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In this report, we continue the study of higher order variances and quadrature Gauss Jacobi. Recall that the variance of order j measures the concentration of a probability close to j points x j,s with weight λ j,s which are determined by the parameters of the quadrature Gauss Jacobi. We shall study the normalized variances. We shall specify how to detect the parameters of Gaussian mixtures Summary : Dans ce rapport, nous poursuivons l'étude des variances d'ordre supérieur et la quadrature de Gauss Jacobi. On rappelle que la variance d'ordre j mesure la concentration d'une probabilité autour de j points x j,s avec des poids λ j,s qui sont déterminés par les paramêtres de la quadrature de Gauss Jacobi. On étudiera le comportement des variances normalisées et on précisera comment détecter les paramêtres des mélanges gaussiens.
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Chapter 1

Higher Order Variances

Introduction

Orthogonal polynomials have many interesting applications in Probability and Statistics. So they have introduced higher order correlation coefficients and higher order variances (cf [START_REF] Blacher R | Higher Order Correlation Coefficients[END_REF], [START_REF] Blacher R | Higher Order Correlation Coefficients[END_REF], [START_REF] Blacher R | Indicateurs de dépendance fournis par le développement en série de la densité de probabilité[END_REF], [START_REF] Blacher R | Quelques applications des fonctions orthogonales en probabilités et statistiques[END_REF], [START_REF] Blacher R | Coefficient de correlation d'ordre (i,j) et variances d'ordre i[END_REF], [START_REF] Blacher R | Coefficient de correlation d'ordre (i,j) et variances d'ordre i[END_REF], [START_REF] Blacher R | Central limit theorem by polynomial dependence coefficients[END_REF]). They also have introduced new hypotheses for the central limit theorem (cf [START_REF] Blacher R | Central limit theorem by polynomial dependence coefficients[END_REF]). They allow also to obtain the distributions of quadratic forms, Gaussian or not Gaussian, and simple methods of calculation of these laws (cf [START_REF] Blacher R | Multivariate quadratic forms of random vectors[END_REF]).

Higher order variances have been introduced in [START_REF] Blacher R | Coefficient de correlation d'ordre (i,j) et variances d'ordre i[END_REF] and [START_REF] Blacher R | Coefficient de correlation d'ordre (i,j) et variances d'ordre i[END_REF]. They generalize the classical variance. Thus, variance of order 1 measures the concentration of a probability close to a point: the expectation. Variance of order j measures the concentration close to j points which are the zeros of the j-th orthogonal polynomial.

Notations 1.1.1 Let X be a random variable defined on (Ω, A, P ). Let m be the distribution of X. Let Pj be the j-th orthogonal polynomial associated to X such that Pj (x) = j-1 t=0 a j,t x t + x j . We set n m 0 = dim L 2 (R, m) . Let Θ ⊂ N such that Pj (x) exists if j ∈ Θ. We denote by P j the j-th orthonormal polynomial associated to X if there exists.

The proof is in [START_REF] Chihara | An introduction to orthogonal polynomials Gordon and Breach[END_REF] if j = n m 0 . If j = n m 0 , it is in [START_REF] Blacher R | Coefficient de correlation d'ordre (i,j) et variances d'ordre i[END_REF] (cf also [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]).

For example, if j=2, 2 1 (x) =

x-x2,2

x2,1-x2,2 and 2 2 (x) = Now, we complete the definition of Gauss Jacobi quadrature by defining higher order variances. Definition 1.1.2 Let j ∈ Θ . We call variance of order j, and we note it by σ 2 j or σ j (X) 2 or σ j (m) 2 the real σ 2 j = | Pj | 2 .dm .

Remark that Pj = σ j P j . Moreover, σ 1 (X) 2 = M 2 -M 2 1 is the classical variance. Now, if j=2,

σ 2 2 = M 4 -(M3-M1M2) 2 M2-M 2 1 -M 2 2 .
Then, the variance of order j measure the concentration of X close to j distinct points.

Theorem 2 Let j ∈ Θ . Then, σ j = 0 if and only if m is concentrated in j distincts points which are the zeros of Pj : the x j,t 's. Moreover the probability associated at each x j,t is equal at λ j,t . In this case, j = n m 0 < ∞ and Pj = 0 in L 2 (R, m) .

Then, variances of higher order generalize the classical variance which one can call variance of order 1. Indeed, classical variance measure the concentration close to expectation. For the variance of order j, the zeros of Pj plays this role. Moreover we know the weight associated : the λ j,t 's. All these properties justify well the name of variances of higher order.

We wonder then which applications are possible. We think immediately to Gaussians mixtures. We are going to recall in this report that we can indeed apply these variances to solve this problem.

Some examples

In this section, we shall study some examples which allow to well understand the role which can play higher order variances and Gauss Jacobi quadrature in the distribution of probability.

Bienayme-Tschbichev Inequality

At first, recall that the Bienayme-Tschbichev Inequality allows to specify more this concentration autour de j points distincts. In particular assume that σ 2 j is small enough. Let ω such that | Pj (X(ω))| ≤ . Then, with a strong probability, there exists s such that |X(ω) -x j,s | ≤ . Then, the variance of order j measures the concentration of a probability close to j distincts points.

For example, let us study P3 (x) = (x -0.95)(x -0.5)(x -0. Then, if σ 2 3 is small (here 10 -5 ) P {X / ∈ I 1 ∪ I 2 ∪ I 3 } is small also, i.e. X is concentrated close to points x 3,1 = 0.1, x 3,2 = 0.5, x 3,3 = 0.95. We also notice that what teaches us the Bienayme Tchebicheff inequality is generally enough limited. Indeed, it is necessary that σ 2 3 is very small in order to be sure that X is concentrated close to x 3,1 , x 3,2 , x 3,3 : It is not surprising because this inequality is rather unrefined.

Examples

Indeed, when we study examples, we understand that higher order variances give better indications than it. In a enough large number of case where the probability are rather concentrated around certain points, we obtain results corresponding better to what we can hope.

Indeed, the following figures are clear enough to get an idea of density and weight λ j,t 's of various probabilities. Many other examples confirm these results : cf [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF] section1.1.1 ( cf also section A). Now, we see that concentrations of figures 1.2.2 and 1.2.2 are not so different. Nevertheless the variances are completement different. It is due to the fact that figure 1.2.2 is concentrated in [0,1] and figure 1.2.2 is concentrated in [-5,5] (cf appendix A).

Then, one asks oneself if there exists a way for normalizing variances. Then, a normalization can may be done by considering the number σj = σj ||x j || which represents the sinus of the angle between the polynomial x j and the subspace spanned by polynomials of degree strictly less than j.

In appendix A, we understand that it is a good standardization. In particular, if we apply an homothety, normalized variances do not change (cf proposition 1.3.8).

Unfortunately, it is insufficient because if a translation is done, variances do not change (cf proposition 1.3.3), but standardized variances change. Finally if we want to standardize well the variances, it seems that it is necessary to use at first the standardized variances σ2 j , and then, or to center the random variable X, or to impose by translation that it is positive with a probability very strong.

It seems that it is the good method. In that case, only in the value of the standardized variance of order j, we shall know generally if there is concentration or not near j distincts points.

Theoretical examples

Now, we can also calculate the variances of the classic distributions. Here we give this result for the normal laws. But we can find the variances of the other classic laws page 21 of [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF].

Proposition 1.2.2 Let Ĥj (x) = e x 2 d j (e -x 2
) dx be a Hermite orthogonal polynomial. We suppose that X has the N (m, σ 2 ) distribution. We denote by H mσ 2 j and σ mσ 2 j 2 the associated Hermite orthonormal polynomials of order j and variances of order j. Then,

H mσ 2 j (x) = (-1) j σ j 2 j/2 Ĥj x -m σ √ 2 , σ mσ 2 j 2 = j!σ 2j .
For example for the distribution N(0,0. 

j 2 = j!σ 2j 2j!σ 2j 2 j j! = 2 j (j!) 2 2j! .
Then, for j=1,2,3,4, σ0σ 2 j 2 ≈ 1, 0.666, 0.4, 0.228.

Then, even if σ 2 j is small, σ 2 j can mean not that there is a concentration close to j distinct points. It is enough that the classical variance of a Gaussian distribution is small. Remark that, generally 2 j (j!) 2 2j! is bigger than the σ2 i 's of the appendix A. Then, the σ2 j 's seems well to be good indicators of the concentration of a probability near j distinct points. Let us notice that, in that case, we consider gaussian centered variables, what is one of means of standardization of the variances which we envisage.

Some properties

Points of concentration of a probability can be detected using various properties of the Gauss Jacobi Quadrature. The most important of these properties is the Stieltjes-Markov Inequality.

Proposition 1.3.1 Let F X be the distribution function of X. Then, for all k ∈1,2,..,j,

xj,s<x j,k λ j,s ≤ F X (x j,k -0) and xj,s≤x j,k λ j,s ≥ F X (x j,k + 0) .
These results are proved pages 26-29 of [START_REF] Freud Geza | Orthogonal polynomials[END_REF] : equation 5.4. For example, in figure 1.5, we have the distribution function of m and m j . In particular, this inequality means that if F X has a point of discontinuity x j,k < x 0 < x j,k+1 , then F X (x 0 + 0) -F X (x 0 -0) = b > 0, i.e. m(x 0 ) = b. Because this discontinuity is between two zeros, we thus find λ j,k + λ j,k+1 ≥ b for all j.

On the contrary, if F X possess certain properties of continuity, m j d → m. Moreover λ j,k 's converges regularly to 0 and distances of successive zeros x j,k converges to 0 (cf [START_REF] Freud Geza | Orthogonal polynomials[END_REF]). Some of these properties are grouped together in [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF] : http://hal.archives-ouvertes.fr/hal-00587108/fr/.

These theorems in particular means that if there is no point x 0 such that m({x 0 }) > 0, the distribution of zeros and weights is enough regular. Because this is not the case if m({x 0 }) > 0, it will detect the existence of those discontinuities by a way enough simple.

In particular, there cannot be more than two zeros in an interval of measure zero. Proposition 1.3.2 It can not be three successive zeros x j,s < x j,s+1 < x j,s+2 such that P {X ∈ [x j,s , x j,s+2 ]} = 0 if λ j,s+1 > 0.

Proof By Stieljes Markov inequality, we know that xj,s<x j,k+2 λ j,s ≤ F X (x j,k+2 -0) and xj,s≤x j,k λ j,s ≥ F X (x j,k + 0) . Then,

0 = F X (x j,k+2 ) -F X (x j,k ) = F X (x j,k+2 -0) -F X (x j,k + 0) ≥ xj,s<x j,k+2 λ j,s - xj,s≤x j,k λ j,s = λ j,k+1 > 0 .
Now, the variance of order j is invariant by translation.

Proposition 1.3.3 Let a ∈ R. Let m a the translated probability : m a (B) = P (X + a ∈ B) . For each j ∈ Θ, the (j+1)-th orthonormal polynomial associated at m a is Pj (x -a) . Moreover, let x j,1 , x j,2 , ...., x j,j , the zeros of Pj (x -a) , λ j,1 , λ j,2 , ...., λ j,j , be the weights of associated Gauss-Jacobi Quadrature, and σ 2 j be the variance of order j associated at m a . Then, x j,s = x j,s + a , λ j,s = λ j,s and σ

2 j = σ 2 j .
In order to prove this result, it is enough to remark that Pj (x -a) Pk (x -a).m a (dx) = Pj (x) Pk (x).m(dx).

The following proposition results from the Gram-Schmidt Process Proposition 1.3.4 The real σ j is the distance in L 2 (R, m) of the polynomial x -→ x j to the subspace of L 2 (R, m) spanned by the polynomials of degree more little than j-1. Moreover, the minimum of (x-t 1 )(x-t 2 )...(x-t j ) 2 .m(dx) when (t 1 , t 2 , ....., t j ) ∈ R j is reached for (t 1 , t 2 , ....., t j ) = (x j,1 , x j,2 , ....., x j,j ) and is equal to σ 2 j .

Now recall how to calculate practically the variance of order j.

Proposition 1.3.5 Let j ∈ Θ. Then,

σ 2 j = M 2j - j-1 s=0
β 2 j,s where β j,s = x j P s (x).mdx .

Proof We have Pj = x j - j-1 s=0 E{X j P s (X)}P s (x) .
Therefore,

σ 2 j = x j - j-1 s=0 E{X j P s (X)}P s (x) 2 m(dx) = x 2j m(dx) -2 x j j-1 s=0 E{X j P s (X)}P s (x) m(dx) + j-1 s=0 E{X j P s (X)}P s (x) 2 m(dx) = x 2j m(dx) -2 j-1 s=0 E{X j P s (X)} 2 + j-1 s=0 E{X j P s (X)} 2 .
We specify now how the a j,t 's are obtained.

Proposition 1.3.6 For all j ∈ N, for all t ∈ {1, 2, ...., j},

Pj (x) = j t=0 a j,t x t = j t=0 O j-t (X)x t ,
when O s (X) = Nr(X) Dt(X) where r -t = s and where N r and D r mean any polynomial, function of the M i 's which are sum or difference of terms in the form

M n0 0 M n1 1 M n2 2 ......M nq q , 0n 0 + 1n 1 + 2n 2 + .... + qn q = r, n i ∈ N. Proof Remark that, by our definition N t (X)N s (X) = N s+t (X), D t (X)D s (X) = D s+t (X), N t (X) + N t (X) = N t (X) and D t (X) + D t (X) = D t (X). Therefore, O t (X)O s (X) = O s+t (X) and O t (X) + O t (X) = O t (X).
Proposition holds when j=0,1,2. Thus, P0 ≡ 1, P1 (

x) = x -O 1 (X) = O 0 (X)x -O 1 (X) where O 1 (X) = M 1 , and O 0 (X) = M 0 . Moreover, P2 (x) = x 2 -M3-M1M2 M2-M 2 1 (x -M 1 ) -M 2 = x 2 -O 1 (X)(x -M 1 ) -O 2 (X) = O 0 (X)x 2 -O 1 (X)x -O 2 (X).
Then, we suppose that Pj (x) = j t=0 O j-t (X)x t for all j < J.

Therefore,

Pj (x) 2 = j t,t =0 O j-t (X)O j-t (X)x t x t = 2j t"=0 t+t =t" O j-t (X)O j-t (X)x t x t = 2j t"=0 t+t =t" O 2j-t" (X)x t" = 2j t"=0 O 2j-t" (X)x t" .
Therefore,

Pj (x) 2 .m(dx) = 2j t"=0 O 2j-t" (X) x t" .m(dx) = 2j t"=0 O 2j-t" (X)O t" (X) = O 2j (X) .
Therefore, σ j (X) 2 = O 2j (X).

Then, Ps (x)

σ 2 s = s t=0 O s-t (X) O 2s (X) x t = s t=0 O -s-t (X)x t .
Therefore, x J Ps (x)

σ 2 s = s t=0 O -s-t (X)x t+J .
Because P s (x) = Ps(x) σs , then,

E{X J P s (X)} σ s = E{X J Ps (X)} σ 2 s = s t=0 O -s-t (X)M t+J = O J-s (X) .
Then, by the Gram-Schmidt Process and by recurrence,

PJ (x) = x j - J-1 s=0 E{X J P s (X)}P s (x) = x j - J-1 s=0 E{X j Ps (X)} σ 2 s Ps (x) = x J - J-1 s=0 O J-s (X) s t=0 O s-t (X)x t = x J - J-1 s=0 s t=0 O J-t (X)x t = x J - J-1 s=0 O J-s (X)x s = J s=0 O J-s (X)x s .
We are now interested in the orthogonal polynomials associated to αX.

Proposition 1.3.7 We denote by P α j = j s=0 c α j,s x s the orthonormal polynomials associated to αX, α ∈ R + . For all j ∈ N, j < n m 0 , for all s ∈ {1, 2, ...., j}, we set c α j,s = α s c j,s . Then,

P j (x) = j t=0 c j,t x t .
Proof Let Q j (x) = j s=0 c j,s x s . Then,

δ i,j = E P α j (αX)P α i (αX) = E j t=0 c α j,t (αX) t i s=0 c α i,s (αX) s = j t=0 i s=0 c α j,t c α i,s E (αX) t+s = j t=0 i s=0 c j,t c i,s E{X t+s } = E Q j (X)Q i (X) .
Then, the polynomials Q j (x) = j s=0 c j,s x s are orthonormal with respect to the measure m. Now orthonormal polynomials such that c j,j > 0 are determined by recurrence by the process of Gram Schmidt and are unique (cf Corollary page 9 of [START_REF] Chihara | An introduction to orthogonal polynomials Gordon and Breach[END_REF]). Then, Q j = P j .

For example, one can prove by recurrence that they are unique. One sets Qj (x) = j s=0 cj,s cj,j x s = j-1 s=0 cj,s cj,j x s +x j . By the orthogonality of the Q j 's , -j-1 s=0 cj,s cj,j x s is the orthogonal projection of x → x j onto the subspace spanned by x → x s , s < j. This one is unique. Then, by Gram Schmidt Process, Qj (x) = Pj (x).

Then,

1 = E Q j (X) 2 = E [c j,j Qj (X)] 2 = E [c j,j Pj (X)] 2 = c 2 j,j σ 2 j . Therefore, c 2 j,j = 1 σ 2 j . Therefore, Q j (x) = P j (x).
Therefore, Q j (x) = j s=0 c j,s x s = P j (x) where c α j,s α s = c j,s .

Exemple j=0 : In this case, c α 0,0 α 0 = c 0,0 = 1 : Q 0 (x) = P 0 (x) = 1.

Exemple j=1 : In order to compare better, it is necessary to use the proposition 1.3.8 below. Then, we remark that

E{X} σ 1 = E{αX} σ α 1 = c α 1,0 = c α 1,0 α 0 def = c 1,0 = E{X} σ 1 , 1 σ 1 = α σ α 1 = c α 1,1 α 1 def = c 1,1 = 1 σ 1
Proposition 1.3.8 Let σ j (αX) 2 be the variance of order j associated to αX . Then,

σ j (αX) 2 = α 2j σ 2 j .
Proof We know that c 2 j,j = 1 σ 2 j , Q j (x) = P j (x) and c α j,s α s = c j,s .

Therefore,

P α j (x) = j s=0 c α j,s x s = j s=0 c j,s α s x s .
Therefore,

P α j (x) = j s=0 c α j,s c α j,j
x s = j s=0 c j,s α j c j,j α s x s = j s=0 c j,s α j-s σ j x s .

Therefore,

σ j (αX) 2 = E P α j (αX) 2 = j s=0 j t=0 c j,s α j-s c j,t α j-t σ 2 j E (αX) s+t = α 2j σ 2 j j s=0 j t=0 c j,s c j,t E (αX) s+t α t+s = α 2j σ 2 j j s=0 j t=0 c j,s c j,t E X s+t = α 2j σ 2 j E P j (X) 2 = α 2j σ 2 j .
Therefore, σ j (αX) 2 = α 2j σ 2 j .

Now we are interested by the quadrature of Gauss Jacobi of αX.

Proposition 1.3.9 Let P α j (x) = j s=0 a α j,s x s be the orthogonal polynomials associated to αX such that a α j,j = 1. Let x α j,s and λ α j,s , s=1,2,....,j, be the zeros and the weigths of the quadrature of Gauss Jacobi associated to αX. Then for all j ∈ N * , for all s ∈ {1, 2, ...., j}, x α j,s = αx j,s and λ α j,s = λ j,s .

Proof By proposition, 1.3.8, j s=0 a α j,s x s = P α j (x) = σ α j P α j (x) = α j σ j P α j (x) = α j σ j j s=0 c α j,s x s = α j σ j j s=0 (c j,s /α s )x s = α j j s=0 a j,s α s x s .

Therefore, a α j,s = α j aj,s α s .

Therefore, j s=0 a α j,s α s x s j,t = j s=0 α j a j,s α s x s j,t α s = α j j s=0 a j,s x s j,t = 0 .

Therefore the zeros of P α j are the αx j,t 's.

In order to study the weigths j s (x),it is enough to study j

1 (x) = (x-xj,2)(x-xj,3)...(x-xj,j ) (xj,1-xj,2)(xj,1-xj,3)...(xj,1-xj,j )
. Indeed one deduces the other j s (x)'s by permuting the definition of the x j,t 's.

Therefore,

λ j,1 = (x -x j,2 )(x -x j,3 )...(x -x j,j ) (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) m(dx) .
. Moreover,

λ α j,1 = (x -x α j,2 )(x -x α j,3 )...(x -x α j,j ) (x α j,1 -x α j,2 )(x α j,1 -x α j,3 )...(x α j,1 -x α j,j ) m α (dx) . = (x -x α j,2 )(x -x α j,3 )...(x -x α j,j ) α j-1 (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) m α (dx) . =
x j-1 -(x α j,2 + x α j,3 + ...... + x α j,j )x j-2 + .................. + (-1) j-1 x α j,2 x α j,3 .............x α j,j

α j-1 (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) m α (dx) = α j-1 M j-1 -(x α j,2 + x α j,3 + ...... + x α j,j )α j-2 M j-2 + .................. + (-1) j-1 x α j,2 x α j,3 .............x α j,j α 0 M 0 α j-1 (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) = α j-1 M j-1 -α 1 (x j,2 + x j,3 + ...... + x j,j )α j-2 M j-2 + .................. + (-1) j-1 α j-1 x j,2 x j,3 .............x j,j α 0 M 0 α j-1 (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) = M j-1 -(x j,2 + x j,3 + ...... + x j,j )M j-2 + .................. + (-1) j-1 x j,2 x j,3 .............x j,j M 0 (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) = λ j,1 .

Chapter 2 Estimation

We will see that one can easily estimate the higher order variances and the Gauss Jacobi quadrature. We can also obtain their asymptotic distributions because we know the asymptotic distributions of empirical orthogonal functions.

At first, we need empirical orthogonal polynomials.

Notations 2.0.1 Let h ∈ N such that Ph exists. Let {X } ∈N , X ∈ R, be an IID sequence of random variables where X 0 = X. For all n ∈ N * , we denote by m n the empirical measure associated at the sample {X } =1,2,..,n .

Notations 2.0.2 Let { P n j } j=0,1,..,h and {P n j } j=0,1,..,h be the family of orthogonal polynomials associated to the empirical measure m n such that (P n j ) 2 .dm n = 1 if P n j exists and P n j = j-1 s=0 a n j,s x s + x j if P n j exists. If P n j does not exist, we set P n j = 0 and if P n j does not exist, we set P n j = 0.

We deduce from theorem 6-4 of [START_REF] Blacher R | Higher Order Correlation Coefficients[END_REF] that P n i is an estimator of Pi .

Proposition 2.0.10 For all i ≤ h, we set P n i = Pi + i-1 s=0 αn i,s P s and P n i = P i + i s=0 α n i,s P s . Then, for all (i,s), αn i,s and α n i,s converges almost surely to 0. Now, one can define empirical Gauss Jacobi Quadrature and empirical variances of order j.

Notations 2.0.3 Let j ∈ N. We denote by (σ n j ) 2 the variance of order j of m n , by x n j,1 , x n j,2 , ...., x n j,j the zeros of P n j , by λ n j,1 , λ n j,2 , ...., λ n j,j the weights of Gauss Jacobi quadrature, if these numbers exists. If not, one defines theses variables by 0.

Remark that (σ n 1 ) 2 is the classical empirical variances. Moreover (σ n 2 ) 2 = M n 4 - (M n 3 -M n 1 M n 2 ) 2 M n 2 -(M n 1 ) 2 - (M n 2 ) 2
, where M n j is the empirical moment of order j.

Clearly, these estimators converges almost surely if X is IID.

Proposition 2.0.11 Under the previous assumptions, σ n j a.s.

→ σ j . Moreover, for all j=1,2,..,h, for all s=1,2,..,j, x n j,s a.s. → x j,s and λ n j,s a.s.

→ λ j,s , respectively.

Proof For example, let us write Pj (x) = j t=0 a j,t x t and P n j (x) = j t=0 a n j,t x t . Because αn j,s a.s.

→ 0 and α n j,s a.s. → 0, then, a n j,s a.s. → a j,s . Now, by theorem page 24 of [START_REF] Serfling | Approximation theorems of mathematical statistics[END_REF], we can write the following property. g(a n j,0 , a n j,1 , ....., a n j,j ) a.s.

→ g(a j,0 , a j,1 , ....., a j,j ) if g is continous with P-probability 1. Now, for example, the zero x n j,s is written in a form x n j,s = g 0 (a n j,0 , a n j,1 , ....., a n j,j ). Then, x n j,s a.s.

→ x j,s . . Now, by the theorem 6-9 of [START_REF] Blacher R | Higher Order Correlation Coefficients[END_REF], we have the following theorem.

Theorem 3 We suppose that E{X 4h } < ∞. Then, α n i,s = -P i P s .dm n + o p n -1/2 if s < i and α n i,i = 1- R PiPi.dmn 2 + o p n -1/2
where O p and o p are the sthocastics "O" and "o"

1 . Moreover, αn i,s = -Pi P s .dm n + o p n -1/2 if s < i.
Then, one can generalize the result about the asymptotical distribution of empirical classical variance.

Theorem 4 Under the previous assumptions, √ n (σ n j ) 2 -σ 2 j has asymptotically a normal distribution with mean 0 and variance E Pj (X) 4 -σ 4 j .

Proof : It is easy to prove that √ n P n j P n j .dm n -Pj Pj .dm has asymptotically the same distribution as

√ n Pj Pj .dm n -σ 2 j = n =1 Pj (X ) Pj (X )-σ 2 j √ n
. Then, it is enough to use the Central Limit Theorem.

We obtain now the asymptotical distribution of the estimators of Gauss Jacobi Quadrature.

Theorem 5 For all s=1,2,...,j, we set x n j,s = x j,s + η s . Then,

√ n{η s } s=1,.
.,j has asymptotically a normal distribution with mean 0 and covariance matrix {G s,t } (s,t)∈{1,2,...,j} 2 where

G s,t = E j-1 v=0 P v (x j,s )P v (X)P j (X) j-1 v=0 P v (x j,t )P v (X)P j (X) P j (x j,s ) P j (x j,t )
.

This theorem is deduced from the following lemma by using the CLT.

Lemma 2.0.1 For all s = 1,2,...,j,

η s = 1 P j (x j,s ) Pj (t) j-1 v=0 P v (x j,s )P v (t) .m n (dt) + o p (n -1/2 ) .
Proof We prove this lemma for s=1. First, one proves that √ n η 1 is asymptotically normal. We know that

P n j = Pj + j-1 v=0 αn j,v P v .
Therefore, because P n j (x n j,1 ) = 0 ,

Pj (x n j,1 ) = - j-1 v=0 αn j,v P v (x n j,1 ) . Therefore, √ n Pj (x n j,1 ) = √ n(x n j,1 -x j,1 )(x n j,1 -x j,2 )....(x n j,1 -x j,j ) is asymptotically normal. Moreover (x n j,1 -x j,2 ) -1 ....(x n j,1 -x j,j ) -1 converges almost surely to (x j,1 -x j,2 ) -1 ....(x j,1 -x j,j ) -1
. Therefore, by the theorem of page 19 of [START_REF] Serfling | Approximation theorems of mathematical statistics[END_REF] √ n(x n j,1 -x j,1 ) is asymptotically normal, i.e.

√ n η 1 is asymptotically normal.

By the same way, one proves that √ n η s is asymptotically normal for s=2,3,...,j.

Now one can prove the lemma. Indeed, one can write the following equalities : 

P n j (x) = (x -x j,1 -η 1 )(x -x j,2 -η 2 )......(x -x j,j -η j ) = (x -x j,1 )(x -x j,2 )......(x -x j,j ) - η 1 (x -x j,2 )(x -x j,3 )......(x -x j,j ) - η 2 (x -x j,1 )(x -x j,3 )......(x -x j,
-η j (x -x j,1 )(x -x j,2 )......(x -x j,j-1 ) + o p (n -1/2 ) .
Therefore,

P n j (x j,1 ) = -η 1 (x j,1 -x j,2 )(x j,1 -x j,3 )......(x j,1 -x j,j ) + o p (n -1/2 ) = -η 1 P j (x j,1 ) + o p (n -1/2 ) .
Now, by theorem 3,

P n j (x j,1 ) = Pj (x j,1 ) + j-1 v=0 αn j,v P v (x j,1 ) = j-1 v=0 αn j,v P v (x j,1 ) = j-1 v=0 - Pj P v dm n P v (x j,1 ) + o p (n -1/2 ) .
We deduce the lemma.

Theorem 6 Let j ∈ N such that E{X 4j } < ∞ . For all s=1,2,...,j, and for all u=1,2,..,j, we set

L s (x) = Pj (x) x-xj,s and h s u (x) = Pj (x) (x-xj,s)(x-xj,u) . We define D s u by D s u = j r=1,r =s h s r (x j,s )E{L s (X)} L s (x j,s ) -E{h s r (X)} P u (x j,r ) L s (x j,s ) P j (x j,r ) - P u (x j,s )E{L s (X)} L s (x j,s ) 3 j r=1,s =r h s r (x j,s ) .
Then, √ n{λ n j,s -λ j,s } s=1,..,j has asymptotically the normal distribution with mean 0 and covariance matrix {O s,t } 1≤s,t≤j where

O s,t = E s (X) + j-1 u=0 D s u P u (X) Pj (X) t (X) + j-1 u=0 D t u P u (X) Pj (X) -λ j,s λ j,t .
This theorem is deduced from the following lemma by using CLT.

Lemma 2.0.2 For all s ∈ {1, 2, .., j} ,

λ n j,s = s (t).m n (dt) + j-1 u=0 D s u P u (t) Pj (t) .m n (dt) + o p (n -1/2 ) .
Proof We prove this lemma for s=1. We simplify L 1 (t) in L(t) and h 1 r in h r : L(t) = (t -x j,2 )(t -x j,3 )....(t -x j,j ) , h 2 (t) = (t -x j,3 )(t -x j,4 )....(t -x j,j ) , h 3 (t) = (t -x j,2 )(tx j,4 )....(t -x j,j ) etc. Moreover, we set L n (t) = (t -x n j,2 )(t -x n j,3 )....(t -x n j,j ) .

We know that

λ j,1 = 1 (x).m(dx) = (t -x j,2 )(t -x j,3 )...(t -x j,j ).m(dt) (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) = L(t).m(dt) L(x j,1 )
and that

λ n j,1 = n 1 (x).m n (dx) = (t -x n j,2 )(t -x n j,3 )...(t -x n j,j ).m n (dt) (x n j,1 -x n j,2 )(x n j,1 -x n j,3 )...(x n j,1 -x n j,j ) = L n (t).m n (dt) L n (x n j,1 )
. By proposition 2.0.11, we deduce easily that L n (t).m n (dt) and L n (x n j,1 ) converge almost surely to L(t).m(dt) and L(x j,1 ) , respectively. Therefore,

λ n j,1 -λ j,1 = L n (t).m n (dt) L n (x n j,1 ) - L(t).m(dt) L(x j,1 ) = L n (t).m n (dt) -L(t).m(dt) L n (x n j,1 ) + L(t).m(dt) L n (x n j,1 ) - L(t).m(dt) L(x j,1 ) = L n (t).m n (dt) -L(t).m(dt) L(x j,1 ) - L(t).m(dt) L n (x n j,1 ) -L(x j,1 ) L(x j,1 ) 2 + o p (n -1/2 ) , if √ n L n (t).m n (dt) -L(t).m(dt) and √ n L n (x n j,1 ) -L(x j,1
) are asymptotically normal. Then, we prove this result now. Indeed, 

L n (t).m n (dt) - L(t).m(dt) = (t -x n j,2 )(t -x n j,3 )....(t -x n j,j ).m n (dt) - (t -x j,2 )(t -x j,3 )....(t -x j,j ).m(dt) = (t -x j,2 )(t -x j,3 )....(t -x j,j ).[m n -m](dt) -η 2 (t -x j,3 )(t -x j,4 )....(t -x j,j ).m n (dt) -η 3 (t -x j,2 )(t -x j,4
-η j (t -x j,2 )(t -x j,3 )....(t -x j,j-1 ).m n (dt) + o p (n -1/2 ) = L(t).[m n -m](dt) -η 2 E{h 2 (X)} -η 3 E{h 3 (X)} -..... -η j E{h j (X)} + o p (n -1/2 ) .
By the same way, 

L n (x n 1 ) -L(x j,1 ) = (x n j,1 -x n j,2 )(x n j,1 -x n j,3 )...(x n j,1 -x n j,j ) -(x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) = (x n j,1 -x j,2 )(x n j,1 -x j,3 )...(x n j,1 -x j,j ) -(x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) -η 2 (x n j,1 -x j,3 )(x n j,1 -x j,4 )...(x n j,1 -x j,j ) -η 3 (x n j,1 -x j,2 )(x n j,1 -x j,4 )...(x n j,1 -x j,
-η j (x n j,1 -x j,2 )(x n j,1 -x j,3 )...(x n j,1 -x j,j-1 ) + o p (n -1/2 ) = (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) -(x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) + η 1 (x j,1 -x j,3 )(x j,1 -x j,4 )...(x j,1 -x j,j ) + η 1 (x j,1 -x j,2 )(x j,1 -x j,
+ η 1 (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j-1 ) -η 2 (x j,1 -x j,3 )(x j,1 -x j,4 )...(x j,1 -x j,j ) -η 3 (x j,1 -x j,2 )(x j,1 -x j,4 )...(x j,1 -x j,
-η j (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j-1 ) + o p (n -1/2 ) = η 1 h 2 (x j,1 ) + ... + h j (x j,1 ) -η 2 h 2 (x j,1 ) -.... -η j h j (x j,1 ) + o p (n -1/2 ) .
Therefore, 

λ n j,1 -λ j,1 = L(t).[m n -m](dt) L(x j,1 ) -η 2 E{h 2 (X)} L(x j,1 ) -η 3 E{h 3 (X)} L(x j,1 ) -........... -η j E{h j (X)} L(x j,1 ) -η 1 E{L(X)} L(x j,1 ) 2 h 2 (x j,1 ) + h 3 (x j,1 ) + .... + h j (x j,1 ) + η 2 h 2 (x j,1 ) E{L(X)} L(x j,1 ) 2 + ............. + η j h j (x j,1 ) E{L(X)} L(x j,1 ) 2 + o p (n -1/2 ) = (t -x j,2 )(t -x j,3 )...(t -x j,j ).[m n -m](dt) (x j,1 -x j,2 )(x j,1 -x j,3 )...(x j,1 -x j,j ) -η 1 E{L(X)} L(x j,1 ) 2 h 2 (x j,1 ) + h 3 (x j,1 ) + .... + h j (x j,1 ) + η 2 1 L(x j,1 ) h 2 (x j,1 )E{L(X)} L(x j,1 ) -E{h 2 (X)} + η 3 1 L(x j,1 ) h 3 (x j,1 )E{L(X)} L(x j,
+ η j 1 L(x j,1 ) h j (x j,1 )E{L(X)} L(x j,1 ) -E{h j (X)} + o p (n -1/2 ) = 1 (x).[m n -m](dx) - Pj (t) j-1 u=0
P u (x j,1 )P u (t) .m n (dt) E{L(X)} P j (x j,1 )L(x j,1 ) 2 h 2 (x j,1 ) + .... + h j (x j,1 ) 

+ Pj (t) j-1 u=0 P u (x j,2 )P u (t) .m n (dt) 1 L(x j,1 ) P j (x j,2 ) h 2 (x j,1 )E{L(X)} L(x j,1 ) -E{h 2 (X)} + Pj (t) j-1 u=0 P u (x j,3 )P u (t) .m n (dt) 1 L(x j,1 ) P j (x j,3 ) h 3 (x j,1 )E{L(X)} L(x j,
P u (x j,j )P u (t) .m n (dt) 1 L(x j,1 ) P j (x j,j ) h j (x j,1 )E{L(X)} L(x j,1 ) -E{h j (X)} + o p (n -1/2 ) = L(t).[m n -m](dt) L(x j,1 ) - Pj (t) j-1 u=0 P u (x j,1 )P u (t) .m n (dt) E{L(X)} L(x j,1 ) 3 h 2 (x j,1 ) + .... + h j (x j,1 ) + j-1 u=0 j r=2
h r (x j,1 )E{L(X)} L(x j,1 ) -E{h r (X)} P u (x j,r ) L(x j,1 ) P j (x j,r )

P u (t) Pj (t) .m n (dt) + o p (n -1/2 ) .
We deduce the lemma.

Chapter 3

Detection of points of concentration

Introduction

The theorems about orthogonal polynomials of [START_REF] Freud Geza | Orthogonal polynomials[END_REF] show that in the case of sufficiently smooth density, the distance of successive zeros x j,s converge to 0 and the same is true for weights λ j,s (cf [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]. cf also section 1.3). We can ask ourselves what happens when X has a density of this type except at one point x 0 where it has a nonzero measure :

P {X = x 0 } = b > 0.
We can easily have a first answer thanks to Stieltjes Markov's inequality. But, for further details, it seems difficult to get them quickly by mathematical theorems. Then the simplest is to make simulations : in all simulations which we have made, we found that the properties of Section 1.3 remain true except near points of nonzero measure. That is to say that, generally, x j,s+1 -x j,s → 0 and λ j,s → 0 as j → ∞.

But it is quite clear that it will be different for the points closest to x 0 such that P {X = x 0 } = b > 0. Indeed, suppose that two consecutive zeros check x j,k < x 0 < x j,k+1 with P {X = x 0 } = b > 0. Then, by Stieljes Markov inequality,

F (x 0 + 0) -F (x 0 -0) ≤ F (x j,k+1 + 0) -F (x j,k -0) ≤ xj,s≤x j,k+1 λ j,s - xj,s<x j,k λ j,s = λ j,k + λ j,k+1 .
Therefore, λ j,k + λ j,k+1 ≥ b. This means that there will always weights which are not too small even if j is large whereas other weights λ j,k converge to 0.

In fact, in some simulations which we have made, we found enough frequently some weights λ j,kj → b as j → ∞. Moreover, x j,kj +1 ≈ x 0 ou x j,kj ≈ x 0 and x j,k+1 -x j,k → 0 as j → ∞.

So it seems that in many cases, in order to find the non-zero measure in a point and its weight, it suffices to find the zeros x j,kj close to a x 0 and weights λ j,kj ≈ b.

This is what will confirm the following examples (For other examples cf [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]).

Example 1

In this example we chose a probability mixing a continuous density and a point x 0 = 4 such that P {X = x 0 } > 0. The continuous density is that of a Gaussian mixture centered in -3, -1, with standard deviation 1, 2. The weights of the two Gaussian density and of the Dirac measure (in -3, -1, 4) are the weights 2/9, 4/9, 1/3.

We have calculated the x n j,t 's and the λ n j,t 's empirically, i.e. we used a sample of this mixture. Then the function histogram of Matlab for the empirical density is represented in Figure 3 Then, the points and weights of Gauss Jacobi quadrature allows to detect the concentration at the point x 0 = 4. Indeed, the parameters of the Gauss Jacobi quadrature are given by the following tables. This shows that the measure nonzero in x 0 = 4 with a weight 1/3 implies zeros close to 4 and weights close to 0,333 while the other zeros and weights are much more varied.

Note that some weights are very close to 0. This is due to properties of pure Gaussian mixtures (without Dirac measure): cf section 3.1.3 [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF] In order to better appreciate these results, in the following table, we shall group together the zeros close to 4 and the associated weight by using the following convention. Convention 3.2.1 In the tables giving the two zeros around points x s with measures m({x s }) > 0, we are only interested by the zeros with significant weight. When there is an alone significant weight we put a 0 for the following weight and we did the same thing for the zero.

There are then for the zeros close to x=4 and the associated weights the following table. By Stieljes Markov's inequality, we know that the weight at x = 4, checks λ j,k + λ j,k+1 ≥ P {X = 4} when x j,k < 4 < x j,k+1 . So we see that there is a weight of about 0,333 concentrated around 4: indeed, P {X ∈ [4 -a, 4 + a]} ≤ λ j,k + λ j,k+1 where a is small enough . Remark 3.2.2 One can find practical problems for calculating the elements of the Gauss Jacobi quadrature. Indeed, it is known that the computation of orthogonal polynomials P j can be difficult when j increases a little. This is because the moments become very large or very small depending on the case. The accuracy of calculations becomes delicate and one can sometimes find values enough distant of real values.

j x j,k x j,k+1 λ j,k λ j,k+1 3 

Example 2

We choose uniform distributions on two intervals and a point of nonzero measure located inside of their supports. Then we take an uniform mixture of the intervals [-3.0], [0,0.750] and a non-zero measure in -1 with weights, respectively 0.3, 0.5, 0.2. 

Some properties

At first we introduce the type of mixtures that we will study. Notations 4.1.1 Let Y be a real random variable. We assume that there exists p ∈ N such that Y = p r=1 δ r Z r , where Z r -z r = σ r r ∼ N (0, σ 2 r ), z r ∈ R , where the δ r are random variables such that δ r = 0 or 1 , p r=1 δ r = 1 , and where (δ 1 , δ 2 , ...., δ p ), 1 , 2 , ...., p are independent. We assume that the z r 's , r = 1, 2, .., p, are distincts. We set P (δ r = 1) = q r for r = 1, 2, ..., p.

One want to estimate the z r 's and q r 's by using Gauss Jacobi Quadrature. Unfortunately, the Gauss-Jacobi quadrature of Y does not give the z r 's and q r 's directly. Indeed, let us denote by y p,s and λ p,s , the zeros and the weights of orthogonal polynomials associated to Y. Then, generally, y p,s = z s and λ p,s = q s . It is true only when σ p (Y ) = 0. In other cases, we have only approximations which are sharp all the more as σ p (Y ) is small. p (zr) . Then, q r = S r (z).m S (dz) for r = 1, 2...., p where m S is the distribution of S = p r=1 δ r z r . Therefore, we have to use the Gauss Jacobi Quadrature not of Y but of S = p r=1 δ r z r . Therefore, we need to know moments of p r=1 δ r z r . In this aim, one has the idea to use "negative variance" of Gaussian random variables ( cf Section V-2, page IV-28, [START_REF] Blacher R | Quelques applications des fonctions orthogonales en probabilités et statistiques[END_REF]) .

Indeed, recall that this naming is based on the following property (cf lemma 1.1, (viii) [START_REF] Blacher R | Multivariate quadratic forms of random vectors[END_REF] or [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]). Proposition 4.1.2 Soit G ∼ N (0, σ 2 ), U ∼ N (0, 1) and ∼ N (0, 1) three independent random variable. Then, for all q ∈ N,

E G + iU q = E σ 2 -1 q
Then, iU+G behaves like a Gaussian distribution with variance negative if σ 2 < 1. Now, if σ 2 > 1, we find a usual Gaussian distribution. If σ 2 = 1, the probability is concentrated in 0.

To use the negative variances in order to solve our problem, we will use the following property which is a consequence of proposition 4.1.2 : cf [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]. Proposition 4.1.3 Let U ∼ N (0, 1) be a random variable independent with (δ 1 , δ 2 , ...., δ p ) and ( 1 , 2 , ...., p ). Then, for all q ∈ N,

E p t=1 (δ t z t + σ t t ) + isU q = E (T s ) q , where T s = p t=1 δ t (z t + σ 2 t -s 2 t ).
Proof This proposition is proved by using equalities based on simple calculations : cf [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF].

First application to mixtures 4.2.1 Method

Then, we can use the previous property in order to find the various parameters σ, z r and q r . For example, if σ r = σ for r=1,2,....,p, E [Y + iσU ] q = E S q . Therefore if we choose s = σ, Y + isU has the same moments as S = p r=1 δ r z r . Then its variance of order p will be equal to 0. Therefore, we can find s = σ by studying the variances of order p of isU + Y. When σ is obtained, it suffices to calculate the parameters of the Gauss Jacobi quadrature which will be the associated the z r 's and q r 's.

Then, we can use the negative variances of Gaussian distributions in order to obtain the parameters of the mixture. Indeed, it is easy to prove the following proposition. Then, it is easy to find the parameters of this mixture by using the variances of higher order. Indeed, assume that we want to estimate the z t 's and q t 's. We can estimate the moments of S by using negative variances because

E p t=1 (δ t z t + σ t ) + isU q = E p t=1 δ t z t + σ 2 -s 2 t q .
It is thus enough to find s such that σ 2 = s 2 : in this case, the moments of p t=1 (δ t z t + σ t ) + isU have a variance of order p which is equal to zero. Indeed, it is the variance of order p of S which is concentrated in p distinct points.

Then, to find s such that σ 2 = s 2 is easy. Indeed, if we take s increasing from 0, p t=1 (δ t z t + σ t ) + isU has the same moments as the real random variable T s = p t=1 (z t + √ σ -s 2 t ). We can then calculate the variance of order p of T s . When it vanishes, we know that s is reached. Then we know the parameters searched s = σ and also the z r 's and q r 's by using Gauss Jacobi quadrature.

Concretely, if we take s more and more large, variance of order p decreases to 0 and then becomes negative. Then, it is not difficult to find s = σ by calculating the variance of order p for any value of s.

Example In figure 4.1, The blue curve represents the real part of the variance of order 3 of a sample of X + isU when X is a Gaussian mixture of components centered in -2,0,3, of standard deviation 1,1,1 of weight 1/6, 2/6, 3/6 when s varies from 0 to 1. The red curve represents the imaginary part. We see that the variance vanishes near s = 1. To calculate σ, we'll take a curve defined over a smaller interval near the point where s = σ. In the figure 4.2, then we represent the same curves for intervals much smaller. This allows to conclude that s 0 = σ = 0.996. With the moments, we can then estimate the parameters of the Gauss Jacobi quadrature. We estimate the zeros by -1.9735, 0.0653, 3.0232 (instead of -2,0,3) with weights 0.1776, 0.3274, 0.4950 ( instead of 0.1667, 0.3333, 0.5000).

Then, one thinks at an application : higher order regression (cf [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]). For example, if we have the development of real estate prices resulting from two different regions, we shall obtain the concentration around two curves. We shall treat this problem later.

Second application to mixtures 4.3.1 Presentation

Now we apply Proposition 4.1.3 when the σ r 's are different : if s 2 = M in r=1,...,p (σ 2 r ), T s = p t=1 (δ t z t +σ t t )+isU has the same moments as a Gaussian mixture with p components, including one degenerate, i.e. with a point of nonzero measure in z t0 where σ 2 t0 = M in r=1,...,p (σ 2 r ) : P {T s = z t0 } = q t > 0. So we find σ 2 t0 by applying a method of the same type as that described in chapter 3.

After we removed the points corresponding to the Gaussian component of the mixture and we start again.

Example

One chooze a sample with size 100000 of a Gaussian mixture with components centered in -3,0,2, with standard deviation 0,251,0.52,1, and with weights 0.4, 0.3, 0. 

Calculation of the first standard deviation

The first standard deviation which we can know by using the Gauss Jacobi quadrature is the smallest standard deviation. Now, for a sample, this is only estimation obtained thanks to a complex random variable. Then, generally all the moments are not real and we can take the real part since the imaginary part of the moments tend to 0 as the sample size tends to ∞.

Therefore one estimates the moments and then the elements of the Gauss Jacobi quadrature with different s. In this report, we'll do it for s = 1/5 and s = 1/4.

For sake of simplicity, in this section we denote always by λ j,s and x j,s the weights and the zeros of the Gauss Jacobi quadrature associated with the sample of the random variable Y + isU, that is to say that the theoretical probabilities have the same moments as

p r=1 δ r z r + σ 2 r -s 2 r .
Study of s=1/4 For s=1/4, for the zeros close to 2 and the associated weights we have the following table 1 . j x j,j0

x j,j0+1 λ j,j0 λ j,j0+1 By Stieljes Markov's inequality, we see that there is a weight of about 0.3 concentrated around 2. Indeed, let λ j,j0 and λ j,j0+1 and x j,j0 , x j,j0+1 , x j,j0 < 2 < x j,j0+1 , be the weights and the zeros associated around 2. Then, P {G 3 ∈ [2 -a, 2 + a]} ≤ λ j,j0 + λ j,j0+1 where G 3 represents the third Gaussian component when a is small. Now there is no perfectly correct point in order to identify it. We see only that it seems that there is a concentration close to 2. This is normal because s is not well chosen. Indeed, at this point x=2, we have a Gaussian distribution with a variance of about 1/16 -1/25 = 0.225 . This means that the probability is mainly concentrated on an interval of length 0.2 around 2. In order to be sure there are no points of nonzero measure, we should therefore consider the P j where j is greater than 16. But the fact that there is no concentration points x js seems enough accurate in order to indicate that for s = 1/5, there is no point of nonzero measure.

Conclusion Finally, we see a little difference between the results s = 1/5 and s = 1/4 if we confine ourselves to use the Markov Stieljes inequality. In order that the result appears more clearly, we must in fact take orthogonal polynomials of degree greater than 16.

On the other hand, the number of weights close to 0.3 concentrated in a single zero near 2 is much more important. In the simulations made otherwise, this is what is significant.

Other values of s By studying several values of s, we can determine about which value of s corresponds itself to a point of concentration. We can thus, by being located near this value, to find towards which points and which weights it is necessary to concentrate the researches as above in example 4.2.1 when σ r = σ. We find then rather easily, the zero and the weight by proceeding as above by making a graph.

Estimation

By repeating many times this type of calculation we find that the best estimation for the concentration point is z 3 = 2.02 ± 0.01. The calculation of s is a little more imprecise: we find σ 3 = 0.25 ± 0.02. About the weight, it is estimated to be close to q 3 = 0.3 ± 0.03.

Deletion of the first Gaussian component

We therefore estimated the parameters of the first Gaussian component. To find the second using the same technique, one must first eliminate points coming from the first component. There are various techniques possible. One choose to use a simple technique by eliminating N 3 = nq 3 points where n = 100000 is the size of sample.

Indded, we know that there is about a point of the sample coming from that component in a partition of R in N 3 intervals whose the Gaussian probability of each is 1/N 3 . One can then choose to remove the point nearest point of the middle of each interval. We did it in [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF]. Note that these graphs can be used to better determine the weight, that is to say the size of the sample which has to be removed. Indeed, the curve has peaks on his right incompatible with a Gaussian mixture with two components.

The result obtained is provided in

Then, one can try another weight close to the estimation which we got. For example, if one removes only 30150 point we have the graph of Figure 4.5.

This kind of results can eventually allow us to refine the choice of s. 

Estimation of the Other Gaussian components

Then, one proceeds by the same way and the parameters of other gaussian components are obtained. Then, we found z 3 = 2.02 ± 0.01, z 2 = 0.03 ± 0.01, z 1 = -3.02 ± 0.01. σ 3 = 0.25 ± 0.01, σ 2 = 0.50 ± 0.01, σ 1 = 1.01 ± 0.02. q 3 = 0.3 ± 0.03, q 2 = 0.3 ± 0.03, q 1 = 0.4 ± 0.02.

Conclusion

So we have relatively good results especially when you consider that these results can be refined by a more detailed study of properties of the Gauss Jacobi quadrature.

Of course, one may want to compare this method with other methods used in order to find the Gaussian components, that is to say, essentially, the EM algorithm (cf [START_REF] Mclachlan | The EM algorithm and extensions[END_REF]) : by applying it to the sample which we have just estimate, it was found. z 3 = 2.1, z 2 = -0.2 et z 1 = -2.99. σ 3 = 0.26, σ 2 = 0.49, σ 1 = 0.98. q 3 = 0.28, q 2 = 0.31, q 1 = 0.39.

So, in this case, our method gives result best than those of the EM algorithm. In this example we study the mixtures MixtGauss([-1,1],[1/2,1/2],[0.5,1]) and the variance of order 2.

We obtain σ2 2 = 0.5412, σ2 3 = 0.2833, σ2 4 = 0.1291. In this example we study the mixtures MixtGauss((

[-1,2],[1/2,1/2],[0.5,1]
) and the variance of order 2. We obtain σ2 2 = 0.3200, σ2 3 = 0.1350, σ2 4 = 0.0459. In this example we study the mixtures MixtGauss([-3,2],[1,1],[0.5,0.3]) and the variance of order 2.

We obtain σ2 2 = 0.1553, σ2 3 = 0.0925, σ2 4 = 0.0210.

Example 10 : Variance of order 2

In this example we study the mixtures MixtGauss([-3,2],[1,1],[0.1,0.3]) and the variance of order 2.

We obtain σ2 2 = 0.0914, σ2 3 = 0.0544, σ2 4 = 0.0125. In this example we study the mixtures MixtGauss([-3,0,2],[1,1,1],[0.1,0.3,0.3]) and the variance of order 3. We obtain σ2 2 = 0.3077, σ2 3 = 0.0700, σ2 4 = 0.0377. In this example we study the mixtures MixtGauss(([-3,0,2],[1/3,1/3,1/3],[0.1,0.3,0.05]) and the variance of order 3. We obtain σ2 2 = 0.2520, σ2 3 = 0.0382, σ2 4 = 0.0148. In this example we study the mixtures MixtGauss(([-3,0,2],[0.25,0.32,1-0.32-0.25],[0.5,0.7,0.9]) and the variance of order 3. We obtain σ2 2 = 0.4736, σ2 

A.5 Conclusion

We thus see that the standardization

σ 2 j ||x 2j
|| gives a first way in order to be able to compare in a simple way the meaning of the value of the variances. But in fact, it is insufficient because if we make a translation, the standardized variances change, although they describe nevertheless the same type of concentration. Thus if we want to standardize better the variances, it seems that it is necessary to use or centered standardized variances σ2 j either to impose on them to be positive with a very strong probability.

It seems that it is the good method. In that case, only with the value of the standardized variance of order j, we shall know generally if there is concentration or not near j distinct points.

The purpose thus is to find the various parameters of this Gaussian mixture by studying zeros and weights of the orthogonal polynomials associated in moments of Y+isU for different s .

According to method used in section 4.3, the first component which we have to detect is thus centered in z 1 = 2 with weights q 1 = 0.7 and variances (σ G 1 ) 2 = 2. To show how we can proceed in that case we shall give zeros and weights obtained for the moments of iUs+Y for s = 0.4472 (s 2 = 0.2), s = 0.42 and s = 0.465.

B.1 Study of the case s = 0.4472

In this section, we give zeros and obtained weights when we choose s 2 = 0.2 = 0.4472 2 , i.e. the case where the moments of Y+isU are the same that those of a degenerate Gaussian mixture : because p=2, it is therefore the mixture of a single Gaussian variable centered in z 2 = -2 and of a point of measure not equal to 0 in z 1 = 2.

In this chapter, we keep the same notations as in chapters 3 and 4. -0.0000 + 0.0001i 0.0038 -0.0064i 0.7078 + 0.0197i 0.0017 -0.0218i 0.0753 -0.0408i λ 8s -0.0000 -0.0000i 0.0000 -0.0001i 0.0030 -0.0063i 0.0070 -0.0075i 0.7073 + 0.0199i λ 9s -0.0000 + 0.0000i -0.0001 -0.0001i 0.0041 -0.0058i -0.0001 -0.0005i 0.7079 + 0.0196i λ 10s -0.0000 -0.0000i -0.0000 + 0.0000i -0.0002 -0.0001i -0.0005 -0.0000i 0.0040 -0.0066i 0.0025 -0.0017i 0.7484 + 0.0257i -0.0978 -0.0347i -0.0085 + 0.0152i 0.2030 -0.1345i λ 8s -0.0000 -0.0000i 0.0034 -0.0030i 0.0014 -0.0143i 0.7298 -0.0204i -0.0672 + 0.0228i λ 9s 0.0000 + 0.0000i -0.0001 -0.0000i 0.0028 -0.0031i 0.7408 -0.0053i -0.0809 + 0.0063i λ 10s -0.0001 -0.0003i -0.0004 + 0.0002i 0.0017 -0.0008i 0.0050 -0.0081i 0.0457 -0.0275i -0.0089 -0.0072i 0.1394 + 0.1664i -0.0738 + 0.0483i 0.0841 -0.3429i 1.1414 -0.2598i λ 8s 0.0000 + 0.0000i 0.0167 -0.0099i -0.0673 -0.0069i 0.0019 -0.1350i 0.5480 + 0.0057i λ 9s -0.0001 + 0.0004i 0.0019 -0.0009i -0.0101 + 0.0227i 1.0133 -0.2299i -0.4804 + 0.0335i λ 10s -0.0000 -0.0000i 0.0001 -0.0009i -0.0032 -0.0145i -0.0220 + 0.0079i 

B.4 Conclusion

In the example studied here, we see that it is thus possible to detect zeros easily and also value of s. For example, if we choose s=0,465, we see weights bigger than 1 : they indicate that we have exceeded the possible values in order to have a sequence of not imaginary real variables. It is combined with negative weights. We can thus look from when we have too important negative weights to try to determine s. By studying these points for various values of s, we shall thus have curves as in section 4.2, what will allow us to determine easily s In fact this behavior can depend on samples or on parameters: it will be maybe not the same thing for other samples or other mixtures. It will thus be necessary to make a more complete study of the behavior of the weights λ j,s when s increases.

However in examples as above, we can determine easily the first s, the zeros and the variance.

Let us remark that one could also estimate the moments of Y+isU without using samples of Y+isU, but by computing real moments of the Gaussian random variable U :

E e {(Y + isU ) j } = j k=0 j! k!(j -k)! E e {Y k }E{(isU ) k-j } = j k=0 j! k!(j -k)! E e {Y k }(i.s) k-j E{U k-j } ,
where the moments E{U k-j } are the Gaussian moments of N(0,1) and where E e {Y k } are empirical moments of the sample of Y.

Let us notice now that this example is an example easy to study. Indeed in that case, the smallest variance is associated with the biggest weight. It is thus normal that the zero s 2 = 2 show up fast. Otherwise, it could be more delicate. It will then be necessary to take values of j bigger. It will thus depend on computers and on necessary programs to calculate the orthogonal polynomials. But with the advances of the researches in these domains, we can hope to improve this kind of result .

As deja seen in [START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF], we can finally hope to have simple methods to detect the components of Gaussian mixtures.

Proposition 1 . 2 . 1

 121 Let > 0 . Then, P | Pj | > ≤

  1) : cf figure 1.1. In figure 1.1, we see the points x such that | P3 (x)| = |(x -0.95)(x -0.5)(x -1)| ≤ 0.01 : they are the points of real axis which belong to intervals I 1 , I 2 , I 3 intersection of the 3 rectangles of the figure and of the real axis. Then, P {X / ∈ I 1 ∪ I 2 ∪ I 3 } = P | Pj (x)| > 0.01 ≤ 10 4 σ 2 j = 0.1 if σ 2 j = 10 -5 .

Figure 1 . 1 :

 11 Figure 1.1: P3 (x) = (x -0.95)(x -0.5)(x -0.1)

Figure 1 . 2 :Figure 1 . 3 :

 1213 Figure 1.2: x 2,t =0.8691, 0.1473, λ 2,t = 0.5944, 0.4056, σ 2 2 =0.0037

Figure 1 . 5 :

 15 Figure 1.5: Stieljes-Markov Inequality
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.1 1 Figure 3 . 1 :

 131 Figure 3.1: Gaussian mixture in -4,-3 and Dirac measure in 4

Figure 3 . 2 :

 32 Figure 3.2: One point with a nonzero measure

  The points of concentration and weights appear clearly: they are the zeros close to x=0 and the weights associated.

Proposition 4 . 1 . 1

 411 We denote by { Qj } the familly of orthogonal polynomials associated with p r=1 δ r z r : Qj (z) = j t=0 b j,t z t where b j,j = 1. Then, the z r 's are the zeros z p,r of Qp . Moreover, let S r (z) = Qp(z) (z-zr) Q

Proposition 4 . 2 . 1

 421 We assume that σ 2 r = σ 2 for all r ∈ {1, 2, ..., p}. Then, Y = p r=1 δ r z r + σ 0 where 0 ∼ N (0, 1).

Figure 4 . 1 :

 41 Figure 4.1: Variance of order 3 of T s

Figure 4 . 2 :

 42 Figure 4.2: Variance of order 3 of T s

  3. (cf figure 4.3 : graph of the function hist of Matlab).

Figure 4 . 3 :

 43 Figure 4.3: Function hist of Gaussian mixture with components centered in -3,0,2

Figure 4 . 4 .

 44 In this figure 4.4 : for a sample of n = 100000, we have delete nq 3 = 29500 points supposed to belong to the first Gaussian component. The graph is the function histogram of Matlab (hist).

Figure 4 . 4 :

 44 Figure 4.4: Function hist of the deletion of the normal component centered in 2

Figure 4 . 5 :

 45 Figure 4.5: Function hist of the deletion of 30150 elements of the normal component centered in 2

Example 2 :

 2 Figure A.1: σ2 2 = 0.6276.

Example 3 :

 3 Figure A.2: σ2 2 = 0.5412

  Figure A.3: σ2 2 = 0.3200

Example 9 :

 9 Figure A.8: σ2 2 = 0.2554

Example 11 :

 11 Figure A.9: σ2 2 = 0.1553

Example 12 :

 12 Figure A.11: σ2 3 = 0.0700

Example 13 :Example 14 :

 1314 Figure A.12: σ2 3 = 0.0382

  )....(t -x j,j ).m n (dt) -.......................................................

  Of course, in order to obtain the good value of s, we have to repeat this calculations several times. For example, if s=1/5, for the zeros close to 2 and the associated points, we have the following table.

		1.8229 0	0.3899 0
		1.9695 0	0.3203 0
		1.9932 0	0.3062 0
		1.9991 0	0.3017 0
		2.0010 0	0.2999 0
		2.0014 0	0.2994 0
		2.0014 0	0.2994 0
		2.0658 2.0143 0.3533 0.0912
		1.9053 2.0012 0.0000 0.2996
		2.0019 0	0.2987 0
		2.2172 1.9999 0.0000 0.3007
		2.0062 0	0.2922 0
		2.0691 1.9616 0.0942 0.2084
		2.3039 1.9923 0.0048 0.2967
	Study of s=1/5 j	x j,j0	x j,j0+1 λ j,j0	λ j,j0+1
		1.8420 0	0.3860 0
		2.0039 0	0.3104 0
		2.0427 0	0.2874 0
		2.0721 0	0.2632 0
		2.1145 1.5975 0.2128 0.1126
		2.1680 1.8255 0.1415 0.1678
		2.2072 1.9006 0.0976 0.2040
		2.2346 1.9395 0.0729 0.2217
		2.0854 1.7481 0.1950 0.1016
		2.1919 1.8889 0.1099 0.1913
		2.2038 1.9050 0.0986 0.2006
		2.2019 1.9019 0.1005 0.1994
		2.2042 1.9056 0.0982 0.2009
		2.2181 1.9230 0.0861 0.2100

  Z r . But we truncate them : we restrict them on [0,1]. We obtain a density f 0 which is equal to 0 anywhere other than on [0,1]. Then we
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	3 = 0.1988, σ2 4 = 0.1049. -4 -2 0 2 4 6 8 Figure A.14: σ2 3 = 0.1988 -4 -2 0 2 4 6 8 Figure A.17: σ2 4 = 0.0296 -4 -2 0 2 4 6 8 Figure A.18: σ2 4 = 0.0091 2 = 0.3057, σ2 -8 -6 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -8 -6 -8 -6 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 We obtain σ2 3 = 0.0622, σ2 4 = 0.0091. -8 -6 -4 -2 0 2 4 6 8 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Figure A.19: σ2 4 = 0.0091 Example 20 : Variance of order 4 In this example we study the mixtures MixtGauss([-3,0,2,4],[0.25,0.2,0.4,1-0.2-0.4-0.25],[0.1,0.05,0.15,0.07]) and the variance of order 4. We obtain σ2 2 = 0.1986, σ2 3 = 0.0396, σ2 4 = 0.0095. A.3 Truncated gaussian mixtures One study again Gaussian mixtures Y = p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Example 23 : Variance of order 4 In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.55,0.8],[0.45,0.2,0.25,1-0.2-0.25-0.45],[0.0001,0.0004,0.0003,0.00025]) and the variance of order 4. We obtain σ2 2 = 0.0346, σ2 3 = 0.0021, σ2 4 = 0.000025. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 6 8 10 12 14 16 18 Figure A.23: σ2 4 = 0.000025 Example 24 : Variance of order 4 In this example we study the mixture MixtGaussTrunc(0.1,0.3,0.55,0.8],[0.45,0.2,0.25,1-0.2-0.25-0.45],[0.001,0.004,0.003,0.0025]) and the variance of order 4. We obtain σ2 2 = 0.0380, σ2 3 = 0.0032, σ2 4 = 0.000237. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 Figure A.24: σ2 4 = 0.000237 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Example 28 : Variance of order 3 In this example we study the mixture MixtGaussTrunc([0.1,0.45,0.8],[0.2,0.35,1-0.2-0.35],[0.002,0.005,0.01]) and the variance of order 3. We obtain σ2 2 = 0.0232, σ2 3 = 0.0016, σ2 4 = 0.0001399. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 Figure A.28: σ2 3 = 0.0016 Example 29 : Variance of order 2 In this example we study the mixture MixtGaussTrunc([0.1,0.65,0.8],[0.2,0.35,1-0.2-0.35],[0.002,0.005,0.01]) and the variance of order 2. We obtain σ2 2 = 0.0144, σ2 3 = 0.00075, σ2 4 = 0.000116. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 3 Figure A.29: σ2 2 = 0.0144 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Figure A.33: σ2 3 = 0.0031 Example 34 : Variance of order 2 In this example we study the mixture MixtGaussTrunc([0.1,0.3,0.8],[0.4,0.35,1-0.4-0.35],[0.01,0.013,0.011]) and the variance of order 2. We obtain σ2 2 = 0.0337, σ2 3 = 0.0032, σ2 4 = 0.000288. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 Figure A.34: σ2 2 = 0.0337 Example 35 : Variance of order 2 In this example we study the mixture MixtGaussTrunc([0.2 0.8],[0.4,0.6],[0.01,0.013]) and the variance of order 2. We obtain σ2 2 = 0.0126, σ2 3 = 0.0016, σ2 4 = 0.000102. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Example 36 : Variance of order 2 In this example we study the mixture MixtGaussTrunc([0.3 0.8],[0.4,0.6],[0.01,0.013]) and the variance of order 2. We obtain σ2 2 = 0.0126, σ2 3 = 0.0010, σ2 4 = 0.000072. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 Figure A.36: σ2 2 = 0.0126 Example 37 : Variance of order 2 In this example we study the mixture MixtGaussTrunc([0.3 0.8],[0.3,0.7],[0.03,0.013]) and the variance of order 2. We obtain σ2 2 = 0.0107, σ2 3 = 0.0011, σ2 4 = 0.000089. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 3 Figure A.37: σ2 2 = 0.0107 -8 -6 -4 -2 0 2 4 6 8 r=1 δ r 0 Figure A.22: σ2 4 = 0.000042 Figure A.27: σ2 3 = 0.0021 Figure A.32: σ2 3 = 0.0024 Figure A.35: σ2 2 = 0.0126 Figure A.42: σ2 2 = 0.4515

  Study of the case s = 0.465 Now we give the zeros and the weights obtained when s = 0.465. By proposition 4.1.3, Moments are not the ones of a real variable. You should not thus expect that 2j first moments are the ones of a real variable. We could thus have complex zeros or weights λ i,s negative or complex.

	(j,k,k')	x j,k		x j,k		λ j,k	λ j,k
	(2,2)	1.9896 -0.0004i	0		0.7088 + 0.0001i 0
	(3,1)	2.0250 -0.0008i	0		0.7020 + 0.0003i 0
	(4;3,4)	2.0724 + 0.0102i 1.5103 + 0.0818i 0.6925 -0.0153i	-0.0053 + 0.0163i
	(5;1,2)	2.0326 + 0.0769i 2.0005 + 0.3007i 0.9901 + 0.2637i -0.3355 -0.2584i
	(6;2,3)	2.0710 + 0.0314i 1.6488 + 0.1862i 0.6419 + 0.0132i 0.0423 -0.0125i
	(7;2,3)	2.0603 + 0.0416i 1.7330 + 0.3341i 0.7484 + 0.0257i -0.0978 -0.0347i
	(8;4,5)	2.0669 + 0.0402i 1.7252 + 0.2585i 0.7298 -0.0204i	-0.0672 + 0.0228i
	(9;4,5)	2.0663 + 0.0428i 1.7416 + 0.2685i 0.7408 -0.0053i	-0.0809 + 0.0063i
	(10;6,7) 2.0778 + 0.0382i 1.7724 + 0.1972i 0.9435 -0.1280i	-0.2854 + 0.2116i
	B.3 1		2		3	4	5
	x 1s	0.7999 + 0.0012i	0		0	0	0
	x 2s	-2.0974 + 0.0023i 1.9723 + 0.0019i	0	0	0
	x 3s	1.9824 + 0.0022i	-3.4003 -0.1706i	-1.9981 -0.0049i	0	0
	x 4s	2.2226 -0.5011i	1.9998 + 0.0213i	-2.5952 -0.0633i	-1.7760 -0.0326i	0
	x 5s	-0.9301 + 2.5063i 1.9726 + 0.0172i	1.5642 -0.6725i	-2.6105 + 0.0504i -1.7935 + 0.0750i
	x 6s	2.1542 -4.3900i	1.9779 + 0.0315i	1.8673 -0.5109i	-2.0882 + 1.6927i -2.6140 + 0.0609i
	x 7s	-4.0445 -1.1166i	-2.5830 -0.0889i	-1.1113 + 1.7324i -1.7869 -0.0422i	1.9629 + 0.0175i
	x 8s	7.4286 + 7.6357i	-3.8099 -0.4467i	-2.5200 -0.0939i	-0.5367 + 1.4318i -1.7567 -0.0431i
	x 9s	5.5073 -1.5124i	-2.1892 + 3.9845i -3.6539 + 0.5069i 1.9638 + 0.0170i	1.4868 -0.5080i
	x 10s 0.7514 -9.8259i	4.9901 + 1.0882i	-2.5534 + 2.4457i -3.6633 + 0.6709i 1.9612 + 0.0252i
		6		7			8	9	10
	x 6s	-1.7695 + 0.0840i 0			0	0	0
	x 7s	1.5065 -0.5995i	0.6621 + 0.3326i i 0	0	0
	x 8s	1.9650 + 0.0277i	1.6981 -0.4255i		0.0348 -0.8821i	0	0
	x 9s	0.0590 + 1.3782i	-0.3983 -1.4185i		-2.4776 + 0.1129i -1.7223 + 0.1247i 0
	6 x 10s 1.6518 -0.4035i	7 -0.6439 -1.6753i	8	0.0349 + 1.3887i	9	10 -2.4750 + 0.1175i -1.7020 + 0.1120i
	λ 6s	0.2217 + 0.0268i 0		0	0	0
	λ 7s	0.0466 -0.1142i	0.1057 + 0.2442i	0	0	0
	0.1429 -0.0048i -0.0137 -0.0107i 0.1890 -0.0748i -0.1758 + 0.1050i 0.3654 -0.0853i -0.1868 + 0.2360i 0.3489 -0.1482i 0 1 2 3 4 -0.2854 + 0.2116i 0.0224 -0.0024i 0.1463 + 0.0739i 0.1213 -0.1186i 0 0 5 1 0 0 0 0 λ 10s 0.9435 -0.1280i λ 8s λ 9s λ 1s λ 2s 0.2881 + 0.0005i 0.7119 -0.0005i 0 0 0
	λ 3s	0.7171 -0.0011i	0.0395 -0.0075i	0.2434 + 0.0086i	0	0
	λ 4s	0.0376 + 0.0754i	0.6511 -0.0797i	0.0877 -0.0209i	0.2236 + 0.0252i	0
	λ 5s	0.0324 -0.0156i	0.8350 -0.1030i	-0.1562 + 0.0429i 0.1443 -0.0471i	0.1445 + 0.1227i
	λ 6s	0.0017 -0.0023i	0.6944 -0.2338i	-0.0369 + 0.2284i -0.0359 -0.0280i	0.0879 -0.0513i
	λ 7s					

A sequence of random variable Xn is bounded in probability, if, for every > 0, there exists M and N such that P {|Xn| ≤ M } ≥ 1 -for all n ≥ N . Then, one writes Xn = O P (1) . Moreover, we write Xn = O P (Zn) for two sequences of random variable Xn and Zn, if Xn/Zn = O P (1) and Xn = o P (Zn) if Xn/Zn p → 0.

Note that in this figure, it is simultaneously represented the curve of the density of mixture Gaussian and the non-zero measure in x 0 = 4. In order that graphs are consistent, it would be required that the Dirac measure is infinite. Normally, it's impossible.

for completetables, cf[START_REF] Blacher R | Higher Order variance and Gauss Jacobi Quadrature[END_REF] 

Appendix A

Standardized Variances

We are going to study examples of standardized variances σ2 j : at first normal centered laws, then Gaussian mixtures, then Gaussian mixtures truncated.

Finally, we shall see that if we want that the value of the variances can measure the concentration as soon as it is obtained, it is necessary to proceed to the second standardization by centering the random variables X or by imposing by translation that they are positive.

A.1 Centered Gaussian distributionss

We recall that, by proposition 1.2.2, the variance of a standard Gaussian distribution is

Therefore, for j=1,2,3,4, σ 2 j = 1,2,6,24.

On the other hand ||x j || 2 = x 2j e -x 2 /2 √ 2π dx = 2j! 2 j j! .

Therefore, for j=1,2,3,4, 

A.2 Gaussian mixtures

We study Gaussian mixtures. We use notations 4.1.1 :

2 ), and P (δ r = 1) = q r . We denote these mixtures by "MixtGauss (

. One denotes again standardized variances of order 2,3,4 associated to these mixtures by

Example 1 : Variance of order 2

In this example we study the mixture MixtGauss([-0. Example 15 : Variance of order 3

In this example we study the mixtures MixtGauss([-3,0,2],[0.25,0.32,1-0.32-0.25],[0.1,0.3,0.3]) and the variance of order 3. We obtain σ2 2 = 0.2939, σ2 3 = 0.0434, σ2 4 = 0.0190. In this example we study the mixtures MixtGauss([-3,0,2],[0.25,0.32,1-0.32-0.25],[1.1,1.2,0.9]) and the variance of order 4. We obtain σ2 2 = 0.4801, σ2 3 = 0.2195, σ2 4 = 0.0971. 

A.3.1 First type of graphs

On the graphs of examples 21-26, the weigths of Gauss Jacobi are multiplied by 10 so as to have more readable graphs.

Example 21 : Variance of order 4

In this example we study the mixture MixtGaussTrunc([0. Example 33 : Variance of order 3

In this example we study the mixture MixtGaussTrunc( [0. 

A.4 Comparison of the various results

We could wonder because the variances of the mixture truncated in [0,1] are smaller than those of the variances of Gaussian classic mixtures studied in section A.2. Indeed we could think that, according to proposition 1.3.8, these standardized variances should not change because σ j (αX) 2 = α 2j σ 2 j and because ||(αX) 2j || = α 2j ||X 2j || : therefore σ j (αX) 2 = σ j (X) 2 . But there is no error: it is indeed the case. We can see it by deleting the truncation: in that case, the standardized variances are much smaller than those of the section A.2.

In fact the difference comes from what it is the translation which changes because we put ourselves in [0,1] thus positive. In the case of translation, the variances (not standardized) do not change according to proposition 1.3.3. But, when we make a translation of a, in order to have the standardized variances, it is necessary to divide, not by ||X 2j ||, but by ||(X + a) 2j ||. And it is the moments ||(X + a) 2j || which change if a varies. Finally, in order to have a complete standardization, it is necessary or to center the random variable X or to make it positive by a translation.

We can see this by developing the example 39.

Example 40 : Variance of order 2

We 

Appendix B

Example of the decomposition of a Gaussian mixture

We study again Gaussian mixtures and we keep notations 4.1.1 : Y = p r=1 δ r Z r , where Z r -z r = σ G r r ∼ N (0, (σ G r ) 2 ), and P (δ r = 1) = q r . In this chapter, we study a Gaussian mixture with p=2, z t = -2, 2, q s = 0.3, 0.7 and (σ G s ) 2 = 0.4, 0.

But here, it is not the purpose of this report : this purpose, it is to show some possibilities of the variances of higher order and of the quadrature of Gauss Jacobi in Probability and Statistics. A more complete study can be done later in order to understand if we can really obtain programs which allow to find the components of a Gaussian mixture with efficiency and can be even more efficiency than the algorithm EM.