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Abstract

We study algorithms for the fast computation of modular inverses. We
first give another proof of the formulas of [1] for the modular inverse mod-
ulo 2m, derived from Newton-Raphson iteration over p-adic fields, namely
Hensel’s lifting. From the expression of Newton-Raphson’s iteration we
then derive a recurrence relation and an actually explicit formula for the
modular inverse, generalizing to any prime power modulus. On the one
hand, we show then that despite a worse complexity the two newly ob-
tained algorithms can be 4 times faster for small exponents. On the other
hand, these two algorithms become slower for arbitrary precision integers
of more than 1500 bits.

1 Introduction

The multiplicative inverse modulo a prime power is fundamental for the arith-
metic of finite rings (see e.g. [1] and references therein). It is also used for
instance to compute homology groups in algebraic topology for image pattern
recognition [3].

Classical algorithms to compute a modular inverse uses the extended Eu-
clidean algorithm and [1] lists also some variants, linear in the power of the
prime, adapted to the binary characteristic case. Arazi and Qi also present in
[1] a method working in characteristic 2 that has a complexity logarithmic in
the prime power.

In the following, we give another proof of Arazi and Qi’s logarithmic formula
using classical Newton-Raphson iteration over p-adic fields. The latter is usually
called Hensel lifting. Then from this variation we derive two new logarithmic
algorithms and an explicit formula for the inverse that generalizes to any prime
power. Finally, we study the respective performance of the three algorithms
both asymptotically and in practice.
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2 Hensel’s lemma modulo pm

For the sake of completeness, we first give here Hensel’s lemma and its proof
from Newton-Raphson’s iteration (see e.g. [2, Theorem 7.7.1] and references
therein).

Lemma 1 (Hensel). Let p be a prime number, m ∈ N, f ∈ Z[X] and r ∈ Z
such that f(r) = 0 mod pm. If f ′(r) 6= 0 mod pm and

t = −f(r)

pm
f ′(r)−1,

then s = r + tpm satisfies f(s) = 0 mod p2m.

Proof. Taylor expansion gives that f(r+tpm) = f(r)+tpmf ′(r)+O(p2m). Thus

if t = − f(r)
pm f ′(r)−1, the above equation becomes f(s) = 0 mod p2m.

3 Inverse modulo 2m

Now, we apply this lemma to the inverse function

Fa(x) =
1

ax
− 1 (1)

3.1 Arazi and Qi’s formula

We denote by an under-script L (resp. H) the lower (resp. higher) part in
binary format for an integer. From equation 1 and lemma 1 modulo 2i, if
r = a−1 mod 2i, then we immediately get

t = −
1
ax − 1

2i

(
− 1

ax2

)−1
.

In other words t = 1−ar
2i r mod 2i. Now let a = b + 2iaH mod 22i so that we

also have r = b−1 mod 2i and hence rb = 1 + 2iα with 0 ≤ α < 2i. Thus
ar = br + 2iraH = 1 + 2i(α+ raH) which shows that

t = −(α+ raH)r mod 2i = − ((rb)H + (raH)L) r mod 2i.

The latter is exactly [1, Theorem 1] and yields the following algorithm 1, where
the lower and higher parts of integers are obtained via masking and shifting.

Lemma 2. Algorithm 1 requires 13blog2(m)c arithmetic operations.
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Algorithm 1 Hensel Quadratic Modular inverse

Input: a ∈ Z odd and m ∈ N
Output: U ≡ a−1 mod 2m

1: U = 1;
2: for (i = 1; i < m; i <<= 1) do
3: b = a& (2i − 1); {b = a mod 2i}
4: t1 = U ∗ b; t1 >>= i; {(rb)H}
5: c = (a >> i) & (2i − 1); {aH}
6: t2 = (U ∗ c) & (2i − 1); {(raH)L}
7: t1+ = t2;
8: t1∗ = U ; t1 & = (2i − 1); {−t}
9: t1 <<= i; {−ti2}

10: U | = 2i − t1; {r + t12i}
11: U & = (22i − 1); {r mod 22i}
12: end for
13: return U ;

3.2 Recurrence formula

Another view of Newton-Raphson’s iteration is to create a recurrence. Equation
1 gives

Un+1 = Un −
1

aUn
− 1

− 1
aU2

n

= Un − (aUn − 1)Un = Un(2− aUn)

This yields the recursive loop of algorithm 2, for the computation of the
inverse.

Algorithm 2 Recursive Quadratic Modular inverse

Input: a ∈ Z odd, p is a prime and m ∈ N
Output: U ≡ a−1 mod pm

1: U = a−1 mod p; {extended gcd}
2: for (i = 0; i < m; i <<= 1) do
3: temp = 2− a ∗ U ; {2− aUn}
4: temp% = pm; {temp mod pm}
5: U∗ = temp; {Un(2− aUn)}
6: U% = pm; {U mod pm}
7: end for
8: return U ;

This algorithm can e.g. improve the running time of algorithms working
modulo prime powers. Those can be used for the computation of the local
Smith normal form [4, 5], for instance in the context of algebraic topology [3,
algorithm LRE].
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Lemma 3. Algorithm 2 is correct and requires 5dlog2(m)e+ 1 arithmetic oper-
ations.

Proof. The proof of correctness is natural in view of the Hensel lifting. First
U0 = a−1 mod p. Second, by induction, suppose a · Un ≡ 1 mod pk. Then
aUn = 1+λpk and aUn+1 = aUn(2−aUn) = (1+λpk)(2−1−λpk) = (1−λ2p2k ≡
1 mod p2k). Finally Un ≡ a−1 mod p2

n

.

Remark 1. We present this algorithm for computations modulo pm but its opti-
mization modulo a power of 2 is straightforward: replace the modular operations
of lines 4 and 6 by a binary masking: x& = 2m − 1.

3.3 Factorized formula

We now give an explicit formula for the inverse by solving the preceding recur-
rence relation, modulo 2m this time.

We denote by Hn = aUn a new sequence, that satisfies Hn+1 = Hn(2−Hn).

With H0 = a we get H1 = a(2 − a) = 2a − a2 = 1 − (a − 1)2
1

, by induction,

supposing that Hn = 1− (a− 1)2
i

, we get

Hn+1 =
(

1− (a− 1)2
n
)(

2− 1 + (a− 1)2
n
)

= 12 −
(

(a− 1)2
n
)2

= 1− (a− 1)2
n+1

Using the remarkable identity, this in turn yields

Hn = a(2− a)

n−1∏
i=1

(
1 + (a− 1)2

i
)

Therefore, with U0 = 1 and U1 = 2− a we have that

Un = (2− a)

n−1∏
i=1

(
1 + (a− 1)2

i
)

(2)

Lemma 4. Algorithms 3 is correct and requires 5blog2(m)c+ 2 arithmetic op-
erations.

Proof. Modulo 2m, a is invertible if and only if a is odd, so that a = 2t+ 1 and
therefore, using formula (??), we get

aUn = Hn = 1− (a− 1)2
n

= 1− (2t)2
n

≡ 1 mod 22
n

Therefore,
Udlog2(m)e mod 2m ≡ a−1 mod 2m
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Algorithm 3 Explicit Quadratic Modular inverse modulo 2m

Input: a ∈ Z odd and m ∈ N
Output: U ≡ a−1 mod 2m

1: U = 2− a;
2: amone = a− 1;
3: for (i = 1; i < m; i <<= 1) do

4: amone∗ = amone; {(a− 1)2
i}

5: amone& = 2m − 1; {(a− 1)2
i

mod 2m}
6: U∗ = (amone+ 1);
7: U & = 2m − 1; {U mod 2m}
8: end for
9: return U ;

3.4 Generalization modulo any prime power

The formula generalizes directly for any prime power as follows:

Theorem 1. Let p be a prime number, a coprime to p and b = a−1 mod p is
the inverse of a modulo p. Let also Vn be the following sequence:{

V0 = b ≡ a−1 mod p,

Vn = b(2− ab)
∏n−1

i=1

(
1 + (ab− 1)2

i
) (3)

Then
Vn ≡ 1 mod p2

n

. (4)

Proof. The proof is similar to that of lemma 3 and follows also from Hensel’s
lemma. From the analogue of equation (2), we have a·Vn = 1−(ab−1)2

n

. Now as
a·b = 1+λp, by the definition of b we have a·Vn = 1−(ab−1)2

n

= 1−(λp)2
n ≡ 1

mod p2
n

.

4 Experimental comparisons

The point of the algorithm Arazi and Qi is that it works with modular compu-
tations of increasing sizes, whereas the explicit formula requires to work modulo
the highest size from the beginning. On the hand we show next that this gives
an asymptotic advantage to Arazi and Qi’s algorithm. On the other hand, in
practice, the explicit formula enables much faster performance for say crypto-
graphic sizes.

4.1 Over word-size integers

Using word-size integers, the many masking and shifting required by Arazi and
Qi’s algorithm do penalize the performance, where the simpler algorithm 3 can
as much as 4 times faster on a standard desktop PC, as shown on figure 1.
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Figure 1: Modular inverse on 64 bits machine words

4.2 Over arbitrary precision arithmetic

We first provide the equivalents of the complexity results of the previous section
but now for arbitrary precision: the associated binary complexity bounds for
the different algorithms supports then the asymptotic analysis in the beginning
of this section.

Lemma 5. Using classical arithmetic, algorithm 1 requires

O
(
4m2 + 20m

)
binary operations.

Proof. We suppose that masking and shifting as well as addition are linear
and that multiplication is quadratic. Then the complexity bound becomes

O
(∑log2(m)

j=1 3(2j)2 + 10(2j)
)

= O
(
4m2 + 20m

)
.

Lemma 6. Using classical arithmetic, algorithm 3 requires

O
((

2m2 + 3m
)
blog2(m)c

)
binary operations.

Proof. Similarly, here we haveO
(∑log2(m)

j=1 2m2 + 3m
)

= O
(
2m2 log2(m) + 3m log2(m)

)
.
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Thus we see that the explicit formula adds a logarithmic factor, asymp-
totically. Figure 2 shows that using GMP1 this asymptotic behavior becomes
predominant only for integers with more than 1500 bits.
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Figure 2: Modular inverse on arbitrary precision integers

5 Conclusion

We have studied different variants of Newton-Raphson’s iteration over p-adic
numbers to compute the inverse modulo a prime power. We have derived to new
variants that can be up to 4 times faster in practice than the previous version of
Arazi and Qi’s. Asymptotically, though, the latter formula gains a logarithmic
factor in the power (or a doubly logarithmic factor in the prime power) that
makes it faster for large arbitrary precision integers.

A generalization of Arazi and Qi’s formula, requiring only increasing re-
maindering, could naturally be derived, as we derived generalizations to our
explicit formula. Unfortunately, there, the computations of the high and low
parts modulo p would require quite a lot of computing effort.
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