HAL
open science

Initial value problems for diffusion equations with singular potential

Konstantinos Gkikas, Laurent Veron

To cite this version:

Konstantinos Gkikas, Laurent Veron. Initial value problems for diffusion equations with singular potential. 2012. hal-00736712v5

HAL Id: hal-00736712
 https://hal.science/hal-00736712v5

Preprint submitted on 15 Nov 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Initial value problems for diffusion equations with singular potential

Konstantinos T. Gkikas and Laurent Veron

To Patrizia Pucci, with friendship and high esteem

Abstract

Let V be a nonnegative locally bounded function defined in $Q_{\infty}:=$ $\mathbb{R}^{n} \times(0, \infty)$. We study under what conditions on V and on a Radon measure μ in \mathbb{R}^{d} does it exist a function which satisfies $\partial_{t} u-\Delta u+V u=0$ in Q_{∞} and $u(., 0)=\mu$. We prove the existence of a subcritical case in which any measure is admissible and a supercritical case where capacitary conditions are needed. We obtain a general representation theorem of positive solutions when $t V(x, t)$ is bounded and we prove the existence of an initial trace in the class of outer regular Borel measures.

Contents

1. Introduction 1
2. The subcritical case 6
3. The supercritical case 12
4. Initial trace 23
5. Appendix: the case of a bounded domain 28
References 30

1. Introduction

In this article we study the initial value problem for the heat equation

$$
\begin{align*}
\partial_{t} u-\Delta u+V(x, t) u & =0 & & \text { in } Q_{T}:=\mathbb{R}^{n} \times(0, T) \\
u(., 0) & =\mu & & \text { in } \mathbb{R}^{n}, \tag{1.1}
\end{align*}
$$

where $V \in L_{l o c}^{\infty}\left(Q_{T}\right)$ is a nonnegative function and μ a Radon measure in \mathbb{R}^{n}. By a (weak) solution of (1.1) we mean a function $u \in L_{l o c}^{1}\left(\bar{Q}_{T}\right)$ such that $V u \in L_{l o c}^{1}\left(\bar{Q}_{T}\right)$, satisfying

$$
\begin{equation*}
-\iint_{Q_{T}}\left(\partial_{t} \phi+\Delta \phi\right) u d x d t+\iint_{Q_{T}} V u \phi d x d t=\int_{\Omega} \zeta d \mu \tag{1.2}
\end{equation*}
$$

[^0]for every function $\zeta \in C_{c}^{1,1 ; 1}\left(\bar{Q}_{T}\right)$ which vanishes for $t=T$. Besides the singularity of the potential at $t=0$, there are two main difficulties which appear for constructing weak solutions : the growth of the measure at infinity and the concentration of the measure near some points in \mathbb{R}^{n}. Diffusion equations with singular potentials depending only on x have been studied in connection with the stationnary equation (see e.g. [13]). The particular case of Hardy's potentials $v(x, t)=c|x|^{-2}$ has been thorougly investigated since the early work of Baras and Goldstein [5], in connection with the problem of instantaneous blow-up. For time dependent singular potentials most of the works are concentrated on the well posedness and the existence of a maximum principle; this is the case if $V \in L_{t}^{\infty} L_{x}^{\frac{n}{2}, \infty}$, see e.g. [16]. In the case of time-singular potentials, a notion of non-autonomous Kato class have been introduced in [18] in order to prove that the evolution problem associated to the equation is well posed in $L^{1}\left(\mathbb{R}^{n}\right)$. This class is the extension to diffusion equations of the Kato's class in Schrödinger operators. Other studies have been performed by probabilistic methods in order to analyze the $L^{p}-L^{q}$ regularizing effect [12]. To our knowledge, no work dealing with the initial value problems with measure data for singular operators has already been published. We present here an extension to evolution equations of a series of questions raised and solved in the case of Schrödinger stationary equations in particular by [2], [3], [19], having in mind that one of the aim of this present work is to develop a framework adapted to the construction of the precise trace of solutions of semilinear heat equations. This aspect will appear in a forthcoming work [11]).

We denote by $H(x, t)=\left(\frac{1}{4 \pi t}\right)^{\frac{n}{2}} e^{-\frac{|x|^{2}}{4 t}}$ the Gaussian kernel in \mathbb{R}^{n} and by $\mathbb{H}[\mu]$ the corresponding heat potential of a measure $\mu \in \mathfrak{M}\left(\mathbb{R}^{n}\right)$. Thus

$$
\begin{equation*}
\mathbb{H}[\mu](x, t)=\left(\frac{1}{4 \pi t}\right)^{\frac{n}{2}} \int e^{-\frac{|x-y|^{2}}{4 t}} d \mu(y) \tag{1.3}
\end{equation*}
$$

whenever this expression has a meaning: for example it is straightforward that if $\mu \in \mathfrak{M}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\begin{equation*}
\|\mu\|_{\mathfrak{M}_{T}}:=\int_{\mathbb{R}^{n}} e^{-\frac{|y|^{2}}{4 T}} d|\mu|(y)<\infty \tag{1.4}
\end{equation*}
$$

then (1.3) has a meaning as long as $t<T$, and let be $\mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ the set of Radon measures in \mathbb{R}^{n} satisfying (1.4). If $G \subset \mathbb{R}^{n}$, let Q_{T}^{G} be the cylinder $G \times(0, T)$, $B_{R}(x)$ the ball of center x and radius R and $B_{R}=B_{R}(0)$. We prove
Theorem A Let the measure μ verifies

$$
\begin{equation*}
\iint_{Q_{T}^{B_{R}}} \mathbb{H}[|\mu|](x, t) V(x, t) d x d t \leq M_{R} \quad \forall R>0 . \tag{1.5}
\end{equation*}
$$

Then (1.1) admits a solution in Q_{T}.
A measure which satisfies (1.5) is called an admissible measure and a measure for which there exists a solution to problem (1.1) is called a good measure. Notice that even when $V=0$, uniqueness without any restriction on u is not true, however the next uniqueness result holds:
Theorem B Let u be a weak solution of (1.1) with $\mu=0$. If u satisfies

$$
\begin{equation*}
\iint_{Q_{T}}(1+V(x, t)) e^{-\lambda|x|^{2}}|u(x, t)| d x d t<\infty \tag{1.6}
\end{equation*}
$$

for some $\lambda>0$, then $u=0$.

We denote by $\mathcal{E}_{\nu}\left(Q_{T}\right)$ the set of functions $u \in L_{l o c}^{1}\left(Q_{T}\right)$ for which (1.6) holds for some $\lambda>0$. The general result we prove is the following.
Theorem C Let $\mu \in \mathfrak{M}\left(\mathbb{R}^{n}\right)$ be an admissible measure satisfying (1.4). Then there exists a unique solution $u_{\mu} \in \mathcal{E}_{\nu}\left(Q_{T}\right)$ to problem (1.1). Furthermore

$$
\begin{equation*}
\iint_{Q_{T}}\left(\frac{n}{2 T}+V\right)|u| e^{-\frac{|x|^{2}}{4(T-t)}} d x d t \leq \int_{\mathbb{R}^{n}} e^{-\frac{|y|^{2}}{4 T}} d|\mu|(y) . \tag{1.7}
\end{equation*}
$$

We consider first the subcritical case, which means that any positive measure satisfying (1.4) is a good measure and we prove that such is the case if for any $R>0$ there exist $m_{R}>0$ such that

$$
\begin{equation*}
\iint_{Q_{T}^{B_{R}}} H(x-y, t) V(x, t) d x d t \leq m_{R} e^{-\frac{|y|^{2}}{4 T}} . \tag{1.8}
\end{equation*}
$$

Moreover we prove a stability result among the measures satisfying (1.4): if V verifies for all $R>0$

$$
\begin{equation*}
\sup _{y \in \mathbb{R}^{n}} e^{\frac{|y|^{2}}{4 T}} \iint_{E} H(x-y, t) V(x, t) d x d t \rightarrow 0 \quad \text { when }|E| \rightarrow 0, E \text { Borel subset of } Q_{T}^{B_{R}}, \tag{1.9}
\end{equation*}
$$

then if $\left\{\mu_{k}\right\}$ is a sequence of Radon measures bounded in $\mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ which converges in the weak sense of measures to μ, then $\left\{\left(u_{\mu_{k}}, V u_{\mu_{k}}\right)\right\}$ converges to $\left(u_{\mu}, V u_{\mu}\right)$ in $L_{l o c}^{1}\left(\bar{Q}_{T}\right)$.

In the supercritical case, that is when not all measure in $\mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ is a good measure, we develop a capacitary framework in order to characterize the good measures. We denote by $\mathfrak{M}^{V}\left(\mathbb{R}^{n}\right)$ the set of Radon measures such that $V \mathbb{H}[\mu] \in$ $L^{1}\left(Q_{T}\right)$ and $\|\mu\|_{\mathfrak{M}^{V}}:=\|V \mathbb{H}[\mu]\|_{L^{1}}$. If $E \subset Q_{T}$ is a Borel set, we set

$$
\begin{equation*}
C_{V}(E)=\sup \left\{\mu(E): \mu \in \mathfrak{M}_{+}^{V}\left(\mathbb{R}^{n}\right), \mu\left(E^{c}\right)=0,\|\mu\|_{\mathfrak{M}^{v}} \leq 1\right\} \tag{1.10}
\end{equation*}
$$

This defines a capacity. If

$$
\begin{equation*}
C_{V}^{*}(E)=\inf \left\{\|f\|_{L^{\infty}}: \check{H}[f](y) \geq 1 \quad \forall y \in E\right\} \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\check{H}[f](y)=\iint_{Q_{T}} H(x-y, t) V(x, t) f(x, t) d x d t=\int_{0}^{T} \mathbb{H}[V f](y, t) d t \quad \forall y \in \mathbb{R}^{n}, \tag{1.12}
\end{equation*}
$$

then $C_{V}^{*}(E)=C_{V}(E)$ for any compact set. Denote by Z_{V} the singular set of V, that is the largest set with zero C_{V} capacity. Then

$$
\begin{equation*}
Z_{V}=\left\{x \in \mathbb{R}^{n}: \iint_{Q_{T}} H(x-y, t) V(y, t) d x d t=\infty\right\} \tag{1.13}
\end{equation*}
$$

and the following result characterizes the good measures.
Theorem D If μ is an admissible measure then $\mu\left(Z_{V}\right)=0$. If $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ satisfies $\mu\left(Z_{V}\right)=0$, then it is a good measure. Furthermore μ is a positive good measure if and only if there exists an increasing sequence of positive admissible measures $\left\{\mu_{k}\right\}$ which converges to μ in the weak $*$ topology.

Since many important applications deal with the nonlinear equation

$$
\begin{equation*}
\partial_{t} u-\Delta u+|u|^{q-1} u=0 \quad \text { in } Q_{\infty}:=\mathbb{R}^{n} \times(0, \infty) \tag{1.14}
\end{equation*}
$$

where $q>1$ and due to the fact that any solution defined in Q_{∞} satisfies

$$
\begin{equation*}
|u(x, t)|^{q-1} \leq \frac{1}{t(q-1)} \quad \forall(x, t) \in Q_{\infty} \tag{1.15}
\end{equation*}
$$

we shall concentrate on potentials V which satisfy

$$
\begin{equation*}
0 \leq V(x, t) \leq \frac{C_{1}}{t} \quad \forall(x, t) \in Q_{T} \tag{1.16}
\end{equation*}
$$

for some $C_{1}>0$. For such potentials we prove the existence of a representation theorem for positive solutions of

$$
\begin{equation*}
\partial_{t} u-\Delta u+V(x, t) u=0 \quad \text { in } Q_{T} \tag{1.17}
\end{equation*}
$$

If u is a positive solution of (1.1) in Q_{T} with $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$, it is the increasing limit of the solutions $u=u_{R}$ of

$$
\begin{array}{rlrl}
\partial_{t} u-\Delta u+V(x, t) u & =0 & & \text { in } Q_{T}^{B_{R}} \\
u & =0 & & \text { in } \partial B_{R} \times(0, T) \tag{1.18}\\
u(., 0)=\chi_{B_{R}} \mu & & \text { in } B_{R},
\end{array}
$$

when $R \rightarrow \infty$, thus there exists a positive function $H_{V} \in C\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times(0, T)\right)$ such that

$$
\begin{equation*}
u(x, t)=\int_{\mathbb{R}^{N}} H_{V}(x, y, t) d \mu(y) \tag{1.19}
\end{equation*}
$$

Furthermore we show how to construct H_{V} from V and we prove the following formula

$$
\begin{equation*}
H_{V}(x, y, t)=\int_{\mathbb{R}^{N}} e^{\psi(x, t)} \Gamma(x, \xi, t) d \mu_{y}(\xi) \tag{1.20}
\end{equation*}
$$

where μ_{y} is a Radon measure such that

$$
\begin{equation*}
\delta_{y} \geq \mu_{y} \tag{1.21}
\end{equation*}
$$

(δ_{y} is the Dirac measure concentrated at y),

$$
\begin{equation*}
\psi(x, t)=\int_{t}^{T} \int_{\mathbb{R}^{n}}\left(\frac{1}{4 \pi(s-t)}\right)^{\frac{n}{2}} e^{-\frac{|x-y|^{2}}{4(s-t)}} V(y, s) d y d s \tag{1.22}
\end{equation*}
$$

and Γ satisfies the following estimate

$$
\begin{equation*}
c_{1} t^{-\frac{n}{2}} e^{-\gamma_{1} \frac{|x-y|^{2}}{t}} \leq \Gamma(x, y, t) \leq c_{2} t^{-\frac{n}{2}} e^{-\gamma_{2} \frac{|x-y|^{2}}{t}} \tag{1.23}
\end{equation*}
$$

where A_{i}, c_{i} depends on T, d and V. Conversely, we first prove the following representation result

Theorem E Assume V satisfies (1.16). If u is a positive solution of (1.1) in Q_{T}, there exists a positive Radon measure μ in \mathbb{R}^{n} such that (1.19) holds.

If $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ is positive, we can define for any $k>0$ the solution u_{k} of

$$
\begin{align*}
\partial_{t} u-\Delta u+V_{k}(x, t) u & =0 & & \text { in } Q_{T} \tag{1.24}\\
u(., 0) & =\mu & & \text { in } \mathbb{R}^{n}
\end{align*}
$$

where $V_{k}(x, t)=\min \{k, V(x, t)\}$, and

$$
\begin{equation*}
u_{k}(x, t)=\int_{\mathbb{R}^{N}} H_{V_{k}}(x, y, t) d \mu(y) . \tag{1.25}
\end{equation*}
$$

Moreover $\left\{H_{V_{k}}\right\}$ and $\left\{v_{k}\right\}$ decrease respectively to H_{V} and u^{*} there holds

$$
\begin{equation*}
u^{*}(x, t)=\int_{\mathbb{R}^{N}} H_{V}(x, y, t) d \mu(y) \tag{1.26}
\end{equation*}
$$

However u^{*} is not a solution of (1.1), but of a relaxed problem where μ is replaced by a smaller measure μ^{*} called the reduced measure associated to μ. If we define the zero set of V by

$$
\begin{equation*}
\operatorname{Sing}_{V}:=\left\{y \in \mathbb{R}^{N}: H_{V}(x, y, t)=0\right\} \tag{1.27}
\end{equation*}
$$

we prove
Theorem F If

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \int_{t}^{T} \int_{\mathbb{R}^{n}}\left(\frac{1}{4 \pi(s-t)}\right)^{\frac{n}{2}} e^{-\frac{|\xi-y|^{2}}{4(s-t)}} V(y, s) d y d s=\infty \tag{1.28}
\end{equation*}
$$

then

$$
\xi \in \operatorname{Sing}_{V}, \text { i.e. } H_{V}(x, \xi, t)=0, \forall(x, t) \in \mathbb{R}^{n} \times(0, \infty)
$$

We note here that if V satisfies (1.28) then δ_{ξ} is not admissible measure and the reduced measure $\left(\delta_{\xi}\right)^{*}=\mu_{\xi}$ associated to δ_{ξ} is zero.
Theorem G Assume V satisfies (1.15) and $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$. Then
(i) $\operatorname{supp}\left(\mu-\mu^{*}\right) \subset \operatorname{Sing}_{V}$.
(ii) If $\mu\left(\operatorname{Sing}_{V}\right)=0$, then $\mu^{*}=0$.
(iii) $\operatorname{Sing}_{V}=Z_{V}$.

The last section is devoted to the initial trace problem: to any positive solution u of (1.1) we can associate an open subset $\mathcal{R}(u) \subset \mathbb{R}^{n}$ which is the set of points y which possesses a neighborhood U such that

$$
\begin{equation*}
\iint_{Q_{T}^{U}} V(x, t) u(x, t) d x d t<\infty \tag{1.29}
\end{equation*}
$$

There exists a positive Radon measure μ_{u} on $\mathcal{R}(u)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}} u(x, t) \zeta(x) d x=\int_{\mathbb{R}^{n}} \zeta d \mu \quad \forall \zeta \in C_{c}(\mathcal{R}(u)) \tag{1.30}
\end{equation*}
$$

The set $\mathcal{S}(u)=\mathbb{R}^{n} \backslash \mathcal{R}(u)$ is the set of points y such that for any open set U containing y, there holds

$$
\begin{equation*}
\iint_{Q_{T}^{U}} V(x, t) u(x, t) d x d t=\infty \tag{1.31}
\end{equation*}
$$

If V satisfies (1.17), $\mathcal{S}(u)$ it has the property that

$$
\begin{equation*}
\limsup \mathrm{sim}_{t \rightarrow 0} \int_{U} u(x, t) d x=\infty \tag{1.32}
\end{equation*}
$$

Furthermore, if is satisfies (1.9), then $\mathcal{S}(u)=\emptyset$.
An alternative construction of the initial trace based on the sweeping method is also developed.

Precise definitions of the different notions used in the introduction will be given in the next sections.

Aknowledgements This work has been prepared while the first author was visiting the Laboratory of Mathematics and Theoretical Physics, CNRS-UMR 7350, thanks to the support of a grant from Région Centre, in the framework of the program Création et propagations de singularités dans les équations non-linéaires.

2. The subcritical case

Let $Q_{T}=\mathbb{R}^{n} \times(0, T]$. In this section we consider the linear parabolic problem

$$
\begin{align*}
\partial_{t} u-\Delta u+V u=0 & \text { in } Q_{T} \\
u(., 0)=\mu & \text { in } \mathbb{R}^{n} \times\{0\}, \tag{2.1}
\end{align*}
$$

where $V \in L_{l o c}^{1}\left(Q_{T}\right)$ is nonnegative and μ is a Radon measure.
Definition 2.1. We say that $\mu \in \mathfrak{M}\left(\mathbb{R}^{n}\right)$ is a good measure if problem (2.1) has a weak solution u i.e. there exists a function $u \in L_{\text {loc }}^{1}\left(\bar{Q}_{T}\right)$, such that $V u \in L_{\text {loc }}^{1}\left(\bar{Q}_{T}\right)$ which satisfies
$(2.2)-\iint_{Q_{T}} u\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\iint_{Q_{T}} V u \phi d x d t=\int_{\mathbb{R}^{n}} \phi(x, 0) d \mu \quad \forall \phi \in X\left(Q_{T}\right)$, where $X\left(Q_{T}\right)$ is the space of test functions defined by

$$
X\left(Q_{T}\right)=\left\{\phi \in C_{c}\left(\bar{Q}_{T}\right), \partial_{t} \phi+\Delta \phi \in L_{l o c}^{\infty}\left(\bar{Q}_{\infty}\right), \phi(x, T)=0\right\}
$$

Definition 2.2. Let $H(x, t)$ be the heat kernel of heat equation in \mathbb{R}^{n}, we say that $\mu \in \mathfrak{M}\left(\mathbb{R}^{n}\right)$ is an admissible measure if
(i)

$$
\| V \mathbb{H}[|\mu|]| |_{L^{1}\left(Q_{T}^{B_{R}}\right)}=\iint_{Q_{T}^{B_{R}}}\left(\int_{\mathbb{R}^{n}} H(x-y, t) d|\mu(y)|\right) V(x, t) d x d t<M_{R, T}
$$

where $M_{R, T}$ is a positive constant.
Definition 2.3. A function $u(x, t)$ will be said to belong to the class $\mathcal{E}_{\mathcal{V}}\left(Q_{T}\right)$ if there exists $\lambda>0$ such that

$$
\iint_{Q_{T}} e^{-\lambda|x|^{2}}|u(x, t)|(1+V(x, t)) d x d t<\infty .
$$

A measure in \mathbb{R}^{n} belongs to the class $\mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ if

$$
\|\mu\|_{\mathfrak{M}_{T}}:=\int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4 T}} d|\mu|<\infty
$$

Lemma 2.4. There exists at most one weak solution of problem (2.1) in the class $\mathcal{E}_{\mathcal{V}}\left(Q_{T}\right)$.

Proof. Let u_{1} and u_{2} be two solutions in the class $\mathcal{E}_{V}\left(Q_{T}\right)$ then $w=u_{1}-u_{2}$ is a solution with initial data 0 . Choose a standard mollifier $\rho: B(0,1) \mapsto[0,1]$ and define

$$
w_{j}(x, t)=j^{n} \int_{B_{\frac{1}{j}}(x)} \rho(j(x-y)) w(y, t) d y \equiv \int_{B_{\frac{1}{j}}(x)} \rho_{j}(x-y) w(y, t) d y
$$

Then $w_{j}(., t)$ is C^{∞} and from the equation satisfied by w, it holds

$$
\partial_{t} w_{j}-\Delta w_{j}+\int_{B_{\frac{1}{j}}(x)} V(y, t) \rho_{j}(x-y) w(y) d y=0
$$

where $\partial_{t} w_{j}$ is taken in the weak sense.
First we consider the case $\lambda>0$ and $t \leq \min \left\{\frac{1}{16 \lambda}, T\right\}=T^{\prime}$.
Set $\phi(x, t)=\xi(x, t) \zeta(x)$, where $\xi(x, t)=e^{-\frac{|x|^{2}}{4\left(\frac{1}{8 \lambda}-t\right)}}$ and $\zeta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Given $\varepsilon>0$ we define

$$
g_{j}=\sqrt{w_{j}^{2}+\varepsilon}
$$

Because $\partial_{t}\left(g_{j} \phi\right)=\frac{\partial_{t} w_{j}}{\sqrt{w_{j}^{2}+\varepsilon}} \phi+g_{j} \partial_{t} \phi$, , by a straightforward calculation we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left[g_{j} \phi(., s)\right]_{s=t}^{s=0} d x & =\iint_{Q_{t}} \frac{w_{j}}{\sqrt{w_{j}^{2}+\varepsilon}} \phi \Delta w_{j} d x d s \\
& -\iint_{Q_{t}} \frac{w_{j}(x, s)}{\sqrt{w_{j}^{2}(x, s)+\varepsilon}} \phi(x, s)\left(\int_{B_{\frac{1}{j}}(x)} V(y, t) \rho_{j}(x-y) w(y, s) d y\right) d x d s \\
& +\iint_{Q_{t}} g_{j} \phi_{s} d x d s \\
& =I_{1}+I_{2}+I_{3}
\end{aligned}
$$

By integration by parts, we obtain

$$
\begin{aligned}
I_{1} & =-\iint_{Q_{t}} \frac{\left|\nabla w_{j}\right|^{2}}{\sqrt{w_{j}^{2}(x, s)+\varepsilon}} \phi d x d s+\iint_{Q_{t}} \frac{\left|\nabla w_{j}\right|^{2} w_{j}^{2}}{\left(w_{j}^{2}(x, s)+\varepsilon\right)^{\frac{3}{2}}} \phi d x d s-\iint_{Q_{t}} \frac{w_{j}}{\sqrt{w_{j}^{2}+\varepsilon}} \nabla w_{j} . \nabla \phi d x d s \\
& \leq-\iint_{Q_{t}} \frac{w_{j}}{\sqrt{w_{j}^{2}+\varepsilon}} \nabla w_{j} . \nabla \phi d x d s \\
& \leq-\iint_{Q_{t}} \nabla g_{j} . \nabla \phi d x d s \\
& =-\iint_{Q_{t}} \zeta \nabla g_{j} . \nabla \xi d x d s-\iint_{Q_{t}} \xi \nabla g_{j} . \nabla \zeta d x d s \\
& =\iint_{Q_{t}} \zeta g_{j} \Delta \xi d x d s+\iint_{Q_{t}} g_{j} \nabla \zeta . \nabla \xi d x d s .
\end{aligned}
$$

Since $t \leq T$, there holds $\xi\left|\nabla g_{j}\right| \in L^{1}\left(Q_{T^{\prime}}\right), \xi g_{j} \in L^{1}\left(Q_{T^{\prime}}\right),|\Delta \xi| g_{j} \in L^{1}\left(Q_{T^{\prime}}\right)$,
$\partial_{s} \xi g_{j} \in \bar{L}^{1}\left(Q_{T^{\prime}}\right)$ and

$$
\iint_{Q_{t}} \frac{w_{j}(x, s)}{\sqrt{w_{j}^{2}(x, s)+\varepsilon}}\left(\int_{B_{\frac{1}{j}}(x)} V(y, t) \rho_{j}(x-y) w(y, s) d y\right) \xi d x d s<\infty
$$

The reason for which $\xi\left|\nabla g_{j}\right| \in L^{1}\left(Q_{T^{\prime}}\right)$ follows from the next inequality

$$
\begin{aligned}
\iint_{Q_{T^{\prime}}}\left|\nabla g_{j}\right| \xi d x d s & =\iint_{Q_{T^{\prime}}} \frac{\left|\nabla w_{j}\right|}{\sqrt{\varepsilon+w_{j}^{2}}} \xi d x d s \\
& \leq \iint_{Q_{T^{\prime}}} e^{-\frac{|x|^{2}}{4\left(\frac{1}{8 \lambda}-t\right)}}\left(\int_{B_{\frac{1}{j}}(x)}\left|\nabla \rho_{j}(x-y)\right| w(y, s) d y\right) d x d s
\end{aligned}
$$

Since $\forall y \in B_{\frac{1}{j}}(x)$, we have $|x|^{2} \geq\left(|y|^{2}-\frac{1}{j}\right)^{2}=|y|^{2}+\frac{1}{j^{2}}-2 \frac{|y|}{j} \geq \frac{|y|^{2}}{2}-(C-1) \frac{1}{j^{2}}$, for some positive constant $C>0$ independent on j, y and x. Thus we have, using
the fact that $e^{-\lambda|y|^{2}} w \in L^{1}\left(Q_{T}\right)$,
$\iint_{Q_{T^{\prime}}}\left|\nabla g_{j}\right| \xi d x d s \leq C(j, \lambda) \iint_{Q_{T^{\prime}}} \int_{B_{\frac{1}{j}}(x)} e^{-\frac{|y|^{2}}{8\left(\frac{y}{8 \lambda}-t\right)}}\left|\nabla \rho_{j}(x-y)\right| w(y, s) d y d x d s<\infty$.
Also
$\iint_{Q_{t}} \frac{w_{j}(x, s)}{\sqrt{w_{j}^{2}(x, s)+\varepsilon}} \xi\left(\int_{B_{\frac{1}{j}}(x)} V(y, t) \rho_{j}(x-y) w(y, s) d y\right) d x d s \rightarrow_{j \rightarrow \infty} \iint_{Q_{t}} \frac{w^{2}(x, s)}{\sqrt{w^{2}(x, s)+\varepsilon}} \xi V(y, t) d x d s$
and

$$
\int_{\mathbb{R}^{n}} \sqrt{w_{j}^{2}(x, s)+\varepsilon}\left(\xi_{s}+\Delta \xi\right) d x d s \rightarrow_{j \rightarrow \infty} \int_{\mathbb{R}^{n}} \sqrt{w^{2}(x, s)+\varepsilon}\left(\xi_{s}+\Delta \xi\right) d x d s
$$

We choose $\zeta_{R}=1$ in $B_{R}, 0 \leq \zeta_{R} \leq 1$ in $B_{R+1} \backslash B_{R}$ and 0 otherwise. Letting successively $j \rightarrow \infty, R \rightarrow \infty$ and finally $\varepsilon \rightarrow 0$, we derive

$$
\int_{\mathbb{R}^{n}}|w(x, t)| \xi(x, t) d x \leq \iint_{Q_{t}}|w|\left(\xi_{s}+\Delta \xi\right) d x d s-\iint_{Q_{t}} w(x, s) \xi V(y, t) d x d s
$$

Since

$$
\xi_{s}+\Delta \xi=-\frac{n}{2\left(\frac{1}{8 \lambda}-s\right)}
$$

and $V \geq 0$, we have $w(x, t)=0 \forall(x, t) \in Q_{T^{\prime}}$. If $T^{\prime}=T$ this complete the proof for $\lambda \geq 0$, otherwise the proof can be completed by a finite number of interations of the same argument on $\mathrm{R}^{n} \times\left(T^{\prime}, 2 T^{\prime}\right), \mathrm{R}^{n} \times\left(2 T^{\prime}, 3 T^{\prime}\right)$, etc. If $\lambda=0$ we set $\xi=1$ and the result follows by similar argument

Theorem 2.5. If $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ is an admissible measure, there exists a unique $u=u_{\mu} \in \mathcal{E} \mathcal{V}\left(Q_{T}\right)$ solution of (2.1). Furthermore the following estimate holds

$$
\begin{equation*}
\frac{n}{2 T} \iint_{Q_{T}}|u| e^{-\frac{|x|^{2}}{4(T-t)}} d x d s+\iint_{Q_{T}}|u| V e^{-\frac{|x|^{2}}{4(T-t)}} d x d s \leq \int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4 T}} d|\mu| \tag{2.3}
\end{equation*}
$$

Proof. First we assume that $\mu \geq 0$. Let $\mu_{R}=\chi_{B_{R}} \mu$. It is well known that the heat kernel $H^{B_{R}}(x, y, t)$ in $\Omega=B_{R}$ is increasing with respect to R and $H^{B_{R}} \rightarrow H$, as $R \rightarrow \infty$ in $L^{1}\left(Q_{T}\right)$ for any $T>0$. Thus μ_{R} is an admissible measure in B_{R} and by Proposition 5.4, there exists a unique weak solution u_{R} of problem 5.2 on $\Omega=B_{R}$. By (ii) of Proposition 5.5 we have

$$
-\iint_{Q_{T}}\left|u_{R}\right|\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\iint_{Q_{T}}\left|u_{R}\right| V \phi d x d t \leq \int_{B_{R}} \phi(x, 0) d\left|\mu_{R}\right|
$$

If we set $\phi_{\varepsilon}(x, t)=e^{-\frac{|x|^{2}}{4(T+\varepsilon-t)}} ; \varepsilon>0$, then

$$
\partial_{t} \phi+\Delta \phi=-\frac{n}{2(T+\varepsilon-t)} e^{-\frac{|x|^{2}}{4(T+\varepsilon-t)}},
$$

thus we have
$\iint_{Q_{T}}\left|u_{R}\right| \frac{n}{2(T+\varepsilon-t)} e^{-\frac{|x|^{2}}{4(T+\varepsilon-t)}} d x d t+\iint_{Q_{T}}\left|u_{R}\right| V e^{-\frac{|x|^{2}}{4(T+\varepsilon-t)}} d x d t \leq \int_{B_{R}} e^{\frac{-|x|^{2}}{4 T+4 \varepsilon}} d \mu_{R}$,
which implies
$\frac{n}{2 T+\varepsilon} \int_{0}^{T} \int_{B_{R}}\left|u_{R}\right| e^{-\frac{\mid x x^{2}}{4(T+\varepsilon-t)}} d x d t+\int_{0}^{T} \int_{B_{R}}\left|u_{R}\right| V e^{-\frac{|x|^{2}}{4(T+\varepsilon-t)}} d x d t \leq \int_{\mathbb{R}^{n}} e^{\frac{-|x|^{2}}{4 T+4 \varepsilon}} d \mu_{R}$.

Letting $\varepsilon \rightarrow 0$, we derive
$\frac{n}{2 T} \iint_{Q_{T}}\left|u_{R}\right| e^{-\frac{|x|^{2}}{4(T-t)}} d x d t+\iint_{Q_{T}}\left|u_{R}\right| V e^{-\frac{|x|^{2}}{4(T-t)}} d x d t \leq \int_{\mathbb{R}^{n}} e^{\frac{-\mid x x^{2}}{4 T}} d \mu_{R} \leq \int_{\mathbb{R}^{n}} e^{\frac{-|x|^{2}}{4 T}} d \mu$.
Now by the maximum principle $\left\{u_{R}\right\}$ is increasing with respect to R and converges to some function u. By the above inequality $u \in \mathcal{E}_{\mathcal{V}}\left(Q_{T}\right)$ satisfies the estimate (2.5) and u is a weak solution of problem (2.1). By Lemma 2.4 it is unique. In the general case we write $\mu=\mu^{+}-\mu^{-}$and the result follows by the above arguments and Lemma 2.4. In the sequel we shall denote by u_{μ} this unique solution.

Definition 2.6. A potential V is called subcritical in Q_{T} if for any $R>0$ there exists $m_{R}>0$ such that

$$
\begin{equation*}
\iint_{Q_{T}^{B_{R}}} H(x-y, t) V(x, t) d x d t \leq m_{R} e^{-\frac{|y|^{2}}{4 T}} \quad \forall y \in \mathbb{R}^{n} \tag{2.4}
\end{equation*}
$$

It is called strongly subcritical if moreover
(2.5)

$$
e^{\frac{|y|^{2}}{4 T}} \iint_{E} H(x-y, t) V(x, t) d x d t \rightarrow 0 \quad \text { when }|E| \rightarrow 0, E \text { Borel subset of } Q_{T}^{B_{R}}
$$

uniformly with respect to $y \in \mathbb{R}^{n}$
Theorem 2.7. Assume V is subcritical. Then any measure in $\mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$ is admissible. Furthermore, if V is strongly subcritical and $\left\{\mu_{k}\right\}$ is a sequence of measures uniformly bounded in $\mathfrak{M}_{T}\left(\mathbb{R}^{N}\right)$ which converges weakly to μ, then the corresponding solutions $\left\{u_{\mu_{k}}\right\}$ converge to u_{μ} in $L_{\text {loc }}^{1}\left(\bar{Q}_{T}\right)$, and $\left\{V u_{\mu_{k}}\right\}$ converges to $V u_{\mu}$ in $L_{l o c}^{1}\left(\bar{Q}_{T}\right)$.

Proof. For the first statement we can assume $\mu \geq 0$ and there holds

$$
\begin{aligned}
\iint_{Q_{T}^{B_{R}}} H(x-y, t) d \mu(y) V(x, t) d x d t & =\int_{\mathbb{R}^{n}}\left(\iint_{Q_{T}^{B_{R}}} H(t, x-y) V(x, t) d x d t\right) d \mu(y) \\
& \leq m_{R} \int_{\mathbb{R}^{n}} e^{-\frac{\mid y \|^{2}}{4 T}} d \mu(y) \\
& \leq m_{R}\|\mu\|_{\mathfrak{M}_{T}}
\end{aligned}
$$

Thus μ is admissible. For the second statement, we assume first that $\mu_{k} \geq 0$. By lower semicontinuity $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{N}\right)$ and $\|V \mathbb{H}[\mu]\|_{L^{1}\left(Q_{T}^{B_{R}}\right)} \leq M_{R, T}$ for any k. Since $0 \leq u_{\mu_{k}} \leq \mathbb{H}\left[\mu_{k}\right]$ and $\mathbb{H}\left[\mu_{k}\right] \rightarrow \mathbb{H}[\mu]$ in $L_{l o c}^{1}\left(\bar{Q}_{T}\right)$, the sequence $\left\{u_{\mu_{k}}\right\}$ is uniformly integrable and thus relatively compact in $L_{l o c}^{1}\left(\bar{Q}_{T}\right)$. Furthermore $0 \leq V u_{\mu_{k}} \leq$ $V \mathbb{H}\left[\mu_{k}\right]$. Let $E \subset Q_{T}^{B_{R}}$ be a Borel subset, then

$$
\begin{aligned}
\iint_{E} V \mathbb{H}\left[\mu_{k}\right] d x d t & =\int_{\mathbb{R}^{n}}\left(\iint_{E} V H(x-y, t) d x d t\right) d \mu_{k}(y) \\
& =\int_{\mathbb{R}^{n}}\left(e^{\frac{|y|^{2}}{4 T}} \iint_{E} V(x) H(x-y, t) d x d t\right) e^{-\frac{|y|^{2}}{4 T}} d \mu_{k}(y) \\
& \leq \epsilon(|E|)\left\|\mu_{k}\right\|_{\mathfrak{M}_{T}},
\end{aligned}
$$

where $\epsilon(r) \rightarrow 0$ as $r \rightarrow 0$. Thus $\left\{\left(u_{\mu_{k}}, V u_{\mu_{k}}\right)\right\}$ is locally compact in $L_{l o c}^{1}\left(\bar{Q}_{T}\right)$ and, using a diagonal sequence, there exist $u \in L_{l o c}^{1}\left(\bar{Q}_{T}\right)$ with $V u \in L_{l o c}^{1}\left(\bar{Q}_{T}\right)$ and a subsequence $\left\{k_{j}\right\}$ such that $\left\{\left(u_{\mu_{k_{j}}}, V u_{\mu_{k_{j}}}\right)\right\}$ converges to $\left(u_{\mu}, V u_{\mu}\right)$ a.e. and in $L_{l o c}^{1}\left(\bar{Q}_{T}\right)$. From the integral expression (2.2) satisfied by the $u_{\mu_{k}}, u$ is a weak solution of problem (2.1). Since the $u_{\mu_{k}}$ satisfy (2.3), the property holds for u, therefore $u=u_{\mu}$ is the unique solution of (2.1), which ends the proof.

As a variant of the above result which will be useful later on we have
Proposition 2.8. Assume V satisfies
$e^{\frac{|y|^{2}}{4 T}} \iint_{E} H(x-y, t) V(x, t+\tau) d x d t \rightarrow 0 \quad$ when $|E| \rightarrow 0, E$ Borel subset of $Q_{T}^{B_{R}}$, uniformly with respect to $y \in \mathbb{R}^{n}$ and $\tau \in\left[0, \tau_{0}\right]$. Let $\tau_{k}>0$ with $\tau_{k} \rightarrow 0$ and $\left\{\mu_{k}\right\}$ be a sequence uniformly bounded in $\mathfrak{M}_{T}\left(\mathbb{R}^{N}\right)$ which converges weakly to μ. Then the solutions $\left\{u_{\tau_{k}, \mu_{k}}\right\}$ of

$$
\left.\begin{array}{rlrl}
\partial_{t} u-\Delta u+V u & =0 & & \text { on } \\
\mathbb{R}^{n} \times\left(\tau_{k}, T\right) \tag{2.7}\\
u\left(., \tau_{k}\right) & =\mu_{k} & & \text { on }
\end{array} \mathbb{R}^{n} \times\left\{\tau_{k}\right\}\right\}
$$

(extended by 0 on $\left(0, \tau_{k}\right)$) converge to u_{μ} in $L_{l o c}^{1}\left(Q_{T}\right)$, and $\left\{V u_{\mu_{k}}\right\}$ converges to $V u_{\mu}$ in $L_{l o c}^{1}\left(Q_{T}\right)$.

Condition (2.5) may be very difficult to verify and we give below a sufficient condition for it to hold.

Proposition 2.9. Assume V satisfies

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} e^{\frac{|y|^{2}}{4 T}} \lambda^{-n} \int_{0}^{\lambda} \int_{B_{\lambda^{2}}(y)} V(x, t) d x d t=0 \tag{2.8}
\end{equation*}
$$

uniformly with respect to $y \in \mathbb{R}^{n}$, then V is strongly subcritical.
Proof. Let $E \subset Q_{T}^{B_{R}}$ be a Borel set. For $\delta>0$, we define the weighted heat ball of amplitude $\delta e^{-\frac{|y|^{2}}{4 T}}$ by

$$
P_{\delta}=P_{\delta}(y, T)=\left\{(x, t) \in Q_{T}: H(x-y, t) \geq \delta e^{-\frac{|y|^{2}}{4 T}}\right\} .
$$

By an straightforward computation, one sees that

$$
P_{\delta}(y, T) \subset B_{a_{n} \delta^{-\frac{1}{n}} e^{\frac{|y|^{2}}{4 n T}}}(y) \times\left[0, b_{n} \delta^{-\frac{2}{n}} e^{\frac{|y|^{2}}{2 n T}}\right]:=R_{\delta}(y, T)
$$

for some $a_{n}, b_{n}>0$. We write
$\iint_{E} H(x-y, t) V(x, t) d x d t=\iint_{E \cap P_{\delta}} H(x-y, t) V(x, t) d x d t+\iint_{E \cap P_{\delta}^{c}} H(x-y, t) V(x, t) d x d t$.
Then

$$
\iint_{E \cap P_{\delta}^{c}} H(x-y, t) V(x, t) d x d t \leq \delta e^{-\frac{|y|^{2}}{4 T}} \iint_{E} V(x, t) d x d t,
$$

and

$$
\begin{aligned}
\iint_{E \cap P_{\delta}} H(x-y, t) V(x, t) d x d t \leq & \int_{0}^{\delta} \int_{\left\{(x, t) \in Q_{T}^{B_{R}}: H(x-y, t)=\tau e^{\left.-\frac{|y|^{2}}{4 T}\right\}}\right.} V(x, t) d S_{\tau}(x, t) \tau d \tau \\
\leq & {\left[\tau \int_{0}^{\tau} \int_{\left\{(x, t) \in Q_{T}^{B_{R}}: H(x-y, t)=\sigma e^{\left.-\frac{|y|^{2}}{4 T}\right\}}\right.} V(x, t) d S_{\sigma}(x, t) d \sigma\right]_{\tau=0}^{\tau=\delta} } \\
& -\int_{0}^{\delta} \int_{0}^{\tau} \int_{\left\{(x, t) \in Q_{T}^{B_{R}}: H(x-y, t)=\sigma e^{\left.-\frac{\left.|y|\right|^{2}}{4 T}\right\}}\right.} V(x, t) d S_{\sigma}(x, t) d \sigma d \tau \\
\leq & \delta \int_{0}^{\delta} \int_{\left\{(x, t) \in Q_{T}^{B_{R}}: H(x-y, t)=\sigma e^{\left.-\frac{|y|^{2}}{4 T}\right\}}\right.} V(x, t) d S_{\sigma}(x, t) d \sigma
\end{aligned}
$$

The first integration by parts is justified since $V \in L^{1}\left(Q_{T}^{B_{R}}\right)$. Notice that

$$
\delta \int_{0}^{\delta} \int_{\left\{(x, t) \in Q_{T}^{B_{R}}: H(x-y, t)=\sigma e^{\left.-\frac{|y|^{2}}{4 T}\right\}}\right.} V(x, t) d S_{\sigma}(x, t) d \sigma=\delta \iint_{Q_{T}^{B_{R} \cap P_{\delta}}} V(x, t) d x d t
$$

and

$$
\begin{aligned}
\delta \iint_{Q_{T}^{B_{R} \cap P_{\delta}}} V(x, t) d x d t & \leq \delta \iint_{Q_{T}^{B_{R} \cap R_{\delta}(y, T)}} V(x, t) d x d t \\
& \leq \beta r^{-n} \int_{0}^{\alpha r} \int_{B_{R} \cap B_{(\alpha r)^{2}}(y)} V(x, t) d x d t
\end{aligned}
$$

for some $\alpha, \beta>0$ and if we have set $r=\delta^{-\frac{1}{n}}$. Notice also that $B_{R} \cap B_{(\alpha r)^{2}}(y)=\emptyset$ if $|y| \geq R+(\alpha r)^{2}$, or, equivalently, if $|y| \geq R+\alpha^{2} \delta^{-\frac{2}{n}}$.
(i) If $|y| \geq R+\alpha^{2}$, we fix δ such that $1<\delta$, then

$$
e^{\frac{|y|^{2}}{4 T}} \iint_{E} H(x-y, t) V(x, t) d x d t \leq \delta \iint_{E} V(x, t) d x d t
$$

which can be made smaller than ϵ provided $|E|$ is small enough.
(ii) If $|y|<R+\alpha^{2}$, then

$$
\begin{aligned}
e^{\frac{|y|^{2}}{4 T}} \iint_{E \cap P_{\delta}^{c}} H(x-y, t) V(x, t) d x d t & \leq e^{\frac{R^{2}+\alpha^{4}}{2 T}} \iint_{E \cap P_{\delta}^{c}} H(x-y, t) V(x, t) d x d t \\
& \leq \delta e^{\frac{R^{2}+\alpha^{4}}{2 T}} \iint_{E} V(x, t) d x d t .
\end{aligned}
$$

Given $\epsilon>0$, we fix $\delta=r^{-n}$ such that

$$
e^{\frac{R^{2}+\alpha^{4}}{2 T}} \iint_{E \cap P_{\delta}} H(x-y, t) V(x, t) d x d t \leq \beta e^{\frac{R^{2}+\alpha^{4}}{2 T}} r^{-n} \int_{0}^{\alpha r} \int_{B_{R} \cap B_{(\alpha r)^{2}}(y)} V(x, t) d x d t \leq \frac{\epsilon}{2},
$$

and then $\eta>0$ such that $|E| \leq \eta$ implies

$$
e^{\frac{|y|^{2}}{4 T}} \iint_{E \cap P_{\delta}^{c}} H(x-y, t) V(x, t) d x d t \leq \delta e^{\frac{R^{2}+\alpha^{4}}{2 T}} \iint_{E} V(x, t) d x d t \leq \frac{\epsilon}{2} .
$$

Therefore

$$
e^{\frac{|y|^{2}}{4 T}} \iint_{E} H(x-y, t) V(x, t) d x d t \leq \epsilon
$$

which is (2.5).

Remark In Theorem 2.7 and Proposition 2.9, the assumption of uniformity with respect to $y \in \mathbb{R}^{n}$ in (2.5), (2.6) and (2.8) can be replaced by uniformity with respect to $y \in B_{R_{0}}$ if all the measures μ_{k} have their support in $B_{R_{0}}$. A extension of these assumptions, valid when the convergent measures μ_{k} have their support in a fixed compact set is to assume that V is locally strongly subcritical, which means that (2.5) holds uniformly with respect to y in a compact set. Similar extension holds for (2.8).

3. The supercritical case

3.1. Capacities. All the proofs in this subsection are similar to the ones of [19] and inspired by [9]; we omit them. We assume also that there exists a positive measure μ_{0} such that $\mathbb{H}\left[\mu_{0}\right] V \in L^{1}\left(Q_{T}\right)$.

Definition 3.1. If $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ and f is a nonnegative measurable function defined in Ω such that

$$
(t, x, y) \mapsto \mathbb{H}[\mu](y, t) V(x, t) f(x, t) \in L^{1}\left(Q_{T} \times \mathbb{R}^{n} ; d x d t \otimes d \mu\right)
$$

we set

$$
\mathcal{E}(f, \mu)=\int_{Q_{T}}\left(\int_{\mathbb{R}^{n}} H(x-y, t) d \mu(y)\right) V(x, t) f(x, t) d x d t
$$

If we put

$$
\breve{\mathbb{H}}[f](y)=\int_{Q_{T}} H(x-y, t) V(x, t) f(x, t) d x d t
$$

then by Fubini's Theorem, $\breve{H}[f](y)<\infty, \mu$-almost everywhere in \mathbb{R}^{n} and

$$
\mathcal{E}(f, \mu)=\int_{\mathbb{R}^{n}}\left(\int_{Q_{T}} H(x-y, t) V(x, t) f(x, t) d x d t\right) d \mu(y)
$$

Proposition 3.2. Let f be fixed. Then
(a) $y \mapsto \breve{H}[f](y)$ is lower semicontinuous in \mathbb{R}^{n}.
(b) $\mu \mapsto \mathcal{E}(f, \mu)$ is lower semicontinuous in $\mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ in the weak* topology.

Definition 3.3. We denote by $\mathfrak{M}^{V}\left(\mathbb{R}^{n}\right)$ the set of all measures μ on \mathbb{R}^{n} such that $V \mathbb{H}[|\mu|] \in L^{1}\left(Q_{T}\right)$. If μ is such a measure, we set

$$
\|\mu\|_{\mathfrak{M} V}=\int_{Q_{T}}\left(\int_{\mathbb{R}^{n}} H(x-y, t) d|\mu|(y)\right) V(x, t) d x d t=\|V \mathbb{H}[|\mu|] \mid\|_{L^{1}\left(Q_{T}\right)}
$$

If $E \subset \mathbb{R}^{n}$ is a Borel set, we put

$$
\mathfrak{M}_{+}(E)=\left\{\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right): \mu\left(E^{c}\right)=0\right\} \quad \text { and } \quad \mathfrak{M}_{+}^{V}(E)=\mathfrak{M}^{V}\left(\mathbb{R}^{n}\right) \cap \mathfrak{M}_{+}(E) .
$$

Definition 3.4. If $E \subset \mathbb{R}^{n}$ is any borel subset we define the set function C_{V} by

$$
C_{V}(E):=\sup \left\{\mu(E): \mu \in \mathfrak{M}_{+}^{V}(E),\|\mu\|_{\mathfrak{M}^{V}} \leq 1\right\}
$$

this is equivalent to,

$$
C_{V}(E):=\sup \left\{\frac{\mu(E)}{\|\mu\|_{\mathfrak{M}^{V}}}: \mu \in \mathfrak{M}_{+}^{V}(E)\right\} .
$$

Proposition 3.5. The set function C_{V} satisfies

$$
C_{V}(E) \leq \sup _{y \in E}\left(\int_{Q_{T}} H(x-y, t) V(x, t) d x d t\right)^{-1} \quad \forall E \subset \mathbb{R}^{n}, E \text { Borel. }
$$

Furthermore equality holds if E is compact. Finally,

$$
C_{V}\left(E_{1} \cup E_{2}\right)=\sup \left\{C_{V}\left(E_{1}\right), C_{V}\left(E_{2}\right)\right\} \quad \forall E_{i} \subset \mathbb{R}^{n}, E_{i} \text { Borel. }
$$

Definition 3.6. For any Borel $E \subset \mathbb{R}^{n}$, we set

$$
C_{V}^{*}(E):=\inf \left\{\|f\|_{L^{\infty}}: \breve{\mathbb{H}}[f](y) \geq 1 \forall y \in E\right\}
$$

Proposition 3.7. For any compact set $E \subset \mathbb{R}^{n}$,

$$
C_{V}^{*}(E)=C_{V}(E)
$$

3.2. The singular set of V. In this section we assume that V satisfies (1.16), although much weaker assumption could have been possible. We define the singular set of V, Z_{V} by

$$
\begin{equation*}
Z_{V}=\left\{x \in \mathbb{R}^{n}: \iint_{Q_{T}} H(x-y, t) V(y, t) d y d t=\infty\right\} \tag{3.1}
\end{equation*}
$$

Since the function $x \mapsto f(x)=\iint_{Q_{T}} H(x-y, t) V(y, t) d y d t$ is lower semicontinuous, it is a Borel function and Z_{V} is a Borel set.

Lemma 3.8. If $x \in Z_{V}$ then for any $r>0$,

$$
\iint_{Q_{T}^{B r(x)}} H(x-y, t) V(y, t) d y d t=\infty
$$

Proof. We will prove it by contradiction, assuming that there exists $r>0$, such that

$$
\iint_{Q_{T}^{B_{r}(x)}} H(x-y, t) V(y, t) d y \leq M
$$

Replacing H by its value, we derive

$$
\begin{aligned}
\iint_{Q_{T}} H(x-y, t) V(y, t) d y d t & =\iint_{Q_{T}^{B_{r}(x)}} H(x-y, t) V(y, t) d y d t+\iint_{Q_{T}^{B_{r}^{c}(x)}} H(x-y, t) V(y, t) d y d t \\
& \leq M+C(n) \int_{0}^{T} t^{-\frac{n+2}{2}} e^{-\frac{r^{2}}{4 t}} d t<\infty
\end{aligned}
$$

Which is clearly a contradiction.
Lemma 3.9. If μ is an admissible positive measure then $\mu\left(Z_{V}\right)=0$.
Proof. Let $K \subset Z_{V}$ be a compact set. In view of the above lemma there exists a $R>0$ such that $K \subset B_{R}$ and for each $x \in K$, we have

$$
\begin{equation*}
\iint_{Q_{T}^{B_{2 R}}} H(x-y, t) V(y) d y=\infty \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\iint_{Q_{T}^{B_{2}^{c}}} H(x-y, t) V(y) d y<\infty \tag{3.3}
\end{equation*}
$$

Now, $\mu_{K}=\chi_{K} \mu$ is an admissible measure and by Fubini theorem we have

$$
\begin{aligned}
\iint_{Q_{T}}\left(\int_{\mathbb{R}^{n}} H(x-y, t) d \mu_{K}(y)\right) V(x, t) d x d t= & \int_{K} \iint_{Q_{T}} H(x-y, t) V(x, t) d x d t d \mu(y) \\
= & \int_{K} \iint_{Q_{T}^{B_{2 R}}} H(x-y, t) V(x) d x d t d \mu(y) \\
& +\int_{K} \iint_{Q_{T}^{B_{2 R}^{c}}} H(x-y, t) V(x) d x d t d \mu y
\end{aligned}
$$

By (3.3) the second integral above is finite and by (3.2)

$$
\iint_{Q_{T}^{B_{2 R}}} H(x-y, t) V(x) d x d t=\infty \quad \forall y \in K
$$

It follows that $\mu(K)=0$. This implies $\mu\left(Z_{V}\right)=0$ by regularity.
Theorem 3.10. If $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$, $\mu \geq 0$ such that $\mu\left(Z_{V}\right)=0$, then μ is a good measure.

Proof. We set $\mu_{R}=\chi_{B_{R}} \mu$. By Proposition 5.8, since $Z_{V}^{B_{R}} \subset Z_{V}, \mu_{R}$ is a good measure in B_{R} with corresponding solution u_{μ}^{R}. In view of Lemma 2.5, u_{μ}^{R} satisfies

$$
\iint_{Q_{T}^{B_{R}}}\left|u_{\mu}^{R}\right| \frac{n}{4(T-t)} e^{-\frac{|x|^{2}}{4(T-t)}} d x d t+\iint_{Q_{T}^{B_{R}}}\left|u_{\mu}^{R}\right| V e^{-\frac{|x|^{2}}{4(T-t)}} d x d t \leq \int_{B_{R}} e^{-\frac{|x|^{2}}{4 T}} d \mu
$$

Also $\left\{u_{\mu}^{R}\right\}$ is an increasing function, thus converges to u_{μ}. By the above estimate we have that u_{μ} belong to class $\mathcal{E}_{\mathcal{V}}\left(Q_{T}\right)$ and is a weak solution of (2.1).

Proposition 3.11. Let $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$. Then $\mu\left(Z_{V}\right)=0$ if and only if there exists an increasing sequence of positive admissible measures which converges to μ in the weak* topology.

Proof. The proof is similar as the one of $[\mathbf{1 9}$, Th 3.11] and we present it for the sake of completeness. First, we assume that $\mu\left(Z_{V}\right)=0$. Then we define the set

$$
K_{N}=\left\{x \in \mathbb{R}^{n}: \int_{Q_{T}} H(x-y, t) V(y) d y d t \leq N\right\} .
$$

We note that $Z_{V} \cap K_{N}=\emptyset$. We set $\mu_{n}=\chi_{K_{N}} \mu$ then we have

$$
\int_{Q_{T}}\left(\int_{\mathbb{R}^{n}} H(x-y, t) d \mu_{n}(y)\right) V(x, t) d x d t \leq \mu\left(K_{N}\right)
$$

Thus μ_{n} is admissible, increasing with respect n. By the monotone theorem it follows that $\mu_{n} \rightarrow \chi_{Z_{V}^{c}} \mu$. Since $\mu\left(Z_{V}\right)=0$ the result follows in this direction.
For the other direction. Let $\left\{\mu_{n}\right\}$ be an increasing sequence of positive admissible measure. Then by Lemma 3.9 we have that $\mu_{n}\left(Z_{V}\right)=0, \forall n \geq 1$. Since $\mu_{n} \leq \mu$, there exist an increasing functions $h_{n} \mu$-integrable such that $\mu_{n}=h_{n} \mu$. Since $0=\mu_{n}\left(Z_{V}\right) \rightarrow \mu\left(Z_{V}\right)$ the result follows.
3.3. Properties of positive solutions and representation formula. We first recall the construction of the kernel function for the operator $w \mapsto \partial_{t} w-\Delta w+$ $V w$ in Q_{T}, always assuming that V satisfies (1.16). For $\delta>0$ and $\mu \in \mathfrak{M}_{T}$, we denote by w_{δ} the solution of

$$
\begin{align*}
\partial_{t} w-\Delta w+V_{\delta} w & =0, & & \text { in } Q_{T} \tag{3.4}\\
w(., 0) & =\mu & & \text { in } \mathbb{R}^{n} .
\end{align*}
$$

where $V_{\delta}=V \chi_{Q_{\delta, T}}$ and $Q_{\delta, T}=(\delta, T) \times \mathbb{R}^{n}$. Then

$$
\begin{equation*}
w_{\delta}(x, t)=\int_{\mathbb{R}^{n}} H_{V_{\delta}}(x, y, t) d \mu(y) \tag{3.5}
\end{equation*}
$$

Lemma 3.12. The mapping $\delta \mapsto H_{V_{\delta}}(x, y, t)$ is increasing and converges to $\left.H_{V} \in C\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times(0, T]\right)\right)$ when $\delta \rightarrow 0$. Furthermore there exists a function $\left.H_{V} \in C\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times(0, T]\right)\right)$ such that for any $\mu \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} w_{\delta}(x, t)=w(x, t)=\int_{\mathbb{R}^{n}} H_{V}(x, y, t) d \mu(y) \tag{3.6}
\end{equation*}
$$

Proof. Without loss of generality we can assume $\mu \geq 0$. By the maximum principle $\delta \mapsto H_{V_{\delta}}(x, y, t)$ is increasing and the result follows by the monotone convergence theorem.

If \mathbb{R}^{n} is replaced by a smooth bounded domain Ω, we can consider the problem

$$
\begin{align*}
\partial_{t} w-\Delta w+V_{\delta} w=0 & \text { in } Q_{T}^{\Omega} \\
w=0 & \text { in } \partial_{l} Q_{T}^{\Omega}:=\partial \Omega \times(0, T] \tag{3.7}\\
w(., 0)=\mu & \text { in } \Omega .
\end{align*}
$$

where $V_{\delta}^{\prime}=V \chi_{Q_{\delta, T}^{\Omega}}$ and $Q_{\delta, T}^{\Omega}=(\delta, T) \times \Omega$. Then

$$
\begin{equation*}
w_{\delta}(x, t)=\int_{\Omega} H_{V_{\delta}}^{\Omega}(x, y, t) d \mu(y) \tag{3.8}
\end{equation*}
$$

The proof of the next result is straightforward.
Lemma 3.13. The mapping $\delta \mapsto H_{V_{\delta}}^{\Omega}(x, y, t)$ increases and converges to $H_{V}^{\Omega} \in$ $C(\Omega \times \Omega \times(0, T]))$ when $\delta \rightarrow 0$. Furthermore There exists a fonction $H_{V}^{\Omega} \in C(\Omega \times$ $\Omega \times(0, T]))$ such that for any $\mu \in \mathfrak{M}_{b}(\Omega)$

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} w_{\delta}(x, t)=w(x, t)=\int_{\Omega} H_{V}^{\Omega}(x, y, t) d \mu(y) \tag{3.9}
\end{equation*}
$$

Furthermore $H_{V}^{\Omega} \leq H_{V}^{\Omega^{\prime}} \leq H_{V}$ if $\Omega \subset \Omega^{\prime}$.

It is important to notice that the above results do not imply that w is a weak solution of problem (1.1). This question will be considered later on with the notion of reduced measure.

Lemma 3.14. Assume $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ is a good measure and let u be a positive weak solution of problem (2.1). If Ω is a smooth bounded domain, then there exists a unique positive weak solution v of problem

$$
\begin{align*}
\partial_{t} v-\Delta v+V v & =0, & & \text { in } Q_{T}^{\Omega}, \\
v & =0 & & \text { on } \partial_{l} Q_{T}^{\Omega} \tag{3.10}\\
v(., 0) & =\chi_{\Omega} \mu & & \text { in } \Omega .
\end{align*}
$$

Furthermore

$$
\begin{equation*}
v(x, t)=\int_{\Omega} H_{V}^{\Omega}(x, y, t) d \mu(y) \tag{3.11}
\end{equation*}
$$

Proof. Let $\left\{t_{j}\right\}_{j=1}^{\infty}$ be a sequence decreasing to 0 , such that $t_{j}<T, \forall j \in \mathbb{N}$. We consider the following problem

$$
\begin{align*}
\partial_{t} v-\Delta v+V v & =0, & & \text { in } \quad \Omega \times\left(t_{j}, T\right], \\
v & =0 & & \text { on } \quad \partial \Omega \times\left(t_{j}, T\right] \tag{3.12}\\
v\left(., t_{j}\right) & =u\left(., t_{j}\right) & & \text { in } \Omega \times\left\{t_{j}\right\} .
\end{align*}
$$

Since $u, V u \in L^{1}\left(Q_{T}^{B_{R}}\right)$ for any $R>0, t \mapsto u(., t)$ is continuous with value in $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, therefore $u\left(., t_{j}\right) \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and there exists a unique solution v_{j} to (3.12) (notice also that $V \in L^{\infty}\left(Q_{T}^{B_{R}}\right)$). By the maximum principle $0 \leq v_{j} \leq u$ and by standard parabolic estimates, we may assume that the sequence v_{j} converges locally uniformly in $\Omega \times(0, T]$ to a function $v \leq u$. Also, if $\phi \in C^{1,1 ; 1}\left(\overline{Q_{T}^{\Omega}}\right)$ vanishes on $\partial_{l} Q_{T}^{\Omega}$ and satisfies $\phi(x, T)=0$, we have
$-\int_{t_{j}}^{T} \int_{\Omega} v_{j}\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\int_{t_{j}}^{T} \int_{\Omega} V v_{j} \phi d x d t+\int_{\Omega} \phi\left(x, T-t_{j}\right) v_{j}\left(x, T-t_{j}\right) d x=\int_{\Omega} \phi(x, 0) u\left(x, t_{j}\right) d x$,
where in the above equality we have taken $\phi\left(., .-t_{j}\right)$ as test function. Since $\phi(., T-$ $\left.t_{j}\right) \rightarrow 0$ uniformly and $u\left(., t_{j}\right) \rightarrow \mu$ in the weak sense of measures, it follows by the dominated convergence theorem that

$$
-\iint_{Q_{T}^{\Omega}} v\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\iint_{Q_{T}^{\Omega}} V v \phi d x d t=\int_{\Omega} \phi(y, 0) d \mu(y),
$$

thus v is a weak solution of problem (3.10). Uniqueness follows as in Lemma 2.4. Finally, for $\delta>0$, we consider the solution w_{δ} of (3.7). Then it is expressed by (3.5). Furthermore

$$
-\iint_{Q_{T}^{\Omega}} w_{\delta}\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\iint_{Q_{T}^{\Omega}} V_{\delta} w_{\delta} \phi d x d t=\int_{\Omega} \phi(x, 0) d \mu(x)
$$

The sequence w_{δ} is decreasing, with limit w. Since $w_{\delta} \geq v$, then $w \geq v$. If we assume $\phi \geq 0$, it follows from dominated convergence and Fatou's lemma that

$$
-\iint_{Q_{T}^{\Omega}} w\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\iint_{Q_{T}^{\Omega}} V w \phi d x d t \leq \int_{\Omega} \phi(x, 0) d \mu(x)
$$

Thus w is a subsolution for problem (3.10) for which we have comparison when existence. Finally $w=v$ and (3.11) holds.

Lemma 3.15. Assume $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ is a good measure and let u be a positive weak solution of problem (2.1). Then for any $(x, t) \in \mathbb{R}^{n} \times(0, T]$, we have

$$
\lim _{R \rightarrow \infty} u_{R}=u
$$

where $\left\{u_{R}\right\}$ is the increasing sequence of the weak solutions of the problem (3.10) with $\Omega=B_{R}$. Moreover, the convergence is uniform in any compact subset of $\mathbb{R}^{n} \times(0, T]$ and we have the representation formula

$$
u(x, t)=\int_{\mathbb{R}^{n}} H_{V}(x, y, t) d \mu(y)
$$

Proof. By the maximum principle, $u_{R} \leq u_{R^{\prime}} \leq u$ for any $0<R \leq R^{\prime}$. Thus $u_{R} \rightarrow w \leq u$. Also by standard parabolic estimates, this convergence is locally uniformly. Now by dominated convergence theorem, it follows that w is a weak
solution of problem (2.1) with initial data μ. Now we set $\widetilde{w}=u-w \geq 0$. Since \widetilde{w} satisfies in the weak sense

$$
\begin{aligned}
\widetilde{w}_{t}-\Delta \widetilde{w}+V \widetilde{w}=0 & \text { in } Q_{T} \\
\widetilde{w}(x, t) \geq 0 & \text { in } Q_{T} \\
\widetilde{w}(x, 0)=0 & \text { in } \mathbb{R}^{n}
\end{aligned}
$$

and $V \geq 0$, it clearly satisfies

$$
\begin{aligned}
\widetilde{w}_{t}-\Delta \widetilde{w} \leq 0 & \text { in } Q_{T} \\
\widetilde{w}(x, t) \geq 0 & \text { in } Q_{T} \\
\widetilde{w}(x, 0)=0 & \text { in } \mathbb{R}^{n}
\end{aligned}
$$

which implies $\widetilde{w}=0$. By the previous lemme u_{R} admits the representation

$$
u^{R}(x, t)=\int_{B_{R}} H_{V}^{B_{R}}(x, y, t) d \mu(y)
$$

Since $\left\{H_{V}^{B_{R}}\right\}$ is an increasing sequence and $\lim _{R \rightarrow \infty} H_{V}^{B_{R}}=H_{V}$, we have using again Fatou's lemma as in the proof of Lemma 3.15

$$
u(x, t)=\lim _{R \rightarrow \infty} u^{R}(x, t)=\lim _{R \rightarrow \infty} \int_{B_{R}} H_{V}^{B_{R}}(x, y, t) d \mu(y)=\int_{\mathbb{R}^{n}} H_{V}(x, y, t) d \mu(y)
$$

LEmma 3.16. Harnack inequality Let $C_{1}>0$ and $V(x, t)$ be a potential satisfying (1.16) If u is a positive solution of (1.17), then the Harnack inequality is valid:
$u(y, s) \leq u(x, t) \exp \left(C\left(n, C_{1}\right)\left(\frac{|x-y|^{2}}{t-s}+\frac{t}{s}+1\right)\right), \quad \forall(y, s),(x, t) \in Q_{T}, s<t$.
Proof. We extend V for $t \geq T$ by the value $C_{1} t^{-1}$. We consider the linear parabolic problem

$$
\begin{equation*}
\partial_{t} u-\Delta u+V u=0, \quad \text { in } \quad \mathbb{R}^{n} \times[1, \infty) \tag{3.13}
\end{equation*}
$$

It is well known that, under the assumption (1.16), every positive solution $u(x, t)$ of (3.13) satisfies the Harnack inequality

$$
u(y, s) \leq u(x, t) \exp \left(C\left(n, C_{1}\right)\left(\frac{|x-y|^{2}}{t-s}+\frac{t}{s}+1\right)\right), \quad \forall(x, t) \in \mathbb{R}^{n} \times[1, \infty)
$$

Set $\tilde{u}(x, t)=u\left(\frac{t}{\lambda^{2}} \frac{x}{\lambda}\right)$. Then \tilde{u} satisfies

$$
\mathrm{u}_{t}-\Delta \mathrm{u}+\frac{1}{\lambda^{2}} V\left(\frac{t}{\lambda^{2}} \frac{x}{\lambda}\right) \tilde{u}=0, \quad \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

We note here that $\frac{1}{\lambda^{2}} V\left(\frac{t}{\lambda^{2}} \frac{x}{\lambda}\right) \leq C_{1}, \forall t \geq \frac{1}{\lambda^{2}}$, thus \tilde{u} satisfies the Harnack inequality
$\widetilde{u}(y, s) \leq \widetilde{u}(x, t) \exp \left(C\left(n, C_{1}\right)\left(\frac{|x-y|^{2}}{t-s}+\frac{t}{s}+1\right)\right), \quad \forall(x, t) \in \mathbb{R}^{n} \times\left[\frac{1}{\lambda^{2}}, \infty\right)$.
By the last inequality and the definition of \tilde{u} we derive the desired result.
Next, we set

$$
\begin{equation*}
\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right):=\left\{y \in \mathbb{R}^{n}: H_{V}(x, y, t)=0\right\} \tag{3.14}
\end{equation*}
$$

If $H_{V}(x, y, t)=0$ for some $(x, t) \in Q_{T}$, then $H_{V}\left(x^{\prime}, y, t^{\prime}\right)=0$ for any $\left(x^{\prime}, t^{\prime}\right) \in Q_{T}$, $t^{\prime}<t$ by Harnack inequality principle. We prove the Representation formula.

Theorem 3.17. Let u be a positive solution of (1.17). Then there exists a measure $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ such that

$$
u(x, t)=\int_{\mathbb{R}^{n}} H_{V}(x, y, t) d \mu(y)
$$

and μ is concentrated on $\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}$.
Proof. By Lemma 3.15 we have

$$
u(x, t)=\int_{\mathbb{R}^{n}} H_{V}(x, y, t-s) u(y, s) d y \text { for any } s<t \leq T
$$

We assume that $s \leq \frac{T}{2}$. By Harnack inequality on $x \mapsto H_{V}\left(x, y, \frac{T}{2}\right)$

$$
\int_{\mathbb{R}^{n}} H_{V}\left(0, y, \frac{T}{2}\right) u(y, s) d y \leq c(n) \int_{\mathbb{R}^{n}} H_{V}(0, y, T-s,) u(y, s) d y=c(n) u(0, T)
$$

For any Borel set E, we define the measure ρ_{s} by

$$
\rho_{s}(E):=\int_{E} H_{V}\left(0, y, \frac{T}{2}\right) u(y, s) d y \leq \int_{\mathbb{R}^{n}} H_{V}\left(0, y, \frac{T}{2}\right) u(y, s) d y \leq c(n) u(T, 0)
$$

Thus there exists a decreasing sequence $\left\{s_{j}\right\}_{j=1}^{\infty}$ which converges to origin, such that the measure $\rho_{s_{j}}$ converges in the weak* topology to a positive Radon measure ρ. Also we have the estimate $\rho\left(\mathbb{R}^{n}\right) \leq C(n) u(0, T)$. Now choose $(x, t) \in Q_{T}$ and j_{0} large enough such that $t>s_{j_{0}}$. Let $\varepsilon>0$, we set for any $j \geq j_{0}$,

$$
W_{j}(y)=\frac{H_{V}\left(x, y, t-s_{j}\right)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon}
$$

For any $R>0$ and $|y|>R$ we have

$$
W_{j}(y) \leq \frac{1}{\varepsilon} H_{V}\left(x, y, t-s_{j}\right) \leq \frac{1}{\varepsilon} H\left(x-y, t-s_{j}\right)<\frac{1}{\varepsilon} C\left(x, R, t-s_{j}\right),
$$

where $\lim _{R \rightarrow \infty} C\left(x, R, t-s_{j}\right)=0$. We have also

$$
\int_{|y| \geq R} W_{j}(y) d \rho_{j} \leq \frac{1}{\varepsilon} C\left(x, R, t-s_{j}\right) c(n) u(T, 0)
$$

For any $|y|<R$, we have by standard parabolic estimates that $W_{j}(y) \rightarrow \frac{H_{V}(x, y, t)}{H_{V}\left(\frac{T}{2}, 0, y\right)+\varepsilon}$ when $j \rightarrow \infty$, uniformly with respect to y. Thus by the above estimates it follows

$$
\int_{\mathbb{R}^{n}} W_{j}(y) d \rho_{j} \rightarrow \int_{\mathbb{R}^{n}} \frac{H_{V}(x, y, t)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} d \rho
$$

For sufficiently large j we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \frac{H_{V}\left(x, y, t-s_{j}\right)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} d \rho_{s_{j}} & =\int_{\mathbb{R}^{n}} \frac{H_{V}\left(x, y, t-s_{j}\right)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon}\left(H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon-\varepsilon\right) u\left(y, s_{j}\right) d y \\
& =u(x, t)-\varepsilon \int_{\mathbb{R}^{n}} \frac{H_{V}\left(x, y, t-s_{j},\right)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} u\left(y, s_{j}\right) d y
\end{aligned}
$$

Note that this is a consequence of the identity

$$
\int_{\mathbb{R}^{n}} H_{V}\left(x, y, t-s_{j}\right) u\left(y, s_{j}\right) d y=u(x, t)
$$

Thus as before, we define $d \widetilde{\rho}_{j}=H_{V}\left(x, y, t-s_{j}\right) u\left(y, s_{j}\right) d y$ and thus there exists a subsequence, say $\left\{\widetilde{\rho}_{j}\right\}$ converges in the weak* topology to a positive Radon measure $\widetilde{\rho}$. Thus we have

$$
\begin{aligned}
\varepsilon \int_{\mathbb{R}^{n}} \frac{H_{V}\left(x, y, t-s_{j}\right)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} u\left(y, s_{j}\right) d y & =\varepsilon \int_{\mathbb{R}^{n}} \chi_{\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}} \frac{H_{V}\left(x, y, t-s_{j}\right)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} u\left(s_{j}, y\right) d y \\
& \rightarrow \varepsilon \int_{\mathbb{R}^{n}} \chi_{\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}} \frac{1}{H_{V}\left(\frac{T}{2}, 0, y\right)+\varepsilon} d \widetilde{\rho} .
\end{aligned}
$$

Combining the above relations, we derive

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{H_{V}(x, y, t)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} d \rho=u(x, t)-\varepsilon \int_{\mathbb{R}^{n}} \chi_{\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}} \frac{1}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} d \widetilde{\rho} \tag{3.15}
\end{equation*}
$$

Now, we have

$$
\lim _{\varepsilon \rightarrow 0} \chi_{\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}} \frac{\varepsilon}{H_{V}\left(\frac{T}{2}, 0, y\right)+\varepsilon}=0
$$

and by Harnack inequality on the function $x \mapsto H_{V}(x, y, t)$

$$
\frac{H_{V}(x, y, t)}{H_{V}\left(0, y, \frac{T}{2}\right)+\varepsilon} \leq C(t, T)
$$

thus by dominated convergence theorem, we can let ε tend to 0 in (3.15) and obtain

$$
\int_{\mathbb{R}^{n}} \frac{H_{V}(x, y, t)}{H_{V}\left(0, y, \frac{T}{2}\right)} d \rho=u(x, t)
$$

And the result follows if we set

$$
d \mu=\chi_{\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}} \frac{1}{H_{V}\left(0, y, \frac{T}{2}\right)} d \rho
$$

In the next result we give a construction of H_{V}, with some estimates and a different proof of the existence of an initial measure for positive solutions of (1.16).

Theorem 3.18. Assume V satisfies (1.16) and u is a positive solution of (1.17) then there exists a positive Radon measure μ in \mathbb{R}^{n} such that

$$
\begin{equation*}
u(x, t)=\int_{\mathbb{R}^{n}} \epsilon^{\psi(x, t)} \Gamma(x, y, t, 0) d \mu(y) \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(x, t)=\int_{t}^{T} \int_{\mathbb{R}^{n}} \frac{e^{-\frac{|x-y|^{2}}{4(s-t)}}}{4 \pi(t-s)} V(y, s) d y d s \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1} \frac{e^{-\gamma_{1} \frac{|x-y|^{2}}{s-t}}}{(t-s)^{\frac{n}{2}}} \leq \Gamma(x, y, t, s) \leq c_{2} \frac{e^{-\gamma_{2} \frac{|x-y|^{2}}{s-t}}}{(t-s)^{\frac{n}{2}}} \tag{3.18}
\end{equation*}
$$

for some positive constants c_{i} and $\gamma_{i}, i=1,2$.
Proof. Assuming that u is a positive solution of (1.17), we set $u(x, t)=$ $e^{\psi(x, t)} v(x, t)$. Then

$$
\begin{equation*}
\partial_{t} v-\Delta v-2 \nabla \psi \cdot \nabla v-|\nabla \psi|^{2} v+\left(\partial_{t} \psi-\Delta \psi+V\right) v=0 \tag{3.19}
\end{equation*}
$$

We choose ψ as the solution of problem

$$
\begin{align*}
-\partial_{t} \psi-\Delta \psi+V \psi=0 & \text { in } Q_{T} \\
\psi(., T)=0 & \text { in } \mathbb{R}^{n} . \tag{3.20}
\end{align*}
$$

Then ψ is expressed by (3.17). Furthermore, by standard computations,

$$
\begin{array}{ll}
\text { (i) } & 0 \leq \psi(x, t) \leq c \ln \frac{T}{t} \\
\text { (ii) } & |\nabla \psi(x, t)| \leq c_{1}(T)+c_{2}(T) \ln \frac{T}{t} \tag{3.21}
\end{array}
$$

The function v satisfies

$$
\begin{equation*}
\partial_{t} v-\Delta v-2 \nabla \psi \cdot \nabla v-|\nabla \psi|^{2} v=0 \tag{3.22}
\end{equation*}
$$

Then, by (3.21),
(i) $\quad 0 \leq \int_{\mathbb{R}^{n}} \sup \left\{|\psi(x, s)|^{q}: x \in \mathbb{R}^{n}\right\} d s \leq M_{1}$
(ii) $\quad 0 \leq \int_{\mathbb{R}^{n}} \sup \left\{|\nabla \psi(x, s)|^{q}: x \in \mathbb{R}^{n}\right\} d s \leq M_{2}$
for any $1 \leq q<\infty$ for some $M_{i} \in \mathbb{R}_{+}$. This is the condition H in [4] with $R_{0}=\infty$ and $p=\infty$. Therefore there exists a kernel function $\Gamma \in C\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times(0, T) \times(0, T)\right)$ which satisfies (3.18) and there exists also a positive Radon measure μ in \mathbb{R}^{n} such that

$$
\begin{equation*}
v(x, t)=\int_{\mathbb{R}^{n}} \Gamma(x, y, t, 0) d \mu(y) \tag{3.24}
\end{equation*}
$$

Finally u verifies

$$
\begin{equation*}
u(x, t)=e^{\psi(x, t)} \int_{\mathbb{R}^{n}} \Gamma(x, y, t, 0) d \mu(y) \tag{3.25}
\end{equation*}
$$

We recall that $\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right):=\left\{y \in \mathbb{R}^{n}: H_{V}(x, y, t)=0\right\}$.
Theorem 3.19. Let δ_{ξ} be the Dirac measure concentrated at y and let V satisfies (1.16). Then

$$
H_{V}(x, \xi, t)=\int_{\mathbb{R}^{n}} e^{\psi(x, t)} \Gamma(x, y, t) d \mu_{\xi}(y)
$$

where μ_{ξ} is a positive Radon measure such that

$$
\delta_{\xi} \geq \mu_{\xi}
$$

and ψ, Γ are the functions in (3.17) and (3.18) respectively.
Furthermore, if

$$
\limsup _{t \rightarrow 0} \psi(\xi, t)=\limsup _{t \rightarrow 0} \int_{t}^{T} \int_{\mathbb{R}^{n}}\left(\frac{1}{4 \pi(s-t)}\right)^{\frac{n}{2}} e^{-\frac{|\xi-y|^{2}}{4(s-t)}} V(y, s) d y d s=\infty
$$

then

$$
\xi \in \operatorname{Sing}_{V} \text {, i.e. } H_{V}(x, \xi, t)=0, \forall(x, t) \in \mathbb{R}^{n} \times(0, \infty)
$$

proof. First we note that $H_{V_{k}}(x, \xi, t)$ is the solution of problem (1.24) with δ_{ξ} as initial data. Since $H_{V_{k}}(x, \xi, t) \downarrow H_{V}(x, \xi, t)$, we have by maximum principle , $H(x, \xi, t) \geq H_{V}(x, \xi, t)$. Now by Theorem 3.18, there exists a positive Radon measure μ_{ξ} in \mathbb{R}^{n} such that

$$
\begin{equation*}
H_{V}(x,, \xi, t)=\int_{\mathbb{R}^{n}} \epsilon^{\psi(x, t)} \Gamma(x, y, t, 0) d \mu_{\xi}(y) \tag{3.26}
\end{equation*}
$$

Let $\phi \in C_{0}\left(\mathbb{R}^{n}\right)$ then we have by the properties of $\Gamma(x, \xi, t)$ (see [4]) and (3.26)

$$
\lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}} H_{V}(x, \xi, t) \phi(x) d x \geq \lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Gamma(x, y, t) \phi(x) d x d \mu_{\xi}(y)=\int_{\mathbb{R}^{n}} \phi(y) \mu_{\xi}(y),
$$

That is

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \phi(x) d \delta_{\xi}(x) \geq \int_{\mathbb{R}^{n}} \phi(x) d \mu_{\xi}(x) \Rightarrow \delta_{\xi} \geq \mu_{\xi} \tag{3.27}
\end{equation*}
$$

since ϕ is an abstract function in space $C_{0}\left(\mathbb{R}^{n}\right)$.
Also we have that there exist positive constants C_{1}, C_{2} such that

$$
\begin{equation*}
\Gamma(x, y, t) \geq C_{1} H\left(x, y, C_{2} t\right) \tag{3.28}
\end{equation*}
$$

Also we have

$$
\begin{aligned}
H(\xi, \xi, t) \geq H_{V}(\xi, \xi, t) & =\int_{\mathbb{R}^{n}} H_{V}(\xi, y, t) d \mu_{\xi}(y)=\int_{\mathbb{R}^{n}} e^{\psi(\xi, t)} \Gamma(\xi, y, t) d \mu_{\xi}(y) \\
\qquad(\text { by }(3.28)) & \geq C_{1} \int_{B\left(\xi, \sqrt{C_{2} t}\right)} e^{\psi(t, \xi)} H\left(\xi, y, C_{2} t\right) d \mu_{\xi}(y) \\
\text { (By Harnack inequality) } & \geq C\left(T, n, C_{1}, C_{2}\right) \int_{B\left(\xi, \sqrt{C_{2} t}\right)} e^{\psi(\xi, t)} H\left(\xi, \xi, \frac{C_{2} t}{2}\right) d \mu_{\xi}(y) \\
& =C\left(T, n, C_{1}, C_{2}\right) e^{\psi(\xi, t)} H\left(\xi, \xi, \frac{C_{2} t}{2}\right) \mu_{\xi}\left(B\left(\xi, \sqrt{C_{2} t}\right)\right)
\end{aligned}
$$

Thus by the last inequality and the fact that

$$
\frac{H(\xi, \xi, t)}{H\left(\xi, \xi, \frac{C_{2} t}{2}\right)}=C\left(C_{2}, n\right)>0
$$

we have

$$
C\left(T, n, C_{1}, C_{2}\right) \geq e^{\psi(t, \xi)} \mu_{\xi}\left(B\left(\xi, \sqrt{C_{2} t}\right)\right)
$$

But $\limsup _{t \rightarrow 0} \psi(\xi, t)=\infty$ which implies

$$
\lim _{t \rightarrow 0} \mu_{\xi}\left(B\left(\xi, \sqrt{C_{2} t}\right)=\mu_{\xi}(\{\xi\})=0\right.
$$

Thus by (3.27) we have $\mu_{\xi} \equiv 0$, i.e. $H_{V}(x, \xi, t)=0, \forall(x, t) \in \mathbb{R}^{n} \times(0, \infty)$.
3.4. Reduced measures. In this section we assume that V is nonnegative, but not necessarily satisfies (1.16), therefore we can construct $H_{V}[\mu]$ for $\mu \in$ $\mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$. Furthermore, if μ is nonnegative we can consider the solution u_{k} of the problem

$$
\begin{align*}
\partial_{t} u-\Delta u+V^{k} u=0, & \text { in } Q_{T} \\
u(., 0)=\mu & \text { in } \mathbb{R}^{n}, \tag{3.29}
\end{align*}
$$

where $V^{k}=\min \{V, k\}$. Then there holds

$$
u_{k}(x, t)=\int_{\mathbb{R}^{n}} H_{V^{k}}(t, x, y) d \mu(y)=\mathbb{H}_{V^{k}}[\mu](x, t),
$$

and

$$
u_{k}+\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V^{k} u_{k} d y d s=\mathbb{H}[\mu]
$$

Since $k \mapsto H_{V^{k}}$ is decreasing and converges to H_{V}, we derive

$$
\lim _{k \rightarrow \infty} u_{k}=u=\int_{\mathbb{R}^{n}} H_{V}(t, x, y) d \mu(y)
$$

By Fatou's lemma

$$
\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V u d y d s \leq \liminf _{k \rightarrow \infty} \int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V^{k} u_{k} d y d s
$$

It follows

$$
u(x, t)+\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V u d y d s \leq \int_{\mathbb{R}^{n}} H_{V}(t, x, y) d \mu(y), \quad \forall(x, t) \in Q_{T}
$$

Now since $V u \in L_{l o c}^{1}\left(\bar{Q}_{T}\right)$ and

$$
\partial_{t} u-\Delta u+V u=0, \quad \text { in } \quad Q_{T}
$$

the function

$$
u(x, t)+\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V u d y d s
$$

is nonnegative and satisfies the heat equation in Q_{T}. Therefore it admits an initial trace $\mu^{*} \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ and actually $\mu^{*} \in \mathfrak{M}_{T}\left(\mathbb{R}^{n}\right)$. Furthermore, we have

$$
u(x, t)+\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V u d y d s=\int_{\mathbb{R}^{n}} H(x-y, t) d \mu^{*}(y), \forall(x, t) \in Q_{T}
$$

or equivalently, u is a positive weak solution of the problem

$$
\begin{aligned}
\partial_{t} u-\Delta u+V u & =0 & & \text { in } Q_{T} \\
u(., 0) & =\mu^{*} & & \text { in } \mathbb{R}^{n} .
\end{aligned}
$$

Note that $\mu^{*} \leq \mu$ and the mapping $\mu \mapsto \mu^{*}$ is nondecreasing.
Definition 3.20. The measure μ^{*} is the reduced measure associated to μ
The proofs of the next two Propositions are similar to the ones of $[\mathbf{1 9}$, Section 5].

Proposition 3.21. There holds $\mathbb{H}_{V}[\mu]=\mathbb{H}_{V}\left[\mu^{*}\right]$. Furthermore the reduced measure μ^{*} is the largest measure for which the following problem

$$
\begin{array}{rc}
\partial_{t} v-\Delta v+V v=0 & \text { in } Q_{T} \\
\lambda \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right), \lambda \leq \mu & \tag{3.30}\\
v(., 0)=\lambda & \text { in } \mathbb{R}^{n}
\end{array}
$$

admits a solution.
Proposition 3.22. Let W_{k} be an increasing sequence of nonnegative bounded measurable functions converging to V a.e. in Q_{T}. Then the solution u_{k} of

$$
\begin{aligned}
\partial_{t} v-\Delta v+W_{k} v & =0 & & \text { in } Q_{T} \\
v(., 0) & =\mu & & \text { in } \mathbb{R}^{n},
\end{aligned}
$$

converges to $u_{\mu^{*}}$.
We recall that $\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right):=\left\{y \in \mathbb{R}^{n}: H_{V}(x, y, t)=0\right\}$.

Proposition 3.23. Let μ be a nonnegative measure in $\mathcal{M}_{\mathcal{T}}\left(\mathbb{R}^{n}\right)$. Then
(i) $\left(\mu-\mu^{*}\right)\left(\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}\right)=0$
(ii) If $\mu\left(\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)^{c}\right)=0$, then $\mu^{*}=0$.
(iii) There always holds $\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)=Z_{V}$.
proof. The proofs of (i), (ii) and the fact that $\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right) \subset Z_{V}$ are similar as in $[19$, Section 5], and we omit them.

The proof of $Z_{V} \subset \mathcal{S i n g} g_{V}\left(\mathbb{R}^{n}\right)$ is a immediately consequence of Theorem 3.19. Indeed, if $\xi \in Z_{V}$ then

$$
\limsup _{t \rightarrow 0} \int_{t}^{T} \int_{\mathbb{R}^{n}}\left(\frac{1}{4 \pi(s-t)}\right)^{\frac{n}{2}} e^{-\frac{|\xi-y|^{2}}{4(s-t)}} V(y, s) d y d s=\infty
$$

thus $\xi \in \operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)$.

4. Initial trace

4.1. The direct method. The initial trace that we developed in this section is an adaptation to the parabolic case of the notion of boundary trace for elliptic equations (see [14], [15], [19]). If $G \subset \overline{Q_{T}}$ is a relatively open set, we denote

$$
W(G)=\bigcap_{1 \leq p<\infty} W_{p}^{2,1}(G) \quad \text { and } W_{l o c}(G)=\bigcap_{1 \leq p<\infty} W_{p l o c}^{2,1}(G)
$$

Since $V \in L_{l o c}^{\infty}\left(Q_{T}\right)$, any solution of (1.17) belongs to $W_{l o c}\left(Q_{T}\right)$.
Proposition 4.1. Let $u \in W_{l o c}\left(Q_{T}\right)$ be a positive solution (1.17). Assume that, for some $x \in \mathbb{R}^{n}$, there exists an open bounded neighborhood U of x such that

$$
\begin{equation*}
\iint_{Q_{T}^{U}} u(y, t) V(y, t) d x d t<\infty \tag{4.1}
\end{equation*}
$$

Then $u \in L^{1}(U \times(0, T))$ and there exists a unique positive Radon measure μ in U such that

$$
\lim _{t \rightarrow 0} \int_{U} u(y, t) \phi(x) d x=\int_{U} \phi(x) d \mu, \quad \forall \phi \in C_{0}^{\infty}(U)
$$

Proof. Since $V u \in L^{1}(U \times(0, T))$ the following problem has a weak solution v (see [14]).

$$
\begin{aligned}
& \partial_{t} v-\Delta v=V u, \quad \text { in } \quad U \times(0, T] \\
& v(x, t)=0 \quad \\
& v(x, 0)=0 \quad \text { on } \partial U \times(0, T] \\
& \text { in } U .
\end{aligned}
$$

Thus the function $w=u+v$ satisfies the heat equation. Thus there exists a unique Radon measure μ such that

$$
\lim _{t \rightarrow 0} \int_{U} w(y, t) \phi(x) d x=\int_{U} \phi(x) d \mu, \quad \forall \phi \in C_{0}^{\infty}(U)
$$

And the result follows since the initial data of v is zero.
We set
$\mathcal{R}(u)=\left\{y \in \mathbb{R}^{n}: \exists\right.$ bounded neighborhood U of $\left.y, \iint_{Q_{T}^{U}} u(y, t) V(y, t) d x d t<\infty\right\}$.

Then $\mathcal{R}(u)$ is open and there exists a unique positive Radon measure μ on $\mathcal{R}(u)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\mathcal{R}} u(y, t) \phi(x) d x=\int_{\mathcal{R}} \phi(x) d \mu, \quad \forall \phi \in C_{0}^{\infty}(\mathcal{R}) \tag{4.3}
\end{equation*}
$$

Proposition 4.2. Let $u \in W_{l o c}\left(\mathbb{R}^{n} \times(0, T]\right)$ be a positive solution of (1.17). Assume that, for some $x \in \mathbb{R}^{n}$, there holds

$$
\begin{equation*}
\iint_{Q_{T}^{U}} u(y, t) V(y, t) d y d t=\infty \tag{4.4}
\end{equation*}
$$

for any bounded open neighborhood U of x. Then

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \int_{U} u(y, t) d y=\infty \tag{4.5}
\end{equation*}
$$

Proof. We will prove it by contradiction. We assume that there exists an open neighborhood of x such that

$$
\int_{U} u(y, t) d y \leq M<\infty \quad \forall t \in(0, T)
$$

Then $\|u\|_{L^{1}\left(Q_{T}^{U}\right)} \leq M T$. Let $B_{r}(x) \subset \subset U$ for some $r>0$, and $\zeta \in C_{0}^{\infty}\left(B_{r}(x)\right)$, such that $\zeta=1$ in $B_{\frac{r}{2}}(x), \zeta=0$ in $B_{r}^{c}(x)$ and $0 \leq \zeta \leq 1$. Then since u is a positive solution we have
$\int_{U} \partial_{t} u \zeta d x-\int_{U} u \Delta \zeta d x+\int_{U} V u \zeta d x=0 \Rightarrow \int_{B_{\frac{r}{2}}} V u d x \leq \int_{U} \partial_{t} u \zeta d x-\int_{U} u \Delta \zeta d x \Rightarrow$
$\int_{U} \partial_{t} u \zeta d x-\int_{U} u \Delta \zeta d x+\int_{U} V u \zeta d x=0 \Rightarrow \int_{B_{\frac{r}{2}}} V u d x \leq-\int_{U} \partial_{t} u d x+M\|\Delta \zeta\|_{L^{\infty}}$.
Integrating the above inequality on (s, T), we get

$$
\begin{equation*}
\int_{s}^{T} \int_{B_{\frac{r}{2}}} V u d x d r \leq-\int_{U} u(x, T) d x+\int_{U} u(x, s) d x+\|u\|_{L^{1}\left(Q_{T}^{U}\right)}\|\Delta \zeta\|_{L^{\infty}} \tag{4.6}
\end{equation*}
$$

Letting $s \rightarrow 0$, we reach a contradiction.
Remark. It is not clear wether there holds

$$
\begin{equation*}
\liminf _{t \rightarrow 0} \int_{U} u(y, t) d y=\infty \tag{4.7}
\end{equation*}
$$

However, it follows from (4.6) that if $u \in L^{1}\left(Q_{T}^{U}\right)$, the above equality holds.
Definition 4.3. If u is a positive solution of (1.17), we set $\mathcal{S}(u)=\mathbb{R}^{n} \backslash \mathcal{R}(u)$. The couple $(\mathcal{S}(u), \mu)$ is called the initial trace of u, denoted by $\operatorname{tr}_{\{t=0\}}(u)$. The sets $\mathcal{R}(u)$ and $\mathcal{S}(u)$ are respectively the regular and the singular sets of $\operatorname{tr}_{\{t=0\}}(u)$ and $\mu \in \mathfrak{M}_{+}(\mathcal{R}(u))$ is its regular part.
Example Take $V(x, t)=c t^{-1}, c>0$. If u satisfies

$$
\begin{equation*}
\partial_{t} u-\Delta u+\frac{c}{t} u=0 \tag{4.8}
\end{equation*}
$$

then $v(x, t)=t^{c} u(x, t)$ satisfies the heat equation. Thus, if $u \geq 0$, there exists $\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
u(x, t)=t^{-c} \mathbb{H}[\mu](x, t) \tag{4.9}
\end{equation*}
$$

This is a representation formula. Notice that $V u(x, t)=c t^{-c-1} \mathbb{H}[\mu](x, t)$, therefore the regular set of $\operatorname{tr}_{\{t=0\}}(u)$ may be empty.

Proposition 4.4. Assume V satisfies (1.16) and let $u \in W_{l o c}\left(Q_{T}\right)$ be a positive solution of (1.17) with initial trace $\left(\mathcal{S}(u), \mu_{u}\right)$. Then $u \geq u_{\mu_{u}}$.

Proof. We assume $\mathcal{S}(u) \neq \mathbb{R}^{n}$ otherwise the result is proved. Let G and E be open bounded domains such that $G \subset \subset E \subset \subset \mathcal{R}(u)$. Let $0<\delta=\inf \{|x-y|$: $\left.x \in G, y \in E^{c}\right\}$. Choose $R>0$ such that $E \subset \subset B_{R}$. Let $\left\{t_{j}\right\}_{j=1}^{\infty}$ be a decreasing sequence converging to 0 . We denote by u_{j} the weak solution of the problem

$$
\begin{aligned}
\partial_{t} v-\Delta v+V v & =0 & & \text { in } B_{R} \times\left(t_{j}, T\right] \\
v(x, t) & =0 & & \text { on } \partial B_{R} \times\left(t_{j}, T\right] \\
v\left(., t_{j}\right) & =\chi_{G} u\left(., t_{j}\right) & & \text { in } B_{R} \times\left\{t_{j}\right\}
\end{aligned}
$$

where χ is the characteristic function on G. Let v_{j}^{R}, be the solution

$$
\begin{aligned}
\partial_{t} v-\Delta v & =0 & & \text { in } \mathbb{R}^{n} \times\left(t_{j}, \infty\right] \\
v\left(., t_{j}\right) & =\chi_{G} u\left(., t_{j}\right) & & \text { in } \mathbb{R}^{n} \times\left\{t_{j}\right\} .
\end{aligned}
$$

Then by maximum principle we have $u_{j}^{R} \leq u$ and $u_{j}^{R} \leq v_{j}$ in $B_{R} \times\left(t_{j}, T\right]$, for any $j \in \mathbb{N}$. By standard parabolic estimates, we may assume that the sequence u_{j}^{R} converges locally uniformly in $Q_{T}^{B_{R}}$ to a function $u^{R} \leq u$. Moreover, since $\chi_{G} \mu_{u}\left(., t_{j}\right) \rightharpoonup \chi_{G} \mu_{u}$ in the weak* topology, we derive from the representation formula that $v_{j} \rightarrow \mathbb{H}\left[\chi_{G} \mu_{u}\right]$. Furthermore $u^{R} \leq v$, which implies $\chi_{\left(t_{j}, T\right)} u_{j}^{R} \rightarrow u^{R}$ in $L^{1}\left(Q_{T}^{B_{R}}\right)$. There also holds

$$
\int_{t_{j}}^{T} \int_{B_{R}} u_{j}^{R} V d x d t=\int_{t_{j}}^{T} \int_{E} u_{j}^{R} V d x d t+\int_{t_{j}}^{T} \int_{B_{R} \backslash E} u_{j}^{R} V d x d t
$$

and, by the choice of E and dominated convergence theorem,
$\int_{t_{j}}^{T} \int_{E} u_{j}^{R} V d x d t \leq \int_{0}^{T} \int_{E} u V d x d t<\infty \Rightarrow \lim _{j \rightarrow \infty} \int_{t_{j}}^{T} \int_{E} u_{j}^{R} V d x d t=\int_{0}^{T} \int_{E} u^{R} V d x d t$.
Furthermore, for any $x \in B_{R} \backslash E$,
$v_{j}(x, t)=\left(\frac{1}{4 \pi\left(t-t_{j}\right)}\right)^{\frac{n}{2}} \int_{R^{n}} e^{-\frac{|x-y|^{2}}{4\left(t-t_{j}\right)}} \chi_{G} u\left(y, t_{j}\right) d y \leq\left(\frac{1}{4 \pi\left(t-t_{j}\right)}\right)^{\frac{n}{2}} e^{-\frac{\delta^{2}}{4\left(t-t_{j}\right)}} \int_{G} u\left(y, t_{j}\right) d y$.
Next, since $V(x, t) \leq C t^{-1}$ and $u_{j}^{R} \leq v_{j}$, we obtain

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{t_{j}}^{T} \int_{B_{R} \backslash E} u_{j}^{R} V d x d t=\int_{0}^{T} \int_{B_{R} \backslash E} u^{R} V d x d t \tag{4.10}
\end{equation*}
$$

by using the previous estimate and the fact that $\chi_{G} \mu_{u}\left(x, t_{j}\right) \rightharpoonup \chi_{G} \mu_{u}$ in the weak* topology. It follows $\chi_{\left(t_{j}, T\right)} V u_{j}^{R} \rightarrow V u^{R}$ in $L^{1}\left(Q_{T}^{B_{R}}\right)$. There holds also $u_{G}^{R} \leq u$; by the maximum principle, the mapping $R \mapsto u_{G}^{R}$ is increasing and bounded from above by u. In view of Lemma 3.15,

$$
\lim _{R \rightarrow \infty} u_{G}^{R}=u_{G} \leq u
$$

and u_{G} is a positive weak solution of

$$
\begin{aligned}
\partial_{t} v-\Delta v+V v & =0 & & \text { in } Q_{T} \\
v(., 0) & =\chi_{G} \mu_{u} & & \text { in } \mathbb{R}^{n} .
\end{aligned}
$$

Consider an increasing sequence $\left\{G_{i}\right\}_{i=1}^{\infty}$ of bounded open subsets, $G_{i} \subset \subset \mathcal{R}(u)$, with the property that $\bigcup_{i=1}^{\infty} G_{i}=\mathcal{R}(u)$. In view of Lemma 3.15 the sequence $\left\{u_{i}=u_{G_{i}}\right\}_{i=1}^{\infty}$ is increasing and converges to $\widetilde{u} \leq u$. Also we have

$$
u_{i}(x, t)+\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V u_{i} d y d s=\int_{\mathbb{R}^{n}} H(x-y, t) d \mu_{i}, \forall(x, t) \in Q_{T}
$$

where $\mu_{i}=\chi_{G_{i}} \mu$. Now since $\mu_{i} \rightharpoonup \mu_{u}$, by the monotone convergence theorem we have

$$
\tilde{u}(x, t)+\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V \tilde{u} d y d s=\int_{\mathbb{R}^{n}} H(x-y, t) d \mu_{u}, \forall(x, t) \in Q_{T},
$$

and $\tilde{u} \leq u$. this implies $\tilde{u}=u_{\mu_{u}}$, which ends the proof.
Remark. Assumption (1.17) is too strong and has only been used in (4.10). It could have been replaced by the following much weaker one: for any $R>0$ there exists a positive increasing function ϵ_{R} such that $\lim _{t \rightarrow 0} \epsilon(t)=0$ satisfying

$$
\begin{equation*}
V(x, t) \leq e^{t^{-1} \epsilon_{R}(t)} \quad \forall(x, t) \in Q_{T}^{B_{R}} \tag{4.11}
\end{equation*}
$$

We end this section with a result which shows that the stability of the initial value problem with respect to convergence the initial data in the weak* topology implies that the initial of positive solution has no singular part.

Theorem 4.5. Assume V satisfies, for some $\tau_{0}>0$,

$$
\begin{equation*}
\lim _{|E| \rightarrow 0} \iint_{E} H(x-y, t) V(x, t+\tau) d x d t=0, \quad \text { E Borel subset of } Q_{T}^{B_{R}} \tag{4.12}
\end{equation*}
$$

for any $R>0$, uniformly with respect to y is a compact set and $\tau \in\left[0, \tau_{0}\right]$. If u is a positive solution of (1.17), then $\mathcal{R}(u)=\mathbb{R}^{n}$

Proof. We assume that $\mathcal{S}(u) \neq \emptyset$ and if $z \in \mathcal{S}(u)$ there holds

$$
\iint_{Q_{T}^{B r(z)}} V u d x d t=\infty \quad \forall r>0 .
$$

In view of Proposition 4.1, there exist two sequences $\left\{r_{k}\right\}$ and $\left\{t_{j}\right\}$ decreasing to 0 such that

$$
\lim _{j \rightarrow \infty} \int_{B_{r_{k}}(z)} u\left(x, t_{j}\right) d x=\infty \quad \forall k \in \mathbb{N}
$$

For $k \in \mathbb{N}$ and $m>0$ fixed, there exists $j(k)$ such that

$$
\int_{B_{r_{k}}(z)} u\left(x, t_{j}\right) d x \geq m \quad \forall j \geq j(k) \in \mathbb{N}
$$

and there exists $\ell_{k}>0$ such that

$$
\int_{B_{r_{k}}(z)} \min \left\{u\left(x, t_{j(k)}\right), \ell_{k}\right\} d x=m
$$

Furthermore $j(k) \rightarrow \infty$ when $k \rightarrow \infty$. Let $R>\max \left\{r_{j}: j=1,2, \ldots\right\}$ and u_{k} be the solution of

$$
\begin{aligned}
\partial_{t} v-\Delta v+V v & =0 & & \text { in } \mathbb{R}^{n} \times\left(t_{j(k)}, T\right] \\
v\left(., t_{j}\right) & =\chi_{B_{r_{k}}(z)} \min \left\{u\left(., t_{j(k)}\right), \ell_{k}\right\} & & \text { in } \mathbb{R}^{n} \times\left\{t_{j(k)}\right\},
\end{aligned}
$$

Then $\chi_{B_{r_{k}}(z)} \min \left\{u\left(., t_{j(k)}\right), \ell_{k}\right\} \rightarrow m \delta_{z}$ in the weak sense of measures. By Proposition 5.5 we obtain that $u \geq u_{k}$ on $B_{R}(z) \times\left(t_{j(k)}, T\right]$. Applying Proposition 2.8, and
the remark here after, we conclude that $u_{k}\left(., .+t_{j(k)}\right) \rightarrow u_{m \delta_{z}}=m u_{\delta_{z}}$ in $L_{l o c}^{1}\left(\bar{Q}_{R}^{T}\right)$ This implies $u \geq m u_{\delta_{z}}$, and as m is arbitrary, $u=\infty$, contradiction.
4.2. The sweeping method. In this subsection we adapt to equation (1.17) the sweeping method developed in [19] for constructing the boundary trace of solutions of stationnary Shrödinger equations. If $A \subset \mathbb{R}^{n}$ is a Borel set, we denote by

$$
\mathfrak{M}_{T+}(A)=\left\{\mu \in \mathfrak{M}_{+}\left(\mathbb{R}^{n}\right): \mu\left(A^{c}\right)=0, \int_{A} e^{-\frac{|x|^{2}}{4 T}} d \mu<\infty\right\}
$$

We recall that μ^{*} denotes the reduced measure associated to μ.
Proposition 4.6. Let $u \in W_{\text {loc }}\left(Q_{T}\right)$ be a positive solution of (1.17) with singular set $\mathcal{S}(u) \nsubseteq \mathbb{R}^{n}$. If $\mu \in \mathfrak{M}_{T+}(\mathcal{S}(u))$, we set $v_{\mu}=\inf \left\{u, u_{\mu^{*}}\right\}$. Then

$$
\partial_{t} v_{\mu}-\Delta v_{\mu}+V v_{\mu} \geq 0 \quad \text { in } Q_{T}
$$

and v_{μ} admits a boundary trace $\gamma_{u}(\mu) \in \tilde{\mathfrak{M}}_{+}(\mathcal{S}(u))$. The mapping $\mu \mapsto \gamma_{u}(\mu)$ is nondecreasing and $\gamma_{u}(\mu) \leq \mu$.

Proof. It is classical that $v_{\mu}:=\inf \left\{u, u_{\mu^{*}}\right\}$ is a supersolution of (1.17) and $v_{\mu} \in \mathcal{E}_{\nu}\left(Q_{T}\right)$ as it holds with $u_{\mu^{*}}$. The function

$$
(x, t) \mapsto w(x, t)=\int_{0}^{t} \int_{\mathbb{R}^{n}} H(t-s, x, y) V(y, s) v_{\mu}(y, s) d y d s
$$

satisfies

$$
\begin{aligned}
\partial_{t} w-\Delta w-V w & =0 \quad \text { in } Q_{T} \\
w(., 0)=0 & \text { in } \mathbb{R}^{n} \times\{0\} .
\end{aligned}
$$

Thus $v_{\mu}+w$ is a nonnegative supersolution of the heat equation in Q_{T}. It admits an initial trace in $\mathfrak{M}_{T+}(\mathcal{S}(u))$ that we denote by $\gamma_{u}(\mu)$. Clearly $\gamma_{u}(\mu) \leq \mu^{*} \leq \mu$ since $v_{\mu} \leq u_{\mu^{*}}$ and $\gamma_{u}(\mu)$ is nondecreasing with respect to μ as it is the case with $\mu \mapsto u_{\mu^{*}}$ is. Finally, since v_{μ} is a positive supersolution, it is larger that the solution of 2.1 where the initial data μ is replaced by $\gamma_{u}(\mu)$, that is $u_{\gamma_{u}(\mu)} \leq v_{\mu}$.

The proofs of the next four propositions are mere adaptations to the parabolic case of similar results dealing with elliptic equations and proved in [19]; we omit them.

Proposition 4.7. Let

$$
\nu_{S}(u):=\sup \left\{\gamma_{u}(\mu): \mu \in \mathfrak{M}_{T+}(\mathcal{S}(u))\right\} .
$$

Then $\nu_{S}(u)$ is a Borel measure on $\mathcal{S}(u)$.
Definition 4.8. The Borel measure $\nu(u)$ defined by

$$
\nu(u)(A):=\nu_{S}(u)(A \cap \mathcal{S}(u))+\mu_{u}(A \cap \mathcal{R}(u)), \quad \forall A \subset \mathbb{R}^{n}, A \text { Borel }
$$

is called the extended initial trace of u, denoted by $\operatorname{tr}_{\{t=0\}}^{e}(u)$.
Proposition 4.9. If $A \subset \mathcal{S}(u)$ is a Borel set, then

$$
\nu_{S}(A):=\sup \left\{\gamma_{u}(\mu)(A): \mu \in \mathfrak{M}_{T+}(A)\right\} .
$$

Proposition 4.10. There always holds $\nu\left(\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)\right)=0$, where $\operatorname{Sing}_{V}\left(\mathbb{R}^{n}\right)$ is defined in (3.14).

Proposition 4.11. Assume V satisfies condition (4.12). If u is a positive solution of (1.17), then $\operatorname{tr}_{\{t=0\}}^{e}(u)=\mu_{u} \in \mathfrak{M}_{T+}\left(\mathbb{R}^{n}\right)$.
5. Appendix: the case of a bounded domain
5.1. The subcritical case. Let Ω be a bounded domain with a C^{2} boundary. We denote by $\mathfrak{M}(\Omega)$ the space of Radon measures in Ω, by $\mathfrak{M}_{+}(\Omega)$ its positive cone and by $\mathfrak{M}_{\rho}(\Omega)$ the space of Radon measures in Ω which satisfy

$$
\begin{equation*}
\int_{\Omega} \rho d|\mu|<\infty \tag{5.1}
\end{equation*}
$$

for some weight function $\rho: \Omega \mapsto \mathbb{R}_{+}$. As an important particular case $\rho(x)=$ $d^{\alpha}(x)$, where $d(x)=\operatorname{dist}(x, \partial \Omega)$ and $\alpha \geq 0$. We consider the linear parabolic problem

$$
\begin{array}{rlrl}
\partial_{t} u-\Delta u+V u & =0, & & \text { in } Q_{T}^{\Omega}=\Omega \times(0, T] \\
u & =0 & & \text { on } \partial_{l} Q_{T}^{\Omega}=\partial \Omega \times(0, T] \tag{5.2}\\
u(., 0)=\mu & & \text { in } \Omega .
\end{array}
$$

Definition 5.1. We say that $\mu \in \mathfrak{M}_{d}(\Omega)$ is a good measure if the above problem has a weak solution u, i.e. there exists a function $u \in L^{1}\left(Q_{T}^{\Omega}\right)$, such that $V u \in$ $L_{d}^{1}\left(Q_{T}^{\Omega}\right)$ which satisfies

$$
\begin{equation*}
-\int_{0}^{T} \int_{\Omega} u\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\int_{0}^{T} \int_{\Omega} V u \phi d x d t=\int_{\Omega} \phi(x, 0) d \mu \tag{5.3}
\end{equation*}
$$

$\forall \phi \in C^{1,1 ; 1}\left(\overline{Q_{T}^{\Omega}}\right)$ which vanishes on $\partial_{l} Q_{T}^{\Omega}$ and satisfies $\phi(x, T)=0$.
Definition 5.2. Let $H^{\Omega}(x, y, t)$ be the heat kernel in Ω. Then we say that $\mu \in \mathfrak{M}_{d}(\Omega)$ is a admissible measure if

$$
\left\|\mathbb{H}^{\Omega}[|\mu|]\right\|_{L^{1}\left(Q_{T}^{\Omega}\right)}=\int_{Q_{T}^{\Omega}}\left(\int_{\Omega} H^{\Omega}(x-y, t) d|\mu(y)|\right) V(x, t) \psi(x) d x d t<\infty .
$$

The next a proposition is direct consequence of [14, Lemma 2.4].
Proposition 5.3. Assume $\mu \in \mathfrak{M}_{d}(\Omega)$ and let u be a weak solution of problem (5.2), then the following inequalities are valid

$$
\begin{equation*}
\|u\|_{L^{1}\left(Q_{T}^{\Omega}\right)}+\|V u\|_{L_{\psi}^{1}\left(Q_{T}^{\Omega}\right)} \leq C(n, \Omega) \int_{\Omega} d d|\mu| \tag{i}
\end{equation*}
$$

(ii)

$$
-\int_{\underline{0}}^{T} \int_{\Omega}|u|\left(\partial_{t} \phi+\Delta \phi\right) d x d t+\int_{0}^{T} \int_{\Omega}|u| V \phi d x d t \leq \int_{\Omega} \phi(x, 0) d|\mu|
$$

$\forall \phi \in C^{1,1 ; 1}\left(\overline{Q_{T}^{\Omega}}\right), \phi \geq 0$.
(iii)

$$
\lambda_{\Omega} \int_{0}^{T} \int_{\Omega}(x) u^{+} d x d t+\int_{0}^{T} \int_{\Omega} V u^{+} \psi d x d t \leq \int_{\Omega} \psi(x) d \mu^{+}
$$

where ψ is the solution of

$$
\begin{align*}
-\Delta \psi & =1, & & \text { in } \Omega \tag{5.4}\\
\psi & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

Proof. For (ii), in [14, Lemma 2.4, p 1456], above from the relation (2.39), we can take $\tilde{\zeta}=\gamma(u) \zeta$ for some $0 \leq \zeta \in C^{1,1 ; 1}\left(\overline{Q_{T}^{\Omega}}\right)$, since $u=0$ on $\partial_{l} Q_{T}^{\Omega}$. For (iii) we consider (as in [14, Remark 2.5]) $\phi(x, t)=t \psi(x)$. The inequality holds by the same type of calculations as in [19].

Proposition 5.4. The problem (5.2) admits at most one solution. Furthermore, if μ is admissible, then there exists a unique solution; we denote it u_{μ}.

Similarly as Theorem 2.7 and Proposition 2.7, we have the following stability results

Proposition 5.5. (i) Assume that V satisfies the stability condition

$$
\begin{equation*}
\lim _{|E| \rightarrow 0} \iint_{E} H^{\Omega}(x, y, t) V(y, t) d(x) d y d t=0, \quad \forall E \subset Q_{T}^{\Omega}, E \text { Borel. } \tag{5.5}
\end{equation*}
$$

uniformly with respect to $y \in \Omega$. If $\left\{\mu_{k}\right\}$ is a bounded sequence in $\mathfrak{M}_{d}(\Omega)$ converging to μ in the dual sense of $\mathfrak{M}_{d}(\Omega)$, then $\left(u_{\mu_{k}}, V u_{\mu_{k}}\right)$ converges to $\left(u_{\mu}, V u_{\mu}\right)$ in $L^{1}\left(Q_{T}^{\Omega}\right) \times L_{d}^{1}\left(Q_{T}^{\Omega}\right)$. (ii) Furthermore if

$$
\begin{equation*}
\lim _{|E| \rightarrow 0} \iint_{E} H^{\Omega}\left(x, y, t+\tau_{n}\right) V(y, t) d(x) d y d t=0, \quad \forall E \subset Q_{T}^{\Omega}, E \text { Borel. } \tag{5.6}
\end{equation*}
$$

uniformly with respect to $y \in \Omega$ and $\tau_{k} \in\left[0, \tau_{0}\right]$ converges to 0 and $\left\{\mu_{k}\right\}$ is in (i), then the solutions $u_{\tau_{k}, \mu_{k}}$ of the shifted problem

$$
\begin{array}{rlrl}
\partial_{t} u-\Delta u+V u & =0 & & \text { on } \Omega \times\left(\tau_{k}, T\right) \\
u=0 & & \text { on } \partial \Omega \times\left(\tau_{k}, T\right) \tag{5.7}\\
u\left(., \tau_{k}\right)=\mu_{k} & & \text { on } \Omega \times\left\{\tau_{k}\right\}
\end{array}
$$

(extended by 0 on $\left(0, \tau_{k}\right)$) converge to u_{μ} in $L_{d}^{1}\left(Q_{T}^{\Omega}\right)$, and $\left\{V u_{\mu_{k}}\right\}$ converges to $V u_{\mu}$ in $L_{d}^{1}\left(Q_{T}^{\Omega}\right)$.

Proof. We can easily see that the measure μ_{n} is admissible and uniqueness holds; furthermore any admissible measure is a good measure is a good measure as in Theorem 2.5, and

$$
\iint_{Q_{T}^{\Omega}} u_{\mu_{n}} d x d s+\iint_{Q_{T}^{\Omega}} u_{\mu_{n}} V \psi d x d s \leq C \int_{\Omega} d \mu_{n}<C .
$$

The remaining of the proof is similar to the one of Theorem 2.7.

5.2. The supercritical case.

LEMMA 5.6. Let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of good measures converging to some measure μ in the weak* topology, then μ is good.

Proof. Let $u_{\mu_{n}}$ be the weak solution of (5.2) with initial data μ_{n}. Then by Proposition 5.5 -(iii), $\left\{u_{\mu_{n}}\right\}$ is an increasing sequence. By 5.5 -(i) the sequence $\left\{u_{\mu_{n}}\right\}$ is bounded in $L^{1}\left(Q_{T}^{\Omega}\right)$. Thus $u_{\mu_{n}} \rightarrow u \in L^{1}\left(Q_{T}^{\Omega}\right)$. Also by (iii) of Proposition 5.5, we have that $V u_{\mu_{n}} \rightarrow V u$ in $L_{\psi}^{1}\left(Q_{T}^{\Omega}\right)$. Thus we can easily prove that u is a weak solution of (5.2) with μ as initial data.

Let

$$
\begin{equation*}
Z_{V}^{\Omega}=\left\{x \in \Omega: \int_{Q_{T}^{\Omega}} H^{\Omega}(t, x, y) V(y) \psi(y) d y=\infty\right\} \tag{5.8}
\end{equation*}
$$

We note that, since $H^{\Omega}(t, x, y) \leq H(x-y, t)$ for any bounded Ω with smooth boundary, it holds $Z_{V}^{\Omega} \subset Z_{V}$. By the same arguments as in [19] we can prove the following results

Proposition 5.7. Let μ be an admissible positive measure. Then $\mu\left(Z_{V}^{\Omega}\right)=0$
Proposition 5.8. Let $\mu \in \mathfrak{M}_{d+}(\Omega)$ such that $\mu\left(Z_{V}^{\Omega}\right)=0$, then μ is good.

Proposition 5.9. Let $\mu \in \mathfrak{M}_{d+}(\Omega)$ be a good measure. Then the following assertions are equivalent:
(i) $\mu\left(Z_{V}^{\Omega}\right)=0$.
(ii) There exists an increasing sequence of admissible measures $\left\{\mu_{n}\right\}$ which converges to μ in the weak*-topology

References

[1] Adams D. R. and Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wissen. 314, Springer (1996).
[2] Ancona A. Positive solutions of Schrdinger equations and fine regularity of boundary points, Math. Z. 272, 429 (2012).
[3] Ancona A. Positive solutions of Schrdinger equations and fine regularity of boundary points, Math. Z. 272, 429 (2012).
[4] Aronson D., Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Sup. Pisa Cl. Sc. 22, 607-694 (1968).
[5] Baras P. and Goldstein J., The heat equation with a singular potential, Trans. Amer. Math. Soc. 284, 121-139 (1984).
[6] Choquet G., Theory of capacities, Ann. Inst. Fourier 5, 131-295 (1953-54).
[7] Doob J. L., Classical potential theory and its probabilistic counterpart, Reprint of the 1984 edition, Classics in Mathematics, Springer-Verlag, Berlin (2001).
[8] Dynkin E. B., Diffusions, Superdiffusions and Partial Differential Equations, American Math. Soc., Providence, Rhode Island, Colloquium Publications 50 (2002).
[9] Fuglede B., Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier 15, 65-87 (1965).
[10] Fuglede B., Application du théorème minimax l'étude de diverses capacités, C.R. Acad. Sci. Paris 266, 921-923 (1968).
[11] Gkikas K. and Véron L., Classification of positive solutions of heat equation with supercritical absorption, in preparation.
[12] Gulisashvili A. On the heat equation with a time-dependent singular potential, J. Funct. Anal. 194, 17-52 (2002).
[13] Kato T., Shrödinger operators with singular potentials, Israel J. Math. 13, 135-148 (1972).
[14] Marcus M. and Véron L., Initial trace of positive solutions of some nonlinear parabolic equations, Comm. Part. Diff. Equ. 24, 1445-1499 (1999).
[15] Marcus M. and Véron L., Initial trace of positive solutions to semilinear parabolic inequalities, Adv. Nonlinear Studies 2, 395-436 (2002)
[16] Pierfelice V., Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials, Asymptot. Anal. 47, 1-18 (2004).
[17] Richard Y. and Véron L., Isotropic singularities of solutions of nonlinear elliptic inequalities, Ann. Inst. H. Poincaré-Anal. Non Linéaire 6, 37-72 (1989).
[18] Schnaubelt R. and Voigt J. The non-autonomous Kato class, Arch. Math. 72, 454-460 (1999).
[19] Véron L. and Yarur C., Boundary value problems with measures for elliptic equations with singular potentials, J. Funct. Anal 262, 733-772 (2012).

Centro de Modelamiento Matemàtico, Universidad de Chile, Santiago de Chile, CHILE

E-mail address: kgkikas@dim.uchile.cl
Laboratoire de Mathématiques, Faculté des Sciences, Université François Rabelais, Tours, FRANCE

E-mail address: veronl@lmpt.univ-tours.fr

[^0]: 1991 Mathematics Subject Classification. 35K05, 35K67, 35K15, 35J70 .
 Key words and phrases. Heat kernel Harnack inequality Radon measures initial trace representation.

