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Abstract

For fixed size sampling designs with high entropy it is well known that the variance

of the Horvitz-Thompson estimator can be approximated by the Hájek formula. The

interest of this asymptotic variance approximation is that it only involves the first order

inclusion probabilities of the statistical units. We extend this variance formula when

the variable under study is functional and we prove, under general conditions on the

regularity of the individual trajectories and the sampling design, that we can get a uni-

formly convergent estimator of the variance function of the Horvitz-Thompson estimator

of the mean function. Rates of convergence to the true variance function are given for

the rejective sampling. We deduce, under conditions on the entropy of the sampling

design, that it is possible to build confidence bands whose coverage is asymptotically

the desired one via simulation of Gaussian processes with variance function given by the

Hájek formula. Finally, the accuracy of the proposed variance estimator is evaluated on

samples of electricity consumption data measured every half an hour over a period of

one week.

Keywords : covariance function, finite population, first order inclusion probabilities, Há-

jek approximation, Horvitz-Thompson estimator, Kullback-Leibler divergence, rejective sam-

pling, unequal probability sampling without replacement.
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1 Introduction

Computing the variance of the Horvitz-Thompson estimator for unequal probability sam-

pling designs can be difficult because the variance formula involves second order probability

inclusions which are not always known. The Hájek variance formula, derived in Hájek (1964)

for rejective sampling is an asymptotic approximation which only requires the knowledge of

the first order inclusion probabilities and is easy to compute. It is shown in Hájek (1964) and

Chen et al. (1994) that, for given first order inclusion probabilities, the rejective sampling

is the fixed size sampling design with the highest entropy. The validity of this approxima-

tion is closely related to the value of the entropy of the considered sampling design. Hájek

(1981) proves that this approximation is also valid for the Sampford-Durbin sampling whereas

Berger (1998a) gives general conditions on the relative entropy of the sampling design, also

called Kullback-Leibler divergence, which justify the use of this approximated variance for-

mula. Variants and refinements of the Hájek variance formula as well as variance estimators

are proposed in Deville and Tillé (2005). Matei and Tillé (2005) show on simulations that

these approximations to the variance of Horvitz-Thompson estimators are effective, even for

moderate sample sizes, provided that the entropy of the underlying sampling design is high

enough. Recently Deville and Tillé (2005) and Fuller (2009) consider balanced, or approxi-

mately balanced, sampling algorithms which can be useful to build designs with fixed size and

given inclusion probabilities. They relate these sampling designs to the rejective sampling,

so that the Hájek variance approximation can be used. Note also that there exist other ways

to get an approximation to the variance of the Horvitz-Thompson estimator which do not

require the knowledge of the second order inclusion probabilities (see e.g. Shahbaz and Hanif

(2003)). These approaches do not rely on asymptotic developments and are not considered

in this work.

When the aim is to build confidence intervals, the asymptotic distribution of the Horvitz-

Thompson estimator is required. The Central Limit Theorem has been checked by Erdös

and Rényi (1959) and Hájek (1960) for the simple random sampling without replacement,

by Hájek (1964) for the rejective sampling and by Víšek (1979) for the Sampford sampling.

Berger (1998b) states that the Kullback Leibler divergence of the considered sampling design,

with respect to the rejective sampling, should tend to zero when the sample size gets larger

for the Horvitz-Thompson estimator to be asymptotically Gaussian.

In recent studies in survey sampling the target was not a mean real value or a mean

vector but a mean function (see Cardot and Josserand (2011) and Cardot et al. (2013b) for

the estimation of electricity consumption curves) and one important issue was how to build

confidence bands when using πps sampling designs. A rapid technique that is well adapted
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for large samples has been studied in Degras (2011) and Cardot et al. (2013a). It consists in

first estimating the covariance function of the mean estimator and then simulating a Gaussian

process, whose covariance function is the estimated covariance function, in order to determine

the distribution of its supremum. This strategy which has been employed successfully in

Cardot et al. (2013b) to build confidence bands necessitates to have an effective estimator

of the variance function of the Horvitz-Thompson estimator. The aim of this work is to

prove that under general assumptions on the sampling design and on the regularity of the

trajectories, the Hájek formula provides a uniformly consistent estimator of the variance

function. So, it is possible to assess rigorously confidence bands built by using the procedure

described previously.

The paper is organized as follows. The notations and our estimators are presented in

Section 2. In Section 3, we state our main result, namely the uniform convergence of the

variance function estimator obtained under broad assumptions on the regularity of the tra-

jectories and the sampling design. We deduce that if the Horvitz-Thompson estimator of

the mean curve is pointwise asymptotically Gaussian, then it also satisfies, under the same

conditions, a functional central limit theorem. The confidence bands obtained by the Gaus-

sian process simulation techniques have asymptotically the desired coverage. In section 4,

we evaluate the performance of the covariance function estimator on samples drawn from a

test population of N = 15055 electricity consumption curves measured every half an hour

over a one-week period. Note there are many ways of drawing samples with high entropy

sampling distribution and with given first order inclusion probabilities (see e.g. Brewer and

Hanif (1983), Tillé (2006), Bondesson et al. (2006) and Bondesson (2010)). Because of our

large population and large sample context, we use the vast version of the Cube algorithm

(Deville and Tillé (2004)) developed in Chauvet and Tillé (2006) for dealing with very large

populations (e.g., of millions of units). Finally, Section 6 contains some concluding remarks.

The proofs are gathered in an Appendix.

2 Variance estimation and the Hájek formula

Let us consider a finite population U = {1, ..., N} of known size N , and suppose that, for

each unit k of the population U , we can observe a deterministic curve Yk = (Yk(t))t∈[0,T ]. We

want to estimate the mean trajectory µN (t), t ∈ [0, T ], defined as follows:

µN (t) =
1

N

∑
k∈U

Yk(t).

We consider a sample s, with fixed size n, drawn from U according to a sampling design

pN (s), where pN (s) is the probability of drawing the sample s. The mean curve µN (t) is
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estimated by the Horvitz-Thompson estimator,

µ̂(t) =
1

N

∑
k∈s

Yk(t)

πk
=

1

N

∑
k∈U

Yk(t)

πk
1k, t ∈ [0, T ], (1)

where 1k is the sample membership indicator, 1k = 1 if k ∈ s and 1k = 0 otherwise. We

denote by πk = Ep(1k) the first order inclusion probability of unit k with respect to the

sampling design pN (s) and we suppose that πk > 0, for all units k in U. It is well known that,

for each value of t ∈ [0, T ], µ̂(t) is a design-unbiased estimator of µN (t), i.e. Ep(µ̂(t)) = µN (t).

We denote by πkl = Ep(1kl) with 1kl = 1k1l, the second order inclusion probabilities and we

suppose that πkl > 0 for all k, l ∈ U.

Since the sample size is fixed, the variance γp(t, t) for each instant t of the estimator µ̂(t)

is given by the Yates and Grundy formula (see Yates and Grundy (1953) and Sen (1953)),

γp(t, t) = −1

2

1

N2

∑
k∈U

∑
l∈U,l 6=k

(πkl − πkπl)
(
Yk(t)

πk
− Yl(t)

πl

)2

, (2)

and it is straightforward to express the covariance γp(r, t) of µ̂ between two instants r and t,

as follows

γp(r, t) = −1

2

1

N2

∑
k∈U

∑
l∈U,l 6=k

(πkl − πkπl)
(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)
. (3)

The variance formula (2) clearly indicates that if the first order inclusion probabilities

are chosen to be approximately proportional to Yk(t), the variance of the estimator µ̂(t) will

be small. In practice, we can consider a non-functional auxiliary variable X of values xk
supposed to be positive and known for all the units k ∈ U. If X is nearly proportional to the

variable of interest, it can be very interesting to consider a sampling design whose first order

inclusion probabilities are given by

πk = n
xk∑
k∈U xk

.

There are many ways of building sampling designs with given first order inclusion probabilities

(see e.g Brewer and Hanif (1983) and Tillé (2006)) and we focus here on the designs with

high entropy, where the entropy of a sampling design pN (a discrete probability distribution

on U) is defined by

H(pN ) = −
∑
k∈s

pN (s) ln(pN (s))

with the convention 0 ln 0 = 0. It has been proven (see Hájek (1981) and Chen et al. (1994))

that, for given first order inclusion probabilities, the rejective sampling, or conditional Poisson

sampling, is the fixed size sampling design with the highest entropy. Then, a key result is

the following uniform approximation to the second order inclusion probabilities, for k 6= l,

πkl = πkπl

{
1− (1− πk)(1− πl)

d(π)
[1 + o(1)]

}
(4)
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where d(π) =
∑

k∈U πk(1 − πk) is supposed to tend to infinity. Note that this implies that

n, N and N − n tend to infinity. This asymptotic approximation is satisfied for the rejective

sampling and the Sampford-Durbin sampling which is also a high entropy sampling design

(see Hájek (1981)).

Remark 1. Formula (4) can be seen rather strange and we give an intuitive and simple

interpretation in terms of conditional covariance. Note that this is not a proof. Consider

a Poisson sampling design with inclusion probabilities p1, . . . , pN such that
∑

k∈U pk = n

and Ep(1k|#s = n) = πk where #s denotes the (random) sample size and 1k is the indicator

membership to the sample s of unit k (see Chen et al. (1994) for the existence of such sampling

design). Considering now the covariance given the sample size, cov(1k,1l|#s = n) = πkl −

πkπl, we get the following approximation, which is similar to (4), if we use the formula for

the conditional variance in a Gaussian framework,

cov(1k,1l|#s = n) ≈ cov(1k,1l)−
cov(1k,#s)cov(1l,#s)

var(#s)

≈ 0− πk(1− πk)πl(1− πl)∑
k∈U πk(1− πk)

since cov(1k,1l) = 0, cov(1k,#s) = pk(1− pk) and var(#s) =
∑

k∈U pk(1− pk) for Poisson

sampling and, for each unit k, pk tends to πk as d(π) tends to infinity (see Hájek (1964)).

Then, we obtain, for all (r, t) ∈ [0, T ] × [0, T ], the Hájek approximation γH(r, t) to the

covariance function cov(µ̂(t), µ̂(r)), by plugging in approximation (4) in (3),

γH(r, t) =
1

N2

[∑
k∈U

Yk(t)Yk(r)

πk
(1− πk)−

1

d(π)

(∑
k∈U

(1− πk)Yk(t)

)(∑
l∈U

(1− πl)Yl(r)

)]
,

(5)

and we consider in the following two estimators for the covariance

γ̂H(r, t) =
1

N2

d̂(π)

d(π)

[∑
k∈s

1− πk
π2k

Yk(t)Yk(r)−
1

d̂(π)

∑
k∈s

(
1− πk
πk

Yk(t)

)∑
l∈s

(
1− πl
πl

Yl(r)

)]
,

(6)

and γ̂∗H(r, t) = d(π)

d̂(π)
γ̂H(r, t), where d̂(π) =

∑
k∈s(1− πk) is the Horvitz-Thompson estimator

of d(π). Note that γ̂H(r, t) is a slightly modified functional analogue of the variance estimator

proposed by Berger (1998a) in the real case. More exactly, the variance estimator considered

by Berger (1998a) is γ̂H(t, t) multiplied by the correction factor n/(n−1) so that the expres-

sion is exact for simple random sampling without replacement. The second estimator, γ̂∗H(r, t)

is the extension to the functional case of the Deville and Tillé (2005)’s estimator. This latter

approximation of the variance has been shown to be effective on simulation studies, even for

moderate sample sizes, by Matei and Tillé (2005).

We can easily show the following property.
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Proposition 2.1. If, for all t ∈ [0, T ], there is a constant ct such that Yk(t) = ctπk then

γH(r, t) = 0 and γ̂H(r, t) = γ̂∗H(r, t) = 0.

With real data, we do not observe Yk(t) at all instants t in [0, T ] but only for a finite set

of D measurement times, 0 = t1 < ... < tD = T . In functional data analysis, when the noise

level is low and the grid of discretization points is fine, it is usual to perform a linear interpo-

lation or a smoothing of the discretized trajectories in order to obtain approximations of the

trajectories at every instant t (see Ramsay and Silverman (2005)). When there are nearly

no measurement errors and when the trajectories are regular enough, Cardot and Josserand

(2011) showed that linear interpolation can provide sufficiently accurate approximations of

the trajectories. Thus, for each unit k in the sample s, we build the interpolated trajectory

Yk,d(t) = Yk(ti) +
Yk(ti+1)− Yk(ti)

ti+1 − ti
(t− ti), t ∈ [ti, ti+1],

and define the estimator of the mean curve µN (t) based on the discretized observations as

follows

µ̂d(t) =
1

N

∑
k∈s

Yk,d(t)

πk
, t ∈ [ti, ti+1]. (7)

Its covariance function is then estimated by

γ̂H,d(r, t) =
1

N2

d̂(π)

d(π)

[∑
k∈s

1− πk
π2k

Yk,d(t)Yk,d(r)−
1

d̂(π)

∑
k∈s

(
1− πk
πk

Yk,d(t)

)∑
l∈s

(
1− πl
πl

Yl,d(r)

)]
,

(8)

and we show in the next section that it is an uniformly consistent estimator of the variance

function. Replacing Yk(t) by Yk,d(t) in γ̂∗H(r, t), yields the variance estimator γ̂∗H,d(r, t) based

on the discretized values.

3 Asymptotic properties

All the proof are postponed in an Appendix.

3.1 Assumptions

To demonstrate the asymptotic properties, we must suppose that the sample size and the

population size become large. Therefore, we adopt the asymptotic approach of Hájek (1964),

assuming that d(π)→∞. Note that this assumption implies that n→∞ and N − n→∞.

We consider a sequence of growing and nested populations UN with size N tending to infinity

and a sequence of samples sN of size nN drawn from UN according to the sampling design

pN (sN ). The first and second order inclusion probabilities are respectively denoted by πkN
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and πklN . For simplicity of notations and when there is no ambiguity, we drop the subscript

N . To prove our asymptotic results we need to introduce the following assumptions.

A1. We assume that lim
N→∞

n

N
= π ∈ (0, 1).

A2. We assume that min
k∈U

πk ≥ λ > 0, min
k 6=l∈U

πkl ≥ λ∗ > 0 and

πkl = πkπl

{
1− (1− πk)(1− πl)

d(π)
[1 + o(1)]

}
uniformly in k and l.

A3. There are two positive constants C2 and C3 and β > 1/2 such that, for all N and for

all (r, t) ∈ [0, T ]× [0, T ],

1

N

∑
k∈U

(Yk(0))2 < C2 and
1

N

∑
k∈U

(Yk(t)− Yk(r))2 < C3|t− r|2β.

A4. There are two positive constants C4 and C5 such that, for all N and for all (r, t) ∈

[0, T ]× [0, T ],

1

N

∑
k∈U

(Yk(0))4 < C4 and
1

N

∑
k∈U

(Yk(t)− Yk(r))4 < C5|t− r|4β.

A5. We assume that

lim
N→∞

max
(k1,l1,k2,l2)∈D4,N

|Ep [(1k1l1 − πk1πl1)(1k2l2 − πk2πl2)] | = 0

where 1kl is the sample membership of the couple (k, l) andD4,N is the set of all distinct

quadruples (i1, ..., i4) from U.

Assumptions A1 and A2 are classical hypotheses in survey sampling and deal with the

first and second order inclusion probabilities. They are satisfied for high entropy sampling

designs with fixed size (see for example Hájek (1981)). They directly imply that cn ≤ d(π) ≤

n, for some strictly positive constant c. The assumption A2 implies that lim sup
N→∞

n max
k 6=l∈U

|πkl−

πkπl| < C1 <∞. It also ensures that the Yates-Grundy variance estimator is always positive

since πkl ≤ πkπl.

Assumption A3 and A4 are regularity conditions on the individual trajectories. Even

if point-wise consistency, for each fixed value of t, can be proven without any condition

on β, these regularity conditions are required to get the uniform convergence of the mean

estimator (see Cardot and Josserand (2011)). Note finally that assumption A5 is true for

SRSWOR, stratified sampling and rejective sampling (see Arratia et al. (2005) and Boistard
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et al. (2012)). More generally, it also holds for unequal probability designs with large entropy

as shown in the following proposition. Let us recall before the definition of the Kullback-

Leibler divergence K(pN , prej),

K(pN , prej) =
∑
k∈s

pN (s) ln

(
pN (s)

prej(s)

)
, (9)

which measures how a sampling distribution pN (s) is distant from a reference sampling

distribution, chosen here to be the rejective sampling prej(s) since it is the design with

maximum entropy for given first order inclusion probabilities. We can now state the following

proposition which gives an upper bound of the rates of convergence to zero of the quantity

in A4 in terms of Kullback-Leibler divergence with respect to the rejective sampling.

Proposition 3.1. Let pN be a sampling design with the same first order inclusion probabilities

as prej . If d(π)→∞, then

max
(k1,l1,k2,l2)∈D4,N

|Ep [(1k1l1 − πk1πl1)(1k2l2 − πk2πl2)]| ≤ C

d(π)
+

√
K(pN , prej)

2

for some constant C.

A direct consequence of Proposition 3.1 is that assumption A5 is satisfied for the rejective

sampling as well as for the Sampford-Durbin design, whose Kullback-Leibler divergence, with

respect to the rejective sampling, tends to zero as the sample size n tends to infinity (see

Berger (1998b)). Note also that the Kullback-Leibler divergence has been approximated

asymptotically for other sampling designs such as the Pareto sampling in Lundqvist (2007).

3.2 Convergence of the estimated variance

Let us first recall Proposition 3.3 in Cardot and Josserand (2011) which states that the

estimator µ̂d is asymptotically design unbiased and uniformly convergent under mild as-

sumptions. More precisely, if assumptions (A1)-(A3) hold and if the discretization scheme

satisfies maxi∈{1,..,dN−1} |ti+1 − ti|2β = o(n−1), then for some constant C

√
nEp

{
sup
t∈[0,T ]

|µ̂d(t)− µN (t)|

}
≤ C.

We can now state our first result which indicates that the covariance function estimator

γ̂H,d(r, t) is pointwise convergent and that the variance function estimator γ̂H,d(t, t) is uni-

formly convergent. Note that additional assumptions on the sampling design are required in

order to obtain the convergence rates.
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Proposition 3.2. 1. Assume (A1)-(A5) hold and the sequence of discretization schemes

satisfies limN→∞maxi={1,..,dN−1} |ti+1 − ti| = 0. When N tends to infinity,

nEp {| γ̂H,d(r, t)− γp(r, t) |} → 0 (10)

for all (r, t) ∈ [0, T ]× [0, T ] and

nEp

{
sup
t∈[0,T ]

| γ̂H,d(t, t)− γp(t, t) |

}
→ 0. (11)

2. Under the same assumptions, the covariance function estimator γ̂∗H,d(r, t) satisfies (10)

and the variance function estimator γ̂∗H,d(t, t) satisfies (11).

A sharper result can be stated for the particular case of rejective sampling for which

accurate approximations to the multiple inclusion probabilities are available (see Boistard

et al. (2012)).

Proposition 3.3. Suppose that the sample is selected with the rejective sampling design.

Assume (A1)-(A4) hold and the sequence of discretization schemes satisfies

maxi={1,..,dN−1} |ti+1 − ti|2β = O(n−1). Then, for all (r, t) ∈ [0, T ]× [0, T ]

n3 Ep
[
(γ̂H,d(r, t)− γp(r, t))2

]
≤ C

for some positive constant C.

We can note in the proof, given in the Appendix, that the approximation error to the true

variance by the Hájek formula is asymptotically negligible compared to the sampling error.

3.3 Asymptotic normality and confidence bands

Let us assume that the Horvitz-Thompson estimator of the mean curve satisfies a Central

Limit Theorem for real valued quantities with new moment conditions

A6. There is some δ > 0, such that N−1
∑

k∈UN
|Yk(t)|2+δ < ∞ for all t ∈ [0, T ], and

{γp(t, t)}−1/2 {µ̂(t)− µ(t)} → N (0, 1) in distribution when N tends to infinity.

This asymptotic normality assumption is satisfied for high entropy sampling designs (see

Víšek (1979) and Berger (1998b)). Cardot and Josserand (2011) have shown that under the

previous assumptions, the central limit theorem also holds in the space of continuous functions

C[0, T ]. More precisely, if assumptions (A1)-(A3) and (A6) hold and the discretization points

satisfy limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1), we have

√
n(µ̂d − µ)→ Z in distribution in C[0, T ]

9



where Z is a Gaussian random function taking values in C[0, T ] with mean 0 and covariance

function γZ(r, t) = limN→∞ nγpN (r, t). The reader is referred to Cardot et al. (2013c) for a

discussion on the reasons of using the convergence in the space C[0, T ]. This important result

gives a theoretical justification of the confidence bands for µN built as follows:{[
µ̂d(t)± c

σ̂(t)√
n

]
, t ∈ [0, T ]

}
, (12)

where c is a suitable number and σ̂(t) =
√
nγ̂H,d(t, t).

Given a confidence level 1 − α ∈ (0, 1), one way to build such confidence bands, that

is to say one way to find an adequate value for cα, is to perform simulations of centered

Gaussian functions Ẑ defined on [0, T ] with mean 0 and covariance function nγ̂H,d(r, t) and

then compute the quantile of order 1 − α of supt∈[0,T ]

∣∣∣Ẑ(t)/σ̂(t)
∣∣∣ . In other words, we look

for a cut-off point cα, which is random since it depends on the estimated covariance function

γ̂H,d, such that

P
(
|Ẑ(t)| ≤ cα

σ̂(t)√
n
, ∀t ∈ [0, T ] | γ̂H,d

)
= 1− α. (13)

Next proposition provides a rigorous justification for this Monte Carlo technique which can

be interpreted as parametric bootstrap:

Proposition 3.4. Assume (A1)-(A6) hold and the discretization scheme satisfies

maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1).

Let Z be a Gaussian process with mean zero and covariance function γZ . Let (ẐN ) be

a sequence of processes such that for each N , conditionally on γ̂H,d defined in (8), ẐN is

Gaussian with mean zero and covariance nγ̂H,d. Then for all c > 0, as N →∞, the following

convergence holds in probability:

P
(
|ẐN (t)| ≤ c σ̂(t), ∀t ∈ [0, T ]

∣∣ γ̂H,d)→ P (|Z(t)| ≤ c σ(t), ∀t ∈ [0, T ]) ,

where σ̂(t) =
√
nγ̂H,d(t, t) and σ(t) =

√
γZ(t, t).

The proof of Proposition 3.4 is very similar to the proof of Proposition 3.5 in Cardot

et al. (2013c) and is thus omitted. As in Cardot et al. (2013a), it is possible to deduce from

previous proposition that the chosen value ĉα = cα(γ̂H,d) provides asymptotically the desired

coverage since it satisfies

lim
N→∞

P
(
µ(t) ∈

[
µ̂d(t)± ĉα

σ̂(t)√
n

]
, ∀t ∈ [0, T ]

)
= 1− α.
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4 Example: variance estimation for electricity consumption

curves

In this section, we evaluate the performance of the estimators γ̂∗H,d(r, t) and γ̂H,d(r, t) of the

functional variance γp(r, t) of µ̂d(t). Simulation studies not reported here showed that the

estimators γ̂∗H,d(r, t) and γ̂H,d(r, t) conduct very similarly asymptotically. This is why we only

give below the simulation results for γ̂H,d(r, t).

We use the same data frame as in Cardot et al. (2013b). More exactly, we have a

population U of N = 15055 electricity consumption curves measured every half an hour

during one week, so that there are D = 336 time points. The mean consumption during the

previous week for each meter k, denoted xk, is used as an auxiliary variable. This variable is

strongly correlated to the consumption curve Yk(t) (the pointwise correlation is always larger

than 0.80) and is nearly proportional to Yk(t) at each instant t. It is also inexpensive to

transmit.

We select samples s of size n drawn with inclusion probabilities πk proportional to the

past mean electricity consumption. This means that πk = n xk∑
k∈U xk

. As mentioned in Deville

and Tillé (2005), this kind of sampling may be viewed as a balanced sampling with the

balancing variable π = (π1, ..., πN ). Note that by construction, the sample is also balanced

on (x1, . . . , xN ), i.e
∑

k∈s xk/πk =
∑

k∈U xk. The sample is drawn using the fast version (see

Chauvet and Tillé (2006)) of the cube algorithm (see Deville and Tillé (2004)). As suggested

in Chauvet (2007), a random sort of the population is made before the sample selection. The

true mean consumption curve observed in the population U and one estimation obtained

from a sample s′ of size n = 1500 are drawn in Figure 1.

The inclusion probabilities πkl being unknown, we have obtained an empirical estimation

of the covariance function γp via Monte Carlo. We draw J = 10000 samples, denoted by sj ,

for j = 1, . . . , J and consider the following Monte Carlo approximation to γp,

γemp(r, t) =
1

J − 1

J∑
j=1

(µ̂d,j(t)− µ̂d(t))(µ̂d,j(r)− µ̂d(r)), (r, t) ∈ [0, T ]× [0, T ], (14)

with µ̂d,j(t) = 1
N

∑
k∈sj

Yk,d(t)
πk

, µ̂d(t) = 1
J

∑J
j=1 µ̂d,j(t). The empirical variance function γemp

(solid line) of estimator µ̂d, the Hájek approximation γH (dotted line) and one estimation

γ̂H,d (dashed line) obtained from the same sample s′ are drawn in Figure 2.

To evaluate the performance of estimator γ̂H,d, we consider different sample sizes, n = 250,

n = 500 and n = 1500. The corresponding values of d(π) are d(π) = 241.2, d(π) = 464.7 and

d(π) = 1202.3 meaning that our asymptotic point of view is justified in this study.

For each sample size, we draw I = 10000 samples and we compute the following quadratic

11
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Figure 1: Mean consumption curve and its Horvitz-Thompson estimation obtained from

sample s′, with n = 1500.
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Figure 2: Empirical variance γemp (solid line), Hájek’s approximation γH (dotted line) and

variance estimation γ̂H,d (dashed line) obtained from sample s′, with n = 1500.
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loss criterion

R(γ̂H,d) =
1

D

D∑
d=1

|γ̂H(td, td)− γemp(td, td)|2

γemp(td, td)2

'
∫ |γ̂H(t, t)− γemp(t, t)|2

γemp(t, t)2
dt. (15)

We also compute the relative mean squared error,

RMSE =
1

I

I∑
i=1

R(γ̂
(i)
H,d)

= RB2(γ̂H,d) +RV (γ̂H,d), (16)

where γ̂(i)H,d is the value of γ̂H,d computed for the ith simulation. It is decomposed as the

sum of two terms. The term RB2(γ̂H,d) which corresponds to the square relative bias (or

approximation error) is defined by

RB(γ̂H,d)
2 =

1

D

D∑
d=1

(
γ̂H,d(td, td)− γemp(td, td)

γemp(td, td)

)2

where γ̂H,d(td, td) =
∑I

i=1 γ̂
(i)
H,d(td, td)/I and γ̂(i)H,d(td, td) is the variance estimation obtained

for the ith simulated sample. The second term RV (γ̂H,d) = RMSE − RB2(γ̂H,d) can be

interpreted as the relative variance of estimator γ̂H,d.

Sample Size RMSE RB2(γ̂H,d) R(γ̂H,d)

5% 1st quartile median 3rd quartile 95%

250 0.9473 0.0004 0.0188 0.0298 0.0446 0.0748 0.4326

500 0.3428 0.0002 0.0121 0.0191 0.0278 0.0456 0.3510

1500 0.1406 0.0003 0.006 0.0097 0.0144 0.0272 0.0929

Table 1: RMSE, RB2(γ̂H,d) and estimation errors according to criterion R(γ̂H,d) for different

sample sizes, with I = 10000 simulations.

The estimation errors are presented in Table 1 for the three considered sample sizes. We

first note that the values of the relative square bias RB(γ̂H,d) are very low, meaning that the

Hájek’s formula provides, in our relatively large sample context, a very good approximation

to the variance. The median error for R(γ̂H,d) is slightly larger but remains small (always less

than 5%), even for moderate sample sizes (n=250). This means that the most important part

of the variance estimation error is due to the sampling error. We have drawn in Figure 3 the

approximation error γemp(t, r) − γH,d(t, r) and in Figure 4 the estimation error γemp(t, r) −

γ̂H,d(t, r) for t, r ∈ {1, . . . ,D}, corresponding to a sample of size n = 1500 with an estimation

13



error close to the median value of the global risk, R(γ̂H,d) = 0.0144. It appears that the

largest estimation errors for the variance occur when the level of consumption is high. We

can also observe in these Figures a kind of periodic pattern which can be related to the daily

electricity consumption behavior.

Figure 3: Approximation error γemp − γH,d for a sample of size n = 1500.

Nevertheless, we also note that the relative mean squared error RMSE, which is approxi-

mately equal to the relative variance of the estimator γ̂H,d, is rather high, especially for small

sample sizes (n = 250). Looking at the 95 % quantiles of R(γ̂H,d) in Table 1, we can deduce

that bad variance estimations only occur in rare cases but with very large errors. A closer

look at the data shows that the bad performance of the variance estimator, in terms of RMSE,

14



Figure 4: Estimation error γemp − γ̂H,d for a a sample of size n = 1500.
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is in fact due to a few individuals in the population that have both a very small inclusion

probability πk and a consumption level Yk that can be very important at some instants of

the period. Their selection in the sample, which occurs rarely, leads to an overestimation of

the mean curve and to a large error R(γ̂H,d) when estimating the variance at these instants.

5 Concluding remarks

We have studied in this work simple estimators of the covariance function of the Horvitz-

Thompson estimator for curve data considering high entropy unequal probability sampling

designs. Our variance estimators, which are based on the asymptotic Hájek approximation

to the second order inclusion probabilities, are well suited for large samples drawn in large

populations. It is shown under reasonable conditions on the regularity of the curves and on

the sampling design that we get consistent estimators that can also be used to build confidence

bands for the mean, or total, curve by employing an approach based on Gaussian process

simulations. The illustration on the estimation of mean electricity consumption curves with

πps samples drawn with the Cube algorithm shows that, in most of cases, the estimation error

of the covariance function is small. Nevertheless, we have in the population a few very influent

observations (about 10 units in a population of N = 15055) which are characterized by very

small inclusion probabilities and high values of electricity consumption at some instant of

the considered period. These influent observations, which can be detected in the sample

by considering the extreme values of the real variable mk = supt∈[0,T ] |Yk(t)|/πk, completely

deteriorate the quality of the variance estimator when they belong to the sample, which rarely

occurs.

More robust estimators could be obtained at the sampling stage by preventing the inclu-

sion probabilities from being too close to zero and by introducing a threshold δ > 0 such

that

πk = n
max (δ, xk)∑
k∈U max (δ, xk)

.

Even if the resulting Horvitz-Thompson estimator would certainly be a bit less efficient,

since the proportionality would not be respected anymore, it would permit to get a more

stable estimation by attenuating the eventual effect of influent observations. On the other

hand, another possible way to deal with this robustness issue would consist in modifying the

weights of the influent observations at the estimation stage by introducing a correction such as

winsorization (see e.g Beaumont and Rivest (2009) for a review). In our variance estimation

functional context, this topic is new and would certainly deserve further investigation.

Acknowledgements. The authors thanks the two anonymous referees as well as an associate

editor for their constructive remarks.
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A Proofs

Throughout the proofs we use the letter C to denote a generic constant whose value may

vary from place to place. Let us also define ∆kl = πkl − πkπl and ∆kk = πk(1 − πk). More

detailed proofs can be found in Lardin (2012).

A.1 Proof of proposition 3.1

We first consider the case of the rejective sampling prej(s) and show that A5 is true if d(πN )

tends to infinity. By Theorem 1 in in Boistard et al. (2012) and hypothesis A2, we have

Ep (1k1k2l1l2)− πk1πk2πl1πl2 = O(d(π)−1)

uniformly for (k1, l1, k2, l2) ∈ D4,N . Since πk1πk2 − πk1k2 = O(d(π)−1) and πl1πl2 − πl1l2 =

O(d(π)−1) uniformly for (k1, l1, k2, l2) ∈ D4,N , we directly obtain that, for rejective sampling

max
(k1,l1,k2,l2)∈D4,N

|Ep [(1k1l1 − πk1πl1)(1k2l2 − πk2πl2)]| ≤ C

d(π)
,

for some constant C.

If we consider now a different sampling design pN (s), we have with Pinsker inequality

(see Theorem 6.1 in Kemperman (1969)) and the property of the total variation distance,

sup
A∈AN

|pN (A)− prej(A)| ≤
√
K(pN , prej)/2

whereAN is the set of all partitions of UN . Considering the particular casesA = {(k1, l1, k2, l2) ∈

D4,N}, and denoting by πk1k2l1l2 = pN (A) and by πrejk1k2l1l2
= prej(A), we directly get that

sup
(k1,l1,k2,l2)∈D4,N

∣∣∣πk1k2l1l2 − πrejk1k2l1l2

∣∣∣ ≤√K(pN , prej)/2

and the proof is complete.

A.2 Proof of Proposition 3.2 (consistency of the covariance and the vari-

ance functions)

The proof follows the same steps as in Cardot et al. (2013c). We show first that for all

t, r ∈ [0, T ], the estimator of the covariance function γ̂H,d(r, t) is pointwise convergent for

γp(r, t) and then, that the random variable n(γ̂H,d(t, t)−γp(t, t)) converges in distribution to

zero in the space C([0, T ]). By the definition of the convergence in distribution in C([0, T ]) and

the boundedness and continuity of the sup functional, we then directly obtain the uniformly

convergence of the variance function estimator. As in Cardot et al. (2013c), in order to

obtain the convergence in distribution of n(γ̂H,d(t, t)−γp(t, t)), we first show the convergence

of all finite linear combinations which results easily from the pointwise convergence. Next,

we check that the sequence n(γ̂H,d(t, t)− γp(t, t)) is tight.
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Step 1. Pointwise convergence

We want to show, that for each (t, r) ∈ [0, T ]× [0, T ], we have

nEp {| γ̂H,d(r, t)− γp(r, t) |} → 0, when N →∞.

Let us decompose

n(γ̂H,d(r, t)− γp(r, t)) = n(γ̂H,d(r, t)− γ̂H(r, t)) +n(γH(r, t)− γp(r, t)) +n(γ̂H(r, t)− γH(r, t))

and study separately the interpolation, the approximation and the estimation errors.

Interpolation error

We suppose that t ∈ [ti, ti+1) and r ∈ [ti′ , ti′+1). Using the assumptions (A1)-(A3), we can

bound

n|γ̂H,d(r, t)− γ̂H(r, t)| ≤ C1|ti+1 − ti|β + C2|ti′+1 − ti′ |β

and the assumption on the grid of discretization points leads to

n|γ̂H,d(r, t)− γ̂H(r, t)| = o(1). (17)

Approximation error

We show that, for each (r, t) ∈ [0, T ] × [0, T ], n | γH(r, t) − γp(r, t) |= o(1). We write the

approximation (4) as follows

πkl − πkπl = −πkπl
(1− πk)(1− πl)

d(π)
+

ckl
d(π)

(18)

where maxk 6=l∈U |ckl| → 0 and we use it in the expression of the covariance function given by

(3):

γp(r, t) =
1

2

1

d(π)N2

∑
k∈U

∑
l 6=k∈U

[πkπl(1− πk)(1− πl)− ckl]
(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)

= γH(r, t)− 1

2

1

N2

∑
k∈U

∑
l 6=k∈U

ckl
d(π)

(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)
.

Thus, we directly get with assumptions (A1)-(A3) that

d(π) |γH(r, t)− γp(r, t)| = o(1). (19)
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Sampling error

To establish the convergence of n(γ̂H(r, t)− γH(r, t)) to zero in probability as N →∞, it is

enough to show that, for all (r, t) ∈ [0, T ]× [0, T ],

n2Ep
[
(γ̂H(r, t)− γH(r, t))2

]
→ 0, when N →∞.

Noting that

n|γ̂H(r, t)− γH(r, t)| ≤ n

N2

∣∣∣∣∣∑
k∈U

(
d̂(π)

d(π)
− 1

)
1k

π2k
(1− πk)Yk(t)Yk(r)

∣∣∣∣∣
+

n

N2

∣∣∣∣∣∑
k∈U

(
1k

πk
− 1

)
1− πk
πk

Yk(t)Yk(r)

∣∣∣∣∣
+

n

N2

1

d(π)

∣∣∣∣∣∑
k∈U

∑
l∈U

(
1kl

πkπl
− 1

)
(1− πk)(1− πl)Yk(t)Yl(r)

∣∣∣∣∣
:= |B1(r, t)|+ |B2(r, t)|+ |B3(r, t)|, (20)

we get

n2Ep
[
(γ̂H(r, t)− γH(r, t))2

]
≤ 3Ep(B1(r, t)

2) + 3Ep(B2(r, t)
2) + 3Ep(B3(r, t)

2). (21)

Let us show now that Ep(B1(r, t)
2) → 0 when N → ∞. Let M = max

πk 6=1
πk. Under the

assumptions (A1)-(A3) and the inequality 1
d(π) ≤

1
Nλ(1−M) , we have

Ep(B1(r, t)
2) ≤ n2

λ4d(π)2
Ep

[
1

N2
(d̂(π)− d(π))2

][
1

N

∑
k∈U

Y 2
k (t)

][
1

N

∑
k∈U

Y 2
k (r)

]
≤ 1

n
C

since Ep( 1
N2 (d̂(π)− d(π))2) = O(n−1). Hence, Ep(B1(r, t)

2)→ 0 when N →∞. Now,

Ep(B2(r, t)
2) ≤ n2

N4

∑
k∈U

∑
l∈U

|∆kl|
πkπl

1− πk
πk

1− πl
πl
|Yk(t)Yk(r)Yl(t)Yl(r)|

≤ 1

λ3
1

N

(
n2

N2
+
n2 maxk 6=l∈U |∆kl|

Nλ

)(
1

N

∑
k∈U
|Yk(t)|4

)1/2(
1

N

∑
k∈U
|Yk(r)|4

)1/2

≤ 1

N
C
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by assumptions (A1)-(A4). Thus Ep(B2(r, t)
2) → 0 when N → ∞. For the third term, we

have

Ep(B3(r, t)
2) = n2Ep

[
1

N4

1

d(π)2

∑
k,l∈U

∑
k′,l′∈U

(
1kl

πkπl
− 1

)(
1k′l′

πk′πl′
− 1

)

· (1− πk)(1− πl)(1− πk′)(1− πl′)Yk(t)Yl(r)Yk′(t)Yl′(r)

]

≤ n2

N4

1

d(π)2

∑
k∈U

∑
k′∈U

∣∣∣∣Ep [(1kπ2k − 1

)(
1k′

π2k′
− 1

)]∣∣∣∣ |Yk(t)Yk(r)Yk′(t)Yk′(r)|
+

2n2

N4

1

d(π)2

∑
k∈U

∑
k′ 6=l′∈U

∣∣∣∣Ep [(1kπ2k − 1

)(
1k′l′

πk′πl′
− 1

)]∣∣∣∣ |Yk(t)Yk(r)Yk′(t)Yl′(r)|
+
n2

N4

1

d(π)2

∑
k 6=l∈U

∑
k′ 6=l′∈U

∣∣∣∣Ep [( 1kl

πkπl
− 1

)(
1k′l′

πk′πl′
− 1

)]∣∣∣∣ |Yk(t)Yl(r)Yk′(t)Yl′(r)|
:= v1 + v2 + v3.

To bound v1, v2, v3, the proof follows the same lines as above. We write each double sum∑
k∈U

∑
l∈U as the sum of two terms: the first one is

∑
k∈U and is obtained for k = l and the

second one is
∑

k∈U
∑

l 6=k∈U . Under assumptions (A1), (A2) and (A4) and the facts that

πkl ≤ πkπl and d(π)→∞, we get that v1 → 0. Next, we can write

v3 ≤
C

N
+

n2

λ4d2(π)
max

(k,l,k′,l′)∈D4,N

|Ep [(1kl − πkπl) (1k′l′ − πk′πl′)]|

(
1

N

∑
k∈U

Y 2
k (t)

)(
1

N

∑
l∈U

Y 2
l (r)

)
,

so that v3 → 0 when N →∞ and the assumptions (A1)-(A5) are fulfilled. By the Cauchy-

Schwarz inequality, we have v2 → 0 when N → ∞. Finally, we have that for all (r, t) ∈

[0, T ] × [0, T ], n|γ̂H(r, t) − γH(r, t)| → 0, when N → ∞. Finally, the proof of step 1 is

complete using (17) and (19).

Step 2. Tightness

To check the tightness of n(γ̂H(t, t) − γH(t, t)) in C[0, T ], we use the Theorem 12.3 from

Billingsley (1968) which requires that the sequence is tight for t = 0 and that the increments

of n(γ̂H − γH) between two instants t and r satisfy

d2γ(t, r) = n2Ep(|γ̂H(t, t)− γH(t, t)− γ̂H(r, r) + γH(r, r)|2) ≤ C|t− r|2β, β > 1/2

for some positive constant C and all (r, t) ∈ [0, T ]× [0, T ].

The pointwise convergence of n(γ̂H − γH) implies that n(γ̂H(0, 0)− γH(0, 0)) is tight. Using

(20), we can decompose d2γ(t, r) into 3 parts,

d2γ(r, t) ≤ 3
(
Ep
(
[B1(t, t)−B1(r, r)]

2
)

+ Ep
(
[B2(t, t)−B2(r, r)]

2
)

+ Ep
(
[B3(t, t)−B3(r, r)]

2
))

:= 3
(
d2B1

+ d2B2
+ d2B3

)
.
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Denote by φkl(t, r) = Yk(t)Yl(t) − Yk(r)Yl(r) with φk(t, r) = Y 2
k (t) − Y 2

k (r) for k = l.

Assuming (A3), we get that
(
1
N

∑
k∈U |φk(t, r)|

)2 ≤ C|t−s|2β and
(

1
N2

∑
k,l∈U |φkl(t, r)|

)2
≤

C|t− s|2β. Moreover, under the assumptions (A1) and (A2), we have

d2B1
≤ n2

N2

(
1 + λ

λ3

)2
(

1

N

∑
k∈U
|φk(t, r)|

)2

≤ C|t− r|2β (22)

as well as

d2B2
≤ n2

N2

(
1 + λ

λ2

)2
(

1

N

∑
k∈U
|φk(t, r)|

)2

≤ C|t− r|2β. (23)

Finally,

d2B3
≤ n2

d(π)2

[
1

N2

∑
k∈U

∑
l∈U
|φkl(t, r)|

]2
≤ C|t− r|2β (24)

and with inequalities (22), (23) we deduce that d2γ(r, t) ≤ C|t− r|2β. The proof is complete.

Proof of Proposition 3.2, point (2): Under the assumptions (A1) and (A2), it is clear

that d̂(π)/d(π) = 1 + op(1). The pointwise convergence of nγ̂∗H,d(r, t) is then a direct conse-

quence of Proposition 3.2, point (1) and the fact that γ̂∗H,d(r, t) =
d(π)

d̂(π)
γ̂H,d(r, t). Further-

more, we may write

n(γ̂∗H,d − γH) = n
d(π)

d̂(π)
(γ̂H,d − γH) + n

(
d(π)

d̂(π)
− 1

)
γH .

By Slutsky’s theorem, the first term at the righthand-side of previous equation converges

in distribution to zero in C([0, T ]) while the second term goes to zero in probability since

sup(r,t)∈[0,T ]×[0,T ] |nγH(r, t)| < ∞ and d(π)

d̂(π)
− 1 = op(1). Hence, the sequence n(γ̂∗H,d − γH)

converges in distribution to zero in C([0, T ]).

A.3 Proof of Proposition 3.3

We first note that the interpolation error, bounded in (17), satisfies

n3/2|γ̂H,d(r, t)− γ̂H(r, t)| = O(1) (25)

provided that limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = O(n−1).We then use the fact (see The-

orem 1 in Boistard et al. (2012)) that for rejective sampling the terms ckl defined in (18) sat-

isfy, for some constant C, maxk,l |ckl| ≤ Cd(π)−1. Thus, bound (19) is now d(π)2 |γH(r, t)−

γp(r, t)| = O(1). If we examine the sampling error, we can check that the terms B1 and B2

are of order n−1. Concerning the term B3, it is bounded by the sum v1 + v2 + v3 with v1 =

O(d−2(π)) and v2 ≤
√
v1v3. Thanks to Proposition 3.1, we get that the term v3 satisfies v3 =

O(d−1(π)) and consequently, Ep(B3(r, t)
2) = O(n−1). Thus, n2Ep

[
(γ̂H(r, t)− γH(r, t))2

]
=

O(n−1) and the proof is complete.
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