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Abstract

This paper develops and tests a heterogeneous agents model for the
option market. Our agents have different beliefs about the future level of
volatility of the underlying stock index and trade accordingly. We con-
sider two types of agents: fundamentalists and chartists, who are able to
switch between groups according to a multinomial logit switching rule.
The model simplifies to a GARCH-type specification with time-varying
parameters. Estimation results for DAX30 index options reveal that dif-
ferent types of traders are actively involved in trading volatility. Our
model improves frequently used standard GARCH-type models in terms
of pricing performance.

Keywords: Heterogeneous Agents, Option Markets, Fundamental-
ists, Chartists, GARCH.

JEL-Classification: G12, C15

1 Introduction

Volatility is priced and traded in the options market. For example, if option
traders believe that markets will become more volatile, they buy at-the-money
puts and calls (a long straddle) because option values usually increase when
volatility increases. Their buying activity drives option prices up, which in
turn causes the implied volatility to increase (Garleanu et al., 2009). Vice
versa, if they believe that volatility is overpriced, they short a straddle (sell
puts and calls) and their selling decreases the price and lowers implied volatility.
Therefore, traders’ expectations about future volatility affect their demand for
options and their different expectations creates uncertainty about the ‘fair value’
of volatility and causes volatility itself to become volatile. Models that capture
such volatility in volatility, such as stochastic volatility models, are particularly
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important for the pricing performance of the volatility model (Christoffersen
and Jacobs, 2004). However, so far no model has been introduced that models
these different expectations about future volatility.

In this paper, we propose an alternative model to price options. This model
assumes that option traders have heterogeneous beliefs about future volatility
and it is this heterogeneity that affects the pricing of options. To implement
this model we follow the heterogeneous agents literature, elaborately surveyed
by Hommes (2006), which often assumes that two different types of traders are
active in the market, where some traders (termed fundamentalists) trade on
the long-term mean-reversion towards its fundamental value while other traders
(called chartists) trade on short-term patterns. In our case, fundamentalists
trade on long-run mean-reversion of conditional volatility to the unconditional
volatility, while chartists trade on exogenous shocks from the level process. Ad-
ditionally, in our model, each trader can decide on her/his strategy based on its
performance relative to the other trader’s strategy. Since the strategies do not
demand any particular skill or knowledge, traders can change their type condi-
tional on the relative performance. As such, the market consists of a weighted
average of two simple, boundedly rational, strategies.

Interestingly, when combining the strategies of both trader types into a sin-
gle model we find that our model reduces to an asymmetric GARCH model
with time-varying coefficients, where the time-variation is due to changes in the
proportions of fundamentalists and chartists present. This time variation intro-
duces an interesting feature from a GARCH modeling perspective, because it
allows the volatility process to be locally unstable (as in an IGARCH model)
while guaranteeing global stability. When chartists dominate the market, their
persistence may cause the volatility process to be unstable in the short run.
When the proportion of fundamentalists increases, their presence ensures that
the volatility process becomes stable again. Aslong as sufficient fundamentalists
are present, the volatility process will remain stable and the process can switch
between stable and unstable phases depending on the preferred trading strategy.
Unconditionally, since the market is divided evenly between fundamentalists and
chartists, stability is guaranteed in the long run as long as standard stability
conditions are met. Interestingly, this provides an economic and behavioral in-
terpretation to the notion of volatility clustering and GARCH-dynamics often
observed in financial market volatility.

When empirically testing our model on option prices using the GARCH-
option pricing methodology of Duan (1995), we find evidence that supports the
presence of both types of traders. Over time, the fractions of fundamentalist and
chartist traders change conditional on how well each trading strategy performs.
Subsequently, we present evidence that our model outperforms a standard model
without switching in terms of pricing performance both in-sample and out-of-
sample, for all maturity - strike combinations.

We contribute to the literature on three different grounds. First, we con-
tribute to the heterogeneous agents literature by focusing on volatility traders;
specifically, by assuming heterogeneity in beliefs about the volatility process
and by allowing agents to switch between different strategies instead of assuming
fixed proportions. In addition, empirical studies on heterogeneous agents models
are scarce; we try to fill this void. Second, we contribute to the GARCH litera-
ture by giving an economic interpretation of GARCH-dynamics. By proposing
this specific setup of a GARCH, we provide an intuitive and parsimonious model-



ing approach to time varying parameters. Third, we contribute to the literature
on option pricing as our model comfortably outperforms a standard GARCH
model often used to price options.

The remainder of the paper is organized as follows. Section 2 reviews the
literature on heterogeneous agent models. In Section 3, we present the econo-
metric framework of our model. Section 4 presents the data and methodology
of the estimation procedure. In Section 5, we show the results, and Section 6
concludes.

2 Heterogeneous Agents Models

Evidence against the Efficient Market Hypothesis (EMH, see Fama, 1971) has
been mounting in the past decades. In a broad range of markets and using a
similarly broad range of techniques, researchers have found evidence against the
notion of rationality in financial markets. Examples of these are studies using
observed (survey) expectations which frequently reject the notion of rationality
(see e.g., Frijns et al., 2008 for experimental evidence or MacDonald, 2000 for an
overview). A second example is the existence of numerous anomalies in financial
markets. Phenomena like excess volatility, small firm effects, overshooting, and
the January effect cannot be explained by representative agent rational expec-
tation models. Theoretically, one can also cast doubt on the EMH. No trade
theorems (Milgrom and Stokey, 1982) hypothesize that rational agents will never
trade because expectations are equal and all information is discounted in the
current market price. Therefore, price changes occur without trade taking place.
This is hard to combine with the observation of enormous trading volumes.
One of the responses to the demise of the EMH is the emergence of the
behavioral finance literature (Kahneman and Tversky, 1979 or Barberis et al.,
1998, inter alii). Behavioral finance relaxes the notion of rationality and intro-
duces elements from social psychology to economic decision making. Divergence
from the assumption of rationality implies that one can introduce heterogeneity
in expectations, i.e. there is only one way of behaving rationally, while there
are infinite ways of behaving irrationally or boundedly rational. In general, the
literature provides three compelling reasons for heterogeneity in expectations.
First, there may be an asymmetry in the information available to market par-
ticipants, where it is often assumed that part of the information is common to
all market participants and part is private. This concept of asymmetric infor-
mation was first introduced in the New Classical Theory of the macro economy,
where agents were unable to obtain information that is public in other parts of
the economy. The idea of informational asymmetry among market participants
has been particularly well received in the market microstructure literature (e.g.,
Kyle, 1985). Second, even with symmetric information, agents may interpret
this information differently. One argument for this explanation is provided by
Kurz (1994), which suggests that economic agents do not know the underlying
structural relations of the economy. Agents only have ‘information’ or ‘empirical
knowledge’ that is readily observable from the economy. Finally, heterogeneity
in expectations may exist due to the existence of fundamentally different types
of agents. De Long et al. (1990), for example, propose a model that illustrates
that different types of traders can coexist, and that rational investors do not
necessarily drive out noise traders. Frankel and Froot (1986, 1990) popular-



ize the view that the (foreign exchange) market is dominated by two types of
market participants which differ in the information they use to form their ex-
pectations. Fundamentalists think of the exchange rate as an economic model,
while chartists predominantly use the exchange rate’s history to form their ex-
pectations.

The literature on heterogeneous agents models, or HAMs, continues on the
line of thought that there can be fundamentally different types of agents (see
Brock and Hommes, 1997, 1998, Chiarella and He, 2001, 2002, Lux, 1998, Lux
and Marchesi, 2000, De Grauwe and Grimaldi, 2005, 2006, LeBaron et al.,
1999). See also Hommes (2006), LeBaron (2006), Chiarella et al. (2009) and
Lux (2009) for overviews. This literature, applied to financial markets, aims to
describe stock price evolution by relaxing the assumption of homogeneity among
investors. By allowing for heterogeneity among investors, different trader types
can be classified along with their potential strategies. Given those classifica~
tions, one can evaluate the likelihood of these traders being active and the
consequences of their trading for the price and volatility process. As first in-
troduced by Frankel and Froot (1986) traders are typically classified into two
categories: fundamentalists, who trade based on fundamentals; and chartists,
who trade on observed patterns in past prices. Revolutionary in the models,
first introduced by Brock and Hommes (1997, 1998), is that agents are not only
different, but are also able to switch between types conditional on performance.
This switching introduces a non-linearity that mixes different regimes, based on
economic foundations.

Up until now, the majority of studies on HAMs have been conducted in
experimental settings. Using either deterministic or stochastic simulation tech-
niques, the presence of different trader types in financial markets can explain
some stylized facts of returns in financial markets (see e.g. De Grauwe and
Grimaldi, 2005, 2006, Lux, 1998, Alfarano et al., 2005, and He and Li, 2007,
2008). The irregular switching between types induces volatility clustering, heavy
tails, slow mean-reversion (persistence), and excess volatility. However, to our
knowledge there are only a handful of empirical applications that attempt to
estimate a HAM with full-fledged switching mechanism. Those attempts that
have been made consider the S&P 500 market index (see Boswijk et al., 2007),
commodity markets (Reitz and Westerhoff 2003, 2005, 2007) and EMS exchange
rates and Asian equity markets (De Jong et al., 2009a,b). All these studies re-
port significant evidence of heterogeneity among traders and switching between
strategies.

Several studies have looked at the impact of heterogeneous beliefs on options
prices. In a theoretical setting, Shefrin (2001) shows how heterogeneity in beliefs
affects option prices (i.e. leading to different prices than Black-Scholes), and can
explain the smile observed in implied volatilities. In a two-trader example, he
shows how traders with different beliefs come up with different option prices
and that the equilibrium option price is a weighted average of the two different
option prices. Several papers focusing on heterogeneity suggest that traders
with more pessimistic (optimistic) views will be attracted to out of the money
put (call) options (e.g. Benninga and Mayshar, 2000 and Buraschi and Jil-
stov, 2006). More specifically, studies that focus on heterogeneity among option
traders have focused on the heterogeneous beliefs they hold regarding the funda-
mentals that determine the option price. For example, Benninga and Mayshar
(2000) focus on heterogeneity in traders’ risk aversion and find that their model



explains the empirically observed smile in implied volatility. Buraschi and Jil-
stov (2006) propose a theoretical model with model uncertainty and differences
in beliefs about dividend growth. Using this model, they empirically investigate
the impact of differences in beliefs regarding market fundamentals on the dy-
namics of option trading and open interest. They find that their model cannot
be rejected by the data, produces smaller hedging errors than those produced
by the Black-Scholes and Heston (1993) model and can explain the observed
smile in option prices. Rzepkowski (2001) proposes a model with heterogeneous
expectations in the foreign exchange market and finds empirical evidence of
the presence of traders with heterogeneous beliefs about future exchange rates
and different levels of confidence in their forecasts in an option pricing context.
Ziegler (2002) models two types of agents who differ in their initial beliefs on
the dividend process and investigates the effect on option prices.

The literature on heterogeneous expectations in volatility is less developed.
Trippi and Harriff (1993) note that “traders who are not interested in the un-
derlying asset except for the relative misalignment of implied volatility ‘across
options are significant participants in most option market” (p. 343). They
therefore focus on the dispersion in implied volatility and find that it is an
important variable for explaining traded volume in the S&P 100 stocks. Guo
(1998) introduces heterogeneity in his model by assuming that option traders
have heterogeneous expectations about the parameters of the lognormal process
of the underlying asset price. Estimation results for S&P 500 index call op-
tions indicate that there are two groups: bulls and bears. However, there are
no studies on full-fledged HAMs applied to the options market, to our best
knowledge.

3 The Econometric Framework

In this section, we develop an econometric model based on the notion that differ-
ent types of traders are active in the options market. The complete derivation of
the theoretical model is in the Appendix. We first define the different strategies
option traders may follow and subsequently combine these strategies to define
the conditional volatility process. We show that the combined volatility process
reduces to an asymmetric GARCH model with time-varying coefficients.

Let S; be the value of an underlying asset at time ¢. Then, in a Gaussian
discrete-time economy, the (log) return process of the asset (r;) is given as

S
T = In : +dy = p+ Ve, 1)
Si-1/

et|Q—1 ~ N(0,1) under probability measure P,

where d; is the asset’s dividend yield, u is the mean of r;, h; is the conditional
volatility of the asset, €; is a standard normal random variable and €2;_; is the
information set up to time ¢ — 1. In this paper, we focus on explaining the
process for h;.

Assume that traders with purely speculative motives populate the market
for options, and that these traders can be classified into two different groups
that have different expectations about the future evolution of h;. Fundamental-
ists, who trade on the principle of mean reversion and chartists, who trade on



exogenous shocks. While individuals can enter and exit the market at any time,
the total population of active traders is always separable into these two groups.
Let EF(hiy1) be the prediction of the conditional volatility for the fun-
damentalists. These fundamentalists are assumed to trade based on mean-
reversion, where they expect the conditional volatility to mean-revert to the
unconditional volatility. Their best prediction for the volatility process is

Ef (hiy1) = by — (1= @) (he — hy), (2)

where h; is the slow moving long-run unconditional volatility and o measures the
speed at which the fundamentalists expect the volatility process to mean-revert!.
Since volatility needs to remain positive with probability 1, a can range between
(—1,1) for (2) to be stable, but is expected to be between [0,1) such that h;
reverts monotonically to h;. When a — 1 the process becomes very persistent
and little mean-reversion takes place. When o — 0 the process reverts to the
unconditional volatility almost instantaneously. Equation (2) reveals that the
expectations of fundamentalists essentially follow a GARCH(1,0), not taking
into account any shocks in the volatility process. Since volatility is the only
(unknown) determinant of option prices and our traders are pure speculators,
fundamentalists’ demand for options is solely driven by their expectations about
the change in volatility. When they expect volatility to increase, they increase
their demand for options and vice versa. Hence, fundamentalists’ demand for
options is positively related to the change in their volatility expectations.

Chartists do not believe in mean reversion, but trade on recently observed
unexpected shocks. Given the current level of volatility, they use recently ob-
served unexpected shocks to the return process to predict the future level of
conditional volatility. Given that conditional volatility behaves differently in
the presence of positive or negative shock, and chartists may interpret posi-
tive and negative shock differently, we allow for an asymmetric impact of these
shocks as in the GJR-GARCH model, see Glosten, Jagannathan and Runkle
(1993). We define their prediction of the volatility process as

Ef (het) = het Bo(Vhue! ) + B1(Vhuey ), 3)

where EE (h11) is the volatility prediction of the chartists, e/ (¢; ) is the past
positive (negative) shock in the volatility process and [, (8;) measures the
extent to which chartists incorporate positive (negative) shocks into their pre-
diction. - The asymmetry between positive and negative shocks captures the
leverage effect, hence we expect 8, < ;. Following the same reasoning as for
fundamentalists, chartists’ demand for options is a positive function of their
change in expectations.

Because we have defined a market where only two types of traders are
present, the conditional volatility that is observed in the market (h;y1) is a
function of the predictions of chartists and fundamentalists and the proportion
by which each trader type is present in the market. Since both strategies in-
volve no particular skill or information from traders, traders can switch to either
strategy at any point in time without incurring transaction costs. Let w; be the
fraction of fundamentalists present in the market. Then a natural choice for w;

!When empirically implementing the model, we assume that hs is equal to the variance
of the underlying return series calculated over the previous 250 trading days with a moving
window.



is a rule that considers the relative accuracy or pricing error of following a fun-

damentalist strategy?. We define w; as a multinomial logit switching rule (see

Brock and Hommes, 1997, 1998), where the switching depends on the absolute

forecast error of fundamentalists versus chartists. The switching rule is given as
1

= <1+J( >> S

where v measures the sensitivity of market participants (fundamentalists or
chartists) to their respective percentage forecast errors in terms of log volatility
and is expected to be between 0 and infinity. This sensitivity parameter can be
interpreted as the status quo bias of traders, as it governs the reaction speed of
traders to profit differences, or, in other words, the aversion of people to give
up what they have and know well; see Kahneman et al. (1991). With v = 0,
agents are distributed uniformly across trader types. As v increases agents
become increasingly sensitive to differences in forecasting performance between
the strategies. In the limiting case (7 — oo ) all agents directly switch to the
more profitable rule, such that w; is either 0 or 1. Given this definition, w; will
always be strictly bounded between 0 and 1.

The particular specification of w; ensures that the more accurate strategy in
the previous period attracts more market participants in the following period.
Therefore, if fundamentalists predict volatility more accurately than the chartist
in period t, the weight w11, will increase. Consequently, a better prediction of
the chartists reduces w4 1.

Note that the switching rule does not imply that each individual changes
its strategy every single day. Theoretically, traders have the opportunity to do
S0, but the frequency at which strategies are actually updated depends on the
magnitude of . The advantage of the current setup is that it provides the most
flexibility in terms of behavior. Furthermore, the weights reflect the behavior
of the population as a whole, and therefore do not necessarily imply anything
about the behavior of individual traders. The fact that individuals can enter
and exit the market at any time has an effect on the relative magnitude of the
population, not the distribution of individuals over groups.

With the given weights and the different trading strategies, we can now es-
tablish the process for the conditional volatility. Since the conditional volatility
is a consequence of buying and selling of options, and the demand for options is
a function of volatility expectations, it can be computed as a weighted average
of the fundamentalist and the chartist volatility prediction. This mechanism
can be seen as the excess demand of the two groups being combined into mar-
ket excess demand for options. The market maker transforms market excess
demand into changes in the level of volatility, as in Chiarella and He (2002)3 .
Hence, there is a direct mapping from expectations to volatility, i.e.,

(B | (h))~n(hy)
Tn(hy)

(B (hy))—In(hy)
n(hg)

hivr = W B (hys1) + (1 — w) B (heta) (5)

2An example for the definition of wy is the profits fundamentalists make relative to the
chartist on an option strategy that involves straddles. When fundamentalists expect volatility
to increase, they will go long in a straddle and vice versa. If their strategy pays off well relative
to the chartists’ strategy, more traders may be inclined to follow this fundamental strategy
and hence the proportion of fundamentalists will increase. If their strategy performs poorly
relative to chartists, more traders will be inclined to follow a chartist strategy in the future.
3See the Appendix for the exact derivation of this mechanism.




Equation (5) defines the conditional volatility process and reveals that this
is an average of the volatility predictions of chartists and fundamentalists,
weighted by the proportion of market participants following each strategy. Sub-
sequently, we provide an economic interpretation of (5), by substituting (2) and
(3) into (5). After rewriting, we obtain

huen = —wiahy + (1L wa)he + (1= w) (Bo(v/hue > + 81 (Vhue; )?) . (6)

or

hevt = By + avhy + Bo o (Vheed ) + By (Vheer )2, (7)

where h; = —wiah, ap = (1 +wia), By = (1 —wy)By and By, = (1 — wy)PBy-
Equation (7) shows that the model essentially reduces to a GJR-GARCH(1,1)
model with time-varying coefficients. The time variation in these coefficients is
driven by the profitability of being a fundamentalist or a chartist.

Apart from this time variation, there are several interesting features about
our model. First, we base our model on behavioral considerations and reduces to
a time-varying GJR-GARCH, we can provide an economic interpretation of the
GARCH model. Up until now, the GARCH model has mainly been motivated by
the empirical observation of time variation in conditional volatility. The model
proposed provides an economic interpretation for the source of time variation
in volatility and GARCH effects. The model shows that fundamentalists drive
the mean reversion of the conditional volatility, and that chartists cause the
persistence in volatility. When very few chartists are present in the market,
mean reversion occurs at a faster rate than when many chartists are present.
Also, the impact of news shocks on the conditional volatility is solely driven
by the presence of chartists, who expect recent news to be informative about
the future level of volatility. We can therefore explain the GARCH and ARCH
effects by the presence of these two types of traders.

A second interesting feature of the model concerns the stability conditions of
(7). Under normal circumstances, fundamentalists follow a strategy that ensures
that conditional volatility remains bounded. However, the chartist strategy is
an unstable strategy when 3, and (3, are positive and volatility predicted by
chartists will not remain bounded. However, the fact that both types of traders
are present and w; fluctuates over time allows the volatility process (7) to be
unstable in the short run, while guaranteeing stability of the GARCH process
in the long run. Whether (7) is stable in the long run depends on the values for
«, By and B, and is an issue we address in the empirical section.

A third feature about the model is the time-varying unconditional volatility
E;. This time variation in unconditional volatility is not only caused by slow-
moving change in the underlying unconditional volatility (as suggested by Engle
and Lee, 1999), but also driven by the fraction of fundamentalists or chartists
present. Fundamentalists believe in reversion of conditional volatility to the
mean, whereas chartists do not believe in mean reversion. Hence, when only
chartists are present, there is no unconditional volatility (as in an IGARCH
model). When fundamentalists are present, the unconditional volatility enters
the model, and becomes more influential the larger the percentage of fundamen-
talists actively trading.



The model presented here could essentially be applied to any type of security
in financial markets. However, in the current paper we estimate the model on
option prices using the GARCH option pricing methodology of Duan (1995).
From Black and Scholes (1973) we know that the volatility of the underlying
asset is the only unknown variable in the option pricing model. Hence trading
in options is essentially trading on the expectations about the future volatility
of the underlying. The following section discusses the data and methodology
followed in estimating the model and subsequently we summarize the empirical
results.

4 Data and Methodology

We use daily closing DAX 30 index options and futures prices for a one-year
period from January until December 2000. The raw data set is directly obtained
from EUREX, the European Futures and Options Exchange. The market for
DAX index options and futures is the most active index options and futures
market in Europe.

For index options the expiration months are the three nearest calendar
months, the three following months within the cycle March, June, September
and December, as well as the two following months of the cycle June, December.
For index futures, the expiration months are the three nearest calendar months
within the cycle March, June, September and December. The last trading day
is the third Friday of the expiration month if that is an exchange trading day;
otherwise, it is the first possible day prior to that Friday.

We exclude options with less than one week and more than 25 weeks until
maturity and options with a price of less than two Euros to avoid liquidity
related issues and because of less useful information on volatilities. In Table
1 we report the number of observations for the call options included in our
study (we also use put options, so the total number of options actually used in
the empirical study is twice the number reported in the table, i.e. in total we
have 42,972 observations). The table shows the different number of options for
different ranges of moneyness (M) and different maturities (T'). As can be seen,
at-the-money options (0.95 < M < 1.05) are the most heavily traded options.
Similarly, we find most options with a maturity between one and three month
(21 to 63 trading days). However, the table also shows that a considerable
number of deep in-the-money and deep out-of-the-money options are included.

The DAX index calculation assumes that cash dividends are reinvested.
Therefore, when calculating option prices we do not have to adjust the in-
dex level for the fact that the stock price drops on the ex-dividend date. But
since cash dividend payments are taxed, the reinvestment does not fully com-
pensate for the decrease in the stock price. Therefore, in the conversion from
e.g. futures prices to the implied spot rate, one empirically observes a different
implied dividend adjusted underlying for different maturities. For this reason,
we work with the adjusted underlying index level implied out from futures or
option prices.



To estimate the parameters of our volatility models, we use the following
procedure to evaluate option prices. First, we compute the implied interest
rates and implied dividend adjusted index rates from the observed put and call
option prices. We are using a modified put-call parity regression proposed by
Shimko (1993). The put-call parity for European options reads:

¢ij — iy =[St — PV(Dy)] — X;e~ " (Ti=1), (8)

where ¢; ; and p; ; are the observed call and put closing prices, respectively, with
exercise prices X; and maturity (7; —¢). PV(D;) denotes the present value of
dividends to be paid from time ¢ until the maturity of the options contract
at time T and r; is the continuously compounded interest rate that matches
the maturity of the option contract. Therefore, we can infer a value for the
implied dividend adjusted index for different maturities, Sy — PV (D;), and the
continuously compounded interest rate for different maturities, r;. To ensure
that the implied dividend adjusted index value is a non-increasing function of
the maturity of the option, we occasionally adjust the standard put-call parity
regression. Therefore, we control and ensure that the value for S, — PV (Dj) is
decreasing with maturity, 7.

Second, to evaluate options, the physical process has to be transformed
into a risk-neutral process. We make use of the Local Risk Neutral Valuation
Relationship (LRNVR) developed in Duan (1995). Under the LRNVR the con-
ditional variance process remains unchanged, but under the pricing measure @
the conditional expectation of r; is equal to the risk free rate ry,

EQ[eXp(rt)mt,l] = exp(ry). (9)

The risk-neutral Gaussian process reads

B S,—PViD) 1,
ry = In (m tfrf §Ut+\/h78t (10)

et|Q—1 ~ N(0,1) under the risk-neutralized probability measure Q.

In Equation (10), €; is not necessarily normal, but to include the Black-
Scholes model as a special case we typically assume that is a Gaussian random
variable. The locally risk-neutral valuation relationship ensures that under the
physical probability measure P and the risk neutral measure @, the volatility
process satisfies

VarQ[r,g|Qt,1} = VarP[rt|Qt,1} = hy. (11)
A European call option with exercise price X and time to maturity T has

at time t price equal to
¢ = exp(—rT) E2 [max(S; — X, 0)[Q_1]. (12)

For these kinds of derivative valuation models with a high degree of path de-
pendency, computationally demanding Monte Carlo simulations are commonly
used for valuing derivative securities. We use the simulation adjustment method,
the empirical martingale simulation (EMS) of Duan and Simonato (1998), which

10



has been shown to substantially accelerate the convergence of Monte Carlo price
estimates and to reduce the so-called simulation error.

Next, we make use of the cross-section of option prices with different ma-
turities and strike prices. Using Monte Carlo simulations, the model generates
volatility dynamics for all the different expiration dates. In other words, it
starts off from the observed dividend-adjusted underlying and local volatility
of today, and iterates forward until expiration. As a result, for each maturity
we obtain a number of terminal stock prices equal to the number of simulation
paths. Option prices are calculated by discounting the expected payoffs. We
calibrate the parameters of the model by minimizing the root mean squared
pricing error between the cross-section of market prices on a particular day and
the theoretical option prices

1 n o m; = 1 . n o m; N
RMSE = [——min Y > (¢; —cij)?+ min > > (Bij —pij)? (13)
N, i=15=1 N, i=15=1

where N, and N, are the total number of call (¢; ;) and put (p; ;) options
evaluated, i refers to the n different maturities and j to the m; different strike
prices in a particular maturity series i.

Fourth, having estimated the parameters in-sample, we turn to out-of-sample
valuation performance and evaluate how well each day’s estimated models value
the traded options at the end of the following day. We filter the available option
prices according to our criteria for the in-sample calibration. For the out-of-
sample exercise, we make use of the observed futures prices in order to derive
the implied dividend adjusted underlying index level*. Given a futures price F. i
with time to maturity T}, spot futures parity is used to determine S; — PV (D;)
from

Sy — PV(D;) = Fye™ "™, (14)

where PV(D;) denotes the present value of dividends to be paid from time ¢
until the maturity of the options contract at time 7 and r; is the continuously
compounded interest rate (the interpolated EURIBOR rate) that matches the
maturity of the futures contract (or time to expiration of the option). If a given
option price observation corresponds to an option that expires at the time of
delivery of a futures contract, then the price of the futures contract can be used
to determine the quantity S; — PV(D;) directly.

However, the maturities of DAX index options do not always correspond
to the delivery dates of the futures contracts. In particular, for index options
the two following months are always expiration months, but not necessarily a
delivery month for the futures contract. When an option expires on a date
other than the delivery date of the futures contract, then the quantity S; —
PV (Dj) is computed from various futures contracts. Let F; be the futures
price for a contract with the shortest maturity, 77 and F5 and Fj are the futures
prices for contracts with the second and third closest delivery months, 75 and

4The futures market is the most liquid market and the options and the futures market are
closely integrated. Therefore, it can also be assumed that the futures price is more informative
for option pricing than just using the value of the index. For every observed futures closing
price we can derive the implied dividend adjusted underlying index level and evaluate the
option.
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T3, respectively. Then the expected future rate of dividend payment d can be

computed via spot-futures parity by

_ 3l —roTs — log(Fy/Fh)
(T5 - T2) '

Hence, the quantity S; — PV(D) = S;e~%T associated with the option that
expires at time T in the future can be computed by®

d

(15)

Ste_dT = Fle(_(n_d>T1_dT) (16)

This method allows us to perfectly match the observed option price and the
underlying dividend adjusted spot rate. Given the parameter estimates and
the implied dividend adjusted underlying we can calculate the by the model
predicted option prices and compare them to the observed option prices of
traded index options. For the out-of-sample part, the same loss functions are
used; i.e. the prediction performance of the various models are evaluated and
compared by using the root mean squared valuation error criterion. We compare
the predicted option values with the observed prices for every traded option. We
repeat the whole procedure over the out-of-sample period and conclude, which
model minimizes the out-of-sample pricing error.

In the empirical part of the paper, we model the expectations of conditional
volatility of fundamentalists (and chartists) in an EGARCH setting. Our choice
is motivated by the results of Lehnert (2003) who finds that applying a stan-
dard GARCH framework results in numerous violations of parameters in their
permissible parameter space. The EGARCH setting resolves these issues, as it
imposes only minor restrictions on the parameter space (see Nelson, 1991).

5 Results

This section presents the empirical results of the option pricing application of
our heterogeneous agents model for the second moment. First, we focus on the
estimation results, and second we look at the pricing errors of our model, both in-
sample and out-of-sample. Finally, we present a number of further insights into
the exact working of the model, like the variability over time, the behaviour of
the two forecasting rules, and the differences with a standard volatility process.
The estimation exercises are conducted in a setting with and without switching.
This allows us to examine the direct effect of introducing more flexibility in the
model; in other words, it allows us to see the advantage of our model over a
standard GARCH.

5.1 Estimation Results

Table 2 presents the estimation results for the option pricing model with
heterogeneous agents. Focusing first on the static setup, with w; = w = 1/2,

See e.g. the appendix in Poteshman (2001) for details.
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(reported in Panel A)S, we find that the mean-reversion parameter o is just
below one throughout the sample (0.957), implying that mean-reversion takes
place, but is very slow. The absolute magnitude of the mean estimate of «
indicates that on average a little over 4% of the excess volatility to disappear in
the next period. The value for « is always between zero and one, which is reas-
suring as it would reject the stability conditions. The value for « is consistent
with findings on GARCH-models that are frequently applied to financial time
series data, where the coefficient on the GARCH-term is often larger than 0.9.
Parameter estimates for the shock terms, 3, and /3;, behave as expected as well;
the results for this asymmetric setup imply that there is a clear leverage effect:
Positive shocks in the level result in a reduction of the variance 8, < 0; negative
shocks in the level result in an increase of the variance §; > 0. Therefore, neg-
ative shocks in the level have a destabilizing effect to the variance process. In
absolute terms 3, and 3, are of similar magnitude and one can verify that the
stability conditions for the GARCH hold (1 + a + 8¢ + 8; < 1). However, we
do see that there is quite some variation in 3, and (8, over the sample period.
The average estimated local volatility, i.e. the starting value for the volatility
dynamics, is equal to 0.22 and fluctuates between 0.14 and 0.34 over the sample
period.

The results for the switching model, reported in Panel B of Table 2, are gen-
erally consistent with the static model. The average mean reversion parameter
« tends to be slightly smaller than for the static model, indicating slightly more
mean reversion on average, but this could well be driven by the lower minimum
value observed for a. The difference with the static model is that the switch-
ing model allows for switching between fundamentalist and chartist strategies,
which is captured by the sensitivity of choice parameter v. We find that ~ is
positive and of considerable magnitude throughout the sample. This implies
that the switching mechanism functions as a positive feedback rule. In other
words, the positive sign of « indicates that agents switch towards the group
with the smallest forecasting error. The magnitude of v is conditional on the
functional form of the profit- function (in our case, a loss function consisting of
the percentage forecasting error, Equation (4)). Therefore, it is not possible to
make any statements about the sensitivity to profit differences of traders in the
option market at this time. We will, however, be able to say something about the
evolution of individual’s behaviour over time in the sensitivity analysis below.

Overall, we observe that all coefficients have the sign and magnitude as
hypothesized consistent throughout the sample. Both fundamentalists and
chartists appear to be active in the market, and their individual effects on the
variance process are as expected (stabilizing and destabilizing, respectively).
Also, we find significant evidence of switching between the two rules.

To our best knowledge, a heterogeneous agents model has never been compa-
rably applied to the options market. However, we can compare our results with
related literature. First of all, the signs and magnitudes of the chartist expec-
tation formation function are directly comparable to the standard EGARCH-

6 Although arbitrary, the most natural choice is to put v = 0, such that w; = w = % This
choice has no effect on the estimation results as w only serves as a scaling parameter. This is
also why estimating w as a free parameter is not possible, as it would not be identified. Given
that the average w; in the switching case is approximately %, the choice of w = % in the
static case makes the order of magnitude of the coefficients between the two setups directly
comparable.

13



results, due to Nelson (1991). The relative impact of positive versus negative
shocks corroborates previous findings; the typical results for the leverage effect
indicate that the relative effect of negative shocks on the variance process is
larger than the positive shocks. Second, our results are directly in line with
previous findings on estimates of heterogeneous agents models for alternative
markets. Boswijk et al. (2007) find significant evidence of the co-existence of
chartists and fundamentalist for the S&P500 from 1870 to 2006; De Jong et
al. (2009a,b) present similar results for the British Pound during the EMS cri-
sis. Our results on the switching mechanism, however, are stronger compared
to Boswijk et al. (2007); evidence for switching is limited given their estimate
of the switching parameter. This implies that traders in the options market
are more prone to change their strategy in response to a difference in profits
compared to traders in the S&P500 or foreign exchange market.

5.2 Pricing Errors

As additional empirical evidence for our model, we examine both in-sample
and out-of-sample pricing errors. The results for the models with and without
switching are reported in the final two columns of Table 2. Results suggest that
the assumption of agents switching to the more profitable forecasting rule is
very much supported by the data. Comparing Panel A and B reveals that our
switching model outperforms the static model by on average e0.83 in-sample,
and e0.52 out-of-sample in terms of pricing error; the distributional statistics of
the pricing errors are generally favourable for the behavioural volatility trading
model as well. In other words, next to introducing a more intuitive appeal
to volatility models, our heterogeneous agents model also proves to be more
effective in explaining and forecasting option prices.

Since we fit our model on option with different levels of moneyness and
different maturities, we can also assess the pricing performance for different
levels of moneyness and maturity. In Table 3 we report the pricing performance
of both the static and the switching model. In Panel A we report the results
for the in-sample pricing errors. Overall, we can make four main observations
from this table. First, we find that pricing errors tend to be lowest for options
with a maturity between 21 and 63 trading days. Second, there generally is a
hump-shaped pattern of pricing errors over the moneyness range; pricing errors
tend to be larger for at-the-money options relative to both far out-of-the-money
and in-the-money options. Third, we find that pricing errors are always smaller
for the switching model, for all levels of moneyness and all maturities. Finally,
when considering the difference between the static and switching model we find
that the biggest improvement in terms of pricing error is observed for the deep
in-the-money and deep out-of-the-money options.

In Panel B we report out-of-sample pricing errors for different levels of mon-
eyness and different maturities. Interestingly, out-of-sample performance for
both the static and switching model is best at the shortest maturity, which
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contrasts the in-sample pricing errors, which were smallest at intermediate ma-
turities. However, similar to in-sample performance we find that out-of-sample
pricing errors are always smaller for the switching model.

5.3 Additional Insights

Since the model is estimated for each day of the year, we can examine the
stability of the estimated coefficients during the estimation process. By following
the course of the estimated coefficients over the year, we will be able to say
something about the conditional behaviour of heterogeneous traders. Figure 1
displays the course of the coefficients of the two expectation formation functions,
fundamentalists and chartists, and the intensity of choice parameter ~.

Overall, the parameters of the fundamentalist and chartist expectation for-
mation functions are relatively stable; a, 3, and §; move in a relative small
band within the region one expects them to be.

At around two-thirds of the sample, at day 160, 5, and /3, start moving to-
wards zero and o moves towards one, while v becomes larger and more volatile.
This change in the parameters can be directly explained by the logic of the
underlying heterogeneous agents model. The volatility in the underlying is rela-
tively constant in this period, which can be seen from the estimated local volatil-
ity. Both groups form their expectations by taking the most recently observed
volatility plus or minus some correction term. When this correction term goes
to zero (because the ’s move towards zero and « towards one), agents expect
a relatively constant volatility. As both fundamentalists and chartists expect
small innovations to the volatility process, the difference in the forecasting error
between the two strategies will be relatively small as well. Therefore, there is
not much to be gained by changing strategy. As the forecasting errors are small,
large shifts in v will not induce large shifts in the distribution of weights over
strategies (see Equation (4)). This is exactly why the estimate of y shows large
shifts in this period.

Another feature of interest is the degree of co-movement between the level of
volatility and the pricing error. Figure 2 presents the evolution of the estimated
local volatility (upper plot) and the in-sample pricing error of our model (lower
plot). There is a clear positive correlation between the estimated fundamental
volatility and the pricing error. Consistent with previous literature, we find that
volatility shows distinctive periods of high and low volatility. Interestingly, the
local volatility estimates exactly fluctuate around the long-run volatility level
estimated from return data.



To provide some insights on the exact nature of the model and the behav-
iour of the volatility generated by the model, we present one single simulation
path out of 10,000 in the Monte Carlo simulations in Figure 3. We use the
(optimized) coefficients from a random day. A number of observations can be
made. As one would expect, the volatility h lies between the expectations of
the fundamentalists, E[ (hs11), and chartists, EC (hsy1). The distance between
the three is governed by the weight w,. Weights continuously fluctuate around
the benchmark of one half with a minimum of close to zero and maximum of
around 0.80. Weights fluctuate relatively calm, which illustrates that traders
tend to stick to their chosen strategy and do not change strategy or trade on a
daily basis although they have the opportunity to do so. The autocorrelation
in the weight series is equal to 0.73, indicating that almost three quarters of the
traders hold on to their choice on a daily basis.

The nature of the two groups is clearly illustrated by the course of the
volatility process. Roughly, we observe a negative relation between the level of
volatility and the fraction of fundamentalists. High spikes in volatility always
coincide with low weights; i.e., a relatively high volatility is caused by the fact
that the market is dominated by chartists. The most clear example of this can
be seen around observation number 18 and 26 where wt reaches its minimum
and ht its maximum. The reverse is true as well; when fundamentalist make up
over 80% of the market around period 68, volatility drops towards its long-run
value. Therefore, fundamentalists are stabilizing, and chartists destabilizing.
None of the groups gets driven out of the market, and both groups experience
periods of dominance.

In Figure 4 we plot the volatility for the simulation path shown in Figure
3 generated by the static model and by the switching model. As can be seen
from the plot, the switching model can capture jumps in volatility much better
than the static model. This is of course due to the fact that at times of high
volatility high weight is given to the chartist strategy for which the volatility
process is known to be unstable.

6 Conclusions

In this paper, we introduce a model of behavioral volatility trading. Being
the only unobserved variable in an option pricing model, volatility plays a piv-
otal role in the determination of the value of an option. Our market consists
of two types of agents that have different views on volatility and trade ac-
cordingly. Fundamentalists are expecting the conditional volatility to mean
revert to a long-run volatility level. Chartists on the other hand respond solely
on noise from the level process and bid up (down) volatility if they receive a
negative (positive) signal from the stock market. Depending on the profitabil-
ity of their strategy, agents are able to switch between groups according to a
multinomial logit switching mechanism. The model is shown to reduce to a
GJR-GARCH(1,1) with time varying coefficients. The difference, however, lies
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in the fact that we provide a behavioral underpinning and that time variation
in the coefficients depends on trader behavior.

In an application of the model to DAX index options, using our GARCH op-
tion pricing model, we find evidence that different types of traders are actively
involved in trading volatility. Both fundamentalists and chartists are shown
to be active in the options market, and both groups are consistently present.
Hence, we find evidence that observed option prices are the result of hetero-
geneity in expectations about future volatility. In addition, we find evidence of
switching between the groups, i.e., at certain points in time mean-reverting fun-
damentalists dominate the market, at other points it is dominated by destabiliz-
ing chartists. Introducing the possibility to switch gives a substantial reduction
in both in- and out-of-sample pricing errors. In other words, volatility traders
indeed change their forecasting behavior dependent on the relative profitability.

It would also be interesting to experiment with alternative specifications of
the model, such as alternative profit functions (as is common in the heteroge-
neous agents literature). Also, the expectation formation functions are flexible
to incorporate numerous different specifications, including ones with exogenous
information.

The model presented above represents the most simplistic forms of funda-
mentalist and chartist behavior. There are several extensions possible to the
strategies for both types of traders. First, we can extend the fundamentalist
strategy by allowing for dynamics in the “unconditional volatility”. Such types
of models follow from Engle and Lee (1999) and are often referred to as two-
component GARCH models. Allowing for such additional dynamics can be done
straightforwardly, and would imply that the model takes the form of a GJR-
GARCH(2, 2). Second, chartists may also-consider other stochastic variables,
such as trading volumes, number of transactions, etc. These stochastic variables
can easily be added to the model.
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A Appendix

The Appendix presents the exact derivation of the volatility trading model.
Consistent with the general setting of Westerhoff and Dieci (2006), we model
the behavior of option traders in a simple behavioral demand setting with a
market maker and discrete choice switching. Instead of a multi-market setting
with equity as in Westerhoff and Dieci (2006), we focus on a single market with
index options.

Let S; be the value of an underlying asset at time ¢. Then, in a Gaussian
discrete-time economy, the (log) return process of the asset (r¢) is given as

S,
Ty = In L + dt =K + htaz, (17)
Si—1/),

et|Q—1 ~ N(0,1) under probability measure P,

where d; is the asset’s dividend yield, p is the mean of r;, h; is the conditional
volatility of the asset, ; is a standard normal random variable and €;_; is-the
information set up to time t — 1.

Let EF (hty1) be the prediction of the conditional volatility for the funda-
mentalists. Their best prediction for the volatility process is equal to

Ef (hig1) = he — (1 — o) (he — hy), (18)

where h; is the long-run unconditional volatility-and « measures the speed at
which the fundamentalists expect the volatility process to mean revert.

Since volatility is the only (unknown) determinant of option prices, funda-
mentalists’ (extra) demand for options in period ¢ + 1 is solely conditional on
their forecast of the change in conditional volatility. In a Black-Scholes frame-
work, the first derivative of the option price to volatility is defined as vega. In
other words, an option’s price change can be related to its underlying volatility
by vega; APk 14 = vi,rAhy, where vi 7 is the vega of an option with strike
price K, expiry T. As such, the expected price change equals vega times the
expected change in volatility, EX( APk 1i41) = virE{(Ahi1). The option
demand relation is assumed to be linear in price expectations, such that

Df F(Ef (APk1.441)) = f (v Ef (Ahita)) (19)

= frkr(=(1—a)(h = h))

in which D" is the demand for options by fundamentalists at time ¢ and f > 0.
Chartists, on the other hand, trade on innovations from the stock market.
We therefore define their prediction of the volatility process as

Ef (hen) = he + Bo(Vhue! ) + B1(Vhuey ), (20)

where EE (hy11) is the volatility prediction of the chartists, e/ (¢; ) is the past
positive (negative) shock in the volatility process and 3, (8;) measures the ex-
tent to which chartists incorporate positive (negative) shocks into their predic-
tion. Following the same reasoning as the for the fundamentalists, the chartist
demand for options reads
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DY = f(BES(APk141)) = f (vkrES (Ahiy)) (21)
frir(Bo(Vhie! ) + By (Vhier )?)

in which DY is the chartist demand for options at time ¢ and ¢ > 0.
The switching rule, based on the discrete choice model (Manski and McFad-
den, 1981), is given by’
1

wy = <1+6W( )>_ : (22)

where v measures the sensitivity of market participants (fundamentalists or
chartists) to their respective percentage forecasting errors in terms of volatility
and is expected to be between zero and infinity.

With the given weights and the different trading strategies, we can now
establish the process for the price of an individual option. Since the market
demand is a consequence of the proportion of market participants following
each strategy, it is computed as a weighted average of the fundamentalist and
the chartist prediction,

In(BEF | (h))=In(hy)
n(hy)

(B | (hy))—n(hy)
Tn(hy)

DM = w,DF + (1 —w,)DF. (23)

The adjustment of the price volatility process, finally, is conditional on the

market’s (excess) demand D and the effect of what can be seen as the market
maker’s adjustment coefficient n > 08

Pg 1441 =Pg runD}. (24)

By substituting and subsequently rewriting, we arrive at
APk Tt41 = NVK,T cwef (1= a)(h = hu)+
o T —w)e (Bo(Vhee!)? + Br (Ve )?)

Finally, dividing left and right by vx s in order to transform back from
individual options to the volatility process of the underlying and rewriting yields

(25)

hivr = wi(l—a) hy + (1 —wi(1 —a)*)h (26)
(1= w)By(VIug! ) + (1= wi) B (Ve ),

in which (1 — a)* = (1 — a)nf is the market impact of fundamentalists, and
B4 = Bone, B = Byne the market impact of chartists from positive and negative
shocks, respectively. Equation (26) is equivalent to Equation (6), which we
estimate in the empirical section.

"Originally, the discrete choice model was derived from an exponential utility function.
More recently, though, the mechanism has been applied to a broader range of utility functions,
like mean-variance utility as in DeGrauwe and Grimaldi (2005, 2006).

8See Chiarella and He (2002) for the effect of a similar type of market maker on price
dynamics.
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Figure Legends

Figure 1: Parameter Estimates over Time

Notes: This figure displays the estimated coefficients of the model for the
250 trading days in the year 2000.

Figure 2: Estimated Volatility and in-sample Pricing Error over time

Notes: This figure displays the local volatility (in percentages per year, upper
plot) and the pricing error (in Euros, lower plot) over time.

Figure 3: Single Simulation Path

Notes: This figure displays a single simulation path using optimized coeffi-
cients of January 26, with coefficient values a = 0.932; 5, = —0.429; 5, = 0.367;
v =29.222.

Figure 4: Volatility Generated by the Static and Switching Model

Notes: This figure displays a generated volatility path for January 26, for
both the standard and switching model, using optimized coefficients. For the

switching case, these are o = 0.932; 5, = =0.429; 8; = 0.367; and v = 29.222.
For the static case, these are a = 0.932; 5, = —0.483; and 3, = 0.399.
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Tables

Table 1: Number of Observations

Trading days to expiration

T <21 21 <T <63 T>63
Moneyness Total Daily Avg Total Daily Avg Total Daily Avg Total
M < 0.90 627 2.49 2,204 8.75 1,607 6.38 4,438
090 <M <095 783 3.11 1,540 6.11 664 2.63 2,987
0.95< M <1.00 1,224 4.86 2,106 8.36 885 3.51 4,215
1.00< M <1.05 1,258 4.99 2,194 8.71 965 3.83 4,417
1.0 <M <110 703 2.79 1,553 6.16 669 2.65 2,925
M >1.10 213 0.85 1,122 4.45 1,169 4.63 2,504
Total 4,808 10,719 5,959 21,486

Notes: This table reports the number of observations for different levels of mon-
eyness and different maturities for the period January until December 2000 for call
options only. Moneyness is defined as the strike price over the index futures price
(X/F). If moneyness < 1, the option is said to be in-the-money and if moneyness
> 1 the option is out-of-the-money. In addition, we report the total number of options
for a particular moneyness and maturity.
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Table 2: Parameter Estimates

Mean

SD

Min

Max

1st quartile
3rd quartile

Mean

SD

Min

Max

1st quartile
3rd quartile

« Bo B1 ho ¥ In-sample  Out-of-Sample
Panel A: Static
0.957 -0.242 0.240 0.221 - 3.343 7.406
0.023 0.101 0.075 0.047 - 1.066 5.119
0.872 -0.487 0.106 0.140 - 1.171 1.364
1.000 -0.040 0.415 0.336 - 6.426 39.375
0.943 -0.318 0.176 0.177 - 2.755 4.105
0.971 -0.161 0.300 0.259 - 4.200 9.423
Panel B: Switching
0.936 -0.245 0.241 0.220 107.34 2.511 6.891
0.034 0.089 0.070 0.051  89.70 1.138 5.356
0.806 -0.432 0.084 0.130 19.66 0.461 0.859
1.000 -0.027 0.435 0.339 523.90 6.126 42.266
0.919 -0.302 0.184 0.171  50.90 1.736 3.270
0.959 -0.176 0.290 0.263 135.80 3.138 9.124

Notes: The table presents the average parameters estimates, standard deviation,

min, max, 1. and 3. quartile of the daily estimations of the model during the period
January until December 2000. hg represents the estimated local volatility, or starting
value of the volatility process. Additionally, we report in-sample and out-of sample

pricing errors. Panel A shows the results without switching, i.e., ¥ = 0 such that wy =

w = 1/2, and Panel B with switching such that 7 is estimated contemporaneously.
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Table 3: Pricing Performance for different Moneyness and Maturity

Static Switching
Panel A: In-sample
T<21 21<T<63 T>63 T7<21l 21<T<63 T>63
M < 0.90 2.468 2.448 3.849 2.050 1.569 2.270
0.90 < M <0.95 2.676 1.981 2.156 2.380 1.925 1.869
0.95 < M <1.00 3.827 2.361 2.585 3.403 2.070 1.604
1.00 < M <1.05 3.912 2.563 3.796 3.729 2.350 1.917
1.05 < M < 1.10 2.205 4.522 2.978 1.949 2.900 2.335
M >1.10 2.360 6.095 4.578 1.578 3.412 2.360

Panel B: Out-of-Sample

T<21 21<T<63 T>63 T<21 21<T <63 T>63

M < 0.90 2.472 3.663 5.965 2.157 3.406 5.714

0.90 < M <0.95 3.749 5.867 7.885 3.618 5.849 7.957
0.95 < M <1.00 6.657 7.669 9.571 6.377 7.507 9.291
1.00 < M <1.05 6.716 7.916 10.396 6.633 7.723 9.822
1.06 < M < 1.10 3.432 7.283 10.027 3.345 6.335 9.657
M >1.10 2.237 6.437 8.537 1.664 4.426 7.211

Notes: This table reports the root-mean-squared pricing errors of the model for
both the static (no switching) case and the switching case over the different levels
of moneyness (M) and days to maturity (1"). Panel A reports the in-sample pricing
errors while Panel B presents the out-of-sample pricing errors.
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