N

N

Initial value problems for diffusion equations with
singular potential

Konstantinos Gkikas, Laurent Veron

» To cite this version:

Konstantinos Gkikas, Laurent Veron. Initial value problems for diffusion equations with singular
potential. 2012. hal-00736712v5

HAL Id: hal-00736712
https://hal.science/hal-00736712v5

Preprint submitted on 15 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00736712v5
https://hal.archives-ouvertes.fr

Initial value problems for diffusion equations with singular
potential

Konstantinos T. Gkikas and Laurent Veron

To Patrizia Pucci, with friendship and high esteem

ABSTRACT. Let V' be a nonnegative locally bounded function defined in Qoo :=
R™ x (0, 00). We study under what conditions on V' and on a Radon measure
win R4 does it exist a function which satisfies O;u — Au+ Vu = 0 in Qoo and
u(.,0) = u. We prove the existence of a subcritical case in which any measure
is admissible and a supercritical case where capacitary conditions are needed.
We obtain a general representation theorem of positive solutions when tV'(x, t)
is bounded and we prove the existence of an initial trace in the class of outer
regular Borel measures.
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1. Introduction

In this article we study the initial value problem for the heat equation

(1.1) Ou— Au+V(z,t)u=0 in Qr :=R" x (0,T)
' u(.,0)=p in R",

where V' € L7 (Qr) is a nonnegative function and p a Radon measure in R”. By a

(weak) solution of (1.1) we mean a function u € L}, .(Qr) such that Vu € L}, (Qr),
satisfying

(1.2) —// T(atqb—l—Aqb)udxdt—i—/ QTquﬁdxdt:/Qg“du

1991 Mathematics Subject Classification. 35K05, 35K67, 35K15, 35J70 .
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representation.
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2 KONSTANTINOS T. GKIKAS AND LAURENT VERON

for every function ¢ € C111(Q) which vanishes for ¢ = T'. Besides the singularity
of the potential at ¢ = 0, there are two main difficulties which appear for construct-
ing weak solutions : the growth of the measure at infinity and the concentration
of the measure near some points in R”. Diffusion equations with singular poten-
tials depending only on x have been studied in connection with the stationnary
equation (see e.g. [13]). The particular case of Hardy’s potentials v(x,t) = c|z| =2
has been thorougly investigated since the early work of Baras and Goldstein [5],
in connection with the problem of instantaneous blow-up. For time dependent sin-
gular potentials most of the works are concentrated on the well posedness and the
existence of a maximum principle; this is the case if V' € L?OLE’OO, see e.g. [16]. In
the case of time-singular potentials, a notion of non-autonomous Kato class have
been introduced in [18] in order to prove that the evolution problem associated
to the equation is well posed in L'(R™). This class is the extension to diffusion
equations of the Kato’s class in Schrodinger operators. Other studies have been
performed by probabilistic methods in order to analyze the LP — L9 regularizing
effect [12]. To our knowledge, no work dealing with the initial value problems with
measure data for singular operators has already been published. We present here
an extension to evolution equations of a series of questions raised and solved in the
case of Schrodinger stationary equations in particular by [2], [3], [19], having in
mind that one of the aim of this present work is to develop a framework adapted to
the construction of the precise trace of solutions of semilinear heat equations. This
aspect will appear in a forthcoming work [11]).
|

We denote by H(z,t) = () % ¢~ the Gaussian kernel in R™ and by H][y]

the corresponding heat potential of a measure p € 9MM(R™). Thus

(13) i (et) = (%) [ auty),

whenever this expression has a meaning: for example it is straightforward that if
€ M(R™) satisfies

_lwi?
(1.4) Iillon, = [ 4 dlelt) < o,

then (1.3) has a meaning as long as ¢ < T, and let be 9. (R™) the set of Radon
measures in R™ satisfying (1.4). If G € R", let Q$ be the cylinder G' x (0,7),
Bpr(z) the ball of center x and radius R and Br = Br(0). We prove

Theorem A Let the measure j verifies

(1.5) //QBRHHMH(JC, )V (z,t)dxdt < Mg VR > 0.

Then (1.1) admits a solution in Qr.

A measure which satisfies (1.5) is called an admissible measure and a measure
for which there exists a solution to problem (1.1) is called a good measure. Notice
that even when V' = 0, uniqueness without any restriction on w is not true, however
the next uniqueness result holds:

Theorem B Let u be a weak solution of (1.1) with p = 0. If u satisfies
(1.6) // (1+ V(z,t)) e Mol u(z, t)|dedt < oo
T

for some A > 0, then u = 0.
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We denote by £,(Qr) the set of functions u € L, (Qr) for which (1.6) holds
for some A > 0. The general result we prove is the following.
Theorem C Let € M(R™) be an admissible measure satisfying (1.4). Then there
ezists a unique solution u, € £,(Qr) to problem (1.1). Furthermore

|2 |2
(1.7) // —+V |u|e_4<T*f)dxdt§/ e_%d|,u|(y)
RTL

We consider first the subcritical case, which means that any positive measure
satisfying (1.4) is a good measure and we prove that such is the case if for any
R > 0 there exist mp > 0 such that

2
(1.8) / . H(z —y,t)V(z,t)dzdt < mRe’%_
QR

Moreover we prove a stability result among the measures satisfying (1.4): if V
verifies for all R > 0

(1.9)
1yl2

sup e 4T / H(x —y,t)V(x,t)dzdt — 0 when |E| — 0, E Borel subset of Q2"
yeR”

then if {u} is a sequence of Radon measures bounded in 91, (R™) which converges
in the weak sense of measures to g, then {(u,,,Vu,,)} converges to (u,, Vu,) in
Llloc(QT)'

In the supercritical case, that is when not all measure in 9. (R™) is a good
measure, we develop a capacitary framework in order to characterize the good
measures. We denote by MY (R") the set of Radon measures such that VH][u] €
LYQr) and ||pllgyv == [VH[p]||;:. If E C Qr is a Borel set, we set

(1.10) Oy (B) = sup{u(E) : p € MY (R), () = 0, [ullyqy < 1}.
This defines a capacity. If

(1.11) Cy(B) = nf{||fl|p : H[f(y) =1 Vy € B},

where

(1.12)

H(f(y) = / HG OV, 8) o )t = / HVf)(y.t)dt  Vy € R,

then C},(E) = Cy(E) for any compact set. Denote by Zy the singular set of V,
that is the largest set with zero Cy capacity. Then

(1.13) Zy ={zx eR": / H(x —y,t)V(y, t)dadt = oo},

and the following result characterlzes the good measures.

Theorem D If p is an admissible measure then u(Zy) = 0. If p € M (R™)
satisfies (Zyv) = 0, then it is a good measure. Furthermore y is a positive good
measure if and only if there exists an increasing sequence of positive admissible
measures { g} which converges to p in the weak * topology.

Since many important applications deal with the nonlinear equation

(1.14) Ou — Au+ |u|i7u =0 in Qs :=R"™ x (0, 00),
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where ¢ > 1 and due to the fact that any solution defined in Q. satisfies

1
1.15 u(z, )71 < V(z,t) € Qoo,
(115) u(e )1 < g Y
we shall concentrate on potentials V' which satisfy
C
(1.16) 0< V(x,t) < Tl V(z,t) € Qr,

for some C; > 0. For such potentials we prove the existence of a representation
theorem for positive solutions of

(1.17) Ou— Au+V(z,t)u=0 in Qr.

If w is a positive solution of (1.1) in Qr with p € DM (R™), it is the increasing
limit of the solutions © = ugr of

Ou — Au+V(z,t)u=0 in QP®
(1.18) u=0 in B x (0,T)
U(,O) = XBrHM in BR)

when R — oo, thus there exists a positive function Hy € C(R™ x R™ x (0,T)) such
that

(1.19) u(z,t) = Hy (x,y,t)du(y).

RN
Furthermore we show how to construct Hy from V and we prove the following
formula

(1.20) Hyla,.0) = [ 000G i ),

where i, is a Radon measure such that
(1.21) by > 1y,

(0y is the Dirac measure concentrated at y),

(1.22) P(z,t) = /tT/n (m) : e_%V(y,s)dyds

and I' satisfies the following estimate

lz—y|?

z—y|? n
(1.23) et~ Be T < D(a,y,t) < ot~ e

where A;, ¢; depends on T, d and V. Conversely, we first prove the following
representation result

Theorem E Assume V satisfies (1.16). If u is a positive solution of (1.1) in Qr,
there exists a positive Radon measure p in R™ such that (1.19) holds.

If p € M, (R™) is positive, we can define for any k& > 0 the solution uy, of

Oou — Au+ Vi(z,)u =0 in Qr
u(.,0)=p in R",

where Vi (z,t) = min{k, V(z,t)}, and

(1.25) up(x,t) = /RNHvk (@, y, t)du(y).

(1.24)



INITIAL VALUE PROBLEMS WITH MEASURES 5

Moreover {Hy, } and {v;} decrease respectively to Hy and u* there holds
(1.26) u*(x,t) = Hy (z,y,t)du(y).
RN
However u* is not a solution of (1.1), but of a relaxed problem where p is replaced

by a smaller measure u* called the reduced measure associated to p. If we define
the zero set of V' by

(1.27) Singy = {y € RN : Hy (x,y,t) = 0},
we prove
Theorem F If

w3

(1.28) 1imsup/T/ (*) ef%V(y s)dyds = oo
=0 Ji n \4m(s —t) ’ ’
then
¢ € Singy, ie. Hy(z,&,t) =0, V (z,t) € R" x (0, 00).
We note here that if V' satisfies (1.28) then J¢ is not admissible measure and the
reduced measure (0¢)* = p¢ associated to d¢ is zero.

Theorem G Assume V satisfies (1.15) and p € M, (R™). Then
(i) supp(p — p*) C Singy.

(i) If u(Singy) = 0, then p* = 0.

(’LZZ) Singv = Zv.

The last section is devoted to the initial trace problem: to any positive solution
u of (1.1) we can associate an open subset R(u) C R™ which is the set of points y
which possesses a neighborhood U such that

(1.29) / V(z, t)u(z, t)dedt < co.
QF
There exists a positive Radon measure p,, on R(u) such that

(1.30) lim; ¢ /nu(x,t)C(x)dx = Rn(du V¢ € Ce(R(w)).

The set S(u) = R™ \ R(u) is the set of points y such that for any open set U
containing y, there holds

(1.31) // Vi(x, t)u(z, t)dedt = co.
U
T

If V satisfies (1.17), S(u) it has the property that

(1.32) 1imsupt%0/u(:c,t)dz = o0.
U

Furthermore, if is satisfies (1.9), then S(u) = 0.

An alternative construction of the initial trace based on the sweeping method
is also developed.

Precise definitions of the different notions used in the introduction will be given
in the next sections.



6 KONSTANTINOS T. GKIKAS AND LAURENT VERON

Aknowledgements This work has been prepared while the first author was visiting
the Laboratory of Mathematics and Theoretical Physics, CNRS-UMR 7350, thanks
to the support of a grant from Région Centre, in the framework of the program
Création et propagations de singularités dans les équations non-linéaires.

2. The subcritical case

Let Qr = R™ x (0, 7). In this section we consider the linear parabolic problem

(2.1) Ou—Au+Vu=0 in Qr
' u(.,0)=p in R™ x {0},
where V € L], (Qr) is nonnegative and y is a Radon measure.

DEFINITION 2.1. We say that ;o € IM(R™) is a good measure if problem (2.1) has
a weak solution u i.e. there exists a functionu € L}, (Qr), such that Vu € L}, .(Qr)
which satisfies

(2.2) //Tu(8t¢+A¢)dzdt+//TVugbdzdt - /R é(z,0)dp Vo € X(Qr),

where X (Qr) is the space of test functions defined by
X(Qr) ={¢ € Ce(Qr), dp +A¢ € Li5.(Qu), ¢(x,T) = 0}

DEFINITION 2.2. Let H(x,t) be the heat kernel of heat equation in R™, we say
that p € M(R™) is an admissible measure if

(i)
WVH[ el gzry = //QBR ( . H(x — y,t)d|u(y)|) V(z,t)dedt < Mg

where Mg 1 is a positive constant.

DEFINITION 2.3. A function u(z,t) will be said to belong to the class Ev(QT)
if there exists A > 0 such that

// e NP u(z, 1)|(1+ V(a, t))dadt < 0o.

T

A measure in R™ belongs to the class M. (R™) if

=2
Iy 1= [ €5 dlul < .
R
LEMMA 2.4. There exists at most one weak solution of problem (2.1) in the
class Ev(Qr).

Proof. Let uy and ug be two solutions in the class &y (Qr) then w = uy — ug is
a solution with initial data 0. Choose a standard mollifier p : B(0,1) — [0, 1] and
define

wj(z,t) = j" /Blm p(j(z —y))w(y,t)dy = /Bmv) pi(z —y)w(y,t)dy.

Then w;(.,t) is C°° and from the equation satisfied by w, it holds

dw; — Aw; + / V(y,t)p;(x — y)w(y)dy = 0,

B (x)
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where 0;w; is taken in the weak sense.
First we consider the case A > 0 and ¢ < min{35,7} =T

=2

Set ¢(x,t) = &(x,t)C(x), where £(z,t) = ¢ *Gx—" and ¢ € C®°(R™). Given € > 0

we define
gj = Jw; +e.
drw;

Because 0¢(g; + g,0:¢,, by a straightforward calculation we have
j \/2—+ j

de =

/. W-,sﬂiif Mo i

pAw;dxds

- // \/% / z)V(y,t)pj(w—y)w(y,s)dy dxds
+ //tgj¢5d$d5

= L+ 1+ Is.
By integration by parts, we obtain

2 v 2 2
I o= _// IVwJI ¢d$d8+// | wal g(;mgcds—// ij.Vqﬁdxds
t /W ac s) t )2 Qe Jws

/1, W
- / /Q Vg, Vduds
_ / / (Vg Vedads - / /Q £V VCdads

- / N Cg;AEdnds + / /Q t g; V(. Vedads.

Since t < T, there holds ¢|Vg;| € LY(Qr), £g; € LY Qr), |Aélg; € LY (Qr),
ds€g; € L' (Qr+) and

IN

Vw;.Vodrds

IN

// \/% /B() (y,t)pj(x — y)w(y, s)dy | {dwds < oo.
¢ (x,s) 1 (z

The reason for which £|Vg;| € L' (Qr) follows from the next inequality

[V |
|Vgjlédads = // ————=Cdxds
//QT, Qr \Je +w?
\TP
// Tatgs - / |Vpj(x —y)|wly,s)dy | deds.
Qr/ Bl.(m)

J
Since ¥y € B1 (x), we have [af? > (jyl? — 1)? = |y|* + & — 214 > b (c-1)%,
for some positive constant C' > 0 independent on j,y and x. Thus we have, using
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the fact that e~ "y € LY(Qr),

m2
/ / Walearas <0G [[ [ TET 90 yluty, shiyaods < .
Qs Bl(m)
Also

// w] 2,) / Y, t)pji(x — y)w(y, s)dy | deds =00 // —=——¢V(y,t)dxds
VALY :L' S + € % ¢ VW :C 5 +e
and

/n Wi, 8) +e(€s + Al)drds —j 00 /Rn Vvw?(z,s) +e(€s + Af)dxds.

We choose (g = 1in Bgr, 0 < (g < 1 in Br41 \ Br and 0 otherwise. Letting
successively j — 0o, R — oo and finally ¢ — 0, we derive

/n lw(z, t)|é(z, t)dx < //Q lw| (& + AE)dxds —//tw(x,s)EV(y,t)dxds.

Since
n

s AE = — 571 v

&+ AL G-
and V > 0, we have w(z,t) =0V (z,t) € Qr. If T = T this complete the proof
for A > 0, otherwise the proof can be completed by a finite number of interations
of the same argument on R"™ x (T",2T"), R"™ x (217,3T"), etc. f A\ =0 weset { =1

and the result follows by similar argument O

THEOREM 2.5. If pp € M, (R™) is an admissible measure, there exists a unique
u=u, € E(Qr) solution of (2 1). Furthermore the following estimate holds

(2.3) // |uje™ Tt f)dxds—i—// |u|Ve™ Tt f)dxds</ e_:_Td|u|.
2T - T R™

Proof. First we assume that p > 0. Let ur = xppu- It is well known that the
heat kernel HP%(x,y,t) in Q = B is increasing with respect to R and H5% — H,
as R — oo in LY(Qr) for any T > 0. Thus ug is an admissible measure in Br
and by Proposition 5.4, there exists a unique weak solution ur of problem 5.2 on
Q = Bg. By (ii) of Proposition 5.5 we have

// lur| (9r6 + Ad) dmdt—i—// lug|Vodadt </ 6(x, 0)dlrl.

|12
If we set ¢.(x,t) = e TTFe-D; £ > 0, then
Dp+ Ap = ——— "o~
— e 4 e—t
’ 2T +¢—t) ’

thus we have

n ___l=I? _ =2 —|x|?
|ug| =——=————€ T+ dwdt—i—// |ug|Ve  3T+e=0 dxdt §/ e+ dy R,
//T 2(T+57t) Qr Br

which implies

n T _al? T _ 1=l a2
lugle” TT+=0 dadt+ |ug|Ve™ 3T+==0 dzdt < e+ dpp.
2T + € 0 Br 0 Br R™
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Letting € — 0, we derive

1// |UR|€_—4(‘;‘7t)d(Edt+// |uR|V€_—4(‘;lt)dedt§/ e dpr g/ ¢t dp.
2T - Qr R™ n

Now by the maximum principle {ug} is increasing with respect to R and converges
to some function u. By the above inequality v € £, (Qr) satisfies the estimate (2.5)
and u is a weak solution of problem (2.1). By Lemma 2.4 it is unique. In the
general case we write 4 = u™ — p~ and the result follows by the above arguments
and Lemma 2.4. In the sequel we shall denote by u,, this unique solution. O

DEFINITION 2.6. A potential V is called subcritical in Qr if for any R > 0
there exists mp > 0 such that

(2.4) / BRH(:I: —y, )V (z, t)dxdt < mRe_% Yy € R™.
Qr
It is called strongly subcritical if moreover
(2.5)
1vl?

€ 4T // H(zx —y,t)V(z,t)dzdt — 0 when |E| — 0, E Borel subset of Q5F,
E

uniformly with respect to y € R"

THEOREM 2.7. Assume V is subcritical. Then any measure in Mp(R™) is
admissible. Furthermore, if V is strongly subcritical and {ur} is a sequence of
measures uniformly bounded in My (RN) which converges weakly to u, then the
corresponding solutions {u,, } converge to u, in L} (Qr), and {Vu,,} converges
to Vuy, in L, (Qr).

Proof. For the first statement we can assume p > 0 and there holds

// . H(x —y,t)du(y)V(x, t)dedt = / (/ . H(t,x — y)V(x,t)dzdt) du(y)
QTR n QTR

y2
< mR/ e~ dp(y)

<mg|lpllon, -

Thus p is admissible. For the second statement, we assume first that u; > 0. By

lower semicontinuity p € M7y (RY) and ||VH[/,L]||L1(QBR) < Mp,r for any k. Since
T

0 < uy, < Hlux] and Huy] — Hlp] in L (Qr), the sequence {u,, } is uniformly
integrable and thus relatively compact in L} (Qp). Furthermore 0 < Vu,, <
VH[uy]. Let E C Q" be a Borel subset, then

//E VH[py)dzxdt = / <//E VH(xy,t)dxdt) dpe(y)
_ /R (eT //E V(x)H(z —y,t)dggdt) = dun(y)

< e(|1B]) llllon,
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where €(r) — 0 as r — 0. Thus {(u,,,Vu,,)} is locally compact in L} (Qr)

loc

and, using a diagonal sequence, there exist u € L} (Qp) with Vu € L} (Qr)

loc loc
and a subsequence {k;} such that {(u#k_j WV, )} converges to (u,,Vu,) a.e. and
in L}, (Qr). From the integral expression (2.2) satisfied by the wu,,, u is a weak
solution of problem (2.1). Since the u,, satisfy (2.3), the property holds for w,

thereforeu = u,, is the unique solution of (2.1), which ends the proof. a.
As a variant of the above result which will be useful later on we have

PROPOSITION 2.8. Assume V' satisfies
(2.6)

ly|2

e AT // H(x —y,t)V(x,t + 7)dxdt — 0 when |E| — 0, E Borel subset of Q?R,
E

uniformly with respect to y € R™ and 7 € [0,79]. Let 7 > 0 with 7, — 0 and {u}
be a sequence uniformly bounded in My (RYN) which converges weakly to u. Then
the solutions {ur, ., } of

Ou—Au+Vu=0 on R™ x (14,T)

(2.7) u(o, i) = e on R™ x {7}

(extended by 0 on (0,7y)) converge to u, in L},.(Qr), and {Vu,,} converges to
Vi in L, (Q1)

Condition (2.5) may be very difficult to verify and we give below a sufficient
condition for it to hold.

PROPOSITION 2.9. Assume V' satisfies

ly?

A
(2.8) lim eﬁ)f"/ / V(x,t)dxdt =0
A—0 0 JB,2 ()

uniformly with respect to y € R™, then V is strongly subcritical.

Proof. Let B C Q?R be a Borel set. For § > 0, we define the weighted heat
ball of amplitude e~ by

Ps = Ps(y,T) = {(z,t) €Qr:H(z—y,t)> 56_W},

By an straightforward computation, one sees that

_2 Ju?
P5(yaT) CcB 1 lwl? (y) X [Oabn(s TZI'eQn'T] = R(;(y,T),

an,d mednT

for some a,, b, > 0. We write

// H(:c—y,t)V(:C,t)dxdt:// H(x—y,t)V(x,t)d:Edt—i—// H(z—y,t)V(x,t)dzdt.
E ENP;s ENPg
Then

2
// H(x —y,t)V(z,t)dzdt < 567%// V(z,t)dxdt,
ENPg E
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&
// H(zx —y,t)V(z,t)dzdt < / / L Vi, t)dS:(z, t)rdr
ENPs 0 {(I,t)GQ?R:H(zfy,t)2767 aT }

< [T/ / Lz Vi, t)dSs (z,t)do
B _ lul
(z t)EQTR H(z—y,t)=ce” 4T } o
/ / / e V(@ )dS, (z,t)dodr
{(z, t)EQTR H(xz— y7t)—0'677T}

< 5/ / V(z,t)dSy(z,t)do
0 {(m,t)GQ?R:H(zfy,t):aefj%‘Ti}

The first integration by parts is justified since V € Ll(Q?R). Notice that

o
5 / / V(a,1)dS, (2, t)do = § / / V(a, t)dudt
0 {(I,t)EQ?R:H(zfy,t):aefj%Ti} ?ROP(;
and

(5// V(z,t)dxdt < (5// V(x,t)dxdt
Q7P 7RORs (y,T)
< 67"”/ / V(z,t)dxdt,
0 JBRNB,,2 1)

for some «, 8 > 0 and if we have set = §~=. Notice also that Bg N Bary2(y) =0
if |y| > R+ (ar)?, or, equivalently, if [y| > R + a6~ .
(i) If |[y| > R+ a?, we fix § such that 1 < §, then

e%// H(z —y,t)V(z,t)dzdt < 5// V(z,t)dzxdt,
E E

which can be made smaller than e provided |E| is small enough.
(ii) If |y| < R + o2, then

e // y, OV (2, t)dzdt < e™5¥ // y, OV (z, t)dzdt
EﬁPC EﬁPC

§56R22+Ta // V(x,t)dxdt.
E
"/ / V(z,t)dzdt <
0 BRHB(QT)Q(y)
€
t)dzdt < =
/ / (o, ) < &
Lyl

e4T/ H(x —y,t)V(x,t)dadt <,

Given € > 0, we fix § = r~™ such that

2, 4
// H(;L' - Y, t)V(SC,t)d:L'dt < ﬂeR;g“ r=
ENP;s

and then n > 0 such that |F| < n implies

R2+a4
2T

DO

e%// H(z —y,t)V(z,t)dzdt < 56 27
ENPg

Therefore

which is (2.5). O
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Remark In Theorem 2.7 and Proposition 2.9, the assumption of uniformity with
respect to y € R™ in (2.5), (2.6) and (2.8) can be replaced by uniformity with respect
to y € Bp, if all the measures pj have their support in Br,. A extension of these
assumptions, valid when the convergent measures pi have their support in a fixed
compact set is to assume that V is locally strongly subcritical, which means
that (2.5) holds uniformly with respect to y in a compact set. Similar extension
holds for (2.8).

3. The supercritical case

3.1. Capacities. All the proofs in this subsection are similar to the ones of
[19] and inspired by [9]; we omit them. We assume also that there exists a positive
measure o such that Hlue]V € LY(Qr).

DEFINITION 3.1. If p € MM (R™) and f is a nonnegative measurable function
defined in ) such that

(t,2,y) = Hlu)(y, )V (2, 0) f(2,t) € LY (Qr x R™; dwdt ® du),
we set
et = [ ([ = p0du) Vi) fGo )it
If we put

H[f1(y) H(x —y, )V (x, 1) f (, t)dzdt,

Qr
then by Fubini’s Theorem, H[f](y) < oo, u—almost everywhere in R” and

et = | ( [ - y,t>v<w,t>f<x,t>dxdt) an(y).

PROPOSITION 3.2. Let f be fized. Then
(a) y — H[f](y) is lower semicontinuous in R™.
(b) w— E(f, 1) is lower semicontinuous in M (R™) in the weak™ topology.

DEFINITION 3.3. We denote by MY (R™) the set of all measures pn on R™ such
that VH[|p|] € LY(Qr). If p is such a measure, we set

ludbwr = [ ([ #1a = t)dlel)) Vit = |Vl

If E C R™ is a Borel set, we put
M (E) = {pe M (R"): p(E) =0} and MY (E)=MM"R")NM(E).
DEFINITION 3.4. If E C R™ is any borel subset we define the set function Cy
by
Ov(E) := sup{u(B) : p e ML(E), [|pllmv < 1}

this is equivalent to,

— su w(E) . Vv
o) = s i e m(e)}
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PROPOSITION 3.5. The set function Cy satisfies

-1
Cy(F) < sup ( H(x —y,t)V(x, t)dxdt) V E CR", E Borel.
Qr

yeE
Furthermore equality holds if E is compact. Finally,
Cy(F1 U Ey) =sup{Cy(F1),Cy(F2)} VYV E; CR", E; Borel.
DEFINITION 3.6. For any Borel E C R™, we set
CV(B) = inf{||f||r~ : H[f](y) > 1Vy € B}.
PRrROPOSITION 3.7. For any compact set E C R™,
C(B) = Cy (E).

3.2. The singular set of V. In this section we assume that V satisfies (1.16),
although much weaker assumption could have been possible. We define the singular
set of V., Zy by

(3.1) Zy = {z eR": / QTH(:C —y, )V (y, t)dydt = oo} .

Since the function z — f(x) = / H(x—y,t)V (y,t)dydt is lower semicontinuous,
Qr
it is a Borel function and Zy is a Borel set.

LEMMA 3.8. If x € Zy then for any r > 0,
// H(x —y,t)V(y,t)dydt = oco.
Q?r(m)

Proof. We will prove it by contradiction, assuming that there exists » > 0, such

that
// H(z —y,t)V(y,t)dy < M.
Q?r(w)

Replacing H by its value, we derive

/’ H(x — y )V (y, H)dydt = [/ H@—%wvmw@ﬁ+[/c H(x — . 0)V (y,t)dyd
Qr QEr@® QEr®

T n+2 T2
< M+C(n)/ t~ e T dt < oo,
0

Which is clearly a contradiction. O
LEMMA 3.9. If u is an admissible positive measure then u(Zy) = 0.

Proof. Let K C Zy be a compact set. In view of the above lemma there exists
a R > 0 such that K C Bg and for each x € K, we have

(3:2) /[ﬁmﬂu—ymvwmyzm

and

(33) [ st =0V < .
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Now, ux = xx i is an admissible measure and by Fubini theorem we have
// ( H(wy,t)duK(w) V(z,t)dzdt :/ / H(z —y,t)V(z, t)dxdtdu(y)
T Rn K Qr
= [ ] e = vV @asaidn)
/ // (x — y, 1)V (x)dzdtdpy.

y (3.3) the second integral above is finite and by (3.2)
// H(z —y,t)V(z)dzdt = oo Yy € K.
Q?2R

It follows that u(K) = 0. This implies u(Zy ) = 0 by regularity. O

THEOREM 3.10. If p € Mp(R™), p > 0 such that u(Zyv) = 0, then p is a good
measure.

Proof. We set ur = xppp- By Proposition 5.8, since ng” C Zvy, pg is a good
measure in Br with corresponding solution uR. In view of Lemma 2.5, uR satisfies

|e|? 2
// | e~ T t>dzdt+// |uR|ve‘mdzdt§/ e dp.
) Br

Also {uﬁ} is an increasing function, thus converges to u,. By the above estimate
we have that u, belong to class &y (Qr) and is a weak solution of (2.1). O

PROPOSITION 3.11. Let p € M4 (R™). Then u(Zy) = 0 if and only if there
exists an increasing sequence of positive admissible measures which converges to
in the weak™® topology.

Proof. The proof is similar as the one of [19, Th 3.11] and we present it for the
sake of completeness. First, we assume that p(Zy) = 0. Then we define the set
KN:{JUER”: H(m—y,t)V(y)dydth}.
Qr
We note that Zy N Ky = 0. We set u, = Xk, then we have

/T ( - H(x - y,t)dun(y)) V(z, t)dedt < u(Ky).

Thus p, is admissible, increasing with respect n. By the monotone theorem it
follows that j, — X z¢ p. Since 1(Zy) = 0 the result follows in this direction.

For the other direction. Let {u,} be an increasing sequence of positive admissible
measure. Then by Lemma 3.9 we have that u,(Zyv) = 0, V n > 1. Since u, < p,
there exist an increasing functions h, p—integrable such that w, = h,u. Since
0= pun(Zv) = p(Zv) the result follows. O

3.3. Properties of positive solutions and representation formula. We
first recall the construction of the kernel function for the operator w — dyw — Aw +
Vw in Qr, always assuming that V satisfies (1.16). For § > 0 and p € My, we
denote by ws the solution of

Oyw — Aw + Vsw = 0, in Qr

(3-4) w(.,0) = p in R™.
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where Vs = Vxq, , and Qs = (0,T) x R™. Then

(3.5) ws(@,t) = [ Hy;(z,y,t)du(y)
Rn
LEMMA 3.12. The mapping 6 — Hy,(z,y,t) is increasing and converges to
Hy € C(R™ x R™ x (0,T])) when § — 0. Furthermore there exists a function
Hy € C(R™ x R™ x (0,T))) such that for any u € My (R™)

(3.6) hr% ws(z,t) = w(z,t) = Hy (z,y,t)du(y).
5— Rn

Proof. Without loss of generality we can assume g > 0. By the maximum
principle § — Hy,(z,y,t) is increasing and the result follows by the monotone
convergence theorem. O

If R” is replaced by a smooth bounded domain €2, we can consider the problem

ohw — Aw + Vsw =0 in Q¥
(3.7) w=0 in 9,Q% := 99 x (0,T]
w(.,0)=p in Q.

where Vy = VXqg, and Q7 = (5,T) x . Then

(38) ws(ant) = [ 3o t)duty)
The proof of the next result is straightforward.

LEMMA 3.13. The mapping 6 — H‘% (x,y,t) increases and converges to H‘s/z €

C(Q x Q x (0,7T))) when § — 0. Furthermore There exists a fonction H} € C(Q x
Q x (0,T7)) such that for any p € My(£2)

(3.9) %%wg(z t) = w(x,t) /HV z,y, t)du(y).

Furthermore H‘S} < Hg/ < Hy ifQc.

It is important to notice that the above results do not imply that w is a weak
solution of problem (1.1). This question will be considered later on with the notion
of reduced measure.

LEMMA 3.14. Assume p € My (R™) is a good measure and let u be a positive
weak solution of problem (2.1). If Q is a smooth bounded domain, then there exists
a unique positive weak solution v of problem

Ow—Av+ Vo =0, in Q%,
(3.10) v=0 on 9,Q%
v(.,0) = xap in Q.

Furthermore

(3.11) U(:C,t):/QH‘g,l(x,y,t)du(y).
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Proof. Let {t; } 2, be a sequence decreasing to 0, such that t; < T, Vj € N.
We consider the followmg problem

v —Av+ V=0, in Qx(t,7T],
(3.12) v=20 on O x (t;,T]
’U(.,tj> = U(.,tj) in Q x {tj}

Since u, Vu € LY( ? ) for any R > 0, t — u(.,t) is continuous with value in
L} (R™), therefore u(.,t;) € L} .(R™) and there exists a unique solution v; to
(3.12) (notice also that V € L®(QF")). By the maximum principle 0 < v; < u and
by standard parabolic estimates, we may assume that the sequence v; converges
locally uniformly in  x (0,77 to a function v < u. Also, if ¢ € C'* 1'1(Q_T) vanishes

on 9,Q% and satisfies ¢(z,T) = 0, we have

/ /Q 8t¢+A¢dxdt+/ /VU]¢d$dt+/¢SCT tj)v;(x, T—t;) dzf/qbzo (x,t;)dz

where in the above equality we have taken ¢(.,.—t;) as test function. Since ¢(.,T
t;) — 0 uniformly and u(.,t;) — p in the weak sense of measures, it follows by the
dominated convergence theorem that

_ / /ng(atqﬁ-l-A(b)dxdt-i- / /ngwdxdtz /Q 6(y, 0)dpu(y)

thus v is a weak solution of problem (3.10). Uniqueness follows as in Lemma 2.4.
Finally, for § > 0, we consider the solution ws of (3.7). Then it is expressed by
(3.5). Furthermore

f// w5(8t¢+A¢))dzdt+// Vswsodzdt = | ¢(x,0)du(z),
Qg Q¥ Q

The sequence w;y is decreasing, with limit w. Since ws > v, then w > v. If we
assume ¢ > 0, it follows from dominated convergence and Fatou’s lemma that

- / / _w(0e6 + Ap)dudt + / / Vwedwdt < /Q ¢(x,0)dp(x)

Thus w is a subsolution for problem (3.10) for which we have comparison when
existence. Finally w = v and (3.11) holds. O

LEMMA 3.15. Assume p € My (R™) is a good measure and let u be a positive
weak solution of problem (2.1). Then for any (x,t) € R™ x (0,T], we have

lim ugp = u,
R—o0

where {ur} is the increasing sequence of the weak solutions of the problem (8.10)
with Q@ = Bpgr. Moreover, the convergence is uniform in any compact subset of
R™ x (0,T] and we have the representation formula

u(x, t) = - Hy (z,y,t)du(y).

Proof. By the maximum principle, ugp < ur: < u for any 0 < R < R’. Thus
ur — w < u. Also by standard parabolic estimates, this convergence is locally
uniformly. Now by dominated convergence theorem, it follows that w is a weak
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solution of problem (2.1) with initial data u. Now we set w = v —w > 0. Since w
satisfies in the weak sense

wy—Aw+Vw=0 in Qr
w(x,t) >0 in Qr
w(z,0) =0 in R™,
and V > 0, it clearly satisfies
wy —Aw <0 in Qr
w(xz,t) >0 in Qr
w(z,0) =0 in R™,
which implies w = 0. By the previous lemme ur admits the representation
ua,t) = | HY(w,y, )dpy).
Br

Since {HER} is an increasing sequence and limpg_, HgR = Hy, we have using
again Fatou’s lemma as in the proof of Lemma 3.15

u(z,t) = lim u"(z,t) = lim [ HP*(z,y,0)dp(y) = [ Hy(z,y,t)dp(y)
R—o0 R—o0 Br Rn

|

LEMMA 3.16. Harnack inequality Let C; > 0 and V(x,t) be a potential
satisfying (1.16) If u is a positive solution of (1.17), then the Harnack inequality is
valid:

[z —yl* ¢
u(y, s) < u(z,t)exp (C(n,Cl) (tf + 3 + 1)) , Y (y,s),(x,t) € Qr, s <t.

Proof. We extend V for t > T by the value C1t~!. We consider the linear
parabolic problem
(3.13) Ou — Au+Vu =0, in  R"™x[1,00),

It is well known that, under the assumption (1.16), every positive solution u(x,t)
of (3.13) satisfies the Harnack inequality

—_ ]2 t
u(y, s) < u(z,t)exp (C’(n, Cy) (% + B + 1)) , V (z,t) € R" x [1, 00).
Set @(x,t) = u(52%). Then @ satisfies

1 t x, .
eV e
We note here that A—iV(% 5) <O, vt > A—lz, thus @ satisfies the Harnack inequality

u — Au +

V( 0, in R™ x (0, 00).

. . -yt 1

u(y, s) < u(x,t) exp (C’(n, Cy) (% + B + 1)) , Y (z,t) € R" x [ﬁ,oo)

By the last inequality and the definition of % we derive the desired result. O
Next, we set

(3.14) Singy (R™) :=={y € R": Hy(z,y,t) =0}

If Hy(x,y,t) = 0 for some (x,t) € Qr, then Hy (a',y,t') = 0 for any («/,t') € Qr,
t’ < t by Harnack inequality principle. We prove the Representation formula.
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THEOREM 3.17. Let u be a positive solution of (1.17). Then there exists a
measure p € My (R™) such that

u(z,t) = . Hy (z,y,t)du(y),

and p is concentrated on (Singy (R™))c.

Proof. By Lemma 3.15 we have
u(z,t) = Hy(x,y,t — s)u(y, s)dy for any s <t < T.
Rn

We assume that s < % By Harnack inequality on « — Hy (z,y, %)

T
HV (Oa Y, E)u(ya S)dy S c(n) HV (Oa Y, T — S, )u(ya S)dy = c(n)u(O, T)
R Rn

For any Borel set E, we define the measure ps by

ps(E) = /EHV(O, v, g)u(y, s)dy < - Hy(0,y, g)u(y, s)dy < e(n)u(T,0).

Thus there exists a decreasing sequence {s;}32; which converges to origin, such

that the measure p,; converges in the weak™ topology to a positive Radon measure

p. Also we have the estimate p(R"™) < C(n)u(0,T). Now choose (z,t) € Qr and Jjo
large enough such that ¢ > s;,. Let € > 0, we set for any j > jo,

HV(:Cayat - S’)

Wily) = =7

HV (05 Y, 5) +e
For any R > 0 and |y| > R we have

1 1 1
where limp_, C(x, R,t — s;) = 0. We have also

1
Wj(y)dp; < —C(z, R, t — sj)c(n)u(T,0).
ly|>R €
Hy (z,y,t)
Hy (£,0,y)+e
when j — oo, uniformly with respect to y. Thus by the above estimates it follows

HV SC,y,t
Wi(y)dp; — _Hvlzyt) = )
Rn re Hy(0,y,5) +¢

For any |y| < R, we have by standard parabolic estimates that W;(y) —

For sufficiently large j we have

Hv(l',y,t*Sj) _ Hv(SC,y,t*Sj) (H (
= ~ T~ . _4Ps; = — A~ T~ . _ 14

Rn HV(an7%)+€ ! Rn HV(an7%)+€
HV(:Cayat_Sj’)

R™ HV(Ovya%)+€

T
ana 5) +e— 5) ’U/(y,S])dy

=u(x,t) —¢ u(y, s;)dy.

Note that this is a consequence of the identity

HV('rvya t— S])U(y, Sj)dy = ’U,(LL', t)
RTL
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Thus as before, we define dp; = Hy (z,y,t — s;)u(y, s;)dy and thus there exists a

subsequence, say {p; } converges in the weak* topology to a positive Radon measure

p. Thus we have
HV(:C7y; t— SJ)

HV('rvyatf Sj) (
Rn HV(ana %) +e

c u
)) HV(ana%)—i_E
1

e imoes (B )6 ——m—————dP.
/MS v HAT 0, y) e

Combining the above relations, we derive

HV('rvya t)
R™ HV(Oa Y, %) +e

Now, we have

u(y, sj)dy = E/R X(Singy (R" sj,Y)dy

1

3.15 - -
( ) HV(ana%) +e

dp = u(z,t) — E/R X(Singy (R"))° dp.
E p—
VHy(3,0,y) +e
and by Harnack inequality on the function = — Hy (z,y,t)
H t
V(:L" gﬂ, ) S C(ta T)a
Hy(0,y,3)+¢
thus by dominated convergence theorem, we can let € tend to 0 in (3.15) and obtain
HV (SC, Y, t)
R™ HV (05 Y, %)

And the result follows if we set

lim ; n
0 X(Singv (R

)

dp = u(z,t).

1

—— __dp
HV(Oa Y, %)

dp = X(Singy (R7))

O
In the next result we give a construction of Hy, with some estimates and a
different proof of the existence of an initial measure for positive solutions of (1.16).

THEOREM 3.18. Assume V satisfies (1.16) and u is a positive solution of (1.17)
then there exists a positive Radon measure p in R™ such that

(3.16) (e t) = [ OOyt 0)dn(y)
where
T i

3.17 t) = —V dyd.
(3.17) ¥(z, 1) /t /nm(tis) (y, s)dyds
and

ﬂlmfy\? 772\m—y\2

e s—t e s—t
3.18 —= <TD(z,y,t,8) Cco—7—— 5
(3.18) Ao sF S (z,y,t,5) < ca TESE

for some positive constants ¢; and v;, i = 1,2.

Proof.  Assuming that w is a positive solution of (1.17), we set u(z,t) =
e?@y(x,t). Then

(3.19) v — Av — 2Vp.Vu — [VY[*0 + (8pp — Ay + V)v = 0.
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We choose 1 as the solution of problem
-0 — AP+ V=0 in Qr
(3.20)
(., T)=0 in R™.

Then ¢ is expressed by (3.17). Furthermore, by standard computations,

1 0<(x,t)<clnZL
sony O (2,1) < cIn
(i7) |Vip(z,t)] < er(T) + c2(T)In L
The function v satisfies
(3.22) v — Av — 2Veh. Vv — |Vop|2v = 0.
Then, by (3.21),
(1) 0< / sup{|v(z,s)|? : x € R"}ds < My
(3.23) 8
(44) 0< / sup{|V¢(z,s)|?: x € R"}ds < My

for any 1 < ¢ < oo for some M; € Ry. This is the condition H in [4] with Ry = oo
and p = oo. Therefore there exists a kernel function I' € C(R" xR" x (0,7) x (0,T))
which satisfies (3.18) and there exists also a positive Radon measure p in R™ such
that

(3.24) v(x,t) = /n [(z,y,t,0)du(y).

Finally w verifies

(3.25) u(z,t) = e? (@) /n [(z,y,t,0)du(y).

We recall that Singy (R™) := {y € R™: Hy(z,y,t) = 0}.

THEOREM 3.19. Let d¢ be the Dirac measure concentrated at y and let V' sat-
isfies (1.16). Then

Hy (w60 = [ @Oy, Ode(y),
where e is a positive Radon measure such that

5{ > He,

and ¥, T are the functions in (3.17) and (3.18) respectively.
Furthermore, if

le—y|?
hmsupw(«f t) = hmsup/ / ( ) ¢~ D V(y, s)dyds = oo
t—0 n \A47(s —t

then
¢ € Singy, ie. Hy(z,&,t) =0, V(z,t) € R" x (0,00).
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proof. First we note that Hy, (z,,t) is the solution of problem (1.24) with
¢ as initial data. Since Hy, (z,&,t) | Hy(x,€,t), we have by maximum principle
, H(xz,&,t) > Hy(xz,£,t). Now by Theorem 3.18, there exists a positive Radon
measure ¢ in R™ such that

(3.26) Hy (.. 6,1) = / SEDT 2,y 1, 0)due(y)

Let ¢ € Co(R™) then we have by the properties of I'(z, &, t) (see [4]) and (3.26)

lim Hy(z, &, t)o(x)dx > hm/ / (x,y, t)p(x)dxdpe (y / d(y)pe(y
Rn n n

t—0
That is

(3.27) o) o (x / o) dpie () = b¢ > e,
R~

since ¢ is an abstract function in space Cp(R™).
Also we have that there exist positive constants C7, Cs such that
(3.28) [(z,y,t) > C1H(z,y, Cat).

Also we have

H(E.E.t) 2 Hy(§.€.1) Hy (&, t)dpe(y) = / eV EIT(E g, )dpe(y)

R’ﬂ
Oy 328) = O [ UOH(Ey Catldue(y)
B(¢,V/Cat)
(By Harnack inequality) > C(T,n, C’l,Cg)/ eV &g H(EE, CQt)d;Lg( )
B(§,V/Cxt)

C t
C(T,n, Cy, Co)e? CVH(E, &, == )ug(B(&, V/Cat))
Thus by the last inequality and the fact that

H(EE,t)
H(E, 6%

= C(Cg,n) > 0,

we have
C(T7n501702)>6 tf) 5 \/CQ
But limsupi—01 (€, t) = oo which implies

lim e (B(E, v/ Cat) = ne({€}) = 0.
Thus by (3.27) we have ug =0, i.e. Hy(z,§,t) =0, V(z,t) € R" x (0, 00). O

3.4. Reduced measures. In this section we assume that V is nonnegative,
but not necessarily satisfies (1.16), therefore we can construct Hy[u] for p €
My (R™). Furthermore, if p is nonnegative we can consider the solution uy of
the problem

Owu — Au+ VFky =0, in Qr
u(.,0)=p in R”,

where V¥ = min{V, k}. Then there holds

uk(xv t) = o Hy (ta €L, y)dﬂ(y) = Hy+ [,LL] (:C, t)a

(3.29)
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and .
ug + / H(t — s,2,y)V*urdyds = Hiu).
0 R

Since k — Hyx is decreasing and converges to Hy, we derive

lim up =u = Hy (t,z,y)du(y).

k—o0 R™

By Fatou’s lemma

k—o0

¢ ¢
/ H(t — s,x,y)Vudyds < lim inf/ H(t — s,2,y)V*urdyds.
0 JR» 0o Jrn»
It follows

t
U(.’L‘,t) +/ H(t—s,x,y)Vudyds < HV(taxay)dM(y)a V(ZC,t) € QT
0 JRn» Rn
Now since Vu € Li, (Qr) and
Oyu — Au+ Vu=0, in Qr,
the function

t
u(x,t) + / H(t — s,z,y)Vudyds
o Jrn

is nonnegative and satisfies the heat equation in Q7. Therefore it admits an initial
trace p* € M, (R™) and actually p* € Myp(R™). Furthermore, we have

t
u(x,t) + / H(t — s,z,y)Vudyds = H(x —y,t)du*(y), Y(x,t) € Qr.,
0 JRn Rn

or equivalently, u is a positive weak solution of the problem

Ou—Au+Vu=0 in Qr
u(.,0) = p* in R™.

Note that p* < p and the mapping p — p* is nondecreasing.
DEFINITION 3.20. The measure p* is the reduced measure associated to

The proofs of the next two Propositions are similar to the ones of [19, Section
5].

PROPOSITION 3.21. There holds Hy [u] = Hy[p*]. Furthermore the reduced
measure " is the largest measure for which the following problem

Ov—Av+Vou=0 in Qr
(3.30) AeM(R"), A< pu
v(.,0) = A in R™,

admits a solution.

PRrROPOSITION 3.22. Let Wy, be an increasing sequence of nonnegative bounded
measurable functions converging to V a.e. in Qr. Then the solution ug of

Ov—Av+Wirv=0 in Qr
v(.,0) = p in R",

converges to uyx.

We recall that Singy (R™) :={y € R”: Hy(x,y,t) = 0}.
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PROPOSITION 3.23. Let u be a nonnegative measure in My (R™). Then
(i) (n— p*) ((Singv (R™))) =0
(it) If p((Singy (R™))) = 0, then p* = 0.
(iii) There always holds Singy (R™) = Zy.

proof. The proofs of (i), (ii) and the fact that Singy (R™) C Zy are similar as
n [19, Section 5], and we omit them.

The proof of Zy C Singy (R™) is a immediately consequence of Theorem 3.19.
Indeed, if £ € Zy then

I /T/ 1 3 \45(7 TV (y, 5)dyds —
H?_%lp f n \47(s—1) € Y, 5)ayas = oo

thus € € Singy (R™). O
4. Initial trace

4.1. The direct method. The initial trace that we developed in this section
is an adaptation to the parabolic case of the notion of boundary trace for elliptic
equations (see [14], [15], [19]). I G C Qr is a relatively open set, we denote

(1 W2NG) and Wi (G) = () Wh..(G

ploc
1<p<oo 1<p<oo

Since V' € L{2.(Qr), any solution of (1.17) belongs to Wiee(Qr).

PROPOSITION 4.1. Let u € Wioe(Qr) be a positive solution (1.17). Assume
that, for some x € R™, there exists an open bounded neighborhood U of x such that

(4.1) // gu(y,t)x/(y,t)dms <0

Then v € LY(U x (0,T)) and there exists a unique positive Radon measure y in U
such that

t—0

lim u(y,t)(b(z)dz:/(b(z)du, Vo € C3°(U).
U U

Proof. Since Vu € LY(U x (0,T)) the following problem has a weak solution v
(see [14]).

ov—Av = Vu, in U x (0,7,
v(z,t) = 0 on 9U x (0,T]
v(z,0) = 0 in U.

Thus the function w = u+ v satisfies the heat equation. Thus there exists a unique
Radon measure p such that

lim [ w(y,t)¢(z)dx = /Uqb(:n)d,u, Vo € Cg°(U).

t—0 Jy
And the result follows since the initial data of v is zero. O
We set
(4.2)

R(u) = {y € R™ : d bounded neighborhood U of y, // u(y, t)V (y, t)dzdt < oo} )
Q7
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Then R(u) is open and there exists a unique positive Radon measure p on R(u)
such that

(4.3) lim u(y,t)¢(z)dz:/ ¢(x)dp, Vo € CF(R).
R R

t—0

PROPOSITION 4.2. Let u € Wioe(R™ x (0,T]) be a positive solution of (1.17).
Assume that, for some x € R™, there holds

(4.4) // u(y, t)V (y, t)dydt = oo
U
T
for any bounded open neighborhood U of x. Then
(4.5) limsup/ u(y, t)dy = co.
t—0 U

Proof. We will prove it by contradiction. We assume that there exists an open
neighborhood of x such that

/ u(y,t)dy < M < oo vt € (0,T).
U

Then H“HLl(Qg) < MT. Let B,(z) CC U for some r > 0, and ¢ € C5°(B,(x)),
such that ¢ = 1in Bz(z), ( =0 in By(z) and 0 < ¢ < 1. Then since u is a positive
solution we have

/atug“dac—/ uACdx—i—/ Vuldx =0 = Vudacg/ atug“dx—/uACdm:
U U U By U U

/8tu§dz—/ uACd:c+/ Vu(de =0= Vudxg—/ Owudx + M || AC]| oo -
U U U Bg U

Integrating the above inequality on (s, T), we get

T
(4.6) / / Vudadr < —/ u(m,T)dx—i—/ u(ey5)do + [l oy 1AC -
s r U U
2

Letting s — 0, we reach a contradiction. O

Remark. It is not clear wether there holds

(4.7) liminf/ u(y, t)dy = co.
U

t—0
However, it follows from (4.6) that if u € L'(Q%), the above equality holds.
DEFINITION 4.3. If u is a positive solution of (1.17), we set S(u) = R™\ R(u).
The couple (S(u), ) is called the initial trace of u, denoted by tr;—oy(u). The sets

R(u) and S(u) are respectively the regular and the singular sets of try—oy(u) and
€ ML (R(w)) is its regular part.

Example Take V(z,t) = ct~ !, ¢ > 0. If u satisfies
(4.8) 0w — Au + %u =0

then v(z,t) = t°u(x,t) satisfies the heat equation. Thus, if u > 0, there exists
€ My (R™) such that

(4.9) u(z, t) =t~ Hu|(z,t).
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This is a representation formula. Notice that Vu(x,t) = ct=¢~'H[u](z, t), therefore
the regular set of trg;—oy(u) may be empty.

PROPOSITION 4.4. AssumeV satisfies (1.16) and let uw € Wi,.(Qr) be a positive
solution of (1.17) with initial trace (S(u), p). Then u > uy,,.

Proof. We assume S(u) # R™ otherwise the result is proved. Let G and E be
open bounded domains such that G CC E CC R(u). Let 0 < 0 = inf{|z — y| :
r € G, y € E°}. Choose R > 0 such that £ CC Bgr. Let {t;}32; be a decreasing
sequence converging to 0. We denote by u; the weak solution of the problem

Ow—Av+Vu=0 in Br x (t;,T]
v(z,t) =0 on 0Bgr x (t;,T]
(., t5) = xau(, t;) in Br x {t;},
where x is the characteristic function on G. Let UJR, be the solution
Oov—Av=0 in R™ x (t;, 0]
v(.,t5) = xoul., t;) in R™ x {¢;}.

Then by maximum principle we have uf < u and uf < v; in Bg X (t;,T], for

any j € N. By standard parabolic estimates, we may assume that the sequence

uf converges locally uniformly in Q?R to a function uf* < u. Moreover, since

Xatu(st;) — Xaitu in the weak™® topology, we derive from the representation
formula that v; — H[xgp.]. Furthermore uf* < v, which implies X(tj7T)uf — uf

in L1(Q5™). There also holds

T T T
/ / ulVdrdt = / / ulVdxdt + / / ulVdadt,
t; JBr t; JE t; JBR\E

and, by the choice of F and dominated convergence theorem,

T T T T
/ / usdzdt < / / uVdzxdt < co = lim / / usdzdt = / / ufVdzdt.
t; JE 0o JE J7 Jt, JE 0o JE

Furthermore, for any = € B \ E,

1 3 _ \ﬂ(v:yt\z) i 1 T (1521 ) 4
()= —" =t ti)dy < [ ——— =t tj)dy.
v (1) (M(ttj)) /ne xau(y,tj)dy < (M(ttj)) e /GU(y, i)dy

Next, since V(z,t) < Ct~" and ul? < v;, we obtain

T T
(4.10) lim / / ulVdadt = / / uVdadt,
J—ro0 t; BR\E 0 BR\E

by using the previous estimate and the fact that xgpy(z,t;) = Xy in the weak*
topology. It follows X(tj,T)VUf — Vuft in LY( ?R). There holds also uZ < u;
by the maximum principle, the mapping R — ug is increasing and bounded from
above by u. In view of Lemma 3.15,

hm ’lLG = uqg <u
—_ )
R—o0

and ug is a positive weak solution of
Ov—Av+Vu=0 in Qr
v(.,0) = xGlu in R™



26 KONSTANTINOS T. GKIKAS AND LAURENT VERON

Consider an increasing sequence {G;}$2, of bounded open subsets, G; CC R(u),
with the property that |J;~; G; = R(u). In view of Lemma 3.15 the sequence
{ui = ug, }$2, is increasing and converges to @ < u. Also we have

t
ui(x,t) + / H(t — s,z,y)Vudyds = H(z —y,t)du;, Y(z,t) € Qr,
0 Rm™ R™

where p; = xag, - Now since p; — py,, by the monotone convergence theorem we
have

t
o)+ [ [ H = sg)Vidyds = [ o= y.0du, Ko0) € Qr,
0o JR"» R™
and % < u. this implies @ = u,,,, which ends the proof. O

Remark. Assumption (1.17) is too strong and has only been used in (4.10). Tt
could have been replaced by the following much weaker one: for any R > 0 there
exists a positive increasing function eg such that lim; o €(¢) = 0 satisfying

(4.11) Viz,t) <e @ y(z 1) e QBr.

We end this section with a result which shows that the stability of the initial
value problem with respect to convergence the initial data in the weak* topology
implies that the initial of positive solution has no singular part.

THEOREM 4.5. Assume V satisfies, for some 19 > 0,

(4.12) |éi|m // H(x —y,t)V(x,t + 7)dzxdt = 0, E Borel subset of Q27
—0 E

for any R > 0, uniformly with respect to y is a compact set and T € [0,79]. If u is
a positive solution of (1.17), then R(u) = R™

Proof. We assume that S(u) # 0 and if z € S(u) there holds

//B()Vudzdt:oo Vr > 0.
QTTZ

In view of Proposition 4.1, there exist two sequences {ry} and {t;} decreasing
to 0 such that

lim u(z,t;)de =00  VkeN.

I ) B, (2)

For k € N and m > 0 fixed, there exists j(k) such that
/ w(z, tj)de >m V5> j(k) €N,
By, (2)
and there exists £ > 0 such that
/ min{u(m,t]—(k)),fk}dac =m
By, (2)

Furthermore j(k) — oo when k — oo. Let R > max{r; : j = 1,2,...} and ux be
the solution of

Ov—Av+Vo=0 in R™ x (tj(x), T
’U(., tj) = XBrk (2) min{u(.,t]—(k)),fk} in R" x {tj(k)}a
Then xp, (2 min{u(., ;) ), {x} — md, in the weak sense of measures. By Proposi-
tion 5.5 we obtain that u > uy on Br(2) x (tjx), T]. Applying Proposition 2.8, and
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, —T
the remark here after, we conclude that ug(.,. + tk)) = ums, = mus, in L}, (Qr)
This implies u > mus_, and as m is arbitrary, u = oo, contradiction. O

4.2. The sweeping method. In this subsection we adapt to equation (1.17)
the sweeping method developed in [19] for constructing the boundary trace of
solutions of stationnary Shrodinger equations. If A C R™ is a Borel set, we denote
by

_l=?
Wi (4) = (s € M) 5 u(4) =0, [ e dp < ).
A
We recall that p* denotes the reduced measure associated to p.

PROPOSITION 4.6. Let u € Wi,.(Qr) be a positive solution of (1.17) with sin-
gular set S(u) G R™. If p € Mr 1 (S(u)), we set v, = inf{u,u,~}. Then
Oy — Avy, + Vo, >0 in Qr,
and v, admits a boundary trace v, (p) € M (S(w)). The mapping p — yu(p) is
nondecreasing and v, (u) < p.

Proof. It is classical that v, := inf{u,u,~} is a supersolution of (1.17) and
v, € &,/(Qr) as it holds with u,- . The function

t
(x,t) — w(z,t) = / H(t—s,z,y)V(y,s)vu(y, s)dyds
0 JRn
satisfies
Ow—Aw—Vw=0 in Qr
w(.,,0) =0 in R™ x {0}.

Thus v, +w is a nonnegative supersolution of the heat equation in Q7. It admits
an initial trace in My 1 (S(u)) that we denote by ., (u). Clearly v, (1) < p* < p
since v, < uy+ and 7, (@) is nondecreasing with respect to p as it is the case with
= uy- is. Finally, since vy, is a positive supersolution, it is larger that the solution
of 2.1 where the initial data u is replaced by v, (u), that is ., ) < vy. O

The proofs of the next four propositions are mere adaptations to the parabolic
case of similar results dealing with elliptic equations and proved in [19]; we omit
them.

PROPOSITION 4.7. Let
vs(u) = sup{vu(p) : 1€ Mr+(S(u))}.
Then vs(u) is a Borel measure on S(u).
DEFINITION 4.8. The Borel measure v(u) defined by
v(u)(A) = vs(u)(ANS(u) + pu(ANR(u), VACR" ABorel,
is called the extended initial trace of u, denoted by trf, _, (u).
PROPOSITION 4.9. If A C S(u) is a Borel set, then

vs(A) = sup{yu(n)(4) : 1 € Mr4(A)}.
PROPOSITION 4.10. There always holds v(Singy (R™)) = 0, where Singy (R™)
is defined in (3.14).

PROPOSITION 4.11. Assume V' satisfies condition (4.12). If u is a positive
solution of (1.17), then tr{,_q, (u) = pru € My 4 (R™).
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5. Appendix: the case of a bounded domain

5.1. The subcritical case. Let Q be a bounded domain with a C? boundary.
We denote by 21(£2) the space of Radon measures in 2, by 9t (Q) its positive cone
and by 9,(12) the space of Radon measures in  which satisfy

(5.1) [ il <.

for some weight function p : Q — Ry. As an important particular case p(xz) =
d*(z), where d(z) = dist (z,08?) and o« > 0. We consider the linear parabolic
problem

Oou — Au+ Vu =0, in QF=Qx (0,7
(5.2) u=0 on 9;Q% =099 x (0,7
u(.,0)=p in Q.

DEFINITION 5.1. We say that n € 9M4(Q) is a good measure if the above problem
has a weak solution w, i.e. there exists a function u € Ll(ng), such that Vu €
LY(Q%) which satisfies

T T

(5.3) —/ / u(0: + Agp)dxdt +/ / Vugpdzdt = / o(x,0)dp,
o Ja 0o Jo Q

Vo € Cl’l?l(Q_g) which vanishes on 61Q¥ and satisfies ¢(x, T) = 0.

DEFINITION 5.2. Let H®(x,y,t) be the heat kernel in Q. Then we say that
w € My(QY) is a admissible measure if

I lllscog = [ (] 19 = io)]) Vi ooyt < oo
T
The next a proposition is direct consequence of [14, Lemma 2.4].

PROPOSITION 5.3. Assume p € Mq(Q) and let u be a weak solution of problem
(5.2), then the following inequalities are valid

(i)
lulzs gy + IValleyapy < €0 0) [ ddl
(i)

T T
/O_/Q |u|(8t¢+A¢)dxdt+/0 /Q|U|V¢dxdt§/9¢(z,0)d|u|,
Ve € CLIQR), ¢ > 0.

)
" A /OT /Q(:c)uwxdt + /OT /Q Vutydudt < /ﬂd}(x)dlﬁ.,

where 1) is the solution of
Ay =1, in Q

=0 on Of.
Proof. For (ii), in [14, Lemma 2.4, p 1456], above from the relation (2.39), we can
take ¢ = ~(u)¢ for some 0 < ¢ € CHEL(QF), since u = 0 on §,Q%. For (iil) we
consider (as in [14, Remark 2.5]) ¢(x,t) = t1p(x). The inequality holds by the same
type of calculations as in [19]. O

(5.4)
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PROPOSITION 5.4. The problem (5.2) admits at most one solution. Further-
more, if | is admissible, then there exists a unique solution; we denote it u,,.

Similarly as Theorem 2.7 and Proposition 2.7, we have the following stability
results

PROPOSITION 5.5. (i) Assume that V satisfies the stability condition
(5.5) léilmo // H®(z,y, )V (y,t)d(x)dydt =0, VYE C Q, E Borel.
- E

uniformly with respect to y € Q. If {ur} is a bounded sequence in Mq(2) converg-
ing to p in the dual sense of My(Y), then (up,,Vuy,) converges to (u,, Vuy) in
LY Q%) x LY(QS). (i) Furthermore if
(5.6) léilmo // H(z,y,t +7,)V (y,t)d(x)dydt =0, VE C QS}, E Borel.
- E
uniformly with respect to y € Q and 7, € [0,79] converges to 0 and {ur} is in (i),
then the solutions u,, ., of the shifted problem
Oiu—Au+Vu=0 on Qx (1, T)
(5.7) u=20 on O X (1,T)
u(, ) =k on Qx {m}

(extended by 0 on (0,7y)) converge to u, in LL(Q$), and {Vu,,} converges to Vu,
in Ly(QF)-

Proof. We can easily see that the measure p, is admissible and uniqueness

holds; furthermore any admissible measure is a good measure is a good measure as
in Theorem 2.5, and

// u#ndxdst// u#an)dzdsSC/ dpn, < C.
Q% Q% Q@

The remaining of the proof is similar to the one of Theorem 2.7. O
5.2. The supercritical case.

LEMMA 5.6. Let {un }22 1 be an increasing sequence of good measures converging
to some measure p in the weak™ topology, then u is good.

Proof. Let u,, be the weak solution of (5.2) with initial data p,. Then by
Proposition 5.5 -(iii), {uy,} is an increasing sequence. By 5.5 -(i) the sequence
{uy, } is bounded in L*(Q$). Thus u,, — u € L*(Q%). Also by (iii) of Proposition
5.5, we have that Vu,, — Vu in Lh(Q%) Thus we can easily prove that u is a

weak solution of (5.2) with p as initial data. O
Let
(5.8) Zy ={zeQ: . HE(t, 2, y)V ()9 (y)dy = oo}
T

We note that, since H(t,z,y) < H(x — y,t) for any bounded Q with smooth
boundary, it holds Z‘g} C Zy. By the same arguments as in [19] we can prove the
following results

PROPOSITION 5.7. Let 1 be an admissible positive measure. Then u(Z3) = 0

PROPOSITION 5.8. Let p1 € My (Q) such that u(Z3F) = 0, then u is good.
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PROPOSITION 5.9. Let u € My4(Q) be a good measure. Then the following
assertions are equivalent:
(i) w(Z2) = 0.
(i) There exists an increasing sequence of admissible measures {p,} which con-
verges to u in the weak*-topology
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