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ABSTRACT 

Stenotrophomonas maltophilia and Acinetobacter baumannii are recognised as 

important nosocomial pathogens; however, due to their intrinsic resistance to 

multiple antibiotics, treatment options are limited. Polyphenols from black tea have 

been shown to possess antibacterial action. In this study, the antibacterial effects of 

various concentrations of theaflavin as well as combinations of theaflavin and 

epicatechin were determined using the disk diffusion assay. The results showed 

strong antibacterial activity of theaflavin against eight clinical isolates of S. 

maltophilia and A. baumannii. Significant synergy (P ≤ 0.05) was also observed 

between theaflavin and epicatechin against all isolates. Although the mechanisms for 

this activity and synergy are not well understood, the clinical potential is clear and 

further research is recommended to determine the modes of action. 
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1. Introduction 

Until recently the clinical importance of Acinetobacter baumannii has been 

underestimated, but it is now widely acknowledged as a common bacterium in 

hospital irrigation and intravenous solutions. It possesses inherent multidrug 

resistance and the ability to rapidly colonise and infect patients [1–3]. Similarly, 

Stenotrophomonas maltophilia has become a troublesome opportunistic pathogen. 

This aerobic, Gram-negative bacterium is also intrinsically multidrug-resistant and 

can cause pneumonia, urinary tract infections and bloodstream infections, 

particularly in immunocompromised patients [4,5]. 

 

New treatment regimens are under investigation owing to the increasing number of 

resistant micro-organisms and their widening resistance profiles. Some resistant 

strains of bacteria can be treated effectively with combinations of antibiotics in 

contrast to the poor results provided by monotherapy [6]. These new approaches 

include the use of naturally occurring antibacterial compounds, such as polyphenols, 

in formulations with traditional antibiotics. 

 

The antimicrobial effects of tea polyphenols have been well documented. Most 

investigations have used the very abundant polyphenol epigallocatechin gallate 

(EGCG) found in green tea [7–9]. The antifolate activity of EGCG against S. 

maltophilia has also been reported [10]. Black tea polyphenols are also known to 

have antibacterial effects against Shigella spp. [11] and Bacillus cereus [12]. 

However, little research has been published regarding the antibacterial properties of 

the black tea polyphenol theaflavin against clinical isolates of S. maltophilia and A. 

baumannii. An investigation has shown that epicatechin has an antibacterial effect 
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[13], which according to another study [14] can be attributed to membrane disruption 

properties. 

 

Tea polyphenols not only exhibit independent antibacterial effects but also show 

significant antibacterial synergy with more common antibiotics, e.g. tetracycline 

against staphylococci [15] and oxacillin against meticillin-resistant Staphylococcus 

aureus (MRSA) [16], and also increase the susceptibility of Mycobacterium to 

isoniazid [17]. Black tea mixtures show synergy and antagonistic properties with 

different clinical antibiotics when used against Streptococcus pyogenes [18]. 

 

Interestingly, earlier research also revealed that tea polyphenols can invoke 

antibacterial synergy with other antioxidants such as ascorbic acid [19]. It was 

proposed that ascorbic acid inhibits the oxidative structural change that would 

otherwise cause a decline in antibacterial activity. However, there has been little 

research describing synergy between black and green tea polyphenols. The aim of 

this research was therefore to assess the antibacterial effect of theaflavin against 

hospital isolates of A. baumannii and S. maltophilia and to determine whether any 

significant synergistic effect would be produced with the addition of epicatechin. 

 

2. Materials and methods 

2.1. Clinical isolates 

Acinetobacter baumannii and S. maltophilia strains were isolated from sputum 

samples of respiratory patients at the Northern General Hospital (Sheffield, UK) and 
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Hull Royal Infirmary (Hull, UK), respectively. Bacteria were cultured on blood agar 

and were characterised by antibiotic susceptibility and biochemical profiles. 

 

2.2. Preparation of polyphenol stock solutions 

Epicatechin (purity  90%) was sourced from Sigma-Aldrich (Gillingham, UK) and 

theaflavin (purity  95%) was donated by Unilever (Shanghai, China). Theaflavin 

stock solution was prepared by adding 0.5 g of theaflavin to 10 mL of ethanol and 

mixing for 10 min to provide a 50 mg/mL solution. A 25 mg/mL stock solution of 

epicatechin was prepared by adding 0.25 g of epicatechin to 10 mL of ethanol and 

mixing for 15–20 min until the compound had dissolved. A combination solution of 

theaflavin and epicatechin was prepared using 0.5 g of theaflavin and 0.25 g of 

epicatechin added to 10 mL of ethanol with subsequent mixing until dissolved (15–20 

min). 

 

2.3. Preparation of polyphenol disks 

Blank antibiotic susceptibility disks (MASTDISCSTM) were purchased from Mast 

(Bootle, UK). All materials and media were autoclaved prior to use. 

 

Test susceptibility disks were prepared by pipetting 10 L volumes of the individual 

polyphenol solutions directly onto blank disks. Disks were then dried for 20 min prior 

to the addition of any further solutions, if required. For each different polyphenol 

solution, disks were made by pipetting a volume of stock solution that would provide 

0.5, 0.75, 1, 2, 3 and 4 mg of polyphenol and 2:1 (mg ratio) combination disks. 

Control disks of ethanol were prepared using an identical volume of ethanol as the 
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maximum load of polyphenol(s) on test disks. All of the disks were then allowed to 

dry in a sterile Petri dish before use in experiments in order to purge them of solvent 

and thus of any ethanol-mediated antibacterial activity. 

 

2.4. Disk diffusion assay 

Eight clinical isolates were each independently inoculated onto six Iso-Sensitest agar 

plates (Oxoid Ltd., Basingstoke, UK) using the standardisation method [20]. Plate 1 

contained separate disks having 0.5, 0.75 or 1 mg of epicatechin plus an ethanol 

control disk. Plate 2 contained separate disks having 2, 3 or 4 mg of epicatechin plus 

an ethanol control disk. Plates 3 and 4, and plates 5 and 6, were similar to plates 1 

and 2 but with theaflavin or a theaflavin:epicatechin combination, respectively. The 

experimental plates were incubated at 37 C for 24 h after which the zones of 

inhibition were recorded. 

 

2.5. Statistical analysis 

Six-fold replicates of all experimental plates were performed, enabling the results to 

be provided as mean ± standard error. Significant differences between data sets for 

each combination of polyphenols were determined using the Wilcoxon Mann–

Whitney test, and results showing P ≤ 0.05 were considered as significant. 
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3. Results 

3.1. Susceptibility to epicatechin 

All isolates of A. baumannii and S. maltophilia showed no sensitivity when exposed 

to epicatechin alone (Tables 1 and 2; Figs 1 and 2). 

 

3.2. Susceptibility to theaflavin 

Theaflavin provided an antibacterial effect against all isolates of A. baumannii and S. 

maltophilia (Figs 1 and 2). This was significantly higher (P ≤ 0.05) than that of 

epicatechin (Tables 1 and 2). However, the antibacterial activity of theaflavin against 

A. baumannii or S. maltophilia was significantly lower when a concentration of <3 mg 

was used. 

 

3.3. Susceptibility to theaflavin:epicatechin combination 

The combination of theaflavin:epicatechin (2:1) above a concentration level of 1 mg 

resulted in significantly higher antibacterial activity (P ≤ 0.05) compared with that of 

theaflavin alone against all but one isolate of A. baumannii and S. maltophilia. A 

possible exception was against isolate 2 of A. baumannii where the increase in 

activity was observed at a slightly higher concentration of the theaflavin:epicatechin 

combination, i.e. above a concentration of 2 mg. The antibacterial activity of the 

theaflavin:epicatechin combination was lower at concentrations <3 mg (see Figs 1a–

c and Fig. 2d, whereas Figs 1d and 2a–c show that a large reduction in antibacterial 

effectiveness occurred when the concentration of the theaflavin:epicatechin 

combination was <2 mg in these tests). 
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4. Discussion 

In the present study, epicatechin showed no antibacterial effects against any isolate, 

whereas previous research [13,14] found activity against periodontal bacteria and 

Vibrio cholera. However, the current findings are consistent with another report [21] 

where epicatechin was found to be an ineffective antibacterial agent against S. 

aureus. A variation in the activity of antibacterial agents against different bacteria is 

not uncommon. 

 

Theaflavin has a strong antibacterial effect that potentially could be of significant 

clinical relevance when dealing with microorganisms resistant to conventional 

antibiotics. Stenotrophomonas maltophilia isolates are most susceptible to the 

antibacterial action of theaflavin. The mechanism of its antibacterial activity is 

thought to be related to membrane interaction [22]. Further research is required to 

determine whether this is a bactericidal or bacteriostatic effect and whether any other 

mechanisms are involved. 

 

It is apparent from the results reported here that there is significant synergism in the 

antibacterial activity between theaflavin and epicatechin against all isolates of A. 

baumannii and S. maltophilia. From the increase in antibacterial activity, the results 

suggest that the mechanism responsible for the synergy is similar to that shown for 

ascorbic acid and EGCG [19]. In the present case, epicatechin possibly inhibits the 

oxidation of theaflavin thereby prolonging its antibacterial effect. Although synergy 

was observed when low concentrations of the compounds were used, the greatest 

levels of synergy were seen when the concentration of the compounds was in 
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excess of 2 mg per susceptibility disk. This could be due the impact of the 

concentration of the polyphenols on bacterial osmolality or a saturation point of 

polyphenol expulsion by the bacteria. 

 

This is believed to be the first evidence of the antibacterial effects of theaflavin 

against clinical isolates of A. baumannii and S. maltophilia. It is also the first report of 

antibacterial synergy between theaflavin and epicatechin against such hospital 

isolates. Although the mechanism underlying the antibacterial activity and synergy is 

not yet clear, the findings indicate that there may be an important clinical potential for 

these polyphenols, especially when used in combination. Further studies are 

recommended to determine the mechanisms involved and the prospective synergy 

of theaflavin with other polyphenols from natural sources. 
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Fig. 1. Antibacterial effects of epicatechin (EC) and theaflavin (TF) and synergy 

between TF and EC against isolates 1–4 of Acinetobacter baumannii. Error bars are 

the standard error of the mean of six measurements. 

 

Fig. 2. Antibacterial effects of epicatechin (EC) and theaflavin (TF) and synergy 

between TF and EC against isolates 1–4 of Stenotrophomonas maltophilia. Error 

bars are the standard error of the mean of six measurements. 
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 1 

Table 1 

Mean (± standard deviation) zones of inhibition for isolates 1–4 of Acinetobacter baumannii caused by epicatechin (EC), theaflavin 

(TF) and a 2:1 (mg ratio) TF:EC combination 

Mass of compound 

(mg) 

EC TF TF:EC (2:1) 

1 2 3 4 1 2 3 4 1 2 3 4 

0.5 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

6 (0) 7.1 * (0.5) 6 (0) 6 (0) 6 (0) 6.5 * (0) 6.5 * (0) 6 (0) 

0.75 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

6 (0) 6.5 * (0.5) 6.5 * (0) 6 (0) 6.5 * (0) 9.5 * (0.5) 7 * (0.29) 6.5 * (0) 

1 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

7 * (0) 10.5 * 

(0.67) 

9 * (0.8) 6 (0) 7 * (0.29) 9 * (0) 9 * (1) 7.5 * 

(0.5) 

2 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

9 * (0) 11.5 * 

(0.5) 

10.5 * 

(0.5) 

8.5 * 

(0.4) 

11 * (0) 12.5 * 

(0.5) 

12.5 * 

(0.41) 

11 * 

(0.82) 

3 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

14 * (0) 14 * (0.58) 13 * 

(0.29) 

10 * (0) 16.5 * 

(0.5) 

17 * (0) 15.5 * 

(0.5) 

12 * (0) 

4 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

14.5 * 

(0.41) 

15.5 * 

(0.41) 

14 * (0) 10 * (0) 17 * (0) 17.5 * 

(0.41) 

16.5 * 

(0.41) 

12 * (0) 

* Significant Mann–Whitney results (P ≤ 0.05) compared with mean zones for EC or TF:EC. 

Edited Table 1
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 1 

Table 2 

Mean (± standard deviation) zones of inhibition (mm) for isolates 1–4 of Stenotrophomonas maltophilia caused by epicatechin (EC), 

theaflavin (TF) and a 2:1 (mg ratio) TF:EC combination 

Mass of compound 

(mg) 

EC TF TF:EC (2:1) 

1 2 3 4 1 2 3 4 1 2 3 4 

0.5 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

6 (0) 6.5 * (0.5) 6.1 

(0.19) 

6 (0) 6 (0) 7 * (0.29) 6.5 * (0) 6.5 * 

(0.29) 

0.75 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

6 (0) 7.5 * 

(0.75) 

7.5 * 

(0.41) 

8.5 * 

(0.41) 

6.5 * 

(0.29) 

9 * (0) 8.5 * 

(0.91) 

9 * (0) 

1 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

9 * (0) 11.5 * 

(0.41) 

10 * (0) 10 * (0) 9 * (0) 13.5 * 

(0.41) 

11 * (0) 11 * (0) 

2 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

12 * (0) 14 * (0) 13 * (0) 14.5 * 

(0.41) 

14.5 * 

(0.41) 

19 * (0) 17 * (0) 18 * (0) 

3 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

14 * 

(0.29) 

16.5 * 

(0.41) 

16 * 

(0.29) 

15 * (0) 16.5 * 

(0.5) 

20 * 

(0.58) 

19 * 

(0.82) 

24 * (0) 

4 6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

14.5 * 

(0.41) 

15 * 

(0.29) 

16 * (0) 16 * 

(0.29) 

17.5 * 

(0.41) 

21.5 * 

(0.41) 

20 * 

(0.65) 

25.5 * 

(0.5) 

* Significant Mann–Whitney results (P ≤ 0.05) compared with mean zones for EC or TF:EC. 

Edited Table 2
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Figure 1 b. Acinetobacter baumannii isolate 2 
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Figure 2 a. Stenotrophomonas maltophilia isolate 1 
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Figure 2 b. Stenotrophomonas maltophilia isolate 2 
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Figure 2 c. Stenotrophomonas maltophilia isolate 3 
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Figure 2 d. Stenotrophomonas maltophilia isolate 4 
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