Jean-Guillaume Dumas
email: jean-guillaume.dumas@univ-grenoble-alpes.fr

On Newton-Raphson iteration for multiplicative inverses modulo prime powers

We study algorithms for the fast computation of modular inverses. Newton-Raphson iteration over p-adic numbers gives a recurrence relation computing modular inverse modulo p m , that is logarithmic in m. We solve the recurrence to obtain an explicit formula for the inverse. Then we study different implementation variants of this iteration and show that our explicit formula is interesting for small exponent values but slower for large exponent, say of more than 700 bits. Overall we thus propose a hybrid combination of our explicit formula and the best asymptotic variants. This hybrid combination yields then a constant factor improvement, also for large exponents.

Introduction

The multiplicative inverse modulo a prime power is fundamental for the arithmetic of finite rings, for instance at the initialization phase of Montgomery's integer multiplication (see, e.g., [START_REF] Dussé | A cryptographic library for the Motorola DSP56000[END_REF][START_REF] Arazi | On calculating multiplicative inverses modulo 2 m[END_REF] and references therein). It is also used, e.g., to compute homology groups in algebraic topology for image pattern recognition [START_REF] Dumas | Computing simplicial homology based on efficient Smith normal form algorithms[END_REF], mainly to improve the running time of algorithms working modulo prime powers. Those can be used for the computation of the local Smith normal form [START_REF] Dumas | On efficient sparse integer matrix Smith normal form computations[END_REF][START_REF] Elsheikh | Fast computation of Smith forms of sparse matrices over local rings[END_REF], for instance in the context of algebraic topology: there linear algebra modulo p e can reveal torsion coefficients and inverses are required for pivoting in Gaussian elimination or minimal polynomial synthesis (see, e.g., [4, algorithm LRE] or [START_REF] Reeds | Shift-register synthesis (modulo m)[END_REF]).

Classical algorithms to compute a modular inverse uses the extended Euclidean algorithm and Newton-Raphson iteration over p-adic fields, namely Hensel lifting [START_REF] Krishnamurthy | Fast iterative division of p-adic numbers[END_REF]. Arazi and Qi in [START_REF] Arazi | On calculating multiplicative inverses modulo 2 m[END_REF] lists also some variants adapted to the binary characteristic case that cut the result in lower and higher bits.

In the following, we give another proof of Arazi and Qi's logarithmic formula using Hensel lifting. Then we derive an explicit formula for the inverse that generalizes to any prime power. Finally, we study the respective performance of the different algorithms both asymptotically and in practice and introduce a hybrid algorithm combining the best approaches.

Hensel's lemma modulo p m

For the sake of completeness, we first give here Hensel's lemma and its proof from Newton-Raphson's iteration (see e.g. [2, Theorem 7.7.1] or [3, §4.2] and references therein).

Lemma 1 (Hensel). Let p be a prime number, m ∈ N, f ∈ Z[X] and r ∈ Z such that f (r) = 0 mod p m . If f (r) = 0 mod p m and t = - f (r) p m f (r) -1 , then s = r + tp m satisfies f (s) = 0 mod p 2m . Proof. Taylor expansion gives that f (r+tp m) = f (r)+tp m f (r)+O(p 2m). Thus if t = -f (r) p m f (r) -1 , the above equation becomes f (s) = 0 mod p 2m .

Inverse modulo 2 m

Now, in the spirit of [START_REF] Knapp | Numerical analysis meets number theory: using root finding methods to calculate inverses mod p n[END_REF], we apply this lemma to the inverse function

F a (x) = 1 ax -1 (1)

Arazi and Qi's formula

We denote by an under-script L (resp. H) the lower (resp. higher) part in binary format for an integer. From Equation (1) and Lemma 1 modulo 2 i , if r = a -1 mod 2 i , then we immediately get

t = - 1 ax -1 2 i - 1 ax 2 -1
.

In other words t = 1-ar 2 i r mod 2 i . Now let a = b + 2 i a H mod 2 2i so that we also have r = b -1 mod 2 i and hence rb = 1 + 2 i α with 0 ≤ α < 2 i . Thus

ar = br + 2 i ra H = 1 + 2 i (α + ra H) which shows that t = -(α + ra H)r ≡ -((rb) H + (ra H) L) r mod 2 i (2)
The latter is exactly [1, Theorem 1] and yields the following Algorithm 1, where the lower and higher parts of integers are obtained via masking and shifting.

Lemma 2. Algorithm 1 requires 13 log 2 (m) + 1 arithmetic operations.

Algorithm 1 Arazi&Qi Quadratic Modular inverse modulo 2 m Input: a ∈ Z odd and m ∈ N .

Output: U ≡ a -1 mod 2 m . 1: U = 1; 2: for (i = 1; i < m; i <<= 1) do

3: b = a & (2 i -1); {b = a mod 2 i } 4: t 1 = U * b; t 1 >>= i; {(rb) H } 5: c = (a >> i) & (2 i -1); {a H } 6: t 2 = (U * c) & (2 i -1); {(ra H) L } 7:
t 1 + = t 2 ;

8:

t 1 * = U ; t 1 & = (2 i -1); {-t} 9:
t 1 = 2 i -t 1 ; {t} 10:

t 1 <<= i; {t2 i } 11: U | = t 1 ; {r + t2 i } 12: end for 13: U & = (2 m -1);
{r mod 2 m } 14: return U ;

Recurrence formula

Another view of Newton-Raphson's iteration is to create a recurrence. Equation [START_REF] Arazi | On calculating multiplicative inverses modulo 2 m[END_REF] gives

U n+1 = U n - 1 aUn -1 -1 aU 2 n = U n -(aU n -1)U n = U n (2 -aU n) (3)
This yields the loop of Algorithm 2, for the computation of the inverse, see e.g. [START_REF] Krishnamurthy | Fast iterative division of p-adic numbers[END_REF] or [3, §2.4]. Lemma 3. Algorithm 2 is correct and requires 6 log 2 (m) + 2 arithmetic operations.

Proof. The proof of correctness is natural in view of the Hensel lifting. First

U 0 = a -1 mod p. Second, by induction, suppose a • U n ≡ 1 mod p k . Then aU n = 1+λp k and aU n+1 = aU n (2-aU n) = (1+λp k)(2-1-λp k) = (1-λ 2 p 2k ≡ 1 mod p 2k). Finally U n ≡ a -1 mod p 2 n .
Remark 1. We present this algorithm for computations modulo p m but its optimization modulo a power of 2 is straightforward: replace the modular operations of for instance lines 5, 11 etc. by a binary masking:

x & = (2 i -1).
Remark 2. It is important to use a squaring in line 3. Indeed squaring can be faster than multiplication, in particular in the arbitrary precision setting [START_REF] Zuras | More on squaring and multiplying large integers[END_REF]. In the case of Algorithm 2, the improvement over an algorithm of the form temp = 2 -a * U ; temp% = p m ; U * = temp; U % = p m ; is of about 30%.

Algorithm 2 Hensel Quadratic Modular inverse Input: p ∈ Z a prime, a ∈ Z coprime to p, and m ∈ N . Output: U ≡ a -1 mod p m .

1: U = a -1 mod p; {extended gcd} 2: for (i = 2; i < m; i <<= 1) do

3: temp = U * U ; {U 2 n } 4: temp * = a; {aU 2 n } 5: temp % = p i ; {temp mod p i } 6: U <<= 1; {2U n } 7: U -= temp; {U n (2 -aU n)} 8: end for 9: temp = U * U ; {U 2 n } 10: temp * = a; {aU 2 n } 11: temp % = p m ; {temp mod p m } 12: U <<= 1; {2U n } 13: U -= temp; {U n (2 -aU n)} 14: U % = p m ;
{U mod p m } 15: return U ; Remark 3. Note that for Algorithms 1 and 2, a large part of the computation occur during the last iteration of the loop when 2 i is closest to 2 m . Therefore, a recursive version cutting in halves will be more efficient in practice since the latter will be exactly done at i = m/2 instead of at the largest power of 2 lower than m. Moreover this improvement will take place at each recursion level. We thus give in the following the recursive version for Formula (3), the one for a recursive version of Arazi&Qi is in the same spirit.

Algorithm 2' Recursive Hensel Input: p ∈ Z a prime, a ∈ Z coprime to p, and m ∈ N .

Output: r ≡ a -1 mod p m . 1: if m == 1 then return a -1 mod p; end if {ext. gcd} 2: h = m 2 3: b = a % p h ; {b = a mod p h } 4: r =RecursiveHensel(p, b, h); 5: temp = r * r; {r 2 } 6: temp * = a; {ar 2 } 7: temp % = p m ; {temp mod p m } 8: r <<= 1; {2r} 9: r -= temp; {r(2 -ar)} 10: r % = p m ;
{r mod p m } 11: return r;

Factorized formula

We now give an explicit formula for the inverse by solving the preceding recurrence relation, first in even characteristic.

We denote by H n = aU n a new sequence, that satisfies

H n+1 = H n (2 -H n). With H 0 = a we get H 1 = a(2 -a) = 2a -a 2 = 1 -(a -1) 2 1 , by induction, supposing that H n = 1 -(a -1) 2 i , we get H n+1 = 1 -(a -1) 2 n 2 -1 + (a -1) 2 n = 1 2 -(a -1) 2 n 2 = 1 -(a -1) 2 n+1
Using the remarkable identity, this in turn yields:

H n = a(2 -a) n-1 i=1 1 + (a -1) 2 i ;
therefore, with U 0 = 1 and U 1 = 2 -a we have that

U n = (2 -a) n-1 i=1 1 + (a -1) 2 i (4)
The latter equation gives immediately rise to the following Algorithm 3. amone & = (2 m -1); {(a -1) 2 i mod 2 m } 7:

U * = (amone + 1);

8:
U & = (2 m -1); {U mod 2 m } 9: end for 10: return U ; Lemma 4. Algorithm 3 is correct and requires 5 log 2 (m s) + 2 arithmetic operations.

Proof. Modulo 2 m , a is invertible if and only if a is odd, so that a = 2 s t + 1 and therefore, using Formula (4), we get

aU n = H n = 1 -(a -1) 2 n = 1 -(2 s t) 2 n ≡ 1 mod 2 s2 n . Thus, U log 2 (m s) mod 2 m ≡ a -1 mod 2 m .
There are two major points to remark with this variant:

1. It performs fewer operations than previous algorithms. Therefore we will see that this algorithm has a worse asymptotic complexity but is very efficient in practice for small exponents.

Generalization modulo any prime power

The formula generalizes directly for any prime power:

Theorem 1. Let p be a prime number, a coprime to p and b = a -1 mod p is the inverse of a modulo p. Let also V n be the following sequence:

V 0 = b ≡ a -1 mod p, V n = b(2 -ab) n-1 i=1 1 + (ab -1) 2 i
(5)

Then V n ≡ a -1 mod p 2 n .
Proof. The proof is similar to that of Lemma 3 and follows also from Hensel's lemma. From the analogue of Equation (4), we have a

• V n = 1 -(ab -1) 2 n . Now as a • b = 1 + λp, by the definition of b we have a • V n = 1 -(ab -1) 2 n = 1 -(λp) 2 n ≡ 1 mod p 2 n .

Complexity analysis over arbitrary precision

We provide here the equivalents of the complexity results of the previous section but now for arbitrary precision: the associated binary complexity bounds for the different algorithms are given here with classical arithmetic operations on integer (i.e. without fast variants like Karatsuba or DFT). We thus now suppose that masking and shifting as well as addition are linear and that multiplication is quadratic (O 2m 2 operations to multiply to elements of size m).

Lemma 5. Using classical arithmetic, Algorithm 1 requires

O 2m 2 + 10m binary operations.

Proof. Following the algorithm, the complexity bound becomes Proof. Following the algorithm, the complexity bound becomes

O   m + log 2 (m)-1 j=1 3 • 2(2 j) 2 + 1(2 j)   = O 2m 2 + 10m .
O   2 • 2m 2 + 5m + log 2 (m)-1 j=2 2 • 2(2 j) 2 + 4(2 j)   = O 16 3 m 2 + 9m .
Lemma 7. Using classical arithmetic, Algorithm 3 requires

O 4m 2 + 2m log 2 (m) binary operations.
Proof. Similarly, here we have

O   log 2 (m)-1 j=1 2 • 2m 2 + 2m   = O 4m 2 + 2m log 2 (m) .

Experimental comparisons

The point of the classical Newton-Raphson algorithms (as well as Arazi and Qi's variant) is that it works with modular computations of increasing sizes, whereas the explicit formula requires to work modulo the highest size from the beginning.

On the one hand we show next that this gives an asymptotic advantage the recurring relations. On the other hand, in practice, the explicit formula enables much faster performance for say cryptographic sizes. All experiments have been done on an Intel Xeon W3530, 2.8 GHz, running linux debian1

Over word-size integers

Using word-size integers, the many masking and shifting required by recurring relations do penalize the performance, where the simpler Algorithm 3 is on average 26% faster on a standard desktop PC, as shown on Figure 1. Differently, Arazi and Qi's variant suffers from the manipulations required to extract the low and high parts of integers.

Figure 1: Modular inverse on 64 bits machine words

Over arbitrary precision arithmetic

From Lemma 7, we see that the explicit formula adds a logarithmic factor, asymptotically. In practice, Figure 2 shows that using GMP 1 , the asymptotic behavior of Algorithm 1 becomes predominant only for integers with more than 1200 bits. For the Newton-Raphson iteration the asymptotic behavior of Algorithm 2 becomes predominant even sooner, for integers with about 640 bits. Below that size, Algorithm 3 is better.

Remark 4. Now, in [START_REF] Krishnamurthy | Fast iterative division of p-adic numbers[END_REF][START_REF] Knapp | Numerical analysis meets number theory: using root finding methods to calculate inverses mod p n[END_REF], the recurrence relation from (3), is extended2 to X n+1 = 1-(1-aXn) r a for a fixed r. This allows a faster convergence, by a factor of log 2 (r).

Unfortunately the price to pay is to compute a r-th power at each iteration (instead of a single square), which could be done, say by recursive binary squaring, but at a price of log 2 (r) squarings and between 0 and log 2 (r) multiplications. Overall there would be no improvement in the running time.

Hybrid algorithm

With the thresholds of Figure 2 and from the previous algorithms, we can then use a classical hybrid strategy which is better than all of them everywhere: for small exponents it uses the explicit formula of Algorithm 3; then for larger exponents:

1. it starts to compute the inverse recursively at half the initial exponent; 2. then, to lift the inverse modulo the double exponent, it uses the classical Hensel formula of Equation (3), and switches to Arazi&Qi formula of Equation (2), only for exponents larger than 9000 bits.

Actually, the lift switches back to Hensel formula after 10 6 bits: indeed on the used computer quasi linear multiplication via FFT comes into play in GMP and the analysis of Section 4 is not relevant anymore. The obtained algorithm is on average 21% times faster than any other direct lifting alone as shown with the curve (4) of Figure 2 (recall that on Figure 2 ordinates are presented in a logarithmic scale) and also on the ratios of Figure 3.

Conclusion

We have studied different variants of Newton-Raphson's iteration over p-adic numbers to compute the inverse modulo a prime power. We have shown that a new explicit formula can be up 26% times faster in practice than the recursive variants for small exponents. Asymptotically, though, the latter formula suffers from a supplementary logarithmicfactor in the power (or a doubly logarithmic factor in the prime power) that makes it slower for large arbitrary precision integers. However, using each one of the best two algorithms in their respective regions of efficiency, we were able to use a hybrid strategy with improved performance of 21% on average at any precision.

More studies are to be made for the respective behavior of the algorithms in odd characteristic. Indeed there bit masking is replaced by extended euclidean algorithms variants and their respective performance could be different.

2 .

 2 It must compute with the full p-adic development (modulo operations are made modulo 2 m and not 2 i .

Lemma 6 .

 6 Using classical arithmetic in even characteristic modulo 2 m , Algo-

Figure 2 :

 2 Figure 2: Modular inverse on arbitrary precision integers

Figure 3 :

 3 Figure 3: Ratios of modular inverse lifting algorithms over the hybrid method

The source code for the experiments is available on http://ljk.imag.fr/membres/ Jean-Guillaume.Dumas/Software/InvModTwoK. It uses GMP version 5.0.5 (http://gmplib. org), with givaro-3.7.2 C++ wrappers (http://givaro.forge.imag.fr)

this is to be compared with explicit Formula (4), V n+1 = Vn(1 + (1 -ab) 2 n), where the computation is done with the first inverse modp (recall that b ≡ a -1 mod p), where in the classical setting the computation is done with the inverse so far: Xn

Acknowledgment

Many thanks to Christoph Walther, who found two typographic mistakes in the published version of Algorithm 2' (2 h where p h was correct, line 3 and p h where p m was correct, line 7) [11].