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A time-domain numerical method for Biot-JKD poroelastic waves

in 2D heterogeneous media

Emilie Blanc,a) Guillaume Chiavassa,b) and Bruno Lombardc)

Laboratoire de Mécanique et d’Acoustique, UPR 7051, CNRS, Marseille
Laboratoire M2P2, UMR 7340, Aix-Marseille Université – École Centrale Marseille

(Dated: v0.1 - September 29, 2012)

An explicit finite-difference scheme is presented for solving the two-dimensional Biot equations of
poroelasticity across the full range of frequencies. The key difficulty is to discretize the Johnson-
Koplik-Dashen (JKD) model which describes the viscous dissipations in the pores. Indeed, the time-
domain version of Biot-JKD model involves order 1/2 shifted fractional derivatives which amounts to
a time convolution product. To avoid storing the past values of the solution, a diffusive representation
of fractional derivatives is used: the convolution kernel is replaced by a finite number of memory
variables that satisfy local-in-time ordinary differential equations. The coefficients of the diffusive
representation follow from an optimization procedure of the dispersion relation. Then, various
methods of scientific computing are applied: the propagative part of the equations is discretized using
a fourth-order ADER scheme, whereas the diffusive part is solved exactly. An immersed interface
method is implemented to discretize the geometry on a Cartesian grid, and also to enforce the jump
conditions at interfaces. Numerical experiments are proposed in various realistic configurations.

PACS numbers: 43.20.-Gp

Keywords: porous media, elastic waves, Biot-JKD model, fractional derivatives, numerical modeling,

diffusive representation, finite difference methods, Cartesian grid

I. INTRODUCTION

Two frequency regimes have to be distinguished when dealing with poroelastic waves. In the low-frequency range (LF),1

the viscous efforts are proportional to the relative velocity of the fluid and the solid matrix. In the high-frequency range
(HF), modeling the dissipation is a more delicate task: Biot first presented an expression for particular pore geometries.2 In
1987, Johnson-Koplik-Dashen (JKD)3 published a general expression for the dissipation in the case of random pores. The
viscous efforts depend in this model on the square root of the frequency. In the time domain, time fractional derivatives
are then introduced, which involves convolution products with singular kernels. Transient analytical solutions of Biot-JKD
model have been derived in academic geometries and homogeneous media.4 When dealing with more complex geometries,
numerical methods are required.

Many time-domain simulation methods have been developed in the LF regime: see Ref. 5 and the introduction to
Ref. 6 for general reviews. In the HF regime, the fractional derivatives greatly complicate the numerical modeling of the
Biot-JKD equations. The past values of the solution are indeed required in order to evaluate the convolution products,
which means that the time evolution of the solution must be stored. It greatly increases the memory requirements and
makes large-scale simulations impossible. To our knowledge, two approaches have been proposed so far in the literature.
The first approach consists in discretizing the convolution products,7 and the second one is based on the use of a diffusive
representation of the fractional derivative.8 In the latter approach, the convolution product is replaced by a continuum of
diffusive variables - or memory variables - satisfying local differential equations.9 This continuum is then discretized using
appropriate quadrature formulas, resulting in the Biot-DA (diffusive approximation) model.

In Ref. 10, the diffusive approach was followed in a one-dimensional homogeneous configuration. Compared with Ref. 8,
important improvements were introduced: good representation of the viscous dissipation on the whole range of frequencies;
optimization of the model on the range of interest; estimation of the computational effort in terms of the required accuracy.
The goal of the present work is to extend the algorithm to two-dimensional heterogeneous porous media with interfaces.

This paper is organized as follows. The original Biot-JKD model is briefly outlined in section II and the principles
underlying the diffusive representation of fractional derivatives are described. The decrease of energy and the dispersion
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analysis are addressed. In section III, the method used to discretize the diffusive model is presented: the diffusive
approximation thus obtained is easily treatable by computers. Following a similar approach than in viscoelasticity,11

the coefficients of the model are determined using an optimization procedure in the frequency range of interest, giving
an optimum number of additional computational arrays. The numerical modeling is addressed in section IV, where the
equations of evolution are split into two parts: a propagative part, which is discretized using a fourth-order scheme for
hyperbolic equations, and a diffusive part, which is solved exactly. An immersed interface method accounts for the jump
conditions and for the geometry of the interfaces, preventing from the usual limitations of finite differences on a Cartesian
grid. Numerical experiments performed with realistic values of the physical parameters are presented in section V. In
section VI, a conclusion is drawn and some futures lines of research are given.

II. PHYSICAL MODELING

A. Biot model

The Biot model describes the propagation of mechanical waves in a macroscopic porous medium consisting of a solid
matrix saturated with a fluid circulating freely through the pores.1,12,13 It is assumed that

• the wavelengths are large in comparison with the diameter of the pores;

• the amplitude of the perturbations is small;

• the elastic and isotropic matrix is completely saturated with a single fluid phase;

• the thermo-mechanical effects are neglected.

This model involves 10 physical parameters: the density ρf and the dynamic viscosity η of the fluid; the density ρs and
the shear modulus µ of the elastic skeleton; the porosity 0 < φ < 1, the tortuosity a ≥ 1, the absolute permeability κ,
the Lamé coefficient λf and the two Biot’s coefficients β and m of the saturated matrix. The following notations are
introduced

ρw =
a

φ
ρf , ρ = φρf + (1− φ) ρs, χ = ρ ρw − ρ2f > 0, λ0 = λf −mβ2. (1)

Taking us and uf to denote the solid and fluid displacements, the unknowns in 2D are the elastic velocity vs =
∂ us

∂ t , the

filtration velocity w = ∂ W
∂ t = φ ∂

∂ t (uf − us), the elastic stress tensor σ, and the acoustic pressure p. The constitutive
laws are

σ = (λf tr ε− β mξ) I+ 2µε,

p = m (−β tr ε+ ξ),
(2)

where ε = 1
2 (∇us +∇us

T ) is the strain tensor and ξ = −∇.W is the rate of fluid change. The symmetry of σ implies

compatibility conditions between spatial derivatives of ε, leading to the Beltrami-Michell equation:14

∂2 σxy
∂x ∂y

= θ0
∂2 σxx
∂x2

+ θ1
∂2 σyy
∂x2

+ θ2
∂2 p

∂x2
+ θ1

∂2 σxx
∂y2

+ θ0
∂2 σyy
∂y2

+ θ2
∂2 p

∂y2
,

θ0 = − λ0
4(λ0 + µ)

, θ1 =
λ0 + 2µ

4(λ0 + µ)
, θ2 =

µβ

2(λ0 + µ)
.

(3)

On the other hand, the conservation of momentum yields





ρ
∂vs

∂t
+ ρf

∂w

∂t
= ∇σ,

ρs
∂vs

∂t
+ ρw

∂w

∂t
+
η

κ
F ∗w = −∇p,

(4)

where ∗ is the convolution product in time. The second equation of (4) is a generalized Darcy law. The quantity F ∗w
denotes the viscous dissipation induced by the relative motion between the fluid and the elastic skeleton.
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B. High frequency dissipation: the JKD model

The frontier between the low-frequency range (LF) and the high-frequency range (HF) is reached when the viscous
efforts are similar to the inertial effects. The transition frequency is given by1,12

fc =
η φ

2 π a κ ρf
=
ωc

2 π
. (5)

In LF, the flow in the pores is of the Poiseuille type, and dissipation efforts in the second equation of (2) are given by

F (t) = δ(t) ⇐⇒ F (t) ∗w(x, y, t) = w(x, y, t), (6)

where δ is the Dirac distribution. In HF, the width of the viscous boundary-layer is small in comparison with the size of
the pores, and modeling the dissipation process is a more complex task. Here we adopt the widely-used model proposed
by Johnson-Koplik-Dashen (JKD) in 1987, which is valid for random networks of pores with constant radii.3 The only
additional parameter is the viscous characteristic length Λ. We take

P =
4 a κ

φΛ2
, Ω =

ωc

P
=

η φ2 Λ2

4 a2 κ2 ρf
, (7)

where P is the Pride number (typically P ≈ 1/2). Based on the Fourier transform in time, F̂ (ω) =
∫
R
F (t)e−iωt dt, the

frequency correction given by the JKD model can be written

F̂ (ω) =

(
1 + i ω

4 a2 κ2 ρf
ηΛ2 φ2

)1/2

,

=

(
1 + i P

ω

ωc

)1/2

,

=
1√
Ω
(Ω + i ω)1/2.

(8)

This correction is the simplest function satisfying the LF and HF limits of the dynamic permeability.3 Therefore, the term
F (t) ∗w(x, y, t) involved in the second equation of (2) is

F (t) ∗w(x, y, t) = F−1

(
1√
Ω

(Ω + i ω)1/2ŵ(x, y, ω)

)
,

=
1√
Ω

(D +Ω)1/2w(x, y, t).

(9)

The operator D1/2 is a shifted order 1/2 time fractional derivative, generalizing the usual derivative characterized by
∂ w

∂ t = F−1 (i ω ŵ(x, y, ω)). The notation (D +Ω)1/2 accounts for the shift Ω in (9).

C. The Biot-JKD equations of evolution

Based on (2), (4) and (9), the Biot-JKD equations can be written





ρ
∂ vs

∂ t
+ ρf

∂w

∂ t
= ∇σ,

ρf
∂ vs

∂ t
+ ρw

∂w

∂ t
+
η

κ

1√
Ω

(D +Ω)1/2 w = −∇p,

σ = (λf tr ε− β mξ)I+ 2µ ε,

p = m (−β tr ε+ ξ).

(10)

We rearrange this system by separating ∂ vs

∂ t and ∂ w

∂ t in the first two equations of (10) and by using the definitions of ε
and ξ. Taking

γ =
η

κ

ρ

χ

1√
Ω
, (11)
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one obtains the following system of equations of evolution





∂ vsx
∂ t

− ρw
χ

(
∂ σxx
∂ x

+
∂ σxy
∂ y

)
− ρf

χ

∂ p

∂ x
=
ρf
ρ
γ (D +Ω)1/2wx + fvsx ,

∂ vsy
∂ t

− ρw
χ

(
∂ σxy
∂ x

+
∂ σyy
∂ y

)
− ρf

χ

∂ p

∂ y
=
ρf
ρ
γ (D +Ω)1/2wy + fvsy ,

∂ wx

∂ t
+
ρf
χ

(
∂ σxx
∂ x

+
∂ σxy
∂ y

)
+
ρ

χ

∂ p

∂ x
= − γ (D +Ω)1/2wx + fwx

,

∂ wy

∂ t
+
ρf
χ

(
∂ σxy
∂ x

+
∂ σyy
∂ y

)
+
ρ

χ

∂ p

∂ y
= − γ (D +Ω)1/2wy + fwy

,

∂ σxx
∂ t

− (λf + 2µ)
∂ vsx
∂ x

−mβ
∂ wx

∂ x
− λf

∂ vsy
∂ y

−mβ
∂ wy

∂ y
= fσxx

,

∂ σxy
∂ t

− µ

(
∂ vsy
∂ x

+
∂ vsx
∂ y

)
= fσxy

,

∂ σyy
∂ t

− λf
∂ vsx
∂ x

−mβ
∂ wx

∂ x
− (λf + 2µ)

∂ vsy
∂ y

−mβ
∂ wy

∂ y
= fσyy

,

∂ p

∂ t
+m

(
β
∂ vsx
∂ x

+
∂ wx

∂ x
+ β

∂ vsy
∂ y

+
∂ wy

∂ y

)
= fp.

(12)

Terms fvsx , fvsy , fwx
, fwy

, fσxx
, fσxy

, fσyy
and fp have been to simulate sources.

D. The diffusive representation

Taking

DΩw(x, y, t) =
∂w

∂ t
+Ωw, (13)

the shifted fractional derivative (9) can be written15

(D +Ω)1/2w(x, y, t) =
1√
π

∫ t

0

e−Ω(t−τ)

√
t− τ

DΩw(x, y, τ) dτ. (14)

The operator (D + Ω)1/2 is not local in time and involves the entire time history of w. As we will see in section III,
a different way of writing this derivative is more convenient for numerical evaluation. Based on Euler’s Γ function, the
diffusive representation of the totally monotone function 1√

t
is9

1√
t
=

1√
π

∫ ∞

0

1√
θ
e−θtdθ. (15)

Substituting (15) into (14) gives

(D +Ω)1/2w(x, y, t) =
1

π

∫ t

0

∫ ∞

0

1√
θ
e−θ(t−τ) e−Ω(t−τ)DΩw(x, y, τ) dθ dτ,

=
1

π

∫ ∞

0

1√
θ
ψ(x, y, θ, t) dθ,

(16)

where the diffusive variable is defined as

ψ(x, y, θ, t) =

∫ t

0

e−(θ+Ω)(t−τ)DΩw(x, y, τ) dτ. (17)
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For the sake of clarity, the dependence on Ω and w is omitted in ψ. From (17), it follows that the diffusive variable ψ
satisfies the ordinary differential equation





∂ψ

∂ t
= −(θ +Ω)ψ +DΩw,

ψ(x, y, θ, 0) = 0.

(18)

The diffusive representation therefore transforms a non-local problem (14) into a continuum of local problems (18). It
should be emphasized at this point that no approximation have been made up to now. The computational advantages
of the diffusive representation will be seen in sections III and V, where the discretization of (16) and (18) will yield a
numerically tractable formulation.

E. Energy of Biot-JKD

Now, we express the energy of the Biot-JKD model (10). This result generalizes the analysis performed in the 1D case
in the Ref. 10.

Proposition 1 Setting C the 4× 4 poroelastic tensor such that σ = C ε− β p I in (2), let

E = E1 + E2 + E3,

with

E1 =
1

2

∫

R2

(
ρv2

s + ρw w
2 + 2 ρf vs.w

)
dx dy,

E2 =
1

2

∫

R2

(
C ε : ε+

1

m
p2
)
dx dy,

E3 =
1

2

∫

R2

∫

θ∈R+

η

κ

1

π

1√
Ω θ

1

θ + 2Ω
(w −ψ)2 dθ dx dy.

(19)

Without any source terms, E is an energy which satisfies

dE

dt
= −

∫

R2

∫

θ∈R+

η

κ

1

π

1√
Ω θ

1

θ + 2Ω

(
Ωw

2 + (θ +Ω)ψ2
)
dθ dx dy ≤ 0. (20)

Proposition 1 calls for the following comments:

• the Biot-JKD model is well-posed;

• when the viscosity of the saturating fluid is neglected (η = 0), the energy of the system is conserved;

• the terms in (19) have a clearly physical significance: E1 is the kinetic energy, and E2 is the potential energy. The
term E3 corresponds to the kinetic energy resulting from the relative motion of the fluid inside the pores.

F. Dispersion analysis

A plane wave dei(ωt−k.r) is injected in (12), where k = k e and d are the wavevector and the polarization, respectively;
r is the position, ω = 2 π f is the angular frequency and f is the frequency. If d is collinear with k, the dispersion relation
of compressional waves is obtained. Setting





D4 = m (λ0 + 2µ),

D2(ω) = − ((λf + 2µ) ρw +m (ρ− 2 ρf β)) ω
2 + i ω

η

κ
F̂ (ω) (λf + 2µ),

D0(ω) = χω4 − i ω3 η

κ
ρ F̂ (ω),

(21)
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the dispersion relation of compressional waves takes the form

De(k, ω) = D4 k
4 +D2(ω) k

2 +D0(ω) = 0. (22)

If d is orthogonal with k, the dispersion relation of the shear wave is obtained. Setting





D4(ω) = ω2 (ρ+ φρf (a− 2))− i ω φ2
η

κ
F̂ (ω),

D2(ω) = −ω2 φρf (a− 1) + i ω φ2
η

κ
F̂ (ω),

D0(ω) = ω2 φρf a− i ω φ2
η

κ
F̂ (ω),

(23)

the dispersion relation of shear wave takes the form

k =
1
√
µ

(
D4D0 −D2

2

D0

)1/2

. (24)

Expressions (21)-(22)-(23)-(24) are valid in the case of both the Biot-LF and Biot-JKD models with the frequency correc-
tion defined by

F̂ (ω) =





F̂LF (ω) = 1 Biot-LF,

F̂JKD(ω) =
1√
Ω

(Ω + i ω)1/2 Biot-JKD.
(25)

The solutions kpf , kps of (22) and the solution ks of (24) give the phase velocities cpf = ω/ℜe(kpf ) of the fast compressional
wave, cps = ω/ℜe(kps) of the slow compressional wave, and cs = ω/ℜe(ks) of the shear wave, with 0 < cps < cpf and
0 < cs. The attenuations αpf = −ℑm(kpf ), αps = −ℑm(kps) and αs = −ℑm(ks) can also be deduced. Both the phase
velocities and the attenuations of Biot-LF and Biot-JKD are strictly increasing functions of the frequency. The high
frequency limits of phase velocities of compressional waves, c∞pf and c∞ps, obtained by diagonalizing the left-hand side of

system (12), satisfy the relation

χ c4 − ((λf + 2µ) ρw +m (ρ− 2 ρf β)) c
2 +m (λ0 + 2µ) = 0, (26)

and the high frequency limit of phase velocity of the shear wave, c∞s , is

c∞s =
√
µ

(
ρ− φρf

a

)−1/2

. (27)

Figure 1 shows the dispersion curves corresponding to the Biot-LF and Biot-JKD models. The physical parameters are
those used in the numerical experiments presented in section V (medium Ω0). Note that the scales are radically different
in the case of fast and slow waves. The following properties can be observed:

• when f < fc, the Biot-JKD and Biot-LF dispersion curves are very similar as might be expected, since

lim
ω→0

F̂JKD(ω) = 1;

• the fast compressional wave and the shear wave are almost not affected by the frequency correction F̂ (ω), while the
slow compressional wave is greatly modified;

• when f ≪ fc, the slow compressional wave is almost static. When f > fc, the slow wave propagates but is greatly
attenuated.

III. THE BIOT-DA (DIFFUSIVE APPROXIMATION) MODEL

The aim of this section is to approximate the Biot-JKD model, using a numerically tractable approach.

Biot-JKD poroelastic waves in 2D heterogeneous media 6



phase velocity of the attenuation of the
fast compressional wave fast compressional wave

10
2

10
3

10
4

10
5

10
6

2383.85

2383.9

2383.95

2384

2384.05

2384.1

2384.15

2384.2

f (Hz)

c pf
 (

m
/s

)

 

 

Biot−LF
Biot−JKD

f
c c

pf
∞

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

f (Hz)

α pf
 (

N
p/

m
)

 

 

Biot−LF
Biot−JKD

f
c

phase velocity of the shear wave attenuation of the shear wave

10
2

10
3

10
4

10
5

10
6

1180

1190

1200

1210

1220

1230

f (Hz)

c s (
m

/s
)

 

 

Biot−LF

Biot−JKD

c
s
∞

f
c

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

f (Hz)

α s (
N

p/
m

)

 

 

Biot−LF

Biot−JKD

f
c

phase velocity of the attenuation of the
slow compressional wave slow compressional wave

10
2

10
4

10
6

100

200

300

400

500

600

700

800

f (Hz)

c ps
 (

m
/s

)

 

 

Biot−LF
Biot−JKD

c
ps
∞f

c

10
2

10
3

10
4

10
5

10
6

10
1

10
2

f (Hz)

α ps
 (

N
p/

m
)

 

 

Biot−LF
Biot−JKD

f
c

Figure 1. Dispersion curves: comparison between Biot-LF and Biot-JKD.
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A. The Biot-DA first-order system

Using a quadrature formula on N points, with weights aℓ and abscissa θℓ > 0, the diffusive representation (16) can be
approximated by

(D +Ω)1/2w(x, y, t) =
1

π

∫ ∞

0

1√
θ
ψ(x, y, t, θ) dθ,

≃
N∑

ℓ=1

aℓψ(x, y, t, θℓ),

≡
N∑

ℓ=1

aℓψℓ(x, y, t).

(28)

>From (18), the N diffusive variables ψℓ satisfy the ordinary differential equations




∂ ψℓ

∂ t
= −(θℓ +Ω)ψℓ +DΩw,

ψℓ(x, y, 0) = 0.

(29)

The fractional derivatives are replaced by their diffusive approximation (28) in the JKD model (12). Upon adding the
equations (29) and performing some straightforward operations, the Biot-DA system is written as a first-order system in
time and space





∂ vsx
∂ t

− ρw
χ

(
∂ σxx
∂ x

+
∂ σxy
∂ y

)
− ρf

χ

∂ p

∂ x
=
ρf
ρ
γ

N∑

ℓ=1

aℓ ψxℓ + fvsx ,

∂ vsy
∂ t

− ρw
χ

(
∂ σxy
∂ x

+
∂ σyy
∂ y

)
− ρf

χ

∂ p

∂ y
=
ρf
ρ
γ

N∑

ℓ=1

aℓ ψyℓ + fvsy ,

∂ wx

∂ t
+
ρf
χ

(
∂ σxx
∂ x

+
∂ σxy
∂ y

)
+
ρ

χ

∂ p

∂ x
= −γ

N∑

ℓ=1

aℓ ψxℓ + fwx
,

∂ wy

∂ t
+
ρf
χ

(
∂ σxy
∂ x

+
∂ σyy
∂ y

)
+
ρ

χ

∂ p

∂ y
= −γ

N∑

ℓ=1

aℓ ψyℓ + fwy
,

∂ σxx
∂ t

− (λf + 2µ)
∂ vsx
∂ x

−mβ
∂ wx

∂ x
− λf

∂ vsy
∂ y

−mβ
∂ wy

∂ y
= fσxx

,

∂ σxy
∂ t

− µ

(
∂ vsy
∂ x

+
∂ vsx
∂ y

)
= fσxy

,

∂ σyy
∂ t

− λf
∂ vsx
∂ x

−mβ
∂ wx

∂ x
− (λf + 2µ)

∂ vsy
∂ y

−mβ
∂ wy

∂ y
= fσyy

,

∂ p

∂ t
+m

(
β
∂ vsx
∂ x

+
∂ wx

∂ x
+ β

∂ vsy
∂ y

+
∂ wy

∂ y

)
= fp,

∂ ψxj

∂ t
+
ρf
χ

(
∂ σxx
∂ x

+
∂ σxy
∂ y

)
+
ρ

χ

∂ p

∂ x
= Ωwx − γ

N∑

ℓ=1

aℓ ψxℓ − (θj +Ω)ψxj + fwx,

∂ ψyj

∂ t
+
ρf
χ

(
∂ σxy
∂ x

+
∂ σyy
∂ y

)
+
ρ

χ

∂ p

∂ y
= Ωwy − γ

N∑

ℓ=1

aℓ ψyℓ − (θj +Ω)ψyj + fwy.

(30)

where j = 1, ..., N . Taking the vector of unknowns

U = (vsx, vsy, wx, wy, σxx, σxy, σyy, p, ψx1, ψy1, . . . , ψxN , ψyN )T (31)

and the source vector

F = (fvxs
, fvys , fwx

, fwy
, fσxx

, fσxy
, fσyy

, fp, fwx
, fwy

, . . . , fwx
, fwy

)T , (32)
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the system (30) can be written

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ y
= −SU+ F, (33)

where A is the (2N + 8)2 propagation matrix along x, B is the (2N + 8)2 propagation matrix along y and S is the
(2N + 8)2 dissipation matrix (A1, A2, A3). The size of the system increases linearly with the number N of diffusive
variables.

B. Properties

Four properties of system (33) are specified:

• the eigenvalues of A (A1) and B (A2) are real: 0 with multiplicity 2N + 2, ±c∞pf , ±c∞ps and ±c∞s . The system (33)
is therefore hyperbolic;

• since the eigenvalues and eigenvectors do not depend on the diffusive coefficients, they are the same in both the
Biot-DA and Biot-LF or Biot-JKD models. This is not so in the case of the method presented in the Ref. 7, where
the propagation matrix is modified to account for the fractional derivative;

• the dispersion analysis is obtained in the case of the Biot-DA model by replacing F̂ by

F̂AD(ω) =
Ω + i ω√

Ω

N∑

ℓ=1

aℓ
θℓ +Ω + i ω

(34)

in equations (21)-(22).

C. Determining the Biot-DA parameters

The coefficients aℓ and θℓ in (28) have to be determined. For this purpose, we want to approach the original frequency

correction F̂JKD(ω) (25) by F̂AD(ω) (34) in a given frequency range of interest. Let Q(ω) be the optimized quantity and
Qref (ω) be the desired quantity





Q(ω) =
F̂AD(ω)

F̂JKD(ω)
=

N∑

ℓ=1

aℓ
(Ω + i ω)1/2

θℓ +Ω + i ω
=

N∑

ℓ=1

aℓ qℓ(ω),

Qref(ω) = 1.

(35)

We implement a linear optimization procedure10,16–18 in order to minimize the distance between Q(ω) and Qref (ω) in the
interval [ωmin, ωmax] centered on ω0 = 2 π f0, where f0 is the central frequency of the source. The abscissas θℓ are fixed
and distributed linearly on a logarithmic scale

θℓ = ωmin

(
ωmax

ωmin

) ℓ−1

N−1

, ℓ = 1, ..., N. (36)

The weights aℓ are obtained by solving the system

N∑

ℓ=1

aℓ qℓ(ω̃k) = 1, k = 1, ...,K, (37)

where the ω̃k are also distributed linearly on a logarithmic scale of K points

ω̃k = ωmin

(
ωmax

ωmin

) k−1

K−1

, k = 1, ...,K. (38)

Biot-JKD poroelastic waves in 2D heterogeneous media 9



Since the qℓ(ω) are complex functions, optimization is performed simultaneously on the real and imaginary parts




N∑

ℓ=1

aℓ Re(qℓ(ω̃k)) = 1,

N∑

ℓ=1

aℓ Im(qℓ(ω̃k)) = 0, k = 1, ...,K.

(39)

For practical purposes, we use ωmin = ω0/10 and ωmax = 10ω0, and we solve an overdetermined system (K = N), which
can be solved by writing normal equations.19 The number of diffusive variables N can be determined in terms of the ratio
f0/fc and of the chosen accuracy: see Ref. 10 for details.

IV. NUMERICAL MODELING

A. Splitting

In order to integrate the Biot-DA system (33), a uniform grid is introduced, with mesh size ∆x = ∆ y and time step ∆ t.
The approximation of the exact solution U(xi = i∆x, yj = j∆ y, tn = n∆ t) is denoted by U

n
ij . If an unsplit integration

of (33) is performed, a Von-Neumann analysis typically yields the stability condition

∆ t ≤ min

(
Υ

∆x

c∞pf
,

2

R(S)

)
, (40)

where R(S) is the spectral radius of S, and Υ > 0 depends on the numerical scheme. We have no theoretical estimate of
R(S), but numerical studies have shown that this value is similar to that of the spectral radius in LF: η

κ
ρ
χ , which can be

very large.6 The time step can therefore be highly penalized in this case (40).
A more efficient strategy is adopted here, which consists in splitting the original system (33) into a propagative part

and a diffusive part:




∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ y
= 0,

∂U

∂ t
= −SU.

(41)

For the sake of simplicity, the source term F has been omitted here. The discrete operators associated with the propagative
part and the diffusive part are denoted by Ha and Hb, respectively. The second-order Strang splitting is then used to
integrate (33) between tn ant tn+1, giving the time-marching

• U
(1)
ij = Hb(

∆ t
2 )Un

ij ,

• U
(2)
ij = Ha(∆ t)U

(1)
ij ,

• U
n+1
ij = Hb(

∆ t
2 )U

(2)
ij .

(42)

The discrete operator Ha associated with the propagative part (first equation of (41)) is an ADER 4 (Arbitrary
DERivatives) scheme.20 This scheme is fourth-order accurate in space and time, is dispersive of order 4 and dissipative of
order 6, and has a stability limit Υ = 1. On Cartesian grids, ADER 4 amounts to a fourth-order Lax-Wendroff scheme.

Since the physical parameters do not vary with time, the diffusive part (second equation of 41)) can be solved exactly.
This gives

Hb

(
∆ t

2

)
Uij = e−

∆ t
2

S
Uij . (43)

The matrix e−
∆ t
2

S is computed numerically using the (6, 6) Padé approximation in the "scaling and squaring method".21

The numerical integration of the diffusive step (43) is unconditionally stable.10

The full algorithm (42) is therefore stable under the optimum CFL (Courant-Friedrichs-Lewy) stability condition

CFL = c∞pf
∆ t

∆x
6 Υ, (44)

which is always independent of the Biot-DA model coefficients.
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B. Immersed interface method

Figure 2. Interface Γ between two poroelastic media Ω0 and Ω1.

Let us consider two homogeneous poroelastic media Ω0 and Ω1 separated by a stationary interface Γ, as shown in figure
2. The governing equations (30) in each medium have to be completed by a set of jump conditions. The simple case of
perfect bonding and perfect hydraulic contact along Γ is considered here, modeled by the jump conditions:22

[vs] = 0, [w.n] = 0, [σ.n] = 0, [p] = 0. (45)

The discretization of the jump conditions requires special care, for three reasons. First, if the interfaces do not coincide
with the uniform meshing, then geometrical errors will occur. Secondly, the jump conditions (45) will not be enforced
numerically by the finite-difference scheme, and the numerical solution will therefore not converge towards the exact
solution. Lastly, the smoothness of the solution required to solve (33) will not be satisfied across the interface, which will
decrease the convergence rate of the ADER scheme.

To overcome these drawbacks without detracting the efficiency of Cartesian grid methods, an immersed interface
method6,23 is used. The latter studies can be consulted for a detailed description of this method. The basic princi-
ple is as follows: at the irregular nodes where the ADER scheme crosses an interface, modified values of the solution are
used on the other side of the interface instead of the usual numerical values.

Calculating these modified values is a complex task involving high-order derivation of jump conditions (45), Beltrami-
Michell relations (3) and singular value decompositions. Fortunately, all these time consuming procedures can be carried
out during a preprocessing stage and only small matrix-vector multiplications need to be performed during the simulation.
After optimizing the code, the extra CPU cost can be practically negligible, i.e. lower than 1% of that required by the
time-marching procedure.

The immersed interface method uses only the propagative part (first equation of (41)) and the jump conditions (45),
whose do not depend on the frequency regime. Consequently, no changes are required in the high-frequency range compared
to the low-frequency range. The algorithm is the same as in the low-frequency range, see Ref. 6 for details.

V. NUMERICAL EXPERIMENTS

General configuration
The physical parameters used in all the numerical experiments, which are given in table I, correspond to Cold Lake

sandstone (Ω0) and Berea sandstone (Ω1) saturated with water. The computational domain [−0.1, 0.1]2 m is discretized
with Nx ×Ny grid points, Nx = Ny = 1600, which amounts to 29 points per slow compressional wavelength in Ω0 and in
Ω1 for a source of central frequency f0 = 200 kHz. As seen in 1D,10 N = 6 diffusive variables are used to ensure an error
of model smaller than 5.58 %. The time step is deduced from (44), taking CFL = 0.95. The numerical experiments are
performed on an Intel Core i7 processor at 2.80 GHz.

Biot-JKD poroelastic waves in 2D heterogeneous media 11



Parameters Ω0 Ω1

Saturating fluid ρf (kg/m3) 1040 1000

η (Pa.s) 1.5 10−3 10−3

Grain ρs (kg/m3) 2650 2644

µ (Pa) 2.93 109 7.04 109

Matrix φ 0.335 0.2

a 2 2.4

κ (m2) 10−11 3.6 10−13

λf (Pa) 6.14 109 1.06 1010

m (Pa) 6.49 109 9.70 109

β 9.56 10−1 7.20 10−1

Λ (m) 2.19 10−5 5.88 10−6

Phase velocities c∞pf (m/s) 2384.17 3269.89

c∞ps (m/s) 758.95 814.95

c∞s (m/s) 1229.00 1776.16

fc (Hz) 3.84 103 3.68 104

Table I. Physical parameters used in numerical experiments.

Test 1: homogeneous medium
The unbounded homogeneous medium Ω0 is excited by a point source. The only non-null component of the vector of

source F (32) is fσxy
= g(x, y)h(t), where g(x, y) is a truncated gaussian centered at point (0, 0), of radius R0 = 3.79 10−3

m and Σ = 1.90 10−3 m:

g(x, y) =





1

πΣ2
exp

(
−x

2 + y2

Σ2

)
if 0 6 x2 + y2 6 R2

0,

0 otherwise,

(46)

and h(t) is a Ricker signal of central frequency f0 = 200 kHz and of time-shift t0 = 2/f0 = 10−5 s:

h(t) =





(
2 π2 f2

0

(
t− 1

f0

)2

− 1

)
exp

(
−π2 f2

0 (t− 1

f0
)2
)

if 0 6 t 6 t0,

0 otherwise.

(47)

We use a truncated gaussian for g(x, y) rather than a Dirac to avoid spurious numerical artifacts localized around the
source point. This source generates cylindrical waves of all types: fast and slow compressional waves and shear wave,
which are denoted Pf , Ps and S, respectively, in figure 3. Fast and slow compressional waves are observed as regards the
pressure, while the additional shear wave is present in the σyy component of the stress tensor. No special care is applied
to simulate outgoing waves (with PML, for instance), since the simulation is stopped before the waves have reached the
edges of the computational domain.

Test 2: diffraction of a plane wave by a plane interface
In all the following tests, the source is a plane right-going fast compressional wave, whose wavevector k makes an angle

θ = 0 with the horizontal x-axis. Its time evolution is the same Ricker signal as in the first test (47). We use periodic
boundary conditions at the top and at the bottom of the domain.

This test is conducted on a vertical plane interface at x = 0 m. The incident Pf -wave (Ipf ) propagates in the medium
Ω0. The incident wave crosses the interface normally, leading to a 1D configuration. Consequently, only the fast and
slow compressional waves propagate. From a numerical point of view, however, the problem is fully bidimensional. The
advantage of such a 1D configuration is that each diffracted wave has interacted with the interface and is consequently
very sensitive to the discretization of the interface conditions (45). The figure 4 shows a snapshot of the pressure
at t1 = 1.82 10−5 s, on the whole computational domain. The reflected fast and slow compressional waves, denoted
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p σyy

Figure 3. Test 1. Fast and slow compressional waves, respectively Pf and Ps, and shear wave S emitted by a source point at
(0.01, 0). Pressure (left) and σyy component of the stress tensor (right) at t1 = 3.98 10−5 s.

respectively Rpf and Rps, propagate in the medium Ω0; and the transmitted fast and slow compressional waves, denoted
respectively Tpf and Tps, propagate in the medium Ω1.

(a) (b)

Figure 4. Test 2. Snapshot of p at initial time (a) and at t1 = 1.82 10−5 s (b).

In this case, we compute the exact solution of Biot-DA thanks to standard tools of Fourier analysis. Special care is
taken to ensure that the initial data and the exact solution are valuable reference solutions : Nf = 512 Fourier modes are
used, with a frequency step ∆ f = 4000 Hz. The figure 5 shows the excellent agreement between the analytical and the
numerical values of the pressure along the line y = 0 m.

Test 3: diffraction of a plane wave by a cylinder or a circular shell
In the first case, a cylindrical scatterer Ω1 of radius 0.015 m is centered at point (0.01, 0). In the second case, we

consider a poroelastic shell Ω1 of external radius 0.03 m and internal radius 0.015 m, centered at point (0.025, 0). The
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Pressure Zoom on the slow compressional waves

Figure 5. Test 2. Pressure along the line y = 0 m; vertical line denote the interface. Comparison between the numerical values
(circle) and the analytical values (solid line) of p at t1 = 1.82 10−5 s.

initial conditions are illustrated in figure 6(a) and 7(a), and the figure 6(b) and 7(b) represent a snapshot of σyy at
t1 = 3.63 10−5 s. The immersed interface method ensures that no spurious diffractions are created during the interaction
of the incident wave with the scatterers, despite the non-null curvature of the interfaces. In the figure 6(b) and 7(b), the
transmitted fast compressional wave has a curved wavefront because its phase velocity cpf in the medium Ω1 is greater
than in the medium Ω0. Classical conversions and scattering phenomena are observed.

(a) (b)

Figure 6. Test 3. Scatterer: cylinder. Snapshot of σyy at initial time (a) and at t1 = 3.63 10−5 s (b).

Test 4: multiple ellipsoidal scatterers

In the last test, the ability of the proposed numerical strategy to handle complex geometries with variable curvature is
illustrated. 15 ellipsoidal scatterers, of major radius 0.008 m and of minor radius 0.005 m, of medium Ω1 are randomly
embedded in Ω0. Performing such a simulation with hundreds of scatterers has physical applications. Doing so provide a
mean to check the validity of multiple scattering models.25,26
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(a) (b)

Figure 7. Test 3. Scatterer: circular shell. Snapshot of σyy at initial time (a) and at t1 = 3.63 10−5 s (b).

(a) (b)

Figure 8. Test 4. Snapshot of σyy at initial time (a) and at t1 = 4.03 10−5 s (b).

VI. CONCLUSION

An explicit finite-difference method is presented here for simulating transient poroelastic waves in the full range of
validity of poroelasticity. The Biot-JKD model, which involves order 1/2 fractional derivatives, was replaced here by
an approximate Biot-DA model, which is much more tractable numerically. The Biot-DA coefficients are determined
here using an optimization procedure, which depends on the frequency range of interest. The hyperbolic system of partial
differential equations was discretized using efficient tools (Strang splitting, fourth-order ADER scheme, immersed interface
method). This numerical methodology provides highly accurate numerical solutions, allowing a fine numerical investigation
of realistic porous media.

Some future lines of research are suggested:

• Continuously variable porous media. In the previous numerical experiments, the physical parameter characterizing
the porous media are constant and discontinuous across the interfaces. The possibility of applying the presented
numerical method to 2D porous media with continuously variable coefficients,11 where no analytical expressions are
available, is currently in progress: see Ref. 10 in 1D.
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• Multiple scattering. The numerical tools presented here make possible the modeling of multiple scattering in random
media. Based on simulated data, the properties of the effective medium amount to the disordered under study can
be deduced.25,26 Optimization and parallelization of the method must be realized to take into account of hundreds
of inclusions in our simulations.

• Anisotropy. The anisotropy of some porous media is sometimes a main feature, for instance in biomechanics to
model trabecular and cortical bones.24,27 The anisotropy of a medium changes only the 4 × 4 poroelastic tensor C
(1). So the ADER 4 scheme and the immersed interface method have to be modified, but the approximation of the
fractionnal derivative is still valid.

• Thermic boundary-layer. In cases where the saturating fluid is a gas, thermo-mechanical effects have to be taken
into account. Extended versions of the Biot-JKD have been developed,28 involving additional order 1/2 fractional
derivatives. The numerical method developed in this paper should lend itself well to working with this model.

Appendix A: MATRICES OF PROPAGATION AND DISSIPATION

The matrices in (33) are

A =




04,4 A1 04,2N

A2 04,4 04,2N

02N,4 A3 02N,2N


 , A1 =




−ρw
χ

0 0 −ρf
χ

0 −ρw
χ

0 0

ρf
χ

0 0
ρ

χ

0
ρf
χ

0 0




,

A2 =




−(λf + 2µ) 0 −mβ 0

0 −µ 0 0

−λf 0 −mβ 0

mβ 0 m 0


 , A3 =




ρf
χ

0 0
ρ

χ

0
ρf
χ

0 0

...
...

...
...

ρf
χ

0 0
ρ

χ

0
ρf
χ

0 0




;

(A1)

B =




04,4 B1 04,2N

B2 04,4 04,2N

02N,4 B3 02N,2N


 , B1 =




0 −ρw
χ

0 0

0 0 −ρw
χ

−ρf
χ

0
ρf
χ

0 0

0 0
ρf
χ

ρ

χ




,

B2 =




0 −λf 0 −mβ

−µ 0 0 0

0 −(λf + 2µ) 0 −mβ

0 mβ 0 m


 , B3 =




0
ρf
χ

0 0

0 0
ρf
χ

ρ

χ
...

...
...

...

0
ρf
χ

0 0

0 0
ρf
χ

ρ

χ




;

(A2)
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S =




04,4 04,4 S1

04,4 04,4 04,2N

S3 02N,4 S2


 , S3 =




0 0 −Ω 0

0 0 0 −Ω
...

...
...

...

0 0 −Ω 0

0 0 0 −Ω



,

S1 =




−ρf
ρ
γ a1 0 ... −ρf

ρ
γ aN 0

0 −ρf
ρ
γ a1 ... 0 −ρf

ρ
γ aN

γ a1 0 ... γ aN 0

0 γ a1 ... 0 γ aN



,

S2 =




γ a1 + (θ1 +Ω) 0 ... γ aN 0

0 γ a1 + (θ1 +Ω) ... 0 γ aN

...
...

...
...

...

γ a1 0 ... γ aN + (θN +Ω) 0

0 γ a1 ... 0 γ aN + (θN +Ω)




.

(A3)
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