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Abstract

Galluccio and Roncoroni (2006) empirically demonstrate that cross-sectional data
provide relevant information when assessing dynamic risk in �xed income markets.
We put forward a theoretical framework supporting that �nding based on the no-
tion of “shape factors”. We devise an econometric procedure to identify shape
factors, propose a dynamic model for the yield curve, develop a corresponding arbi-
trage pricing theory, derive interest rate pricing formulae, and study the analytical
properties exhibited by a �nite factor restriction of rate dynamics that is cross-
sectionally consistent with a family of exponentially weighed polynomials. We also
conduct an empirical analysis of cross-sectional risk a�ecting US swap, Euro bond,
and oil markets. Results support the conclusion whereby shape factors outperform
the classical yield (resp. price) factors (i.e., level, slope, and convexity) in explain-
ing the underlying �xed income (resp. commodity) market risk. The methodology
can in principle be used for understanding the intertemporal dynamics of any cross-
sectional data.
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1 Introduction

The random behavior of yield curve dynamics is re�ected in the market risk underlying

interest rate positions. Modeling these dynamics can be a di�cult task given the high

number of involved rates. This study seeks to identify and hedge against a reduced number

of signi�cant factors a�ecting the evolution of cross-sectional data.

The subject has received a great deal of attention in the last thirty years. All methods

share a common preliminary cross-sectional analysis aimed at building a term structure

matching a limited number of quoted values (Anderson et al. (1996) and Nelson and Siegel

(1987)). This analysis o�ers a complete picture of the way the market quotes the time value

of money at a given date. However, it provides no information about the evolution of the

resulting term structure. Consequently, alternative methodologies have been introduced for

the purpose to provide a description of cross-sectional dynamics.

An early strand of literature, referred to as functional immunization, assigned speci�c

functional forms to any admissible term structure updating (e.g., parallel shifts in Fisher

and Weil (1972), arbitrary variations in Fong and Vasi�cek (1984), and selected analytical

forms in Chambers and Carleton (1988), Prisman and Shores (1988), Barrett et al. (1995),

Phoa and Shearer (1997), and Rodrigues De Almeida et al. (1998)) and provided selection

criteria for bond portfolios to make them �nancially insensitive to these deformations. The

approach exhibits the remarkable feature of accounting for full information about the cross-

section. Unfortunately, it provides no statistical support for the selected deformations,

which are usually chosen on the basis of qualitative considerations. This fact may hamper

the e�ectiveness of the corresponding hedging strategies.

Another branch of literature focuses on the identi�cation of underlying driving factors.

These factors may be set as a number of selected cross-sectional points (e.g., optimal key

rates in Elton et al. (1990) and a�ne yield factors in Du�e and Kan (1996)), or suitable

linear combinations of cross-sectional points usually determined by means of statistical anal-

ysis (e.g., principal components in Litterman and Scheinkman (1991) and a�ne Gaussian

factors in Collin-Dufresne et al. (2008)). Factors are ranked according to their contribution

to the historical market volatility, and the most signi�cant ones are retained as represen-

tative risk drivers. The methodology dramatically simpli�es the identi�cation of e�ective

risk management strategies. However, and in contrast to the aforementioned immunization

approach, it does so irrespectively of the informational content embodied in the typical
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shapes displayed by cross-sectional data.

These approaches underline a tension between the 1) cross-sectional representativeness

of traditional immunization and the 2) statistical relevance of existing parsimonious factor-

based models driving cross-sectional dynamics. This point leads us to our �rst theoretical

issue which we illustrate in Panel 1.

Cross-Sectional Representativeness

Statistical

Relevance

Incomplete Complete

Unassessed -
Functional

Immunization

Assessed
Principal Components

Optimal Key Rate
?

Panel 1: Trade-o� between cross-sectional representativeness and statistical relevance.

Issue 1: Can we resolve the above dilemma and deliver a statistical assessment (and

ranking) of all information stemming from cross-sectional analysis?

As a leader of these paradigms, arbitrage-free modeling has been widely developed through-

out interest rate information systems. The resulting theory aims at providing consistent

prices and hedging prescriptions for the vast majority of interest rate securities. Models

typically combine a quoted yield curve with factors possessing an acceptable degree of sta-

tistical relevance. This fact raises a second theoretical question about the ability to provide

a solution to the issue stated above.

Issue 2: Can we build arbitrage-free models driven by factors subsuming a statistical

assessment of the information embodied in cross-sectional data?

Inspired by empirical evidence shown in Litterman et al. (1991) and Engle and Ng (1993),

Galluccio and Roncoroni (2006) provide a positive answer to the �rst issue above. They �rst

introduce an empirical measure of risk accounting for an explicit link between yield curve

shapes and volatility.1 Then, they pursue an extensive empirical study of its performance

on representing and managing risk underlying U.S. Treasury Bond portfolios. They �nally

1This result is tantamount to extending the classical expectation hypothesis that relates yield curve shape

to expected bond returns as in Cox et al. (1981).
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compare the resulting hedging errors to those stemming from the standard strategy of delta

hedging against cross-yield principal components.

Based on these empirical �ndings, we o�er a positive answer to the second issue above.

First, we provide a theoretical measure of risk formalizing the empirical measure proposed

earlier. Second, we develop a continuous-time in�nite-dimensional arbitrage-free model for

rate dynamics driven by factors representing this risk. The results of our theoretical analysis

of the model include exact arbitrage restrictions to the driving di�usion process, an econo-

metric procedure to identify and measure the underlying factors, interest rate derivative

pricing formulae, pricing error bounds for a cross-sectionally consistent model restriction,

and additional empirical evidence on interest rate as well as commodity markets. To the

best of our knowledge, the model represents the �rst use of in�nite-dimensional models

based on empirical evidence.

The paper is organized as follows. Section 2 proposes a theoretical econometric proce-

dure to estimate cross-sectional covariance structures using a functional version of Principal

Components Analysis (PCA). Section 3 develops a dynamic theory of shape factors. Sec-

tion 4 provides a theoretical analysis of dynamic models driven by shape factors. Section 5

develops an empirical analysis of shape factors that complements the comprehensive study

in Galluccio and Roncoroni (2006). Section 6 draws conclusions and sheds light on a few

issues meriting future research.

2 The Notion of Shape Factors

The problem of decomposing yield curve dynamics into a set of statistically independent risk

factors dates back to Steeley (1990) and Litterman and Scheinkman (1991).2 By performing

a PCA on a time series of yield curves, the authors identify the three most relevant risk

factors. These factors can be interpreted as 1) a parallel shift, 2) a change in steepness, and

3) a twist in the yield curve shape. Despite the appealing appearance of these factors, they

show no explicit dependence on the term structure shape stemming from the cross-sectional

analysis. In particular, their analytical form remains unde�ned. This fact may result in an

incomplete picture of the cross-sectional risk perceived by the market and embodied in the

yield curve shape.

2Knez et al. (1994) formalize the methodology and provide an empirical investigation in the US money

market.
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In this section, we introduce a notion of shape factors for interest rate data. In particular,

we provide a econometric procedure to detect these factors from cross-sectional data and

describe the resulting covariance structure.

2.1 Econometrics of Shape Factors

In general, any cross-section is represented by a function � (�� �), where � denotes the cal-

endar time and � represents the cross-sectional dimension. If this variable is a nonnegative

number denoting time-to-maturity, the cross-section is referred to as a “term structure”.

Examples are the instantaneous forward rate curve, the discount function, the forward price

curve for a commodity, and the Black-Scholes implied volatility over a set of maturities for

a given strike price.

We assume that all cross-sections � : [0��) 7� R in a given market are represented by

elements in the linear space H� spanned by a �nite orthonormal system of functions

�� = {�� : [0��) 3 � 7� ��(�) � R� � = 1� ���� 	}

with respect to an inner product h·� ·i
H�

. In view of what will be reported in the theoretical

analysis detailed in section 3, the class �� should be extendable to an in�nite orthonormal

complete system � = {�1� ���} spanning a Hilbert space H.3 The time � cross-section � (�) =

{� (�� �) � � � 0} is thus a linear combination of the form 
1 (�)�1(�) + ��� + 
� (�)��(�).

Basis functions �1� ���� �� are selected to best represent the basis shapes prevailing in the

market under investigation, and each coe�cient 
� (�) represents the orthogonal projection

of the time � cross-section � (�) on the one-dimensional space spanned by the corresponding

shape ��. Consequently, the cross-sectional dynamics can be written as follows:

�(�� �) =
�X
�=1


�(�)��(�) =
�X
�=1

h�(�)� ��iH� ��(�).

Because �1� ���� �� are orthonormal, the map �� transforming a given cross-section � into

the corresponding projection coe�cients, namely

�
��� (
1 (�) � ���� 
� (�)) := a (�) , (1)

is an isomorphism from H� onto R�, meaning that inner products are preserved:

h�(�)� �(�)i
H�

= ha (�) �a (�)i
R�

.

3In general, the required extension can be performed through the usual Gram-Schmidt orthonormalization

procedure.

4



Accordingly, the random evolution of a cross-section � in the space H� induces correspond-

ing dynamics followed by the vector of coe�cients a (�) in R� so that all covariances are

preserved. The main consequence is that a PCA on the cross-sectional dynamics in H� can

be alternatively performed in the Euclidean space R�.

We remark that the vector a (�) may be computed by matching a set of observed market

points in the cross-section
©
�obs (�� ��) � � = 1� ����


ª
. If 
 equals the cardinality 	 of a (�),

then the system
�X
�=1


�(�)��(��) = �obs (�� ��) � �� = 1� · · · �
,

admits a unique solution a (�) � provided its determinant is non-zero. Usually, the number of

quoted values exceeds the number of selected shapes and a (�) must be numerically approxi-

mated. A possible solution is provided by the following weighed least-squares minimization

program:

min
a�R�

���
�X
�=1

�� (�)

Ã
�X
�=1


�(�)��(��)� �obs (�� ��)

!2��� . (2)

Each �� is a loading coe�cient, or penalty, for the time � discrepancy between the estimated

and the observed point in the cross-section. Loading coe�cients represent an important

tool for managing the �tting quality at di�erent portions of the observed cross-section.

For instance, in the case of interest rate term structures, times to maturity corresponding

to liquid and informative securities (e.g., benchmark bonds or swaps) should be assigned

relatively large coe�cients �� in order to �t available quoted prices more closely.

By applying the above procedure to observed cross-sections at consecutive dates 0 =

�0� ���� �� = � , we obtain a time series of coe�cient vectors a (�0) � ���� a (�� ). We assume

that this sequence corresponds to a sample from a Gaussian process with constant volatility

matrix ��M (	) (e.g., �a (�) = b�� + ��� (�), with b �R� and � an 	-dimensional

standard Brownian motion) and de�ne the series of absolute variations by �a (��) := a (��)�
a (���1). The standard estimator of the covariance matrix C = ��T is provided by

C =
³
Cov

³f�a��f�a�´´
0��	���

(3)

where the centered increments per time unit are de�ned as

f�a (��) := �a (��)�
�� � ���1

� 1

�

�X
�=1

�a (��)�
�� � ���1

, � = 1� ����� .
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It is worth noting that coe�cient b is immaterial for the estimation of the local covariance

process of a (�) (and thus for the covariance operator of �): any drift corresponds to an

equivalent measure and the di�usion coe�cient remains unchanged.

The processf�a is a Gaussian random vector with pairwise uncorrelated components with

respect to the Cartesian system given by the (normalized) eigenvectors v� (� = 1� · · · � 	) of
the sample covariance matrix C. After sorting the eigenvalues of C in decreasing order, we

de�ne the diagonal matrix 	 := ��
� (�1� ���� ��) and collect the corresponding eigenvectors

into a matrix � =
¡
v(1) | v(�) | ��� | v(�)¢. Since matrix C is symmetric, all eigenvalues ��

are positive. Because C = �	�T, the volatility matrix is identi�ed by the sample matrix

� = �	1
2 and the coe�cient vector a (�) can be expressed in the new Cartesian system by

rotating its components according to the matrix �, leading to dynamics

� [�a] (�) = [�b] ��+
�X
�=1

D
�a (�) �v(�)

E
R�
v(�) = [�b] ��+

�X
�=1

³p
����� (�)

´
v(�). (4)

The isometry property in expression (1) ensures that C represents the sample (average)

covariance operator C of the process followed by the cross-section dynamics in the space

H�. The orthogonal matrix � induces an orthonormal transformation S in H� mapping the

initial system {��}��=1 into the one collecting the eigenmodes of the covariance operator

of � in H�. Each eigenmode �� can be computed as the counterimage of eigenvector v(�)

according to the mapping ��, that is

��(�) =
h
��1� v(�)

i
(�) =

�X
�=1

v
(�)
� �� (�) . (5)

By using the de�nition of cross-section � (�) =
P�
�=1 
� (�)��, equation (4) for the rotated

dynamics, and expression (5) for the eigenmodes, the drift-compensated cross-section evo-

lution under the new basis {��}�=1	���	� can be written as

�� (�� �) =
�X
�=1

p
���� (�) ��� (�) .

Panel 2 summarizes the identi�cation procedure described above.
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H� R
�³©h� (�) � ��iH�ª1���� � {��}´ ����

³
a (�) �

©
e(�)

ª�
�=1

´
	S 	�³©h� (�) � ��iH�ª1���� � {��}´ ��1�
�

³
[�a] (�) �

©
v(�)

ª�
�=1

´
Panel 2: Shape-factor identi�cation.

2.2 Cross-Shape Covariance Structure

Formula (5) suggests the following de�nition of shape factor:

De�nition 1 (Shape Factor) The �-th shape factor a�ecting cross-section dynamics

with covariance operator C is the normalized eigenmode corresponding to the �-th largest

eigenvalue of C. This can be computed as

�� (�) =
�X
�=1

v
(�)
� �� (�) . (6)

An easy calculation based on mutual independence among the Brownian motions �� (�)

(� = 1� ���� 	) leads to the following closed-form formula for the time � accrued cross-

sectional covariance surface expressed in terms of shape factors:

�[0	
 ] (�� �) := h� (·� �) � � (·� �)i
 =
�X
�=1

���� (�) �� (�)� . (7)

In particular, the corresponding volatility function is given by �[0	
 ] (�) =
qP�

�=1 ���� (�)
2 � .

It is now possible to reproduce a proportion � � [0� 1] of the realized market risk occurred

in the period between � and � by a parsimonious number of shape factors.4 To do so, we

de�ne � := inf
n
� : 100

P�
�=1 ���

P�
�=1 �� � �

o
and consider reduced-form dynamics with

a truncated di�usion part to the � -th order, namely
P�
�=1

�
���� (�) ��� (�). This com-

pletes the econometric procedure to single out shape factors corresponding to a time-series

of cross-sectional data in a given market.

4Parameter � corresponds to the standard explained volatility cut-o� used in Principal Component

Analysis.
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3 Dynamic Theory of Shape Factors

In the previous section, we have de�ned a notion of shape factors in agreement with the

earlier empirical �ndings. We now put forward a continuous time interest rate model whose

random dynamics are driven by shape factors.

3.1 On the Choice of Model Setting

A benchmark framework in the dynamic theory of interest rates is represented by the Heath,

Jarrow and Morton (1992) (HJM). This setting owes its popularity to the remarkable result

whereby arbitrage-free models uniquely depend on two quantities. One is the term structure

of interest rates prevailing in the market at a given point in time. The other is the cross-

factor covariance structure stemming from a risk factor analysis. HJM models combine

these two inputs and derive term structure dynamics represented through a continuum of

stochastic di�erential equations. This assumption makes the corresponding dynamic system

essentially in�nite-dimensional.

There are two alternative approaches to in�nite-dimensional stochastic models. A �rst

approach has been introduced by Kennedy (1994) using the theory of random �elds (RF)

developed in Walsh (1986). The idiosyncratic noise term is described using a Brownian sheet

� (�� �). This is a continuous path stochastic process parametrized in both time and space

with independent and stationary Gaussian increments. This setting has been adopted by

several authors, including Kennedy (1997), Bouchaud et al. (1999), Goldstein (2000), Santa

Clara and Sornette (2001), Collin-Dufresne and Goldstein (2003), and Kimmel (2004).

Overall the existing literature demonstrates that models based on RF’s can be developed

for arbitrage pricing purposes. Although they undoubtedly exhibit a set of remarkable

analytical properties, these models have a number of qualities that prevent them from

appropriately modeling the empirical �ndings referred to in the introduction about the

link between market risk and term structure shapes. First, in a RF model both time

� and time-to-maturity � are treated as process parameters in spite of their fundamental

di�erence. Indeed, � is the �ow dimension of randomness representing �nancial risk, whereas

� is the cross-sectional dimension �xing market expectations about future quotes. Second,

Pang (1999) notes that derivative pricing of exotic derivatives requires a �nite-dimensional

approximation of any in�nite-dimensional model. For this to be the case, driving noises

ought to be ranked and selected according to their relative importance in explaining market
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risk. Unfortunately, the structure of RF models does not o�er any means of performing such

a ranking. Finally, all known �nite dimensional approximations of RF models are standard

HJM speci�cations. To our knowledge RF models have not proved yet to be superior to

any alternative speci�cation within the HJM framework. This fact makes the sophisticated

RF theory somehow spurious for practical applications.5

A second approach to deal with in�nite-dimensional term structure models has been

proposed by Musiela (1993). This study is based on the theory of Hilbert-space-valued

stochastic di�erential equations (HSDE) as developed in Da Prato and Zabczyk (1992).

The term structure of interest rates is identi�ed with a single point in a functional space

and then represented as a superposition of fundamental shapes. Several studies have been

pursued in this framework, including Brace and Musiela (1994), Musiela (1995), Filipović

(2000), Björk and Christensen (1999), Bayraktar et al.(2006), and La Chioma and Piccoli

(2007). It is worth noting that all these papers work under the somehow simpli�ed as-

sumption of dynamics driven by a standard 	-dimensional Wiener process. Guiotto and

Roncoroni (1999) and, independently, Goldys and Musiela (2001) extend this framework

to dynamics driven by a function-valued �-Brownian motion. This process represents the

natural extension of a Wiener process in the Hilbert-space H of term structure shapes as

de�ned in section 2. The setting is further explored in Aihara and Baghi (2005), where

arbitrage properties and completeness of a hyperbolic speci�cation are studied in detail.

There are two compelling reasons that make of HSDE an appropriate framework for

building models driven by factors related to term structure shapes. First, the nature of

both time � and time-to-maturity � is fully accounted for by �-Brownian motion. This fact

allows for the cross-yield covariance surface to be analytically de�ned as a superposition of

statistically uncorrelated yield curve shapes. Equally importantly, the analysis allows for us

to rank these shapes in keeping with their explicatory power of the underlying market risk.

Second, the HSDE setting is particularly suitable for tackling the consistency problem of

�nite-dimensional restrictions of the model. In particular, we can assess an exact estimation

of the pricing error of cross-sectionally consistent realizations of the in�nite-dimensional

arbitrage-free model. More importantly, the shape ranking referred to earlier allows us to

5For instance, Pang (1999) shows that the yield curve volatility structure can be identi�ed up to a �nite

number of values. This implies that the covariance function over the whole time to maturity spectrum of

the RF has to be recovered by arbitrary interpolation methods. Consequently, the main advantage of RF

models, namely the exogenous assignment of a covariance function, is usually lost at the stage of numerical

implementation.
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devise a procedure to bound the pricing errors to an arbitrarily small extent.

3.2 Arbitrage-Free Dynamics

We now focus our analysis on term structures of instantaneous forward rates. Let �
 (�)

denote the time � price of a default-free zero-coupon bond maturing at � . We suppose

the discount function � 7� �
 (�), � � �, is continuously di�erentiable and de�ne the

instantaneous forward rate curve � (�) by � (�� �) := � � lg��+� (�), � � 0. Here, the

cross-sectional variable � refers to time-to-maturity. The risk-free asset ! is obtained by

continuously compounding interest at the prevailing short-term rate � (�� 0), i.e., ! (�) =

exp
³R �
0 � ("� 0) �"

´
. Musiela (1993) derives the HJM arbitrage-free interest rate dynamics

under the time to maturity parametrization as follows:

��� (�� �) =

Ã
 �� (�� �) +

�X
�=1

#� (�� �)

Z �

0
#� (�� ") �"

!
��+

�X
�=1

#� (�� �) ��� (�) , (8)

starting at � (0� �) = � (�). Here  � denotes partial di�erentiation with respect to time-

to-maturity and � represents the forward rate curve observed at time 0. We require the

instantaneous forward rate curve � (�) to be an element in a separable Hilbert space H

endowed with inner product h·� ·i
H
and spanned by a complete orthonormal system {��}��N.

We consider the Hilbert space L2� (R+) of real-valued functions � de�ned on the positive

real axis such that
R +�
0 � (�)2 $ (�) �� % +�. Here $ : R+ � R+ is a suitable function

assigning relative weights to di�erent portions of the time-to-maturity spectrum: in the

remainder of the paper, we set $ (�) = &���, � ' 0, so that a greater importance is assigned

to short-term than long-term maturities. We consider an evolution equation of the form

��� (�� �) = � (�� �) ��+ ��� (�� �) , (9)

where we take a Brownian motion �� in both variables � and �. This process can be

represented as the sum of a series

�� (�� �) :=
X
�

p
�� (�)�� (�)�� (�) , (10)

which can be proven to converge whenever
P
� �� (�) % � . In Da Prato and Zabczyk

(1992) it is shown that the solution of this equation is the H-valued process

� (�� �) = � (0� �) +

Z �

0
� (�� �) ��+

Z �

0
��� (�� �) , P-a.s., (11)
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where � (�� �) is an absolutely continuous function in the time-to-maturity variable �. The

following result is an extension of equation (8) to dynamics (9).

Theorem 1 (Arbitrage Restriction)6 Assume the regularity hypotheses stated in Ap-

pendix A hold true. Let
©
� (�) � 0 � � � �

ª
be an H�(� (0��)-valued predictable process

satisfying (11). If there are no arbitrage opportunities in the sense of Harrison and Pliska

(1981), then

� (�� �) =  �� (�� �) +
�X
�=1

�� (�) �� (�)

Z �

0
�� (�) ��. (12)

Conversely, if
©
� (�) � 0 � � � �

ª
is de�ned by formula (12), then the process

©
� (�) � 0 � � � �

ª
indicated by expression (11) de�nes predictable H�(� (0� 1)-valued arbitrage-free forward

rate dynamics.7

Proof. See appendix A.

3.3 Discussion

Arbitrage-free forward rate dynamics can be read as:

�� (�� �) =

Ã
 �� (�� �) +

X
�

�� (�) �� (�)

!
��+

X
�

p
�� (�)�� (�) ��� (�) , (13)

with �� (�) := �� (�)
R �
0 �� (�) ��.

From a theoretical perspective, this result shows that in�nitely many sources of noise

are compatible with the absence of arbitrage opportunities. The resulting drift restriction

is fully determined by the market volatility structure with respect to the basis spanning

the yield curve space. This result can be extended to non-diagonal covariance structures,

leading to arbitrage-free dynamics

�� (�� �) =

"
 �� (�� �) +

�X
�=1

��) (�� �) �� (�)

Z �

0
) (�� �) �� (�) ��

#
��+ ) (�� �) ��� (�� �) .

Notice that this form covers the case of non-linear volatility structures.

6This theorem has been independently proved in Guiotto and Roncoroni (1999) and Goldys and Musiela

(2001) using di�erent techniques. Our proof is a straight application of the Itô formula for Hilbert space-

valued di�usions as reported in Da Prato and Zabczyk (1992).
7�� (0��) denotes the class of absolutely continuous functions de�ned on [0��).
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From an operational perspective, the previously cited series expansion provides a repre-

sentation of the forward rate curve as a superposition of fundamental shapes �� representing

independent sources of risk. Each factor �� acts as an interpolating or approximating func-

tion of the observed rates in the market. Moreover, the relative importance of factor �� in

explaining market risk is measured by a quota �� of the overall shape volatility.

When implementing the model, we begin by selecting an orthonormal complete system

{��} for the space * of all forward rate curves. The driving Brownian motion with respect

to this basis needs not assume the form (10). In general, it can be represented by:

� (�) =
X

+� (�) ��,

where +� (�) = h� (�) � ��iH are mutually stochastically dependent Brownian motions. The

functional version of PCA described in section 2 delivers a basis {��} under which � has

the required form.

The importance of the link we derived between arbitrage free dynamics (13) and factor

identi�cation can be appreciated in a variety of contexts. First, we note that extending

HJM to countably many Brownian motions may provide a theoretical solution to the in-

completeness problem in bond markets. Absence of arbitrage opportunities in this market

amounts to imposing a linear constraint across all tradeable bonds. Each constraint de�nes

the following relation between the excess of bond price return over the risk-free asset return

� (�) and the bond price volatility:



 (�)� � (�) = μ (�) · v
 (�) , �� � �. (14)

Here 

 and v
 denote the instantaneous percentage return and, respectively, volatility in

the bond price dynamics. Notice that vector μ represents a time-to-maturity independent

market price of risk. It is clear that in a model driven by 	 Brownian motions this relation

holds true up to 	 degrees of freedom. Heaney and Cheng (1984) note that the number of

bonds e�ectively traded is so much larger than the number of signi�cant noise terms that at

least one bond price process does indeed violate the arbitrage constraint (14). The puzzle

can be solved by extending the number of independent constraints to in�nity. This can be

achieved by means of a Q-Brownian motion such as the one we adopt in this paper. Second,

it is worth remarking that standard HJMmodels are usually de�ned in terms of unobservable

state variables. Chiarella and Kwon (2003) remark that expressing state variables in terms

of observable quantities may be preferable in several instances. For instance, this occurs
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upon modeling term structure volatility functions. Under regularity conditions, the authors

suggest simple variable changes transforming arbitrary state variables into functions of bond

yields. Shape factors may provide an alternative solution to this problem. Dynamics can

be assigned to the shape factors obtained from basic shapes via PCA. In the same line,

Collin-Dufresne et al. (2008) underline the importance of using state variables that can be

easily interpretable and observable before specifying and estimating the model. For a large

class of a�ne structures, they manage to derive a representation in terms of level, slope and

convexity of the yield curve at zero. In order to quantify these state variables, a PCA is run

to compute a spectral decomposition {(���v�)}, and a yield curve representation around

zero:

, (�� �) 

3X
�=1

�� (�) �� (�) , (� � [0� -]) (15)

is derived using Taylor expansion. Here the functions �� (�) on a small right-hand neigh-

borhood [0� -] of zero are obtained by implementing a two-step procedure: �rst, the top four

entries of the eigenvectors v1�v2� and v3 are interpolated using linear, quadratic, and cubic

polynomials; second, the resulting functions are extrapolated down to zero. State variables

can be obtained by computing , (�� 0) and the partial derivatives  2, (�� 0) and  22, (�� 0).

The method reportedly generates accurate estimates for these �gures. However, the choice

of interpolating polynomials is somehow arbitrary. The shape factor methodology provides

a possible way to select these functions. Let �� represent the �-th shape factor as de�ned

in expression (6). Then the resulting state variables are compatible to the optimal ranking

of interpolating functions in the sense of our functional PCA. At any rate, the adoption of

shape factors as interpolating functions may resolve the instability issues noted in Collin-

Dufresne et al. (2008, p.772, lines 24-27) as a consequence of the local nature of standard

PCA.8 Speci�cally, computing derivatives on extrapolated curves may lead to an instability

e�ect of the resulting �gures as is reported in Rebonato (1998, p.24). Intuitively, a shape

factor implementation may resolve this issue by allowing the �nal user to select an appro-

priate system of orthonormal functions. In the instance examined by Collin-Dufresne et

al. (2008), one calls for using functions exhibiting a stable behavior at zero on a variety of

di�erentiation orders. For our empirical analysis, we instead propose to use exponentially

weighed polynomials as a way to stabilize rate (or price) quotes comprised between points

8The empirical assessment of the relative quality of these estimates compared to the original ones is

beyond the scope of this study which is mainly theoretical.
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of interpolation. Besides, a key point in our methodology is that the initial arbitrariness

of the selected class of functions goes under an econometric procedure. This latter delivers

statistically signi�cant shape factors, whereas extrapolated values obtained using a model

free method remain unassessed in their statistical importance.

4 Applications

4.1 Contingent Claims Valuation

Arbitrage-free interest rate models are primarily used for valuation and hedging purposes.

Brace and Musiela (1994) and Musiela (1995) derive several formulae for European deriva-

tive prices in the Musiela (1993) model driven by a standard Brownian motion. We focus on

the analytical pricing of European-style interest rate derivatives for interest rate dynamics

driven by a Q-Brownian motion ��.
9 The basic ingredient required for computing analytic

formulae for these securities is the local covariance process of the forward bond yield. By

using formulae (26) and (27) reported in appendix B, we may compute the di�usion part

of the bond price di�erential as

��
 (�� � (�� ·))
¿
.[0	
��)

$
(·) � ��� (�� ·)

À
H

.

This expression together with the de�nition of �-Brownian motion (see appendix A) allows

us to compute the di�usion term of log�
 (�) as

�
Z �

0

*
.[0	
��)

$
(·) �

X
�

p
�� (�)�� (·) ��� (�)

+
H

= �
Z �

0

X
�

p
�� (�)

Z 
��

0
�� (�) �� ��� (�) .

In particular, the cumulated conditional covariance of the forward bond �
	
1 := �
1��


over a time interval [�� � ] is given by

/2 (�� �� �1) :=

¿
lg
�
1
�


À



�
¿
lg
�
1
�


À
�

=
X
�

Z 


�
�� (�)

¯̄̄̄Z 
1��


��
�� (�) ��

¯̄̄̄2
��. (16)

Since term structure dynamics are Gaussian, we can obtain closed-form expressions for

European option prices by means of measure change (see Geman et al. (1995)).

As a �rst example, we compute the arbitrage value of a caplet spanning the interval

[�� �1]. This is given by:

Cpl�
	
1 (�) = (1 + 01)

μ
�
 (�� � (�))

1 + 01
N (
1)� �
1 (�� � (�))N (
2)

¶
, (17)

9The correspoding PDE formulation is studied in Goldys and Musiela (2001).
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where 1 represents the strike price, N indicates the cumulative standard normal distribu-

tion function, and coe�cients 
� are de�ned by


1 :=
lg
³

��1(�	�(�))

�� (�	�(�))(1+��)

´
/ (�� �� �1)

+
/ (�� �� �1)

2
; 
2 := 
1 � / (�� �� �1) .

As a second example, we evaluate a payer swaption giving the holder the right to enter at

a future time � a plain vanilla swap paying out a cash �ow stream of �xed amount 2 at

times �� = � + �0, for � = 1� ���� 	. Let 3� = 20 (� 6= 	), 3� = 1+20 and 	(�) be the density

function of an 	-dimensional normal distribution N (0�M) with covariance matrix entries

��� (�� � ) =

Z 


�

X
�

�� (�)

μZ 
���


��
�� (�) ��

¶μZ 
���


��
�� (�) ��

¶
��.

The pricing formula for this option is:

Swn�
	�	� (�) = �
 (�)�
0 (�� � )�

�X
�=1

3��
� (�)�
� (�� � ) ,

where

�� (�� � ) =

Z
R�

Ã
1�

�X
�=1

3�
�
� (�)

�
 (�)
&�

�2(�	�	��)
2

�1N+ (�)���(�)+��

!
+

	(�1� ���� ��))��1������.

The same method can be applied to all existing derivative pricing formulae to obtain their

analogue in the context of an interest rate model driven by shape factors.

4.2 Cross-Sectional Stability

This section examines a few analytical properties of the shape factor model (13) in view of

the cross-sectional consistency introduced in Björk and Christensen (1999). To contextualize

our analysis, we brie�y recall the issue.

ClassesM of interest rate curve models and F of terms structures are given. The pair

(M�F) is said to be cross-sectionally consistent in the sense of Björk and Christensen (1999)

provided that all realizations of any instance ofM starting at an initial curve in F is still an

element of F . We propose a cross-sectionally consistent pair of an approximately arbitrage-

free class of in�nite-dimensional dynamics and polynomial class of term structure. This is

motivated by the fact that the arbitrage-free dynamics (13) corresponding to a �nite number

of factors coupled with exponentially weighed orthogonal polynomials do not constitute a
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cross-sectionally consistent pair. It is widely documented that traders use these polynomials

for interpolating market yield curves (see Anderson et al.(1996) for a full account).

We therefore proceed as follows. First, we �x a family F of term structures repre-

sented by exponentially weighed orthogonal polynomials; then, we extract an approxi-

mately arbitrage-free �nite-dimensional system M from dynamics (13); �nally, we prove

that (M�F) is cross-sectionally consistent. The key result in our procedure is that fam-

ily and model selections are devised in such a way that the pricing errors stemming from

the lack of perfect arbitrage freedom by the instances ofM can be exactly measured and

minimized at the user’s will.

Our approach substantially di�ers from the alternative strategy followed by La Chioma

and Piccoli (2007). These authors consider a �nite dimensional Musiela’s model and let

the family of cross-sections vary in a way that the resulting pair is approximately cross-

sectionally consistent. Bayraktar et al. (2006) also consider projections of the Musiela’s

model onto a �nite dimensional manifold. However, the problem of measuring the impact

of a lack of arbitrage constraints is left unanswered.

Let us consider as given a class H of interpolating or approximating polynomials and

determine term structure dynamics for which the resulting model is cross-sectionally stable

and approximately arbitrage-free. We also provide an exact upper bound for the corre-

sponding arbitrage error and show how to make it arbitrarily small. Let arbitrage-free

forward rate dynamics be given by the unique mild solution in H � (� (0� 1) of equation

(13) (Da Prato and Zabczyk (1992)). This process can be written as

� (�� �) = &�D� (0� �) +
X
�

Z �

0
�� (�) &

(���)D����+
X
�

Z �

0

p
�� (�)&

(���)D����� (�) , (18)

where
©
&�D
ª
��0 is the semigroup of translations de�ned by

¡
&�D�

¢
(�) = � (�+ �). If the

initial term structure � (0) belongs to �nite-dimensional space H� :=Span{�1� ���� ��}, then
� (�) does not need to be a function in H�.

De�nition 2 (Cross-Sectionally Stable System) The pair (H�� {� (�) � � � 0}) is said
to be a cross-sectionally stable system if � (0) � H� implies that � (�) � H�, for all � � 0.

It is possible to build interest rate dynamics � (�) driven by a �nite number of shape factors

such that the resulting system (H�� {� (�) � � � 0}) is cross-sectionally stable. Unfortunately,

these dynamics may not be arbitrage-free in the strict sense of Harrison and Pliska (1981).

Nevertheless, they are arbitrage-free in the weaker sense speci�ed in the following:
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De�nition 3 (Quasi Arbitrage-Free Dynamics) Let � = {� (�) � � � 0} be the arbitrage-
free dynamics (18). A familyR =

©
�� � 4 � Nª of forward rate dynamics �� =

©
�� (�) � � � 0

ª
is quasi arbitrage-free if for any - ' 0 there exists a number 4� � N such that

sup
��0

E

h°°� (�)� �� (�)
°°2
H

i
� -� ��0 � H� , �4�4�.

The following proposition provides a quasi arbitrage-free family of cross-sectionally stable

systems.

Theorem 2 (Approximation Error) Let the space of all forward rate curves beH = L2� (0�+�)

for some smoothing function $(�) := &(2��1)� with ) ' 1
2 and the subspace of inter-

polated (or approximated) term structures be H� = Span
n
�0� ���� �� � e�0� ���� e��o, where

��(�) := 5�(�)&
��� and e��(�) := 5�(�)&

�2�� are exponentially smoothed Laguerre polyno-

mials. De�ne the sup-norm:

k�k�	[0	
 ] := sup
��[0	
 ]

°°� (�)� �� (�)
°°
H
. (19)

Consider the family R of forward rate dynamics �� (4 � N), de�ned by

�� (�) = &�D�0 +
[
2 ]�1X
�=0

Z �

0
��(�)&

(���)D�� ��+
�X
�=0

Z �

0

p
��(�)&

(���)D�� ���(�), (20)

where �� (�) := �� (�)
R �
0 �� (�) ��. Then:

(a) the system
¡
H� � �

�
¢
is cross-sectionally stable, for each 4 � N;

(b) the family R is quasi arbitrage-free. In particular, dynamics �� � R satisfy:

E

h°°� (�)� �� (�)
°°2
H

i
� 2

�����
	
� �X
�=[
2 ]

Z �

0
��(�)��

�
�
2

+
�X

�=�+1

Z �

0
��(�)��

����� ; (21)

(c) �� converges to � in L2 (
; C ([0� � ] ;H)) according to the upper bound:

E

h°°� (�)� �� (�)
°°
�	[0	
 ]

i
� 2

�����
	
� �X
�=[
2 ]

Z �

0
&�(2��1)(
��)��(�)��

�
�
2

(22)

+4
�X

�=�+1

Z �

0
&�(2��1)(
��)��(�)��

)
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Proof. See appendix B.

This result shows that the approximation error stemming from adopting a cross-sectionally

stable system can be made arbitrarily small with respect to the tightest possible norm. This

task can be achieved by enlarging the space of basis shapes �� in a suitable way. Also, the re-

quired enlargement depends on the behavior of the sequence of residuals
³R 

0 �� (�) ��

´
���

.

In practical instances, one may select a class H� of orthonormal functions, identify the cor-

responding volatility components �� by following the procedure detailed in section 2, and

�nally assume that any completion of H� into a Hilbert space H brings a negligible contri-

bution to the overall volatility (i.e., the sum of all residuals
R 

0 ���� (� � 4) is negligible

in comparison to
P�
�=1

R 

0 �� (�) ��).

The following proposition provides a �nancial interpretation for the above approximation

in terms of mispricing error.

Proposition 3 (Pricing Error) The caplet mispricing error induced by the approximate

model (20) satis�es the following upper bound:

E

h¯̄
� (�� � (�))� �

¡
�� �� (�)

¢¯̄2i � 	
0	
1

�����
	
� X
��[
2 ]

Z �

0
�� (�) ��

�
�
2

+
X
���

Z �

0
�� (�) ��

����� ,

for some constant 	
0	
1 .

Proof. The caplet price (17) is Lipschitz continuous in � (�).

This result, which can be proved for a wider class of interest rate derivatives, justi�es the

importance of the notion of quasi arbitrage-free families of dynamic interest rate models.

5 Empirical Analysis

We conduct an empirical investigation of cross-sectional risk across a variety of data sets.

These include US swap, EUR bond and oil futures markets. Our goal is threefold. First, we

examine the ability of shape factors to reproduce the typical movements of cross-sectional

data. Second, we measure the extent to which shape factors embody the market risk

cumulated over a given period of time. Finally, we assess the relative impact of using an

increasing number of shape factors for the pricing of caplets compared to the standard Black

quotes. Results indicate that the notion of shape factors plays the double role of “typical

curve shift” and “risk source”.
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5.1 Data

We compute and analyze shape factors on the following three data sets:

• USD swap rates prevailing in the period between March 1, 1988 and February 28, 2002.

This data set contains 3653 daily observations, each one collecting at-par quoted zero-

coupon rates for benchmark times-to-maturity, namely 6 months (�6�), 1 year (�1�),

2 years (�2�), 5 years (�5�), 7 years (�7�), 10 years (�10�), 15 years (�15�), and 20

years (�20�). Maturities correspond to liquid instruments traded in the market under

investigation.10

• Instantaneous forward rates quoted by ECB over the period between December 29,

2006 and May 22, 2008. Rates are stripped from AAA-rated government bonds in

the Euro area and represent 365 daily observations for times-to-maturity equal to 9

months, 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, and 7 years.11

• Crude oil futures prices quoted at NYMEX during the period between May 22, 1995

and May 5, 1999. This data set contains 1044 daily observations, each one collecting

futures prices for physical delivery of crude oil in four to eleven months.12

We consider basis shapes given by smoothed polynomials:

��(�) := 5�(�) exp (�)�) , (23)

where 5�(�) denotes the Laguerre polynomial of order � and ) is a positive constant.13

These functions constitute a complete orthonormal system for L2� [R+�R] with respect to a

weighting measure with exponential density $ (�) = exp [(2) � 1)�], that isZ �

0
��(�)��(�)&

(2��1)��� =

(
1 if � = 6,

0 if � 6= 6.

Laguerre polynomials ensure adequate �exibility in the interpolation of observed rates,

whereas the exponential function guarantees a stable �tting. In this respect, the parameter

10Zero-coupon rates correspond to mid-market levels of �nancial instruments quoted in the market. All

rates are determined from a standard “stripping” algorithm assuming linear interpolation. The 6M, the 1Y

and 2Y rates are associated with mid-market levels of deposit and LIBOR futures contracts. All remaining

zero-coupon rates are obtained from swap rates market quotations. Source: BNP Paribas.
11Source: Datastream.
12Source: Datastream.
13On the use of polynomials for cross-sectional analysis, see Chambers et al. (1984).
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) plays a key role in smoothing possible oscillations occurring at the farthest end of the

time-to-maturity spectrum where fewer observations are available. Empirical experiments

not reported here suggest that ) should be selected between 0.3 and 0.5.14 The impact of

the choice of basis functions is further studied in Galluccio and Roncoroni (2006).

5.2 Test 1: Curve Shapes

Our �rst test examines the �exibility of the proposed class of basis shapes in �tting daily

observed quotes. For each day �, we determine the linear combination of the �rst eight basis

shapes that best �ts the observed set of quoted numbers.

Figure 1 about here

Figure 1 exhibits the typical pattern of the �rst three shape factors extracted from historical

data of the three market under concern. Factors one, two, and three are represented by

solid, dotted and dashed lines, respectively. In accordance with several empirical studies

(e.g., Steeley (1990), Litterman and Scheinkman (1991), D’Ecclesia and Zenios (1994),

Barber and Copper (1996), and Bliss (1997), among others), factors corresponding to US

data can be interpreted as a parallel shift, a tilt and a bend in the yield curve shape.

However, this may not be the case for the other data sets. Figure 1, panel (b), seems to

suggest that the main source of risk on Euro bond data is represented by a change in curve

slope, while a convexity adjustments rank second and third.15 Oil price data unveil a third

type of market picture. Figure 2, panel (c), shows that parallel shift represents the main

contribution to market risk, while convexity adjustments and slope changes rank second

and third, respectively.

Overall, shape factor analysis allows a variety of interpretations depending on the actual

data under investigation. The common point across all the examined cases is that exact

analytical forms for rate (or price) curve deformations can be econometrically determined

based on market observations. This suggests that shape factors may provide a more reli-

able cross-rate (resp. cross-price) covariance surface than the one stemming from factors

14Our results are quite similar across all values of � in this range.
15In absolute terms, these interpretations may be questioned on the ground of the noticeably low values

exhibited on the ordinate axis. However, it is important to note that the graphs are computed on a common

scale. This fact allows us to con�rm the above claims within the limits of a relative comparison between the

two markets under analysis.
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resulting from a standard rate (resp. price) based PCA.16 We explore this point in the next

section.

5.3 Test 2: Volatility Recovery

We test the extent to which shape factors can represent the underlying yield curve risk.

This kind of risk is commonly measured by the cross-yield covariance, namely the empirical

covariance matrix of a set of annualized benchmark yield increments over a time period

for which reliable market observations are available. The square-root diagonal elements

of this matrix de�ne the yield volatility function. Litterman and Scheinkman (1991) and

Knez et al. (1994) identify the yield curve risk factors with the eigenvectors of the cross-

yield covariance matrix. A major drawback of this approach is that no information is

provided on the risk embodied by yields associated with illiquid maturities. This generates

an incorrect assessment of the risk underlying �xed-income positions, and consequently

undermines derivatives valuation as well as the corresponding hedging strategies. Because

shape factors provide a global representation of yield curve drivers, we argue that a natural

measure of yield curve risk is provided by the cross-shape covariance de�ned in formula (3)

of section 2.

We compare cross-yield and cross-shape covariances in terms of their ability to represent

the underlying risk using a reduced number of factors. This is accomplished using a two-

step analysis. First, we perform PCA’s on the cross-yield (or cross-rate, or cross-price) and

cross-shape covariance matrices computed on a common data set. Second, we measure the

speed at which yield/price and shape risk clusters around uncorrelated factors. This can be

done by calculating the percentage of the overall market variance explained by an increasing

number of cumulative factors. We refer to the standard factors resulting from traditional

PCA of cross-yield, cross-rate, or cross-price covariance matrix as “point factors”. The

corresponding risk matrix is named “cross-point covariance”. This terminology de�nes

a common label for factors computed on yield, rate and price data. It also allow us to

underline the local nature of these factors and their volatility assessments compared to our

shape factors and the resulting shape volatility curves.

Table 1 reports the results for daily observed Euro rate (1st column) and oil price

(2nd column) data. In both cases, shape volatility converges much faster than yield/price

volatility. We note that Euro rates movements turn out to experience asynchronous shifts

16Standard PCA requires an arbitrary ex-post interpolation of a benchmark set of empirical covariances.
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more often than oil prices do on their respective periods of observation. This fact is re�ected

by the forms displayed by shape factors in the previous section. In terms of volatility

clustering, we note that three factors are required to explain the 98% of Euro interest rate

risk, whereas two factors su�ce to reach the same explicatory power on oil data. A simple

inspection of Figure 2 allows us to qualitatively appreciate the rate of convergence of the

two quantities.

Figure 2 about here

We extend the previous analysis by exploring the evolution of the convergence rates over

time. Table 2 shows the quota � of the overall volatility that is embodied by the most

signi�cant one, two, three, and four USD shape and point factors over four distinct periods

of time. The �rst three point factors allow us to capture between 94% and 98% of the total

yield volatility, whereas the �rst three shape factors always account for more than 99%

of the observed shape volatility. In all periods, the convergence rate for shape volatility

exceeds the one for yield volatility. Moreover, the speed of convergence of shape volatility is

rather stable over time, whereas yield volatility convergence exhibits varying speeds across

the considered time periods.

We repeat our analysis on weekly observed quotes and check for possible e�ects stemming

from reducing price noise generated by daily monitoring market data. Table 1 reports the

resulting �gures for oil market data (3rd column). We see that the reduction of spurious

noise due to daily observation has a greater impact on the numbers obtained using standard

PCA than on those resulting from shape factor analysis. This e�ect can be explained by

the local nature of standard PCA, a property that tends to relatively amplify the negative

e�ect of spurious data noise on the statistical assessment of market risk. The global nature

of shape factor analysis allows us to smoothen this noise term on daily observations as well.

We �nally remark that cross-yield and cross-shape covariances do not match in general.

However, the former can be obtained from the latter by applying formula (7) reported in

section 2. We compare yield factors to shape factors in terms of their ability to explain

yield volatility by a reduced number of risk factors.

Figure 3 about here

Figure 4 about here

Figure 3 (resp., Figure 4) displays US swap and Euro bond yield (resp., oil futures price)

volatility functions as obtained by selecting the most representative one, two, three, and
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four shape factors (dashed line) and yield (resp., price) factors (plain line). The resulting

volatility functions are compared to the historical volatility across a number of times-to-

maturity (dots). In summary, the data support the idea that shape factors more accurately

model volatility than traditional PCA factors; and, more precisely, that a reduced number

of shape factors accounts for the realized rate/price volatility more accurately than the same

number of traditional PCA factors. This result con�rms the empirical �ndings in Galluccio

and Roncoroni (2006).

5.4 Test 3: Caplet pricing

Our �nal test aims at measuring the relative impact of the use of shape volatility in pricing

interest rate derivatives.

We compute caplet prices using formula (17) under alternative cumulative volatilities:

1. Shape volatility /3 (�� �� �1) recovered using the �rst three shape factors over the entire

US swap data set. This quantity is de�ned as:

/2� (�� �� �1) :=
�X
�=1

Z 


�
�� (�)

¯̄̄̄Z 
1��


��
�� (�) ��

¯̄̄̄2
��, 	 � 1� (24)

2. Constant volatility, i.e., the one compatible a traditional Black formula. This �gure is

calculated as the average three-factor shape volatility over an option maturity ranging

from six months to two years and a rate maturity comprised of a value between the

caplet maturity and three years later:

7Black :=

Z 3

0
��

Z 2

0�5
�� /3 (�� �� � + �) .

Figure 5 about here

Figure 5 exhibits pricing di�erences along several caplet and underlying rate maturities. We

note that price discrepancy increases with options moving towards the deepest out-of-the-

money region. As expected, this di�erence tends to smoothen as long as maturity increases

due to the averaging e�ect displayed in formula (24).

Next, we examine the behavior of price discrepancies as the number of shape factors

included in the computation of volatility (24) increases from one to four.

Figure 6 about here
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Figure 6 reports a graph of three di�erences. The surface depicted in Panel (a) represents the

di�erence across varying levels of strike 1 and option maturity � between the caplet price

Cpl�1
	
1 (�;��1) computed using one shape factor and the caplet price Cpl�2
	
1 (�;��1)

computed using two shape factors. The surfaces exhibited in Panel (b) and Panel (c)

display similar �gures for the cases involving three and four shape factors, respectively. We

clearly see the price discrepancies primarily a�ect the long-run out-of-the-money region.

6 Conclusions

Based on empirical �ndings reported in Galluccio and Roncoroni (2006) about the ability

of cross-sectional data to provide relevant information on dynamic risk in �xed income

markets, we put forward a theoretically sound measure of risk accounting for an explicit

link between cross-sectional shapes and market volatility. We develop a continuous-time

in�nite-dimensional arbitrage-free model for interest rate dynamics driven by shape factors

representing the aforementioned kind of risk. A number of applications are presented and,

overall, our analysis provides a theoretical ground and an additional empirical con�rmation

of the quality of shape factors to represent cross-sectional risk.

Shape factor modeling opens a wide range of possible developments. We envisage three

possible directions for future research. First, an additional assessment of the hedging per-

formance of shape factor models with respect to standard factor models across alternative

markets. Second, the numerical evaluation of complex derivatives through “shape-valued

lattices” and the development of a corresponding weak convergence theory. Finally, the

design of estimation procedures for time-varying, and possibly stochastic shape volatility

models.
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A Appendix: Proof of Theorem 1

Under regularity conditions on the bond price volatilities, the discounted bond process
�� (�)
 (�) is a martingale if its drift vanishes. By Itô formula for H-valued processes:,

�
 (�� � (�))

! (�)
= �
 (0� � (0))�

Z �

0
�
 (�� � (�))! (�)�1 � (�� 0) ��+

Z �

0
! (�)�1 ���
 (�� � (�)) �

(25)

�
 (�� � (�)) = �
 (0� � (0� ·)) +
Z �

0
{ ��
 (�� � (�)) + h ��
 (�� � (�)) � � (�)i

H
(26)

+
1

2
Tr
h
 2���
 (�� � (�))

p
� (�)

³p
� (�)

´�i¾
��+

Z �

0
h ��
 (�� � (�)) � ��� (�)i

H
.

Here � indicates the corresponding adjoint operator. The relevant partial derivatives of the

bond price are given by

 ��
 (�� �) |�=�(�)= �
 (�� � (�)) � (�� � � �) , (27)

 ��
 (�� �) |�=�(�)= ��
 (�� � (�))
.[0	
��)

$
(·) � H, (28)

 2�� �
 (�� �)|�=�(�) = �
 (�� � (�))

μ
.[0	
��)

$
(·)� .[0	
��)

$
(·)
¶
� 5 (H) , (29)

where
![0	���)

� is de�ned by
![0	���)

� (�) := .[0	
��) (�) �$ (�). Formula (27) is trivial. Formula

(28) stems form the fact that

lg�
 (�� � (�) + 8)� lg�
 (�� � (�)) =

Z 
��

0
8 (�) �� =

¿
.[0	
��)

$
(·) � 8 (·)

À
H

.

Formula (29) is obtained by using the �rst order approximation of the increment in the �rst

order derivative  ��
 as computed by

 ��
 (�� � (�) + 8)�  ��
 (�� � (�) + 8) = ��
 (�� � (�) + 8)
.[0	
��)

$
+ �
 (�� � (�))

.[0	
��)
$

= �
 (�� � (�))
.[0	
��)

$
(·)
³
�&�

� ���
0 "(#)$# + 1

´
' �
 (�� � (�)).[0	
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Z 
��

0
8 (") �"

= �
 (�� � (�))

μ
.[0	
��)

$
� .[0	
��)

$

¶
(8 (·))
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Substituting formulae (27), (28) and (29) into expression (26), the drift of the discounted

bond price vanishes if and only if

0 = �� (�� 0) + � (�� � � �)�
¿
.[0	
��)

$
(·) � � (�)

À
H

(30)

+
1

2
Tr

�μ
.[0	
��)

$
� .[0	
��)

$

¶p
� (�)

³p
� (�)

´�¸
.

This condition needs to hold on the whole time horizon. The trace in formula (26) is given

by

�X
�=1

¿μ
.[0	
��)

$
� .[0	
��)

$

¶p
� (�)���

p
� (�)��

À
H

=
�X
�=1

�� (�)

μZ 
��

0
�� (�) ��

¶2
,

and setting � = � � �, one obtains:

0 = �� (�� 0) + � (�� �)�
Z �

0
� (�� �) �� +

1

2

�X
�=1

�� (�)

μZ �

0
�� (�) ��

¶2
, (31)

for every � � 0 and � � 0. By taking partial derivatives with respect to � in this expression,

we obtain the required drift restriction.

B Appendix : Proof of Theorem 2

The proof is split into two parts. Part (a) - Let �0 � H� . An inspection of (20) shows

that �� � H� whenever the three involved summands do. For this, we need to show that:

(1) functions ��� � = 0� ���� 4 belong to H� , (2) functions ��� � = 0� ����
£
�
2

¤ � 1 belong to

H� , and (3) the shift operator &�D does not bring out of H� , i.e., &
�D
H�� H� . The �rst

statement follows from the very de�nition of H� . As for the second statement, notice that

each integral �� is a linear combinations of functions �� × �� , for � = 0� � � � � �. Indeed:

Z �

0
&���5�(�) �� =

�X
�=0

1

) �+1
5
(�)
� (0)�

�X
�=0

1

) �+1
&���5(�)� (�)

and 5
(�)
� is a polynomial of degree � � �, so that each function: � 7� R �

0 ��(�) �� is an

element in Span{�1� � � � � ��}. Now, each function �� × �� can be written as

��(�)��(�) = &���5�(�)&���5�(�) = &�2�$�+�(�),
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where $�+� is a polynomial of degree no greater than �+ � � 2�. In particular, $�+� can be

represented as a linear combination of polynomials 50� � � � � 52�. Consequently, each function

�� × �� is in Span
ne�0� � � � e�2�o. Therefore �� � H� whenever � � £�2 ¤ � 1. To prove the

third statement, notice that translating function �� leads to

&�D��(�) = 5�(�+ �)&��(�+�) = &���&���$(�)� (�),

where $
(�)
� (�) is a polynomial of degree � in � with coe�cients depending on �. Clearly,

$
(�)
� (�) can be represented as a linear combination of 51� � � � � 5� with time-dependent co-

e�cients, i.e., $
(�)
� =

P�
�=1 
�(�)5�(�). Thus, &�D�� is a linear combination of functions

&���5�(�), � = 1� � � � � �, with time-dependent coe�cients, i.e., &�D��(�) � H� � H� .
Part (b) - By de�nitions (18) and (20) we have:

°°� (�)� �� (�)
°°2
H
� 2

�����
	
� �X
�=[
2 ]
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0
��(�)
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2

(32)
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°°°°°
�X

�=�+1

Z �

0

p
�� (�)&

(���)D����� (�)

°°°°°
2

H

��� .

Let us focus on the �rst summand. Since

k&�D�k2H =

Z +�

0
�(�+ �)2$(�) �� =

Z +�

�
�(�)2$(� � �) �� � &�(2��1)�k�k2H,

we obtain an upper bound k&(���)D��kH � &�(2��1)(���)k��kH. Moreover

k��k2H =

Z �

0
��(�)

2$(�) �� =

Z �

0
��(�)

2

μZ �

0
��(�) ��

¶2
$(�) ��,

and the Hölder inequality givesμZ �

0
��(�) ��

¶2
=

μZ �

0
��(�)

p
$(�)

p
$(��) ��

¶2
�

Z �

0
��(�)

2$(�) ��

Z �

0
$(��) ��

� k��k2H
1� &�(2��1)�

2) � 1
� 1.

Hence, k��kH � k��kH � 1, for all � � 0, and the �rst summand in (32) is superiorly

bounded by
P�
�=[
2 ]

R �
0 ��(�) ��. As for the second summand in (32), taking expectation
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and using the stochastic version of Fubini theorem, we obtain an upper bound:

E

	�°°°°°
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This proves expression (21). This bound together with the assumption
P
� �� (�) % �

proves that R is quasi-arbitrage-free.

Part (c) - Similarly to part (b), we notice that:
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As long as
°°&�D°°2

H
� &�(2��1)�, the expected supremum of the �rst summand is upperly

bounded by:

E

	
� sup
��[0	
 ]

�X
�=[
2 ]

Z �

0
��(�)

°°°&(���)D��°°°2
H

�
� ���
�X

�=[
2 ]

Z 


0
&�(2��1)(���)��(�) ��. (34)

For the second summand,�� (�) :=
P�
�=�+1

R �
0

p
�� (�)&

(���)D����� (�) is a P
�-martingale

under its natural �ltration. Using Doob inequality and Itô isometry, we have:
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This bound combined with (34) into expression (33) leads to the claimed inequality (22).

Consequently �� converges to � in L2 (
; C ([0� � ] ;H)).
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Eurobond (daily) Oil (daily) Oil (weekly)

Factor N� Shape Yield-based Shape Price-based Shape Price-based

1 85.16 52.24 93.66 85.80 93.2127 77.8008

1+2 94.76 76.58 98.25 95.04 97.3659 91.3693

1+2+3 98.88 88.16 100.00 96.85 100.00 94.6888

1+2+3+4 99.63 92.23 100.00 97.88 100.00 96.4315

Table 1: Percentage quota of the overall shape and yield (resp. oil price) volatility that is embodied

by the most signi�cant one, two, three, and four shape and yield (resp. oil price) factors over the

period between December 29, 2006 and May 22, 2008 (resp. May 22, 1995 and May 5, 1999). Figures

refer to daily recorded Eurobond yields quoted by ECB (resp. daily and weekly recorded crude oil

futures prices quoted at NYMEX) over the reference period (Source: Datastream).

March, 1st 88-91 March, 1st 91-94 March, 1st 94-97 March, 1st 97-02

Factor N� Shape Yield Shape Yield Shape Yield Shape Yield

1 78.76 78.09 77.19 76.48 82.47 91.03 81.29 86.07

1+2 97.11 92.58 95.37 90.65 97.29 97.74 97.36 97.22

1+2+3 99.14 96.35 99.02 94.64 99.56 98.95 99.52 98.83

1+2+3+4 99.83 98.05 99.68 96.58 99.95 99.50 99.96 99.44

Table 2: Percentage quota of the overall shape (resp. yield) volatility that is embodied by the most

signi�cant one, two, three, and four shape (resp. point) factors over four distinct periods of time.

Figures refer to daily monitored USD swap market quotes prevailing in reported subperiods between

March 1, 1988 and February 28, 2002 (Source: BNP Paribas).
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Figure 1. Panel (a): First three shape factors in the USD swap market prevailing in the period between March 1, 1988 and 
February 28, 2002 (Source: BNP Paribas). This data set contains 3653 daily observations, each one collecting par zero-
coupon rates for benchmark times-to-maturity corresponding to 6 months, 1 year, 2 years, 5 years, 7 years, 10 years, 15 
years, and 20 years. The first shape factor (solid line) represents a parallel shift; the second shape factor (dotted line) drives
variation in slope; the third shape factor (dashed line) embodies a convexity adjustment.  
Panel (b) First three shape factors in the Eurobond markets prevailing in the period between December 29, 2006 and May 
22, 2008 (Source: DataStream). This data set contains 365 daily observations of instantaneous forward rates quoted by the 
European Central Bank (ECB). Rates are stripped from AAA-rated government bonds in the Euro area and refer to times-to-
maturity equal to 9 months, 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, and 7 years. The first shape factor (solid line)
represents a change in curve slope; the second and the third shape factors (dotted and dashed lines, respectively) drive 
convexity adjustments.  
Panel (c) First three shape factors in the oil futures markets prevailing in the period between May 22, 1995 and May 5, 
1999 (Source: DataStream). This data set contains 1044 daily observations of futures prices quoted at NYMEX for physical 
delivery of crude oil in four to eleven months at a monthly pace. The first shape factor (solid line) represents a parallel shift;
the second shape factor (dotted line) embodies a convexity adjustment; the third shape factor (dashed line) drives variation 
in curve slope.  
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Figure 2. Panel (a): Percentage contribution to the recovery of Euro bond shape volatility (dashed line) and yield volatility 
(solid line) for an increasing number of retained most significant factors. Figures are derived from Eurobond market ECB 
quotes prevailing in the period between December 29, 2006 and May 22, 2008 (Source: DataStream). 
Panel (b): Percentage contribution to the recovery of crude oil futures shape volatility (dashed line) and price volatility 
(solid line) for an increasing number of retained most significant factors. Figures are derived from crude oil future quotes 
prevailing in the period between May 22, 1995 and May 5, 1999 at NYMEX (Source: DataStream). 
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Figure 3: Historical volatilities computed at benchmark times-to-maturity (dots) vs. volatility curve recovered using the first 
one, two, three, and four more significant yield factors (plain line) and shape factors (dashed line).  
Panel (a) refers to USD swap market quotes prevailing in the period between March 1, 1988 and February 28, 2002 
(Source: BNP Paribas);  
Panel (b) refers to ECB quoted Eurobond yields prevailing in the period between December 29, 2006 and May 22, 2008 
(Source: DataStream). 
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Figure 4: Historical volatilities computed at benchmark times-to-maturity (dots) vs. volatility curve recovered using the first 
one, two, three, and four more significant price factors (plain line) and shape factors (dashed line). Figures refer to oil 
futures market quotes prevailing in the period between May 22, 1995 and May 5, 1999 (Source: DataStream). 
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Figure 5: Caplet price excess of fair value computed using shape volatility over fair value computed using constant Black 
volatility across varying times-to-maturity and strikes. Shape volatility is recovered using the first three most significant 
shape factors over the entire data set. Constant Black volatility is calculated as the average shape volatility over option 
maturities ranging from six months to two years and rate maturities comprised between the caplet maturity and three years 
later. Figures refer to USD swap market quotes prevailing in the period between March 1, 1988 and February 28, 2002 
(Source: BNP Paribas)
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Figure 6: Divergence of caplet prices computed using shape volatility recovered using an increasing number of retained 
shape factors. Panel (a) represents the difference across varying levels of strike K and option maturity T between the 
caplet price computed using one shape factor and the caplet price computed using two shape factors. The surfaces 
exhibited in Panel (b) and Panel (c) display similar figures for the cases involving three and four shape factors, 
respectively. Figures refer to USD swap market quotes prevailing in the period between March 1, 1988 and February 
28, 2002 (Source: BNP Paribas). 




