore consider the Pj where j is greater than 16. But the fact
that there is no concentration points xjs seems enough accurate in order to indicate that for s =
1/5, there is no point of nonzero measure.

1for completetables, cf [9]
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Conclusion Finally, we see a little difference between the results s = 1/5 and s = 1/4 if we
confine ourselves to use the Markov Stieljes inequality. In order that the result appears more
clearly, we must in fact take orthogonal polynomials of degree greater than 16.

On the other hand, the number of weights close to 0.3 concentrated in a single zero near 2 is
much more important. In the simulations made otherwise, this is what is significant.

Other values of s By studying several values of s, we can determine about which value of s
corresponds itself to a point of concentration. We can thus, by being located near this value, to
find towards which points and which weights it is necessary to concentrate the researches as above
in example 4.2.1 when σr = σ. We find then rather easily, the zero and the weight by proceeding
as above by making a graph.

Estimation

By repeating many times this type of calculation we find that the best estimation for the con-
centration point is z3 = 2.02 ± 0.01. The calculation of s is a little more imprecise: we find
σ3 = 0.25± 0.02. About the weight, it is estimated to be close to q3 = 0.3± 0.03.

4.3.4 Deletion of the first Gaussian component

We therefore estimated the parameters of the first Gaussian component. To find the second using
the same technique, one must first eliminate points coming from the first component. There are
various techniques possible. One choose to use a simple technique by eliminating N3 = nq3 points
where n = 100000 is the size of sample.

Indded, we know that there is about a point of the sample coming from that component in
a partition of R in N3 intervals whose the Gaussian probability of each is 1/N3. One can then
choose to remove the point nearest point of the middle of each interval. We did it in [9].

The result obtained is provided in Figure 4.4. In this figure 4.4 : for a sample of n = 100000,
we have delete nq3 = 29500 points supposed to belong to the first Gaussian component. The
graph is the function histogram of Matlab (hist).
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Figure 4.4: Function hist of the deletion of the normal component centered in 2

Note that these graphs can be used to better determine the weight, that is to say the size of
the sample which has to be removed. Indeed, the curve has peaks on his right incompatible with
a Gaussian mixture with two components.

Then, one can try another weight close to the estimation which we got. For example, if one
removes only 30150 point we have the graph of Figure 4.5.

This kind of results can eventually allow us to refine the choice of s.
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Figure 4.5: Function hist of the deletion of 30150 elements of the normal component centered in 2

4.3.5 Estimation of the Other Gaussian components

Then, one proceeds by the same way and the parameters of other gaussian components are ob-
tained. Then, we found

z3 = 2.02± 0.01, z2 = 0.03± 0.01, z1 = −3.02± 0.01.
σ3 = 0.25± 0.01, σ2 = 0.50± 0.01, σ1 = 1.01± 0.02.
q3 = 0.3± 0.03, q2 = 0.3± 0.03, q1 = 0.4± 0.02.

4.3.6 Conclusion

So we have relatively good results especially when you consider that these results can be refined
by a more detailed study of properties of the Gauss Jacobi quadrature.

Of course, one may want to compare this method with other methods used in order to find
the Gaussian components, that is to say, essentially, the EM algorithm (cf [11]) : by applying it
to the sample which we have just estimate, it was found.

z3 = 2.1, z2 = −0.2 et z1 = −2.99.
σ3 = 0.26, σ2 = 0.49, σ1 = 0.98.
q3 = 0.28, q2 = 0.31, q1 = 0.39.

So, in this case, our method gives result best than those of the EM algorithm.
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Appendix A

Standardized Variances

We are going to study examples of standardized variances σ̂2
j : at first normal centered laws, then

Gaussian mixtures, then Gaussian mixtures truncated.
Finally, we shall see that if we want that the value of the variances can measure the concentra-

tion as soon as it is obtained, it is necessary to proceed to the second standardization by centering
the random variables X or by imposing by translation that they are positive.

A.1 Centered Gaussian distributionss

We recall that, by proposition 1.2.2, the variance of a standard Gaussian distribution is(
σ01
j

)2 = j! .

Therefore, for j=1,2,3,4, σ2
j = 1,2,6,24.

On the other hand ||xj ||2 =
∫
x2j e−x2/2

√
2π

dx = 2j!
2jj! .

Therefore, for j=1,2,3,4, ||xj ||2 = 2!
211! = 1, 4!

222! = 3, 6!
233! = 15, 8!

244! = 105.

i.e. , σ2
j

||xj ||2 = 1
1 ,

2
3 ,

6
15 ,

24
105 .

i.e., σ2
j

||xj ||2 = 1, 0.66, 0.4, 0.2286.

A.2 Gaussian mixtures

We study Gaussian mixtures. We use notations 4.1.1 : Y =
∑p
r=1 δrZr, where Zr − zr = σGr εr ∼

N(0, (σGr )2), and P (δr = 1) = qr.
We denote these mixtures by ”MixtGauss ([Expectation],[Weights],[Variances])” where [Expectation] =

[z1, ...., zp], [Weights] = [q1, ..., qp], and [V ariances] = [(σG1 )2, .....(σGp )2].
One denotes again standardized variances of order 2,3,4 associated to these mixtures by

σ̂2
j = σ2

j

||x2j || : σ̂2
2 , σ̂2

3 , σ̂2
4 .

Example 1 : Variance of order 2

In this example we study the mixture MixtGauss([-0.5,0.5],[1/2,1/2],[0.5,1]) and the variance of
order 2.

We obtain σ̂2
2 = 0.6276, σ̂2

3 = 0.3295, σ̂2
4 = 0.1596.
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Figure A.1: σ̂2
2 = 0.6276.

Example 2 : Variance of order 2

In this example we study the mixtures MixtGauss([-1,1],[1/2,1/2],[0.5,1]) and the variance of order
2.

We obtain σ̂2
2 = 0.5412, σ̂2

3 = 0.2833, σ̂2
4 = 0.1291.
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Figure A.2: σ̂2
2 = 0.5412

Example 3 : Variance of order 2

In this example we study the mixtures MixtGauss(([-1,2],[1/2,1/2],[0.5,1]) and the variance of
order 2.

We obtain σ̂2
2 = 0.3200, σ̂2

3 = 0.1350, σ̂2
4 = 0.0459.
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Figure A.3: σ̂2
2 = 0.3200
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Example 4 : Variance of order 2

In this example we study the mixtures MixtGauss([-1,2],[1/4,3/4],[0.5,1]) and the variance of order
2.

We obtain σ̂2
2 = 0.2312, σ̂2

3 = 0.0816, σ̂2
4 = 0.0302.
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Figure A.4: σ̂2
2 = 0.2312

Example 5 : Variance of order 2

In this example we study the mixtures MixtGauss([-1,2],[3/4,1/4],[0.5,1]) and the variance of order
2.

We obtain σ̂2
2 = 0.4572, σ̂2

3 = 0.2038, σ̂2
4 = 0.0724.
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Figure A.5: σ̂2
2 = 0.4572

Example 6 : Variance of order 2

In this example we study the mixtures MixtGauss([-1,2],[1/4,3/4],[0.5,0.3]) and the variance of
order 2.

We obtain σ̂2
2 = 0.1810, σ̂2

3 = 0.0917, σ̂2
4 = 0.0351.

Example 7 : Variance of order 2

In this example we study the mixtures MixtGauss(([-1,2],[1,1],[0.5,0.3]) and the variance of order
2.

We obtain σ̂2
2 = 0.2745, σ̂2

3 = 0.1529, σ̂2
4 = 0.00596.

Example 8 : Variance of order 2

In this example we study the mixtures MixtGauss([-2,2],[1,1],[0.5,0.3]) and the variance of order
2.
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Figure A.6: σ̂2
2 = 0.1810
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Figure A.7: σ̂2
2 = 0.2745

We obtain σ̂2
2 = 0.2554, σ̂2

3 = 0.1763, σ̂2
4 = 0.0621.
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Figure A.8: σ̂2
2 = 0.2554

Example 9 : Variance of order 2

In this example we study the mixtures MixtGauss([-3,2],[1,1],[0.5,0.3]) and the variance of order
2.

We obtain σ̂2
2 = 0.1553, σ̂2

3 = 0.0925, σ̂2
4 = 0.0210.

Example 10 : Variance of order 2

In this example we study the mixtures MixtGauss([-3,2],[1,1],[0.1,0.3]) and the variance of order
2.

We obtain σ̂2
2 = 0.0914, σ̂2

3 = 0.0544, σ̂2
4 = 0.0125.
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Figure A.9: σ̂2
2 = 0.1553
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Figure A.10: σ̂2
2 = 0.0914

Example 11 : Variance of order 3

In this example we study the mixtures MixtGauss([-3,0,2],[1,1,1],[0.1,0.3,0.3]) and the variance of
order 3.

We obtain σ̂2
2 = 0.3077, σ̂2

3 = 0.0700, σ̂2
4 = 0.0377.
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Figure A.11: σ̂2
3 = 0.0700

Example 12 : Variance of order 3

In this example we study the mixtures MixtGauss(([-3,0,2],[1/3,1/3,1/3],[0.1,0.3,0.05]) and the
variance of order 3.

We obtain σ̂2
2 = 0.2520, σ̂2

3 = 0.0382, σ̂2
4 = 0.0148.
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Figure A.12: σ̂2
3 = 0.0382

Example 13 : Variance of order 3

In this example we study the mixtures MixtGauss([-3,0,2],[0.25,0.32,1-0.32-0.25],[0.5,0.3,0.2]) and
the variance of order 3.

We obtain σ̂2
2 = 0.3711, σ̂2

3 = 0.1104, σ̂2
4 = 0.0440.
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Figure A.13: σ̂2
3 = 0.1104

Example 14 : Variance of order 3

In this example we study the mixtures MixtGauss(([-3,0,2],[0.25,0.32,1-0.32-0.25],[0.5,0.7,0.9]) and
the variance of order 3.

We obtain σ̂2
2 = 0.4736, σ̂2

3 = 0.1988, σ̂2
4 = 0.1049.
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Figure A.14: σ̂2
3 = 0.1988
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Example 15 : Variance of order 3

In this example we study the mixtures MixtGauss([-3,0,2],[0.25,0.32,1-0.32-0.25],[0.1,0.3,0.3]) and
the variance of order 3.

We obtain σ̂2
2 = 0.2939, σ̂2

3 = 0.0434, σ̂2
4 = 0.0190.
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Figure A.15: σ̂2
3 = 0.0434

Example 16 : Variance of order 4

In this example we study the mixtures MixtGauss([-3,0,2],[0.25,0.32,1-0.32-0.25],[1.1,1.2,0.9]) and
the variance of order 4.

We obtain σ̂2
2 = 0.4801, σ̂2

3 = 0.2195, σ̂2
4 = 0.0971.
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Figure A.16: σ̂2
4 = 0.0971

Example 17 : Variance of order 4

In this example we study the mixtures MixtGauss([-3,0,2,4],[0.25,0.2,0.4,1-0.2-0.4-0.25],[0.1,0.2,0.3,0.25])
and the variance of order 4.

We obtain σ̂2
2 = 0.4089, σ̂2

3 = 0.1018, σ̂2
4 = 0.0296.

Example 18 : Variance of order 4

In this example we study the mixtures MixtGauss([-3,0,2,4],[0.25,0.2,0.4,1-0.2-0.4-0.25],[0.1,0.2,0.3,0.25])
and the variance of order 4.

We obtain σ̂2
2 = 0.3084, σ̂2

3 = 0.0666, σ̂2
4 = 0.0091.

Example 19 : Variance of order 4

In this example we study the mixtures MixtGauss([-3,0,2,4],[0.25,0.2,0.4,1-0.2-0.4-0.25],[0.1,0.05,0.15,0.07])
and the variance of order 4.
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Figure A.17: σ̂2
4 = 0.0296
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Figure A.18: σ̂2
4 = 0.0091

We obtain σ̂2
2 = 0.3057, σ̂2

3 = 0.0622, σ̂2
4 = 0.0091.
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Figure A.19: σ̂2
4 = 0.0091

Example 20 : Variance of order 4

In this example we study the mixtures MixtGauss([-3,0,2,4],[0.25,0.2,0.4,1-0.2-0.4-0.25],[0.1,0.05,0.15,0.07])
and the variance of order 4.

We obtain σ̂2
2 = 0.1986, σ̂2

3 = 0.0396, σ̂2
4 = 0.0095.

A.3 Truncated gaussian mixtures

One study again Gaussian mixtures Y =
∑p
r=1 δrZr. But we truncate them : we restrict them

on [0,1]. We obtain a density f0 which is equal to 0 anywhere other than on [0,1]. Then we
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Figure A.20: σ̂2
4 = 0.0095

multiply this density truncated by a coefficient c0 so as to have always a density of probability :
i.e.

∫ 1

x=0
c0f0(x)dx = 1.

We denote these truncated mixtures by ”MixtGauss Trunc([Expectation],[Weights],[Variances])”
where [Expectation] = [z1, ...., zp], , [Weights] = [q1, ..., qp], and [V ariances] = [(σG1 )2, .....(σGp )2].

We denote again standardized variances by σ̂2
j = σ2

j

||x2j || .

A.3.1 First type of graphs

On the graphs of examples 21-26, the weigths of Gauss Jacobi
are multiplied by 10 so as to have more readable graphs.

Example 21 : Variance of order 4

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.55,0.8],[0.35,0.2,0.15,1-0.2-0.15-
0.35],[0.0003,0.0002,0.0003,0.00025]) and the variance of order 4.

We obtain σ̂2
2 = 0.0190, σ̂2

3 = 0.0008232, σ̂2
4 = 0.00002.
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Figure A.21: σ̂2
4 = 0.00002

Example 22 : Variance of order 4

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.55,0.8],[0.45,0.2,0.25,1-0.2-0.25-
0.45],[0.0003,0.0002,0.0003,0.00025]) and the variance of order 4.

We obtain σ̂2
2 = 0.0352, σ̂2

3 = 0.0023, σ̂2
4 = 0.000042.
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Figure A.22: σ̂2
4 = 0.000042

Example 23 : Variance of order 4

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.55,0.8],[0.45,0.2,0.25,1-0.2-0.25-
0.45],[0.0001,0.0004,0.0003,0.00025]) and the variance of order 4.

We obtain σ̂2
2 = 0.0346, σ̂2

3 = 0.0021, σ̂2
4 = 0.000025.
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Figure A.23: σ̂2
4 = 0.000025

Example 24 : Variance of order 4

In this example we study the mixture MixtGaussTrunc(0.1,0.3,0.55,0.8],[0.45,0.2,0.25,1-0.2-0.25-
0.45],[0.001,0.004,0.003,0.0025]) and the variance of order 4.

We obtain σ̂2
2 = 0.0380, σ̂2

3 = 0.0032, σ̂2
4 = 0.000237.
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Figure A.24: σ̂2
4 = 0.000237
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Example 25 : Variance of order 4

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.55,0.8],[0.25,0.2,0.35,1-0.2-0.35-
0.25],[0.001,0.004,0.003,0.0025]) and the variance of order 4.

We obtain σ̂2
2 = 0.0274, σ̂2

3 = 0.0019, σ̂2
4 = 0.000148.
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Figure A.25: σ̂2
4 = 0.000148

Example 26: Variance of order 4

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.55,0.8],[0.25,0.2,0.35,1-0.2-0.35-
0.25],[0.001,0.004,0.003,0.0025]) and the variance of order 4.

We obtain σ̂2
2 = 0.0316, σ̂2

3 = 0.0032, σ̂2
4 = 0.000302.
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Figure A.26: σ̂2
4 = 0.000302

A.3.2 Second type of graphs

On the graphs of examples 27-39, the weigths of Gauss Jacobi
are multiplied by 5 so as to have more readable graphs.

Example 27 : Variance of order 3

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.8],[0.2,0.35,1-0.2-0.35],[0.002,0.005,0.01])
and the variance of order 3.

We obtain σ̂2
2 = 0.0183, σ̂2

3 = 0.0021, σ̂2
4 = 0.0001243.
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Figure A.27: σ̂2
3 = 0.0021

Example 28 : Variance of order 3

In this example we study the mixture MixtGaussTrunc([0.1,0.45,0.8],[0.2,0.35,1-0.2-0.35],[0.002,0.005,0.01])
and the variance of order 3.

We obtain σ̂2
2 = 0.0232, σ̂2

3 = 0.0016, σ̂2
4 = 0.0001399.
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Figure A.28: σ̂2
3 = 0.0016

Example 29 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.1,0.65,0.8],[0.2,0.35,1-0.2-0.35],[0.002,0.005,0.01])
and the variance of order 2.

We obtain σ̂2
2 = 0.0144, σ̂2

3 = 0.00075, σ̂2
4 = 0.000116.
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Figure A.29: σ̂2
2 = 0.0144

41



Example 30 : Variance of order 3

In this example we study the mixture MixtGaussTrunc([0.1,0.65,0.8],[0.2,0.35,1-0.2-0.35],[0.002,0.001,0.002])
and the variance of order 3.

We obtain σ̂2
2 = 0.0089, σ̂2

3 = 0.0004456, σ̂2
4 = 0.0000521.
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Figure A.30: σ̂2
3 = 0.0004456

Example 31 : Variance of order 3

In this example we study the mixture MixtGaussTrunc([0.1,0.4,0.8],[0.4,0.35,1-0.4-0.35],[0.002,0.001,0.002])
and the variance of order 3.

We obtain σ̂2
2 = 0.0341, σ̂2

3 = 0.0011, σ̂2
4 = 0.00018.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure A.31: σ̂2
3 = 0.0011

Example 32 : Variance of order 3

In this example we study the mixture MixtGaussTrunc([0.1,0.4,0.8],[0.4,0.35,1-0.4-0.35],[0.006,0.007,0.005])
and the variance of order 3.

We obtain σ̂2
2 = 0.0345, σ̂2

3 = 0.0024, σ̂2
4 = 0.000283.

Example 33 : Variance of order 3

In this example we study the mixture MixtGaussTrunc( [0.1,0.4,0.8],[0.4,0.35,1-0.4-0.35],[0.01,0.013,0.011])
and the variance of order 3.

We obtain σ̂2
2 = 0.0358, σ̂2

3 = 0.0031, σ̂2
4 = 0.000312.
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Figure A.32: σ̂2
3 = 0.0024
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Figure A.33: σ̂2
3 = 0.0031

Example 34 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.8],[0.4,0.35,1-0.4-0.35],[0.01,0.013,0.011])
and the variance of order 2.

We obtain σ̂2
2 = 0.0337, σ̂2

3 = 0.0032, σ̂2
4 = 0.000288.
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Figure A.34: σ̂2
2 = 0.0337

Example 35 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.2 0.8],[0.4,0.6],[0.01,0.013]) and the
variance of order 2.

We obtain σ̂2
2 = 0.0126, σ̂2

3 = 0.0016, σ̂2
4 = 0.000102.
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Figure A.35: σ̂2
2 = 0.0126

Example 36 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.3 0.8],[0.4,0.6],[0.01,0.013]) and the
variance of order 2.

We obtain σ̂2
2 = 0.0126, σ̂2

3 = 0.0010, σ̂2
4 = 0.000072.
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Figure A.36: σ̂2
2 = 0.0126

Example 37 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.3 0.8],[0.3,0.7],[0.03,0.013]) and the
variance of order 2.

We obtain σ̂2
2 = 0.0107, σ̂2

3 = 0.0011, σ̂2
4 = 0.000089.
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Figure A.37: σ̂2
2 = 0.0107
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Example 38 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.3 0.8],[0.3,0.7],[0.03,0.04]) and the vari-
ance of order 2.

We obtain σ̂2
2 = 0.0150, σ̂2

3 = 0.0014, σ̂2
4 = 0.000118.
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Figure A.38: σ̂2
2 = 0.0150

Example 39 : Variance of order 2

In this example we study the mixture MixtGaussTrunc([0.3 0.8],[0.45,0.55],[0.03,0.02]) and the
variance of order 2.

We obtain σ̂2
2 = 0.0164, σ̂2

3 = 0.0017, σ̂2
4 = 0.0001178.
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Figure A.39: σ̂2
2 = 0.0164

A.4 Comparison of the various results

We could wonder because the variances of the mixture truncated in [0,1] are smaller than those
of the variances of Gaussian classic mixtures studied in section A.2. Indeed we could think that,
according to proposition 1.3.8, these standardized variances should not change because σj(αX)2 =
α2jσ2

j and because ||(αX)2j || = α2j ||X2j || : therefore σj(αX)2 = σj(X)2. But there is no error:
it is indeed the case. We can see it by deleting the truncation: in that case, the standardized
variances are much smaller than those of the section A.2.

In fact the difference comes from what it is the translation which changes because we put
ourselves in [0,1] thus positive. In the case of translation, the variances (not standardized) do not
change according to proposition 1.3.3. But, when we make a translation of a, in order to have the
standardized variances, it is necessary to divide, not by ||X2j ||, but by ||(X + a)2j ||. And it is the
moments ||(X + a)2j || which change if a varies.
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Finally, in order to have a complete standardization, it is necessary or to center the random
variable X or to make it positive by a translation.

We can see this by developing the example 39.

Example 40 : Variance of order 2

We use again example 39, but we do not truncate the probability, i.e. we study the mixture
MixtGauss([0.3 0.8],[0.45,0.55],[0.03,0.02]) and the variance of order 2.

We obtain σ̂2
2 = 0.0261, σ̂2

3 = 0.0047, σ̂2
4 = 0.0008356.
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Figure A.40: σ̂2
2 = 0.0261

Example 41 : Variance of order 2

In this example, we use again example 40 where the variable X40 has the distribution of the
mixture MixtGaussTrunc([0.3 0.8],[0.45,0.55],[0.03,0.02]), but we are interested by the variable
5X40 de loi MixtGauss(5[0.3 0.8],[0.45,0.55],25[0.03,0.02]).

We obtain σ̂2
2 = 0.0261, σ̂2

3 = 0.0047, σ̂2
4 = 0.000829.
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Figure A.41: σ̂2
2 = 0.0261

Example 42 : Variance of order 2

In this example we use again example 41 (5X40) which we translate with a=2.5 : 5X40 − 2.5, i.e.
we study the mixture MixtGauss(5*[0.3 0.8]-2.5,[0.45,0.55],25*[0.03,0.02]).

We obtain σ̂2
2 = 0.4515, σ̂2

3 = 0.2655, σ̂2
4 = 0.1339.
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Figure A.42: σ̂2
2 = 0.4515

A.5 Conclusion

We thus see that the standardization σ2
j

||x2j || gives a first way in order to be able to compare in a
simple way the meaning of the value of the variances. But in fact, it is insufficient because if we
make a translation, the standardized variances change, although they describe nevertheless the
same type of concentration. Thus if we want to standardize better the variances, it seems that it
is necessary to use or centered standardized variances σ̂2

j either to impose on them to be positive
with a very strong probability.

It seems that it is the good method. In that case, only with the value of the standardized
variance of order j, we shall know generally if there is concentration or not near j distinct points.
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Appendix B

Example of the decomposition of a
Gaussian mixture

We study again Gaussian mixtures and we keep notations 4.1.1 : Y =
∑p
r=1 δrZr, where Zr−zr =

σGr εr ∼ N(0, (σGr )2), and P (δr = 1) = qr. In this chapter, we study a Gaussian mixture with p=2,
zt = −2, 2, qs = 0.3, 0.7 and (σGs )2 = 0.4, 0.2.

The purpose thus is to find the various parameters of this Gaussian mixture by studying zeros
and weights of the orthogonal polynomials associated in moments of Y+isU for different s .

According to method used in section 4.3, the first component which we have to detect is thus
centered in z1 = 2 with weights q1 = 0.7 and variances (σG1 )2 = 2.

To show how we can proceed in that case we shall give zeros and weights obtained for the
moments of iUs+Y for s = 0.4472 (s2 = 0.2), s = 0.42 and s = 0.465.

B.1 Study of the case s = 0.4472

In this section, we give zeros and obtained weights when we choose s2 = 0.2 = 0.44722, i.e. the
case where the moments of Y+isU are the same that those of a degenerate Gaussian mixture :
because p=2, it is therefore the mixture of a single Gaussian variable centered in z2 = −2 and of
a point of measure not equal to 0 in z1 = 2.

In this chapter, we keep the same notations as in chapters 3 and 4.

1 2 3 4 5
x1s 0.7999 + 0.0021i 0 0 0 0
x2s -2.0947 + 0.0035i 1.9785 + 0.0019i 0 0 0
x3s 1.9984 + 0.0006i -2.5543 + 0.0010i -1.6664 - 0.0217i 0 0
x4s -6.4392 + 3.0067i 1.9987 - 0.0000i -2.5021 - 0.0271i -1.6170 - 0.0739i 0
x5s 4.6792 + 3.3469i 2.0001 - 0.0011i -2.8393 + 0.1739i -2.0098 + 0.1257i -0.8555 - 0.0184i
x6s 3.7629 + 1.1921i 1.1409 - 3.2385i 1.9988 + 0.0007i -2.7987 + 0.1451i -2.0787 + 0.5164i
x7s -2.7246 - 8.6751i 4.3698 + 1.0096i 1.9993 - 0.0015i -2.4209 + 1.9289i -2.9775 + 0.0538i
x8s 5.7651 - 8.0617i -6.9879 - 4.4457i 4.3512 + 1.1518i -1.9338 + 2.6954i 1.9996 - 0.0015i
x9s 3.8350 + 8.1704i 3.8500 - 5.8970i 4.3871 + 0.8763i -4.4901 - 3.2670i 1.9995 - 0.0017i
x10s -10.6214 + 3.3505i 3.1691 + 7.4505i 4.3514 - 4.5626i -3.2789 - 4.3978i 4.2331 + 0.9140i
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6 7 8 9 10
x6s -1.6538 + 0.1866i 0 0 0 0
x7s -1.9770 + 0.0228i -0.5424 - 0.7657i 0 0 0
x8s -2.9646 + 0.0811i -2.0109 + 0.0324i -0.6832 - 0.4678i 0 0
x9s 1.8169 + 1.9957i -2.9771 + 0.0321i -2.0009 + 0.0290i -0.4954 - 0.5376i 0
x10s 1.9994 - 0.0016i -2.2264 + 2.0314i -2.9982 + 0.0582i -2.0010 + 0.0263i -0.5923 - 0.6366i

1 2 3 4 5
λ1s 1 0 0 0 0
λ2s 0.2894 + 0.0006i 0.7106 - 0.0006i 0 0 0
λ3s 0.7123 - 0.0001i 0.1624 - 0.0026i 0.1253 + 0.0027i 0 0
λ4s -0.0000 - 0.0036i 0.7183 + 0.0021i 0.2154 + 0.0159i 0.0663 - 0.0144i 0
λ5s -0.0026 - 0.0028i 0.7107 + 0.0226i 0.0471 - 0.0090i 0.2297 + 0.0813i 0.0151 - 0.0921i
λ6s 0.0032 - 0.0116i -0.0009 - 0.0052i 0.7016 + 0.0177i 0.0887 + 0.0479i 0.0420 + 0.0104i
λ7s -0.0000 + 0.0001i 0.0038 - 0.0064i 0.7078 + 0.0197i 0.0017 - 0.0218i 0.0753 - 0.0408i
λ8s -0.0000 - 0.0000i 0.0000 - 0.0001i 0.0030 - 0.0063i 0.0070 - 0.0075i 0.7073 + 0.0199i
λ9s -0.0000 + 0.0000i -0.0001 - 0.0001i 0.0041 - 0.0058i -0.0001 - 0.0005i 0.7079 + 0.0196i
λ10s -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0002 - 0.0001i -0.0005 - 0.0000i 0.0040 - 0.0066i

6 7 8 9 10
λ6s 0.1653 - 0.0591i 0 0 0 0
λ7s 0.2000 + 0.1151i 0.0114 - 0.0659i 0 0 0
λ8s 0.0558 - 0.0342i 0.2144 + 0.1030i 0.0125 - 0.0747i 0 0
λ9s 0.0163 - 0.0149i 0.0622 - 0.0329i 0.2030 + 0.1087i 0.0067 - 0.0741i 0
λ10s 0.7080 + 0.0192i 0.0067 - 0.0190i 0.0640 - 0.0367i 0.2095 + 0.1140i 0.0086 - 0.0710i

(j,k) xj,k λj,k
(2,2) -1.9785 + 0.0019i 0.7106 - 0.0006i
(3,1) 1.9984 + 0.0006i 0.7123 - 0.0001i
(4,2) 1.9987 - 0.0000i 0.7183 + 0.0021i
(5,2) 2.0001 - 0.0011i 0.7107 + 0.0226i
(6,3) 1.9988 + 0.0007i 0.7016 + 0.0177i
(7,3) 1.9993 - 0.0015i 0.7078 + 0.0197i
(8,5) 1.9996 - 0.0015i 0.7073 + 0.0199i
(9,5) 1.9995 - 0.0017i 0.7079 + 0.0196i
(10,6) 1.9994 - 0.0016i 0.7080 + 0.0192i

B.2 Study of the case s = 0.42

Now we give the zeros and the weights obtained when s = 0.42. By proposition 4.1.3, it is thus
weights of a Gaussian mixture.
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1 2 3 4 5
x1s 0.8012 + 0.0003i 0 0 0 0
x2s -2.0910 - 0.0005i 1.9896 - 0.0004i 0 0 0
x3s 2.0250 - 0.0008i -2.3581 - 0.0067i -1.0526 - 0.0235i 0 0
x4s -2.7331 - 0.0329i -1.7908 - 0.0137i 2.0724 + 0.0102i 1.5103 + 0.0818i 0
x5s 2.0326 + 0.0769i 2.0005 + 0.3007i -3.0517 - 0.0034i -2.1117 + 0.0709i -1.2480 + 0.2945i
x6s 4.0841 + 1.1182i 2.0710 + 0.0314i 1.6488 + 0.1862i -3.3904 + 0.0460i -2.4113 + 0.0064i
x7s 4.7222 + 0.2703i 2.0603 + 0.0416i 1.7330 + 0.3341i -3.4249 + 0.2581i -2.4946 + 0.0075i
x8s -4.6957 - 9.5520i 4.4050 + 0.4902i -3.9583 + 1.0601i 2.0669 + 0.0402i 1.7252 + 0.2585i
x9s 4.2578 + 9.8226i -1.9753 - 6.3435i 4.4381 + 0.4786i 2.0663 + 0.0428i 1.7416 + 0.2685i
x10s -4.9984 + 2.1066i -0.7756 + 4.2933i 4.3961 + 0.3496i -0.4218 - 2.6168i 1.0959 - 1.6983i

6 7 8 9 10
x6s -1.5958 + 0.0051i 0 0 0 0
x7s -1.0196 + 1.0130i -1.7567 - 0.0136i 0 0 0
x8s -3.1386 - 0.0071i -2.3089 + 0.1280i -1.5613 + 0.1695i 0 0
x9s -3.7804 + 0.4639i -2.9044 - 0.0776i -2.1904 + 0.0914i -1.5003 + 0.2201i 0
x10s 2.0778 + 0.0382i 1.7724 + 0.1972i -3.3502 + 0.2027i -2.3679 + 0.0743i -1.5104 + 0.0398i

1 2 3 4 5
λ1s 1 0 0 0 0
λ2s 0.2912 - 0.0001i 0.7088 + 0.0001i 0 0 0
λ3s 0.7020 + 0.0003i 0.2349 - 0.0021i 0.0631 + 0.0018i 0 0
λ4s 0.0685 - 0.0048i 0.2443 + 0.0039i 0.6925 - 0.0153i -0.0053 + 0.0163i 0
λ5s 0.9901 + 0.2637i -0.3355 - 0.2584i 0.0828 - 0.0241i 0.0465 + 0.1288i 0.2162 - 0.1101i
λ6s 0.0006 - 0.0083i 0.6419 + 0.0132i 0.0423 - 0.0125i 0.0329 + 0.0085i 0.0605 - 0.0277i
λ7s 0.0025 - 0.0017i 0.7484 + 0.0257i -0.0978 - 0.0347i -0.0085 + 0.0152i 0.2030 - 0.1345i
λ8s -0.0000 - 0.0000i 0.0034 - 0.0030i 0.0014 - 0.0143i 0.7298 - 0.0204i -0.0672 + 0.0228i
λ9s 0.0000 + 0.0000i -0.0001 - 0.0000i 0.0028 - 0.0031i 0.7408 - 0.0053i -0.0809 + 0.0063i
λ10s -0.0001 - 0.0003i -0.0004 + 0.0002i 0.0017 - 0.0008i 0.0050 - 0.0081i 0.0457 - 0.0275i

6 7 8 9 10
λ6s 0.2217 + 0.0268i 0 0 0 0
λ7s 0.0466 - 0.1142i 0.1057 + 0.2442i 0 0 0
λ8s 0.1429 - 0.0048i -0.1758 + 0.1050i 0.3654 - 0.0853i 0 0
λ9s -0.0137 - 0.0107i 0.1890 - 0.0748i -0.1868 + 0.2360i 0.3489 - 0.1482i 0
λ10s 0.9435 - 0.1280i -0.2854 + 0.2116i 0.0224 - 0.0024i 0.1463 + 0.0739i 0.1213 - 0.1186i
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(j,k,k’) xj,k xj,k′ λj,k λj,k′

(2,2) 1.9896 - 0.0004i 0 0.7088 + 0.0001i 0
(3,1) 2.0250 - 0.0008i 0 0.7020 + 0.0003i 0
(4;3,4) 2.0724 + 0.0102i 1.5103 + 0.0818i 0.6925 - 0.0153i -0.0053 + 0.0163i
(5;1,2) 2.0326 + 0.0769i 2.0005 + 0.3007i 0.9901 + 0.2637i -0.3355 - 0.2584i
(6;2,3) 2.0710 + 0.0314i 1.6488 + 0.1862i 0.6419 + 0.0132i 0.0423 - 0.0125i
(7;2,3) 2.0603 + 0.0416i 1.7330 + 0.3341i 0.7484 + 0.0257i -0.0978 - 0.0347i
(8;4,5) 2.0669 + 0.0402i 1.7252 + 0.2585i 0.7298 - 0.0204i -0.0672 + 0.0228i
(9;4,5) 2.0663 + 0.0428i 1.7416 + 0.2685i 0.7408 - 0.0053i -0.0809 + 0.0063i
(10;6,7) 2.0778 + 0.0382i 1.7724 + 0.1972i 0.9435 - 0.1280i -0.2854 + 0.2116i

B.3 Study of the case s = 0.465

Now we give the zeros and the weights obtained when s = 0.465. By proposition 4.1.3, Moments
are not the ones of a real variable. You should not thus expect that 2j first moments are the ones
of a real variable. We could thus have complex zeros or weights λi,s negative or complex.

1 2 3 4 5
x1s 0.7999 + 0.0012i 0 0 0 0
x2s -2.0974 + 0.0023i 1.9723 + 0.0019i 0 0 0
x3s 1.9824 + 0.0022i -3.4003 - 0.1706i -1.9981 - 0.0049i 0 0
x4s 2.2226 - 0.5011i 1.9998 + 0.0213i -2.5952 - 0.0633i -1.7760 - 0.0326i 0
x5s -0.9301 + 2.5063i 1.9726 + 0.0172i 1.5642 - 0.6725i -2.6105 + 0.0504i -1.7935 + 0.0750i
x6s 2.1542 - 4.3900i 1.9779 + 0.0315i 1.8673 - 0.5109i -2.0882 + 1.6927i -2.6140 + 0.0609i
x7s -4.0445 - 1.1166i -2.5830 - 0.0889i -1.1113 + 1.7324i -1.7869 - 0.0422i 1.9629 + 0.0175i
x8s 7.4286 + 7.6357i -3.8099 - 0.4467i -2.5200 - 0.0939i -0.5367 + 1.4318i -1.7567 - 0.0431i
x9s 5.5073 - 1.5124i -2.1892 + 3.9845i -3.6539 + 0.5069i 1.9638 + 0.0170i 1.4868 - 0.5080i
x10s 0.7514 - 9.8259i 4.9901 + 1.0882i -2.5534 + 2.4457i -3.6633 + 0.6709i 1.9612 + 0.0252i

6 7 8 9 10
x6s -1.7695 + 0.0840i 0 0 0 0
x7s 1.5065 - 0.5995i 0.6621 + 0.3326i i 0 0 0
x8s 1.9650 + 0.0277i 1.6981 - 0.4255i 0.0348 - 0.8821i 0 0
x9s 0.0590 + 1.3782i -0.3983 - 1.4185i -2.4776 + 0.1129i -1.7223 + 0.1247i 0
x10s 1.6518 - 0.4035i -0.6439 - 1.6753i 0.0349 + 1.3887i -2.4750 + 0.1175i -1.7020 + 0.1120i

1 2 3 4 5
λ1s 1 0 0 0 0
λ2s 0.2881 + 0.0005i 0.7119 - 0.0005i 0 0 0
λ3s 0.7171 - 0.0011i 0.0395 - 0.0075i 0.2434 + 0.0086i 0 0
λ4s 0.0376 + 0.0754i 0.6511 - 0.0797i 0.0877 - 0.0209i 0.2236 + 0.0252i 0
λ5s 0.0324 - 0.0156i 0.8350 - 0.1030i -0.1562 + 0.0429i 0.1443 - 0.0471i 0.1445 + 0.1227i
λ6s 0.0017 - 0.0023i 0.6944 - 0.2338i -0.0369 + 0.2284i -0.0359 - 0.0280i 0.0879 - 0.0513i
λ7s -0.0089 - 0.0072i 0.1394 + 0.1664i -0.0738 + 0.0483i 0.0841 - 0.3429i 1.1414 - 0.2598i
λ8s 0.0000 + 0.0000i 0.0167 - 0.0099i -0.0673 - 0.0069i 0.0019 - 0.1350i 0.5480 + 0.0057i
λ9s -0.0001 + 0.0004i 0.0019 - 0.0009i -0.0101 + 0.0227i 1.0133 - 0.2299i -0.4804 + 0.0335i
λ10s -0.0000 - 0.0000i 0.0001 - 0.0009i -0.0032 - 0.0145i -0.0220 + 0.0079i 1.0615 - 0.2792i
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6 7 8 9 10
λ6s 0.2888 + 0.0871i 0 0 0 0
λ7s -0.5185 - 0.2200i 0.2364 + 0.6152i 0 0 0
λ8s 1.0290 - 0.4143i -0.5501 + 0.2741i 0.0218 + 0.2863i 0 0
λ9s 0.1836 - 0.0825i -0.0874 + 0.0608i 0.1150 - 0.2117i 0.2642 + 0.4075i 0
λ10s -0.4896 + 0.1238i -0.0622 + 0.0012 0.1594 - 0.0791ii 0.2280 - 0.2382i 0.1280 + 0.4789i

(j,k,k’,k”) xj,k xj,k′ xj,k” λj,k λj,k′ λj,k”
(2,2) 1.9723 + 0.0019i 0 0 0.7119 - 0.0005i 0 0
(3,1) 1.9824 + 0.0022i 0 0 0.7171 - 0.0011i 0 0
(4;1,2) 2.2226 - 0.5011i 1.9998 + 0.0213i 0 0.0376 + 0.0754i 0.6511 - 0.0797i 0
(5;2,3) 1.9726 + 0.0172i 1.5642 - 0.6725i 0 0.8350 - 0.1030i -0.1562 + 0.0429i 0
(6;1,2,3) 2.1542 - 4.3900i 1.9779 + 0.0315i 1.8673 - 0.5109i 0.0017 - 0.0023i 0.6944 - 0.2338i -0.0369 + 0.2284i
(7;5,6) 1.9629 + 0.0175i 1.5065 - 0.5995i 0 1.1414 - 0.2598i -0.5185 - 0.2200i 0
(8;6,7) 1.9650 + 0.0277i 1.6981 - 0.4255i 0 1.0290 - 0.4143i -0.5501 + 0.2741i 0
(9;4,5) 1.9638 + 0.0170i 1.4868 - 0.5080i 0 1.0133 - 0.2299i -0.4804 + 0.0335i 0
(10;5,6) 1.9612 + 0.0252i 1.6518 - 0.4035i 0 1.0615 - 0.2792i -0.4896 + 0.1238i 0

B.4 Conclusion

In the example studied here, we see that it is thus possible to detect zeros easily and also value
of s. For example, if we choose s=0,465, we see weights bigger than 1 : they indicate that we
have exceeded the possible values in order to have a sequence of not imaginary real variables. It
is combined with negative weights. We can thus look from when we have too important negative
weights to try to determine s. By studying these points for various values of s, we shall thus have
curves as in section 4.2, what will allow us to determine easily s

In fact this behavior can depend on samples or on parameters: it will be maybe not the same
thing for other samples or other mixtures. It will thus be necessary to make a more complete
study of the behavior of the weights λj,s when s increases.

However in examples as above, we can determine easily the first s, the zeros and the variance.
Let us remark that one could also estimate the moments of Y+isU without using samples of

Y+isU, but by computing real moments of the Gaussian random variable U :

Ee{(Y + isU)j} =
j∑

k=0

j!
k!(j − k)!

Ee{Y k}E{(isU)k−j} =
j∑

k=0

j!
k!(j − k)!

Ee{Y k}(i.s)k−jE{Uk−j} ,

where the moments E{Uk−j} are the Gaussian moments of N(0,1) and where Ee{Y k} are empirical
moments of the sample of Y.

Let us notice now that this example is an example easy to study. Indeed in that case, the
smallest variance is associated with the biggest weight. It is thus normal that the zero s2 = 2
show up fast. Otherwise, it could be more delicate. It will then be necessary to take values of j
bigger. It will thus depend on computers and on necessary programs to calculate the orthogonal
polynomials. But with the advances of the researches in these domains, we can hope to improve
this kind of result .

As deja seen in [9], we can finally hope to have simple methods to detect the components of
Gaussian mixtures.
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But here, it is not the purpose of this report : this purpose, it is to show some possibilities of
the variances of higher order and of the quadrature of Gauss Jacobi in Probability and Statistics.
A more complete study can be done later in order to understand if we can really obtain programs
which allow to find the components of a Gaussian mixture with efficiency and can be even more
efficiency than the algorithm EM.
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